ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.233 by root, Tue May 6 23:34:16 2008 UTC vs.
Revision 1.299 by root, Tue Jul 14 00:09:59 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 391# define inline_speed static noinline
316#else 392#else
317# define inline_speed static inline 393# define inline_speed static inline
318#endif 394#endif
319 395
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
322 403
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
325 406
326typedef ev_watcher *W; 407typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
329 410
330#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
332 413
333#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 422#endif
338 423
339#ifdef _WIN32 424#ifdef _WIN32
340# include "ev_win32.c" 425# include "ev_win32.c"
349{ 434{
350 syserr_cb = cb; 435 syserr_cb = cb;
351} 436}
352 437
353static void noinline 438static void noinline
354syserr (const char *msg) 439ev_syserr (const char *msg)
355{ 440{
356 if (!msg) 441 if (!msg)
357 msg = "(libev) system error"; 442 msg = "(libev) system error";
358 443
359 if (syserr_cb) 444 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
407 492
408/*****************************************************************************/ 493/*****************************************************************************/
409 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
410typedef struct 499typedef struct
411{ 500{
412 WL head; 501 WL head;
413 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
415#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 510 SOCKET handle;
417#endif 511#endif
418} ANFD; 512} ANFD;
419 513
514/* stores the pending event set for a given watcher */
420typedef struct 515typedef struct
421{ 516{
422 W w; 517 W w;
423 int events; 518 int events; /* the pending event set for the given watcher */
424} ANPENDING; 519} ANPENDING;
425 520
426#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
427typedef struct 523typedef struct
428{ 524{
429 WL head; 525 WL head;
430} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
431#endif 547#endif
432 548
433#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
434 550
435 struct ev_loop 551 struct ev_loop
454 570
455 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
456 572
457#endif 573#endif
458 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
459/*****************************************************************************/ 587/*****************************************************************************/
460 588
589#ifndef EV_HAVE_EV_TIME
461ev_tstamp 590ev_tstamp
462ev_time (void) 591ev_time (void)
463{ 592{
464#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
465 struct timespec ts; 596 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 599 }
600#endif
601
469 struct timeval tv; 602 struct timeval tv;
470 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 605}
606#endif
474 607
475ev_tstamp inline_size 608inline_size ev_tstamp
476get_clock (void) 609get_clock (void)
477{ 610{
478#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
480 { 613 {
513 struct timeval tv; 646 struct timeval tv;
514 647
515 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
518 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
519#endif 655#endif
520 } 656 }
521} 657}
522 658
523/*****************************************************************************/ 659/*****************************************************************************/
524 660
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 662
527int inline_size 663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
528array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
529{ 667{
530 int ncur = cur + 1; 668 int ncur = cur + 1;
531 669
532 do 670 do
549array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
550{ 688{
551 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
553} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 695
555#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
557 { \ 698 { \
558 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 712 }
572#endif 713#endif
573 714
574#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 717
577/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
578 725
579void noinline 726void noinline
580ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
581{ 728{
582 W w_ = (W)w; 729 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
593 } 740 }
594} 741}
595 742
596void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 760{
599 int i; 761 int i;
600 762
601 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
603} 765}
604 766
605/*****************************************************************************/ 767/*****************************************************************************/
606 768
607void inline_size 769inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
622{ 771{
623 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
624 ev_io *w; 773 ev_io *w;
625 774
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 779 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
632 } 781 }
633} 782}
634 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
635void 795void
636ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 797{
638 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
640} 800}
641 801
642void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
643fd_reify (EV_P) 805fd_reify (EV_P)
644{ 806{
645 int i; 807 int i;
646 808
647 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 818 events |= (unsigned char)w->events;
657 819
658#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
659 if (events) 821 if (events)
660 { 822 {
661 unsigned long argp; 823 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 826 #else
665 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
666 #endif 828 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 830 }
669#endif 831#endif
670 832
671 { 833 {
672 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
674 836
675 anfd->reify = 0; 837 anfd->reify = 0;
676 anfd->events = events; 838 anfd->events = events;
677 839
678 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
680 } 842 }
681 } 843 }
682 844
683 fdchangecnt = 0; 845 fdchangecnt = 0;
684} 846}
685 847
686void inline_size 848/* something about the given fd changed */
849inline_size void
687fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
688{ 851{
689 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
691 854
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
697 } 860 }
698} 861}
699 862
700void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
701fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
702{ 866{
703 ev_io *w; 867 ev_io *w;
704 868
705 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 873 }
710} 874}
711 875
712int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
713fd_valid (int fd) 878fd_valid (int fd)
714{ 879{
715#ifdef _WIN32 880#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
717#else 882#else
725{ 890{
726 int fd; 891 int fd;
727 892
728 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 894 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
732} 897}
733 898
734/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 900static void noinline
753 918
754 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 920 if (anfds [fd].events)
756 { 921 {
757 anfds [fd].events = 0; 922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 925 }
760} 926}
761 927
762/*****************************************************************************/ 928/*****************************************************************************/
763 929
930/*
931 * the heap functions want a real array index. array index 0 uis guaranteed to not
932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933 * the branching factor of the d-tree.
934 */
935
936/*
937 * at the moment we allow libev the luxury of two heaps,
938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942#if EV_USE_4HEAP
943
944#define DHEAP 4
945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
948
949/* away from the root */
950inline_speed void
951downheap (ANHE *heap, int N, int k)
952{
953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
955
956 for (;;)
957 {
958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961
962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
964 {
965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
978 break;
979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
764/* towards the root */ 1029/* towards the root */
765void inline_speed 1030inline_speed void
766upheap (WT *heap, int k) 1031upheap (ANHE *heap, int k)
767{ 1032{
768 WT w = heap [k]; 1033 ANHE he = heap [k];
769 1034
770 for (;;) 1035 for (;;)
771 { 1036 {
772 int p = k >> 1; 1037 int p = HPARENT (k);
773 1038
774 /* maybe we could use a dummy element at heap [0]? */ 1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
775 if (!p || heap [p]->at <= w->at)
776 break; 1040 break;
777 1041
778 heap [k] = heap [p]; 1042 heap [k] = heap [p];
779 ev_active (heap [k]) = k; 1043 ev_active (ANHE_w (heap [k])) = k;
780 k = p; 1044 k = p;
781 } 1045 }
782 1046
783 heap [k] = w; 1047 heap [k] = he;
784 ev_active (heap [k]) = k; 1048 ev_active (ANHE_w (he)) = k;
785} 1049}
786 1050
787/* away from the root */ 1051/* move an element suitably so it is in a correct place */
788void inline_speed 1052inline_size void
789downheap (WT *heap, int N, int k)
790{
791 WT w = heap [k];
792
793 for (;;)
794 {
795 int c = k << 1;
796
797 if (c > N)
798 break;
799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
806 heap [k] = heap [c];
807 ev_active (heap [k]) = k;
808
809 k = c;
810 }
811
812 heap [k] = w;
813 ev_active (heap [k]) = k;
814}
815
816void inline_size
817adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
818{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
819 upheap (heap, k); 1056 upheap (heap, k);
1057 else
820 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
821} 1071}
822 1072
823/*****************************************************************************/ 1073/*****************************************************************************/
824 1074
1075/* associate signal watchers to a signal signal */
825typedef struct 1076typedef struct
826{ 1077{
827 WL head; 1078 WL head;
828 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
829} ANSIG; 1080} ANSIG;
831static ANSIG *signals; 1082static ANSIG *signals;
832static int signalmax; 1083static int signalmax;
833 1084
834static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
835 1086
836void inline_size
837signals_init (ANSIG *base, int count)
838{
839 while (count--)
840 {
841 base->head = 0;
842 base->gotsig = 0;
843
844 ++base;
845 }
846}
847
848/*****************************************************************************/ 1087/*****************************************************************************/
849 1088
850void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
851fd_intern (int fd) 1092fd_intern (int fd)
852{ 1093{
853#ifdef _WIN32 1094#ifdef _WIN32
854 int arg = 1; 1095 unsigned long arg = 1;
855 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
856#else 1097#else
857 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
858 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
859#endif 1100#endif
860} 1101}
861 1102
862static void noinline 1103static void noinline
863evpipe_init (EV_P) 1104evpipe_init (EV_P)
864{ 1105{
865 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
866 { 1107 {
867#if EV_USE_EVENTFD 1108#if EV_USE_EVENTFD
868 if ((evfd = eventfd (0, 0)) >= 0) 1109 if ((evfd = eventfd (0, 0)) >= 0)
869 { 1110 {
870 evpipe [0] = -1; 1111 evpipe [0] = -1;
871 fd_intern (evfd); 1112 fd_intern (evfd);
872 ev_io_set (&pipeev, evfd, EV_READ); 1113 ev_io_set (&pipe_w, evfd, EV_READ);
873 } 1114 }
874 else 1115 else
875#endif 1116#endif
876 { 1117 {
877 while (pipe (evpipe)) 1118 while (pipe (evpipe))
878 syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
879 1120
880 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
881 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
882 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
883 } 1124 }
884 1125
885 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
886 ev_unref (EV_A); /* watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
887 } 1128 }
888} 1129}
889 1130
890void inline_size 1131inline_size void
891evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
892{ 1133{
893 if (!*flag) 1134 if (!*flag)
894 { 1135 {
895 int old_errno = errno; /* save errno because write might clobber it */ 1136 int old_errno = errno; /* save errno because write might clobber it */
908 1149
909 errno = old_errno; 1150 errno = old_errno;
910 } 1151 }
911} 1152}
912 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
913static void 1156static void
914pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
915{ 1158{
916#if EV_USE_EVENTFD 1159#if EV_USE_EVENTFD
917 if (evfd >= 0) 1160 if (evfd >= 0)
973ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
974{ 1217{
975 WL w; 1218 WL w;
976 1219
977#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
978 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
979#endif 1222#endif
980 1223
981 --signum; 1224 --signum;
982 1225
983 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
999 1242
1000#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
1001# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
1002#endif 1245#endif
1003 1246
1004void inline_speed 1247/* handle a single child status event */
1248inline_speed void
1005child_reap (EV_P_ int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
1006{ 1250{
1007 ev_child *w; 1251 ev_child *w;
1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1009 1253
1022 1266
1023#ifndef WCONTINUED 1267#ifndef WCONTINUED
1024# define WCONTINUED 0 1268# define WCONTINUED 0
1025#endif 1269#endif
1026 1270
1271/* called on sigchld etc., calls waitpid */
1027static void 1272static void
1028childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
1029{ 1274{
1030 int pid, status; 1275 int pid, status;
1031 1276
1112 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
1113 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1114 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
1115#endif 1360#endif
1116#ifdef __APPLE__ 1361#ifdef __APPLE__
1117 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
1118 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1119#endif 1365#endif
1120 1366
1121 return flags; 1367 return flags;
1122} 1368}
1123 1369
1137ev_backend (EV_P) 1383ev_backend (EV_P)
1138{ 1384{
1139 return backend; 1385 return backend;
1140} 1386}
1141 1387
1388#if EV_MINIMAL < 2
1142unsigned int 1389unsigned int
1143ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1144{ 1391{
1145 return loop_count; 1392 return loop_count;
1146} 1393}
1147 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1148void 1401void
1149ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1150{ 1403{
1151 io_blocktime = interval; 1404 io_blocktime = interval;
1152} 1405}
1155ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1156{ 1409{
1157 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1158} 1411}
1159 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1160static void noinline 1438static void noinline
1161loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1162{ 1440{
1163 if (!backend) 1441 if (!backend)
1164 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1165#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1166 { 1455 {
1167 struct timespec ts; 1456 struct timespec ts;
1457
1168 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1169 have_monotonic = 1; 1459 have_monotonic = 1;
1170 } 1460 }
1171#endif 1461#endif
1172 1462
1173 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1174 mn_now = get_clock (); 1464 mn_now = get_clock ();
1175 now_floor = mn_now; 1465 now_floor = mn_now;
1176 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1177 1470
1178 io_blocktime = 0.; 1471 io_blocktime = 0.;
1179 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1180 backend = 0; 1473 backend = 0;
1181 backend_fd = -1; 1474 backend_fd = -1;
1212#endif 1505#endif
1213#if EV_USE_SELECT 1506#if EV_USE_SELECT
1214 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1215#endif 1508#endif
1216 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1217 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1218 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1219 } 1514 }
1220} 1515}
1221 1516
1517/* free up a loop structure */
1222static void noinline 1518static void noinline
1223loop_destroy (EV_P) 1519loop_destroy (EV_P)
1224{ 1520{
1225 int i; 1521 int i;
1226 1522
1227 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1228 { 1524 {
1229 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1230 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1231 1527
1232#if EV_USE_EVENTFD 1528#if EV_USE_EVENTFD
1233 if (evfd >= 0) 1529 if (evfd >= 0)
1234 close (evfd); 1530 close (evfd);
1235#endif 1531#endif
1274 } 1570 }
1275 1571
1276 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1277 1573
1278 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1279 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1280 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1281#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1282 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1283#endif 1580#endif
1292 1589
1293 backend = 0; 1590 backend = 0;
1294} 1591}
1295 1592
1296#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1297void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1298#endif 1595#endif
1299 1596
1300void inline_size 1597inline_size void
1301loop_fork (EV_P) 1598loop_fork (EV_P)
1302{ 1599{
1303#if EV_USE_PORT 1600#if EV_USE_PORT
1304 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1305#endif 1602#endif
1311#endif 1608#endif
1312#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1313 infy_fork (EV_A); 1610 infy_fork (EV_A);
1314#endif 1611#endif
1315 1612
1316 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1317 { 1614 {
1318 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1319 /* while we modify the fd vars */ 1616 /* while we modify the fd vars */
1320 gotsig = 1; 1617 gotsig = 1;
1321#if EV_ASYNC_ENABLE 1618#if EV_ASYNC_ENABLE
1322 gotasync = 1; 1619 gotasync = 1;
1323#endif 1620#endif
1324 1621
1325 ev_ref (EV_A); 1622 ev_ref (EV_A);
1326 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1327 1624
1328#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1329 if (evfd >= 0) 1626 if (evfd >= 0)
1330 close (evfd); 1627 close (evfd);
1331#endif 1628#endif
1336 close (evpipe [1]); 1633 close (evpipe [1]);
1337 } 1634 }
1338 1635
1339 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1340 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1341 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1342 } 1639 }
1343 1640
1344 postfork = 0; 1641 postfork = 0;
1345} 1642}
1346 1643
1347#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1348struct ev_loop * 1646struct ev_loop *
1349ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1350{ 1648{
1351 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1352 1650
1370void 1668void
1371ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1372{ 1670{
1373 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1374} 1672}
1673#endif /* multiplicity */
1375 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1376#endif 1774#endif
1377 1775
1378#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1379struct ev_loop * 1777struct ev_loop *
1380ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1414{ 1812{
1415#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1416 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1417#endif 1815#endif
1418 1816
1817 ev_default_loop_ptr = 0;
1818
1419#ifndef _WIN32 1819#ifndef _WIN32
1420 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1421 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1422#endif 1822#endif
1423 1823
1429{ 1829{
1430#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1431 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1432#endif 1832#endif
1433 1833
1434 if (backend)
1435 postfork = 1; /* must be in line with ev_loop_fork */ 1834 postfork = 1; /* must be in line with ev_loop_fork */
1436} 1835}
1437 1836
1438/*****************************************************************************/ 1837/*****************************************************************************/
1439 1838
1440void 1839void
1441ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1442{ 1841{
1443 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1444} 1843}
1445 1844
1446void inline_speed 1845void noinline
1447call_pending (EV_P) 1846ev_invoke_pending (EV_P)
1448{ 1847{
1449 int pri; 1848 int pri;
1450 1849
1451 for (pri = NUMPRI; pri--; ) 1850 for (pri = NUMPRI; pri--; )
1452 while (pendingcnt [pri]) 1851 while (pendingcnt [pri])
1453 { 1852 {
1454 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1853 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1455 1854
1456 if (expect_true (p->w))
1457 {
1458 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1855 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1856 /* ^ this is no longer true, as pending_w could be here */
1459 1857
1460 p->w->pending = 0; 1858 p->w->pending = 0;
1461 EV_CB_INVOKE (p->w, p->events); 1859 EV_CB_INVOKE (p->w, p->events);
1462 } 1860 EV_FREQUENT_CHECK;
1463 } 1861 }
1464} 1862}
1465 1863
1466void inline_size
1467timers_reify (EV_P)
1468{
1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1470 {
1471 ev_timer *w = (ev_timer *)timers [1];
1472
1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1474
1475 /* first reschedule or stop timer */
1476 if (w->repeat)
1477 {
1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1479
1480 ev_at (w) += w->repeat;
1481 if (ev_at (w) < mn_now)
1482 ev_at (w) = mn_now;
1483
1484 downheap (timers, timercnt, 1);
1485 }
1486 else
1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1490 }
1491}
1492
1493#if EV_PERIODIC_ENABLE
1494void inline_size
1495periodics_reify (EV_P)
1496{
1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1498 {
1499 ev_periodic *w = (ev_periodic *)periodics [1];
1500
1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1502
1503 /* first reschedule or stop timer */
1504 if (w->reschedule_cb)
1505 {
1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1508 downheap (periodics, periodiccnt, 1);
1509 }
1510 else if (w->interval)
1511 {
1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1515 downheap (periodics, periodiccnt, 1);
1516 }
1517 else
1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1519
1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1521 }
1522}
1523
1524static void noinline
1525periodics_reschedule (EV_P)
1526{
1527 int i;
1528
1529 /* adjust periodics after time jump */
1530 for (i = 1; i <= periodiccnt; ++i)
1531 {
1532 ev_periodic *w = (ev_periodic *)periodics [i];
1533
1534 if (w->reschedule_cb)
1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1536 else if (w->interval)
1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1538 }
1539
1540 /* now rebuild the heap */
1541 for (i = periodiccnt >> 1; i--; )
1542 downheap (periodics, periodiccnt, i);
1543}
1544#endif
1545
1546#if EV_IDLE_ENABLE 1864#if EV_IDLE_ENABLE
1547void inline_size 1865/* make idle watchers pending. this handles the "call-idle */
1866/* only when higher priorities are idle" logic */
1867inline_size void
1548idle_reify (EV_P) 1868idle_reify (EV_P)
1549{ 1869{
1550 if (expect_false (idleall)) 1870 if (expect_false (idleall))
1551 { 1871 {
1552 int pri; 1872 int pri;
1564 } 1884 }
1565 } 1885 }
1566} 1886}
1567#endif 1887#endif
1568 1888
1569void inline_speed 1889/* make timers pending */
1890inline_size void
1891timers_reify (EV_P)
1892{
1893 EV_FREQUENT_CHECK;
1894
1895 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1896 {
1897 do
1898 {
1899 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1900
1901 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1902
1903 /* first reschedule or stop timer */
1904 if (w->repeat)
1905 {
1906 ev_at (w) += w->repeat;
1907 if (ev_at (w) < mn_now)
1908 ev_at (w) = mn_now;
1909
1910 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1911
1912 ANHE_at_cache (timers [HEAP0]);
1913 downheap (timers, timercnt, HEAP0);
1914 }
1915 else
1916 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1917
1918 EV_FREQUENT_CHECK;
1919 feed_reverse (EV_A_ (W)w);
1920 }
1921 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1922
1923 feed_reverse_done (EV_A_ EV_TIMEOUT);
1924 }
1925}
1926
1927#if EV_PERIODIC_ENABLE
1928/* make periodics pending */
1929inline_size void
1930periodics_reify (EV_P)
1931{
1932 EV_FREQUENT_CHECK;
1933
1934 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1935 {
1936 int feed_count = 0;
1937
1938 do
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1941
1942 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1943
1944 /* first reschedule or stop timer */
1945 if (w->reschedule_cb)
1946 {
1947 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948
1949 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1950
1951 ANHE_at_cache (periodics [HEAP0]);
1952 downheap (periodics, periodiccnt, HEAP0);
1953 }
1954 else if (w->interval)
1955 {
1956 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 /* if next trigger time is not sufficiently in the future, put it there */
1958 /* this might happen because of floating point inexactness */
1959 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1960 {
1961 ev_at (w) += w->interval;
1962
1963 /* if interval is unreasonably low we might still have a time in the past */
1964 /* so correct this. this will make the periodic very inexact, but the user */
1965 /* has effectively asked to get triggered more often than possible */
1966 if (ev_at (w) < ev_rt_now)
1967 ev_at (w) = ev_rt_now;
1968 }
1969
1970 ANHE_at_cache (periodics [HEAP0]);
1971 downheap (periodics, periodiccnt, HEAP0);
1972 }
1973 else
1974 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1975
1976 EV_FREQUENT_CHECK;
1977 feed_reverse (EV_A_ (W)w);
1978 }
1979 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1980
1981 feed_reverse_done (EV_A_ EV_PERIODIC);
1982 }
1983}
1984
1985/* simply recalculate all periodics */
1986/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1987static void noinline
1988periodics_reschedule (EV_P)
1989{
1990 int i;
1991
1992 /* adjust periodics after time jump */
1993 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1994 {
1995 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1996
1997 if (w->reschedule_cb)
1998 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1999 else if (w->interval)
2000 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2001
2002 ANHE_at_cache (periodics [i]);
2003 }
2004
2005 reheap (periodics, periodiccnt);
2006}
2007#endif
2008
2009/* adjust all timers by a given offset */
2010static void noinline
2011timers_reschedule (EV_P_ ev_tstamp adjust)
2012{
2013 int i;
2014
2015 for (i = 0; i < timercnt; ++i)
2016 {
2017 ANHE *he = timers + i + HEAP0;
2018 ANHE_w (*he)->at += adjust;
2019 ANHE_at_cache (*he);
2020 }
2021}
2022
2023/* fetch new monotonic and realtime times from the kernel */
2024/* also detetc if there was a timejump, and act accordingly */
2025inline_speed void
1570time_update (EV_P_ ev_tstamp max_block) 2026time_update (EV_P_ ev_tstamp max_block)
1571{ 2027{
1572 int i;
1573
1574#if EV_USE_MONOTONIC 2028#if EV_USE_MONOTONIC
1575 if (expect_true (have_monotonic)) 2029 if (expect_true (have_monotonic))
1576 { 2030 {
2031 int i;
1577 ev_tstamp odiff = rtmn_diff; 2032 ev_tstamp odiff = rtmn_diff;
1578 2033
1579 mn_now = get_clock (); 2034 mn_now = get_clock ();
1580 2035
1581 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2036 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1599 */ 2054 */
1600 for (i = 4; --i; ) 2055 for (i = 4; --i; )
1601 { 2056 {
1602 rtmn_diff = ev_rt_now - mn_now; 2057 rtmn_diff = ev_rt_now - mn_now;
1603 2058
1604 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2059 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1605 return; /* all is well */ 2060 return; /* all is well */
1606 2061
1607 ev_rt_now = ev_time (); 2062 ev_rt_now = ev_time ();
1608 mn_now = get_clock (); 2063 mn_now = get_clock ();
1609 now_floor = mn_now; 2064 now_floor = mn_now;
1610 } 2065 }
1611 2066
2067 /* no timer adjustment, as the monotonic clock doesn't jump */
2068 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1612# if EV_PERIODIC_ENABLE 2069# if EV_PERIODIC_ENABLE
1613 periodics_reschedule (EV_A); 2070 periodics_reschedule (EV_A);
1614# endif 2071# endif
1615 /* no timer adjustment, as the monotonic clock doesn't jump */
1616 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1617 } 2072 }
1618 else 2073 else
1619#endif 2074#endif
1620 { 2075 {
1621 ev_rt_now = ev_time (); 2076 ev_rt_now = ev_time ();
1622 2077
1623 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2078 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1624 { 2079 {
2080 /* adjust timers. this is easy, as the offset is the same for all of them */
2081 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1625#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1626 periodics_reschedule (EV_A); 2083 periodics_reschedule (EV_A);
1627#endif 2084#endif
1628 /* adjust timers. this is easy, as the offset is the same for all of them */
1629 for (i = 1; i <= timercnt; ++i)
1630 ev_at (timers [i]) += ev_rt_now - mn_now;
1631 } 2085 }
1632 2086
1633 mn_now = ev_rt_now; 2087 mn_now = ev_rt_now;
1634 } 2088 }
1635} 2089}
1636 2090
1637void 2091void
1638ev_ref (EV_P)
1639{
1640 ++activecnt;
1641}
1642
1643void
1644ev_unref (EV_P)
1645{
1646 --activecnt;
1647}
1648
1649static int loop_done;
1650
1651void
1652ev_loop (EV_P_ int flags) 2092ev_loop (EV_P_ int flags)
1653{ 2093{
2094#if EV_MINIMAL < 2
2095 ++loop_depth;
2096#endif
2097
2098 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2099
1654 loop_done = EVUNLOOP_CANCEL; 2100 loop_done = EVUNLOOP_CANCEL;
1655 2101
1656 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2102 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1657 2103
1658 do 2104 do
1659 { 2105 {
2106#if EV_VERIFY >= 2
2107 ev_loop_verify (EV_A);
2108#endif
2109
1660#ifndef _WIN32 2110#ifndef _WIN32
1661 if (expect_false (curpid)) /* penalise the forking check even more */ 2111 if (expect_false (curpid)) /* penalise the forking check even more */
1662 if (expect_false (getpid () != curpid)) 2112 if (expect_false (getpid () != curpid))
1663 { 2113 {
1664 curpid = getpid (); 2114 curpid = getpid ();
1670 /* we might have forked, so queue fork handlers */ 2120 /* we might have forked, so queue fork handlers */
1671 if (expect_false (postfork)) 2121 if (expect_false (postfork))
1672 if (forkcnt) 2122 if (forkcnt)
1673 { 2123 {
1674 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2124 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1675 call_pending (EV_A); 2125 EV_INVOKE_PENDING;
1676 } 2126 }
1677#endif 2127#endif
1678 2128
1679 /* queue prepare watchers (and execute them) */ 2129 /* queue prepare watchers (and execute them) */
1680 if (expect_false (preparecnt)) 2130 if (expect_false (preparecnt))
1681 { 2131 {
1682 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2132 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1683 call_pending (EV_A); 2133 EV_INVOKE_PENDING;
1684 } 2134 }
1685 2135
1686 if (expect_false (!activecnt)) 2136 if (expect_false (loop_done))
1687 break; 2137 break;
1688 2138
1689 /* we might have forked, so reify kernel state if necessary */ 2139 /* we might have forked, so reify kernel state if necessary */
1690 if (expect_false (postfork)) 2140 if (expect_false (postfork))
1691 loop_fork (EV_A); 2141 loop_fork (EV_A);
1698 ev_tstamp waittime = 0.; 2148 ev_tstamp waittime = 0.;
1699 ev_tstamp sleeptime = 0.; 2149 ev_tstamp sleeptime = 0.;
1700 2150
1701 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2151 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1702 { 2152 {
2153 /* remember old timestamp for io_blocktime calculation */
2154 ev_tstamp prev_mn_now = mn_now;
2155
1703 /* update time to cancel out callback processing overhead */ 2156 /* update time to cancel out callback processing overhead */
1704 time_update (EV_A_ 1e100); 2157 time_update (EV_A_ 1e100);
1705 2158
1706 waittime = MAX_BLOCKTIME; 2159 waittime = MAX_BLOCKTIME;
1707 2160
1708 if (timercnt) 2161 if (timercnt)
1709 { 2162 {
1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2163 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1711 if (waittime > to) waittime = to; 2164 if (waittime > to) waittime = to;
1712 } 2165 }
1713 2166
1714#if EV_PERIODIC_ENABLE 2167#if EV_PERIODIC_ENABLE
1715 if (periodiccnt) 2168 if (periodiccnt)
1716 { 2169 {
1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2170 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1718 if (waittime > to) waittime = to; 2171 if (waittime > to) waittime = to;
1719 } 2172 }
1720#endif 2173#endif
1721 2174
2175 /* don't let timeouts decrease the waittime below timeout_blocktime */
1722 if (expect_false (waittime < timeout_blocktime)) 2176 if (expect_false (waittime < timeout_blocktime))
1723 waittime = timeout_blocktime; 2177 waittime = timeout_blocktime;
1724 2178
1725 sleeptime = waittime - backend_fudge; 2179 /* extra check because io_blocktime is commonly 0 */
1726
1727 if (expect_true (sleeptime > io_blocktime)) 2180 if (expect_false (io_blocktime))
1728 sleeptime = io_blocktime;
1729
1730 if (sleeptime)
1731 { 2181 {
2182 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2183
2184 if (sleeptime > waittime - backend_fudge)
2185 sleeptime = waittime - backend_fudge;
2186
2187 if (expect_true (sleeptime > 0.))
2188 {
1732 ev_sleep (sleeptime); 2189 ev_sleep (sleeptime);
1733 waittime -= sleeptime; 2190 waittime -= sleeptime;
2191 }
1734 } 2192 }
1735 } 2193 }
1736 2194
2195#if EV_MINIMAL < 2
1737 ++loop_count; 2196 ++loop_count;
2197#endif
2198 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1738 backend_poll (EV_A_ waittime); 2199 backend_poll (EV_A_ waittime);
2200 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1739 2201
1740 /* update ev_rt_now, do magic */ 2202 /* update ev_rt_now, do magic */
1741 time_update (EV_A_ waittime + sleeptime); 2203 time_update (EV_A_ waittime + sleeptime);
1742 } 2204 }
1743 2205
1754 2216
1755 /* queue check watchers, to be executed first */ 2217 /* queue check watchers, to be executed first */
1756 if (expect_false (checkcnt)) 2218 if (expect_false (checkcnt))
1757 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2219 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1758 2220
1759 call_pending (EV_A); 2221 EV_INVOKE_PENDING;
1760 } 2222 }
1761 while (expect_true ( 2223 while (expect_true (
1762 activecnt 2224 activecnt
1763 && !loop_done 2225 && !loop_done
1764 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2226 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1765 )); 2227 ));
1766 2228
1767 if (loop_done == EVUNLOOP_ONE) 2229 if (loop_done == EVUNLOOP_ONE)
1768 loop_done = EVUNLOOP_CANCEL; 2230 loop_done = EVUNLOOP_CANCEL;
2231
2232#if EV_MINIMAL < 2
2233 --loop_depth;
2234#endif
1769} 2235}
1770 2236
1771void 2237void
1772ev_unloop (EV_P_ int how) 2238ev_unloop (EV_P_ int how)
1773{ 2239{
1774 loop_done = how; 2240 loop_done = how;
1775} 2241}
1776 2242
2243void
2244ev_ref (EV_P)
2245{
2246 ++activecnt;
2247}
2248
2249void
2250ev_unref (EV_P)
2251{
2252 --activecnt;
2253}
2254
2255void
2256ev_now_update (EV_P)
2257{
2258 time_update (EV_A_ 1e100);
2259}
2260
2261void
2262ev_suspend (EV_P)
2263{
2264 ev_now_update (EV_A);
2265}
2266
2267void
2268ev_resume (EV_P)
2269{
2270 ev_tstamp mn_prev = mn_now;
2271
2272 ev_now_update (EV_A);
2273 timers_reschedule (EV_A_ mn_now - mn_prev);
2274#if EV_PERIODIC_ENABLE
2275 /* TODO: really do this? */
2276 periodics_reschedule (EV_A);
2277#endif
2278}
2279
1777/*****************************************************************************/ 2280/*****************************************************************************/
2281/* singly-linked list management, used when the expected list length is short */
1778 2282
1779void inline_size 2283inline_size void
1780wlist_add (WL *head, WL elem) 2284wlist_add (WL *head, WL elem)
1781{ 2285{
1782 elem->next = *head; 2286 elem->next = *head;
1783 *head = elem; 2287 *head = elem;
1784} 2288}
1785 2289
1786void inline_size 2290inline_size void
1787wlist_del (WL *head, WL elem) 2291wlist_del (WL *head, WL elem)
1788{ 2292{
1789 while (*head) 2293 while (*head)
1790 { 2294 {
1791 if (*head == elem) 2295 if (*head == elem)
1796 2300
1797 head = &(*head)->next; 2301 head = &(*head)->next;
1798 } 2302 }
1799} 2303}
1800 2304
1801void inline_speed 2305/* internal, faster, version of ev_clear_pending */
2306inline_speed void
1802clear_pending (EV_P_ W w) 2307clear_pending (EV_P_ W w)
1803{ 2308{
1804 if (w->pending) 2309 if (w->pending)
1805 { 2310 {
1806 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2311 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1807 w->pending = 0; 2312 w->pending = 0;
1808 } 2313 }
1809} 2314}
1810 2315
1811int 2316int
1815 int pending = w_->pending; 2320 int pending = w_->pending;
1816 2321
1817 if (expect_true (pending)) 2322 if (expect_true (pending))
1818 { 2323 {
1819 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2324 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2325 p->w = (W)&pending_w;
1820 w_->pending = 0; 2326 w_->pending = 0;
1821 p->w = 0;
1822 return p->events; 2327 return p->events;
1823 } 2328 }
1824 else 2329 else
1825 return 0; 2330 return 0;
1826} 2331}
1827 2332
1828void inline_size 2333inline_size void
1829pri_adjust (EV_P_ W w) 2334pri_adjust (EV_P_ W w)
1830{ 2335{
1831 int pri = w->priority; 2336 int pri = ev_priority (w);
1832 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2337 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1833 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2338 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1834 w->priority = pri; 2339 ev_set_priority (w, pri);
1835} 2340}
1836 2341
1837void inline_speed 2342inline_speed void
1838ev_start (EV_P_ W w, int active) 2343ev_start (EV_P_ W w, int active)
1839{ 2344{
1840 pri_adjust (EV_A_ w); 2345 pri_adjust (EV_A_ w);
1841 w->active = active; 2346 w->active = active;
1842 ev_ref (EV_A); 2347 ev_ref (EV_A);
1843} 2348}
1844 2349
1845void inline_size 2350inline_size void
1846ev_stop (EV_P_ W w) 2351ev_stop (EV_P_ W w)
1847{ 2352{
1848 ev_unref (EV_A); 2353 ev_unref (EV_A);
1849 w->active = 0; 2354 w->active = 0;
1850} 2355}
1857 int fd = w->fd; 2362 int fd = w->fd;
1858 2363
1859 if (expect_false (ev_is_active (w))) 2364 if (expect_false (ev_is_active (w)))
1860 return; 2365 return;
1861 2366
1862 assert (("ev_io_start called with negative fd", fd >= 0)); 2367 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2368 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2369
2370 EV_FREQUENT_CHECK;
1863 2371
1864 ev_start (EV_A_ (W)w, 1); 2372 ev_start (EV_A_ (W)w, 1);
1865 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2373 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1866 wlist_add (&anfds[fd].head, (WL)w); 2374 wlist_add (&anfds[fd].head, (WL)w);
1867 2375
1868 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2376 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1869 w->events &= ~EV_IOFDSET; 2377 w->events &= ~EV__IOFDSET;
2378
2379 EV_FREQUENT_CHECK;
1870} 2380}
1871 2381
1872void noinline 2382void noinline
1873ev_io_stop (EV_P_ ev_io *w) 2383ev_io_stop (EV_P_ ev_io *w)
1874{ 2384{
1875 clear_pending (EV_A_ (W)w); 2385 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2386 if (expect_false (!ev_is_active (w)))
1877 return; 2387 return;
1878 2388
1879 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2389 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2390
2391 EV_FREQUENT_CHECK;
1880 2392
1881 wlist_del (&anfds[w->fd].head, (WL)w); 2393 wlist_del (&anfds[w->fd].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2394 ev_stop (EV_A_ (W)w);
1883 2395
1884 fd_change (EV_A_ w->fd, 1); 2396 fd_change (EV_A_ w->fd, 1);
2397
2398 EV_FREQUENT_CHECK;
1885} 2399}
1886 2400
1887void noinline 2401void noinline
1888ev_timer_start (EV_P_ ev_timer *w) 2402ev_timer_start (EV_P_ ev_timer *w)
1889{ 2403{
1890 if (expect_false (ev_is_active (w))) 2404 if (expect_false (ev_is_active (w)))
1891 return; 2405 return;
1892 2406
1893 ev_at (w) += mn_now; 2407 ev_at (w) += mn_now;
1894 2408
1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2409 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1896 2410
2411 EV_FREQUENT_CHECK;
2412
2413 ++timercnt;
1897 ev_start (EV_A_ (W)w, ++timercnt); 2414 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2415 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1899 timers [timercnt] = (WT)w; 2416 ANHE_w (timers [ev_active (w)]) = (WT)w;
2417 ANHE_at_cache (timers [ev_active (w)]);
1900 upheap (timers, timercnt); 2418 upheap (timers, ev_active (w));
1901 2419
2420 EV_FREQUENT_CHECK;
2421
1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2422 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1903} 2423}
1904 2424
1905void noinline 2425void noinline
1906ev_timer_stop (EV_P_ ev_timer *w) 2426ev_timer_stop (EV_P_ ev_timer *w)
1907{ 2427{
1908 clear_pending (EV_A_ (W)w); 2428 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2429 if (expect_false (!ev_is_active (w)))
1910 return; 2430 return;
1911 2431
2432 EV_FREQUENT_CHECK;
2433
1912 { 2434 {
1913 int active = ev_active (w); 2435 int active = ev_active (w);
1914 2436
1915 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2437 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1916 2438
2439 --timercnt;
2440
1917 if (expect_true (active < timercnt)) 2441 if (expect_true (active < timercnt + HEAP0))
1918 { 2442 {
1919 timers [active] = timers [timercnt]; 2443 timers [active] = timers [timercnt + HEAP0];
1920 adjustheap (timers, timercnt, active); 2444 adjustheap (timers, timercnt, active);
1921 } 2445 }
1922
1923 --timercnt;
1924 } 2446 }
2447
2448 EV_FREQUENT_CHECK;
1925 2449
1926 ev_at (w) -= mn_now; 2450 ev_at (w) -= mn_now;
1927 2451
1928 ev_stop (EV_A_ (W)w); 2452 ev_stop (EV_A_ (W)w);
1929} 2453}
1930 2454
1931void noinline 2455void noinline
1932ev_timer_again (EV_P_ ev_timer *w) 2456ev_timer_again (EV_P_ ev_timer *w)
1933{ 2457{
2458 EV_FREQUENT_CHECK;
2459
1934 if (ev_is_active (w)) 2460 if (ev_is_active (w))
1935 { 2461 {
1936 if (w->repeat) 2462 if (w->repeat)
1937 { 2463 {
1938 ev_at (w) = mn_now + w->repeat; 2464 ev_at (w) = mn_now + w->repeat;
2465 ANHE_at_cache (timers [ev_active (w)]);
1939 adjustheap (timers, timercnt, ev_active (w)); 2466 adjustheap (timers, timercnt, ev_active (w));
1940 } 2467 }
1941 else 2468 else
1942 ev_timer_stop (EV_A_ w); 2469 ev_timer_stop (EV_A_ w);
1943 } 2470 }
1944 else if (w->repeat) 2471 else if (w->repeat)
1945 { 2472 {
1946 ev_at (w) = w->repeat; 2473 ev_at (w) = w->repeat;
1947 ev_timer_start (EV_A_ w); 2474 ev_timer_start (EV_A_ w);
1948 } 2475 }
2476
2477 EV_FREQUENT_CHECK;
1949} 2478}
1950 2479
1951#if EV_PERIODIC_ENABLE 2480#if EV_PERIODIC_ENABLE
1952void noinline 2481void noinline
1953ev_periodic_start (EV_P_ ev_periodic *w) 2482ev_periodic_start (EV_P_ ev_periodic *w)
1957 2486
1958 if (w->reschedule_cb) 2487 if (w->reschedule_cb)
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2488 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960 else if (w->interval) 2489 else if (w->interval)
1961 { 2490 {
1962 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2491 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1963 /* this formula differs from the one in periodic_reify because we do not always round up */ 2492 /* this formula differs from the one in periodic_reify because we do not always round up */
1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2493 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1965 } 2494 }
1966 else 2495 else
1967 ev_at (w) = w->offset; 2496 ev_at (w) = w->offset;
1968 2497
2498 EV_FREQUENT_CHECK;
2499
2500 ++periodiccnt;
1969 ev_start (EV_A_ (W)w, ++periodiccnt); 2501 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2502 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1971 periodics [periodiccnt] = (WT)w; 2503 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1972 upheap (periodics, periodiccnt); 2504 ANHE_at_cache (periodics [ev_active (w)]);
2505 upheap (periodics, ev_active (w));
1973 2506
2507 EV_FREQUENT_CHECK;
2508
1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2509 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1975} 2510}
1976 2511
1977void noinline 2512void noinline
1978ev_periodic_stop (EV_P_ ev_periodic *w) 2513ev_periodic_stop (EV_P_ ev_periodic *w)
1979{ 2514{
1980 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
1981 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
1982 return; 2517 return;
1983 2518
2519 EV_FREQUENT_CHECK;
2520
1984 { 2521 {
1985 int active = ev_active (w); 2522 int active = ev_active (w);
1986 2523
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2524 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1988 2525
2526 --periodiccnt;
2527
1989 if (expect_true (active < periodiccnt)) 2528 if (expect_true (active < periodiccnt + HEAP0))
1990 { 2529 {
1991 periodics [active] = periodics [periodiccnt]; 2530 periodics [active] = periodics [periodiccnt + HEAP0];
1992 adjustheap (periodics, periodiccnt, active); 2531 adjustheap (periodics, periodiccnt, active);
1993 } 2532 }
1994
1995 --periodiccnt;
1996 } 2533 }
2534
2535 EV_FREQUENT_CHECK;
1997 2536
1998 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1999} 2538}
2000 2539
2001void noinline 2540void noinline
2013 2552
2014void noinline 2553void noinline
2015ev_signal_start (EV_P_ ev_signal *w) 2554ev_signal_start (EV_P_ ev_signal *w)
2016{ 2555{
2017#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
2018 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2557 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2019#endif 2558#endif
2020 if (expect_false (ev_is_active (w))) 2559 if (expect_false (ev_is_active (w)))
2021 return; 2560 return;
2022 2561
2023 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2024 2563
2025 evpipe_init (EV_A); 2564 evpipe_init (EV_A);
2565
2566 EV_FREQUENT_CHECK;
2026 2567
2027 { 2568 {
2028#ifndef _WIN32 2569#ifndef _WIN32
2029 sigset_t full, prev; 2570 sigset_t full, prev;
2030 sigfillset (&full); 2571 sigfillset (&full);
2031 sigprocmask (SIG_SETMASK, &full, &prev); 2572 sigprocmask (SIG_SETMASK, &full, &prev);
2032#endif 2573#endif
2033 2574
2034 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2575 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2035 2576
2036#ifndef _WIN32 2577#ifndef _WIN32
2037 sigprocmask (SIG_SETMASK, &prev, 0); 2578 sigprocmask (SIG_SETMASK, &prev, 0);
2038#endif 2579#endif
2039 } 2580 }
2044 if (!((WL)w)->next) 2585 if (!((WL)w)->next)
2045 { 2586 {
2046#if _WIN32 2587#if _WIN32
2047 signal (w->signum, ev_sighandler); 2588 signal (w->signum, ev_sighandler);
2048#else 2589#else
2049 struct sigaction sa; 2590 struct sigaction sa = { };
2050 sa.sa_handler = ev_sighandler; 2591 sa.sa_handler = ev_sighandler;
2051 sigfillset (&sa.sa_mask); 2592 sigfillset (&sa.sa_mask);
2052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2593 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2053 sigaction (w->signum, &sa, 0); 2594 sigaction (w->signum, &sa, 0);
2054#endif 2595#endif
2055 } 2596 }
2597
2598 EV_FREQUENT_CHECK;
2056} 2599}
2057 2600
2058void noinline 2601void noinline
2059ev_signal_stop (EV_P_ ev_signal *w) 2602ev_signal_stop (EV_P_ ev_signal *w)
2060{ 2603{
2061 clear_pending (EV_A_ (W)w); 2604 clear_pending (EV_A_ (W)w);
2062 if (expect_false (!ev_is_active (w))) 2605 if (expect_false (!ev_is_active (w)))
2063 return; 2606 return;
2064 2607
2608 EV_FREQUENT_CHECK;
2609
2065 wlist_del (&signals [w->signum - 1].head, (WL)w); 2610 wlist_del (&signals [w->signum - 1].head, (WL)w);
2066 ev_stop (EV_A_ (W)w); 2611 ev_stop (EV_A_ (W)w);
2067 2612
2068 if (!signals [w->signum - 1].head) 2613 if (!signals [w->signum - 1].head)
2069 signal (w->signum, SIG_DFL); 2614 signal (w->signum, SIG_DFL);
2615
2616 EV_FREQUENT_CHECK;
2070} 2617}
2071 2618
2072void 2619void
2073ev_child_start (EV_P_ ev_child *w) 2620ev_child_start (EV_P_ ev_child *w)
2074{ 2621{
2075#if EV_MULTIPLICITY 2622#if EV_MULTIPLICITY
2076 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2623 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2077#endif 2624#endif
2078 if (expect_false (ev_is_active (w))) 2625 if (expect_false (ev_is_active (w)))
2079 return; 2626 return;
2080 2627
2628 EV_FREQUENT_CHECK;
2629
2081 ev_start (EV_A_ (W)w, 1); 2630 ev_start (EV_A_ (W)w, 1);
2082 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2631 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2632
2633 EV_FREQUENT_CHECK;
2083} 2634}
2084 2635
2085void 2636void
2086ev_child_stop (EV_P_ ev_child *w) 2637ev_child_stop (EV_P_ ev_child *w)
2087{ 2638{
2088 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
2089 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
2090 return; 2641 return;
2091 2642
2643 EV_FREQUENT_CHECK;
2644
2092 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2645 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2093 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
2647
2648 EV_FREQUENT_CHECK;
2094} 2649}
2095 2650
2096#if EV_STAT_ENABLE 2651#if EV_STAT_ENABLE
2097 2652
2098# ifdef _WIN32 2653# ifdef _WIN32
2099# undef lstat 2654# undef lstat
2100# define lstat(a,b) _stati64 (a,b) 2655# define lstat(a,b) _stati64 (a,b)
2101# endif 2656# endif
2102 2657
2103#define DEF_STAT_INTERVAL 5.0074891 2658#define DEF_STAT_INTERVAL 5.0074891
2659#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2104#define MIN_STAT_INTERVAL 0.1074891 2660#define MIN_STAT_INTERVAL 0.1074891
2105 2661
2106static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2662static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2107 2663
2108#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
2109# define EV_INOTIFY_BUFSIZE 8192 2665# define EV_INOTIFY_BUFSIZE 8192
2113{ 2669{
2114 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2670 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2115 2671
2116 if (w->wd < 0) 2672 if (w->wd < 0)
2117 { 2673 {
2674 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2118 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2675 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2119 2676
2120 /* monitor some parent directory for speedup hints */ 2677 /* monitor some parent directory for speedup hints */
2121 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2678 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2122 /* but an efficiency issue only */ 2679 /* but an efficiency issue only */
2123 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2680 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2124 { 2681 {
2125 char path [4096]; 2682 char path [4096];
2126 strcpy (path, w->path); 2683 strcpy (path, w->path);
2130 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2687 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2131 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2688 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2132 2689
2133 char *pend = strrchr (path, '/'); 2690 char *pend = strrchr (path, '/');
2134 2691
2135 if (!pend) 2692 if (!pend || pend == path)
2136 break; /* whoops, no '/', complain to your admin */ 2693 break;
2137 2694
2138 *pend = 0; 2695 *pend = 0;
2139 w->wd = inotify_add_watch (fs_fd, path, mask); 2696 w->wd = inotify_add_watch (fs_fd, path, mask);
2140 } 2697 }
2141 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2698 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2142 } 2699 }
2143 } 2700 }
2144 else
2145 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2146 2701
2147 if (w->wd >= 0) 2702 if (w->wd >= 0)
2703 {
2148 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2704 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2705
2706 /* now local changes will be tracked by inotify, but remote changes won't */
2707 /* unless the filesystem it known to be local, we therefore still poll */
2708 /* also do poll on <2.6.25, but with normal frequency */
2709 struct statfs sfs;
2710
2711 if (fs_2625 && !statfs (w->path, &sfs))
2712 if (sfs.f_type == 0x1373 /* devfs */
2713 || sfs.f_type == 0xEF53 /* ext2/3 */
2714 || sfs.f_type == 0x3153464a /* jfs */
2715 || sfs.f_type == 0x52654973 /* reiser3 */
2716 || sfs.f_type == 0x01021994 /* tempfs */
2717 || sfs.f_type == 0x58465342 /* xfs */)
2718 return;
2719
2720 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2721 ev_timer_again (EV_A_ &w->timer);
2722 }
2149} 2723}
2150 2724
2151static void noinline 2725static void noinline
2152infy_del (EV_P_ ev_stat *w) 2726infy_del (EV_P_ ev_stat *w)
2153{ 2727{
2167 2741
2168static void noinline 2742static void noinline
2169infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2743infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2170{ 2744{
2171 if (slot < 0) 2745 if (slot < 0)
2172 /* overflow, need to check for all hahs slots */ 2746 /* overflow, need to check for all hash slots */
2173 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2747 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2174 infy_wd (EV_A_ slot, wd, ev); 2748 infy_wd (EV_A_ slot, wd, ev);
2175 else 2749 else
2176 { 2750 {
2177 WL w_; 2751 WL w_;
2183 2757
2184 if (w->wd == wd || wd == -1) 2758 if (w->wd == wd || wd == -1)
2185 { 2759 {
2186 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2760 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2187 { 2761 {
2762 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2188 w->wd = -1; 2763 w->wd = -1;
2189 infy_add (EV_A_ w); /* re-add, no matter what */ 2764 infy_add (EV_A_ w); /* re-add, no matter what */
2190 } 2765 }
2191 2766
2192 stat_timer_cb (EV_A_ &w->timer, 0); 2767 stat_timer_cb (EV_A_ &w->timer, 0);
2205 2780
2206 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2781 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2207 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2782 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2208} 2783}
2209 2784
2210void inline_size 2785inline_size void
2786check_2625 (EV_P)
2787{
2788 /* kernels < 2.6.25 are borked
2789 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2790 */
2791 struct utsname buf;
2792 int major, minor, micro;
2793
2794 if (uname (&buf))
2795 return;
2796
2797 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2798 return;
2799
2800 if (major < 2
2801 || (major == 2 && minor < 6)
2802 || (major == 2 && minor == 6 && micro < 25))
2803 return;
2804
2805 fs_2625 = 1;
2806}
2807
2808inline_size void
2211infy_init (EV_P) 2809infy_init (EV_P)
2212{ 2810{
2213 if (fs_fd != -2) 2811 if (fs_fd != -2)
2214 return; 2812 return;
2813
2814 fs_fd = -1;
2815
2816 check_2625 (EV_A);
2215 2817
2216 fs_fd = inotify_init (); 2818 fs_fd = inotify_init ();
2217 2819
2218 if (fs_fd >= 0) 2820 if (fs_fd >= 0)
2219 { 2821 {
2221 ev_set_priority (&fs_w, EV_MAXPRI); 2823 ev_set_priority (&fs_w, EV_MAXPRI);
2222 ev_io_start (EV_A_ &fs_w); 2824 ev_io_start (EV_A_ &fs_w);
2223 } 2825 }
2224} 2826}
2225 2827
2226void inline_size 2828inline_size void
2227infy_fork (EV_P) 2829infy_fork (EV_P)
2228{ 2830{
2229 int slot; 2831 int slot;
2230 2832
2231 if (fs_fd < 0) 2833 if (fs_fd < 0)
2247 w->wd = -1; 2849 w->wd = -1;
2248 2850
2249 if (fs_fd >= 0) 2851 if (fs_fd >= 0)
2250 infy_add (EV_A_ w); /* re-add, no matter what */ 2852 infy_add (EV_A_ w); /* re-add, no matter what */
2251 else 2853 else
2252 ev_timer_start (EV_A_ &w->timer); 2854 ev_timer_again (EV_A_ &w->timer);
2253 } 2855 }
2254
2255 } 2856 }
2256} 2857}
2257 2858
2859#endif
2860
2861#ifdef _WIN32
2862# define EV_LSTAT(p,b) _stati64 (p, b)
2863#else
2864# define EV_LSTAT(p,b) lstat (p, b)
2258#endif 2865#endif
2259 2866
2260void 2867void
2261ev_stat_stat (EV_P_ ev_stat *w) 2868ev_stat_stat (EV_P_ ev_stat *w)
2262{ 2869{
2289 || w->prev.st_atime != w->attr.st_atime 2896 || w->prev.st_atime != w->attr.st_atime
2290 || w->prev.st_mtime != w->attr.st_mtime 2897 || w->prev.st_mtime != w->attr.st_mtime
2291 || w->prev.st_ctime != w->attr.st_ctime 2898 || w->prev.st_ctime != w->attr.st_ctime
2292 ) { 2899 ) {
2293 #if EV_USE_INOTIFY 2900 #if EV_USE_INOTIFY
2901 if (fs_fd >= 0)
2902 {
2294 infy_del (EV_A_ w); 2903 infy_del (EV_A_ w);
2295 infy_add (EV_A_ w); 2904 infy_add (EV_A_ w);
2296 ev_stat_stat (EV_A_ w); /* avoid race... */ 2905 ev_stat_stat (EV_A_ w); /* avoid race... */
2906 }
2297 #endif 2907 #endif
2298 2908
2299 ev_feed_event (EV_A_ w, EV_STAT); 2909 ev_feed_event (EV_A_ w, EV_STAT);
2300 } 2910 }
2301} 2911}
2304ev_stat_start (EV_P_ ev_stat *w) 2914ev_stat_start (EV_P_ ev_stat *w)
2305{ 2915{
2306 if (expect_false (ev_is_active (w))) 2916 if (expect_false (ev_is_active (w)))
2307 return; 2917 return;
2308 2918
2309 /* since we use memcmp, we need to clear any padding data etc. */
2310 memset (&w->prev, 0, sizeof (ev_statdata));
2311 memset (&w->attr, 0, sizeof (ev_statdata));
2312
2313 ev_stat_stat (EV_A_ w); 2919 ev_stat_stat (EV_A_ w);
2314 2920
2921 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2315 if (w->interval < MIN_STAT_INTERVAL) 2922 w->interval = MIN_STAT_INTERVAL;
2316 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2317 2923
2318 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2924 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2319 ev_set_priority (&w->timer, ev_priority (w)); 2925 ev_set_priority (&w->timer, ev_priority (w));
2320 2926
2321#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2322 infy_init (EV_A); 2928 infy_init (EV_A);
2323 2929
2324 if (fs_fd >= 0) 2930 if (fs_fd >= 0)
2325 infy_add (EV_A_ w); 2931 infy_add (EV_A_ w);
2326 else 2932 else
2327#endif 2933#endif
2328 ev_timer_start (EV_A_ &w->timer); 2934 ev_timer_again (EV_A_ &w->timer);
2329 2935
2330 ev_start (EV_A_ (W)w, 1); 2936 ev_start (EV_A_ (W)w, 1);
2937
2938 EV_FREQUENT_CHECK;
2331} 2939}
2332 2940
2333void 2941void
2334ev_stat_stop (EV_P_ ev_stat *w) 2942ev_stat_stop (EV_P_ ev_stat *w)
2335{ 2943{
2336 clear_pending (EV_A_ (W)w); 2944 clear_pending (EV_A_ (W)w);
2337 if (expect_false (!ev_is_active (w))) 2945 if (expect_false (!ev_is_active (w)))
2338 return; 2946 return;
2339 2947
2948 EV_FREQUENT_CHECK;
2949
2340#if EV_USE_INOTIFY 2950#if EV_USE_INOTIFY
2341 infy_del (EV_A_ w); 2951 infy_del (EV_A_ w);
2342#endif 2952#endif
2343 ev_timer_stop (EV_A_ &w->timer); 2953 ev_timer_stop (EV_A_ &w->timer);
2344 2954
2345 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2346} 2958}
2347#endif 2959#endif
2348 2960
2349#if EV_IDLE_ENABLE 2961#if EV_IDLE_ENABLE
2350void 2962void
2352{ 2964{
2353 if (expect_false (ev_is_active (w))) 2965 if (expect_false (ev_is_active (w)))
2354 return; 2966 return;
2355 2967
2356 pri_adjust (EV_A_ (W)w); 2968 pri_adjust (EV_A_ (W)w);
2969
2970 EV_FREQUENT_CHECK;
2357 2971
2358 { 2972 {
2359 int active = ++idlecnt [ABSPRI (w)]; 2973 int active = ++idlecnt [ABSPRI (w)];
2360 2974
2361 ++idleall; 2975 ++idleall;
2362 ev_start (EV_A_ (W)w, active); 2976 ev_start (EV_A_ (W)w, active);
2363 2977
2364 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2978 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2365 idles [ABSPRI (w)][active - 1] = w; 2979 idles [ABSPRI (w)][active - 1] = w;
2366 } 2980 }
2981
2982 EV_FREQUENT_CHECK;
2367} 2983}
2368 2984
2369void 2985void
2370ev_idle_stop (EV_P_ ev_idle *w) 2986ev_idle_stop (EV_P_ ev_idle *w)
2371{ 2987{
2372 clear_pending (EV_A_ (W)w); 2988 clear_pending (EV_A_ (W)w);
2373 if (expect_false (!ev_is_active (w))) 2989 if (expect_false (!ev_is_active (w)))
2374 return; 2990 return;
2375 2991
2992 EV_FREQUENT_CHECK;
2993
2376 { 2994 {
2377 int active = ev_active (w); 2995 int active = ev_active (w);
2378 2996
2379 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2997 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2380 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2998 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2381 2999
2382 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
2383 --idleall; 3001 --idleall;
2384 } 3002 }
3003
3004 EV_FREQUENT_CHECK;
2385} 3005}
2386#endif 3006#endif
2387 3007
2388void 3008void
2389ev_prepare_start (EV_P_ ev_prepare *w) 3009ev_prepare_start (EV_P_ ev_prepare *w)
2390{ 3010{
2391 if (expect_false (ev_is_active (w))) 3011 if (expect_false (ev_is_active (w)))
2392 return; 3012 return;
3013
3014 EV_FREQUENT_CHECK;
2393 3015
2394 ev_start (EV_A_ (W)w, ++preparecnt); 3016 ev_start (EV_A_ (W)w, ++preparecnt);
2395 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2396 prepares [preparecnt - 1] = w; 3018 prepares [preparecnt - 1] = w;
3019
3020 EV_FREQUENT_CHECK;
2397} 3021}
2398 3022
2399void 3023void
2400ev_prepare_stop (EV_P_ ev_prepare *w) 3024ev_prepare_stop (EV_P_ ev_prepare *w)
2401{ 3025{
2402 clear_pending (EV_A_ (W)w); 3026 clear_pending (EV_A_ (W)w);
2403 if (expect_false (!ev_is_active (w))) 3027 if (expect_false (!ev_is_active (w)))
2404 return; 3028 return;
2405 3029
3030 EV_FREQUENT_CHECK;
3031
2406 { 3032 {
2407 int active = ev_active (w); 3033 int active = ev_active (w);
2408 3034
2409 prepares [active - 1] = prepares [--preparecnt]; 3035 prepares [active - 1] = prepares [--preparecnt];
2410 ev_active (prepares [active - 1]) = active; 3036 ev_active (prepares [active - 1]) = active;
2411 } 3037 }
2412 3038
2413 ev_stop (EV_A_ (W)w); 3039 ev_stop (EV_A_ (W)w);
3040
3041 EV_FREQUENT_CHECK;
2414} 3042}
2415 3043
2416void 3044void
2417ev_check_start (EV_P_ ev_check *w) 3045ev_check_start (EV_P_ ev_check *w)
2418{ 3046{
2419 if (expect_false (ev_is_active (w))) 3047 if (expect_false (ev_is_active (w)))
2420 return; 3048 return;
3049
3050 EV_FREQUENT_CHECK;
2421 3051
2422 ev_start (EV_A_ (W)w, ++checkcnt); 3052 ev_start (EV_A_ (W)w, ++checkcnt);
2423 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3053 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2424 checks [checkcnt - 1] = w; 3054 checks [checkcnt - 1] = w;
3055
3056 EV_FREQUENT_CHECK;
2425} 3057}
2426 3058
2427void 3059void
2428ev_check_stop (EV_P_ ev_check *w) 3060ev_check_stop (EV_P_ ev_check *w)
2429{ 3061{
2430 clear_pending (EV_A_ (W)w); 3062 clear_pending (EV_A_ (W)w);
2431 if (expect_false (!ev_is_active (w))) 3063 if (expect_false (!ev_is_active (w)))
2432 return; 3064 return;
2433 3065
3066 EV_FREQUENT_CHECK;
3067
2434 { 3068 {
2435 int active = ev_active (w); 3069 int active = ev_active (w);
2436 3070
2437 checks [active - 1] = checks [--checkcnt]; 3071 checks [active - 1] = checks [--checkcnt];
2438 ev_active (checks [active - 1]) = active; 3072 ev_active (checks [active - 1]) = active;
2439 } 3073 }
2440 3074
2441 ev_stop (EV_A_ (W)w); 3075 ev_stop (EV_A_ (W)w);
3076
3077 EV_FREQUENT_CHECK;
2442} 3078}
2443 3079
2444#if EV_EMBED_ENABLE 3080#if EV_EMBED_ENABLE
2445void noinline 3081void noinline
2446ev_embed_sweep (EV_P_ ev_embed *w) 3082ev_embed_sweep (EV_P_ ev_embed *w)
2473 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3109 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2474 } 3110 }
2475 } 3111 }
2476} 3112}
2477 3113
3114static void
3115embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3116{
3117 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3118
3119 ev_embed_stop (EV_A_ w);
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 ev_loop_fork (EV_A);
3125 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3126 }
3127
3128 ev_embed_start (EV_A_ w);
3129}
3130
2478#if 0 3131#if 0
2479static void 3132static void
2480embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3133embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2481{ 3134{
2482 ev_idle_stop (EV_A_ idle); 3135 ev_idle_stop (EV_A_ idle);
2489 if (expect_false (ev_is_active (w))) 3142 if (expect_false (ev_is_active (w)))
2490 return; 3143 return;
2491 3144
2492 { 3145 {
2493 struct ev_loop *loop = w->other; 3146 struct ev_loop *loop = w->other;
2494 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3147 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3148 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2496 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
2497 3152
2498 ev_set_priority (&w->io, ev_priority (w)); 3153 ev_set_priority (&w->io, ev_priority (w));
2499 ev_io_start (EV_A_ &w->io); 3154 ev_io_start (EV_A_ &w->io);
2500 3155
2501 ev_prepare_init (&w->prepare, embed_prepare_cb); 3156 ev_prepare_init (&w->prepare, embed_prepare_cb);
2502 ev_set_priority (&w->prepare, EV_MINPRI); 3157 ev_set_priority (&w->prepare, EV_MINPRI);
2503 ev_prepare_start (EV_A_ &w->prepare); 3158 ev_prepare_start (EV_A_ &w->prepare);
2504 3159
3160 ev_fork_init (&w->fork, embed_fork_cb);
3161 ev_fork_start (EV_A_ &w->fork);
3162
2505 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3163 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2506 3164
2507 ev_start (EV_A_ (W)w, 1); 3165 ev_start (EV_A_ (W)w, 1);
3166
3167 EV_FREQUENT_CHECK;
2508} 3168}
2509 3169
2510void 3170void
2511ev_embed_stop (EV_P_ ev_embed *w) 3171ev_embed_stop (EV_P_ ev_embed *w)
2512{ 3172{
2513 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2515 return; 3175 return;
2516 3176
3177 EV_FREQUENT_CHECK;
3178
2517 ev_io_stop (EV_A_ &w->io); 3179 ev_io_stop (EV_A_ &w->io);
2518 ev_prepare_stop (EV_A_ &w->prepare); 3180 ev_prepare_stop (EV_A_ &w->prepare);
3181 ev_fork_stop (EV_A_ &w->fork);
2519 3182
2520 ev_stop (EV_A_ (W)w); 3183 EV_FREQUENT_CHECK;
2521} 3184}
2522#endif 3185#endif
2523 3186
2524#if EV_FORK_ENABLE 3187#if EV_FORK_ENABLE
2525void 3188void
2526ev_fork_start (EV_P_ ev_fork *w) 3189ev_fork_start (EV_P_ ev_fork *w)
2527{ 3190{
2528 if (expect_false (ev_is_active (w))) 3191 if (expect_false (ev_is_active (w)))
2529 return; 3192 return;
3193
3194 EV_FREQUENT_CHECK;
2530 3195
2531 ev_start (EV_A_ (W)w, ++forkcnt); 3196 ev_start (EV_A_ (W)w, ++forkcnt);
2532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3197 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2533 forks [forkcnt - 1] = w; 3198 forks [forkcnt - 1] = w;
3199
3200 EV_FREQUENT_CHECK;
2534} 3201}
2535 3202
2536void 3203void
2537ev_fork_stop (EV_P_ ev_fork *w) 3204ev_fork_stop (EV_P_ ev_fork *w)
2538{ 3205{
2539 clear_pending (EV_A_ (W)w); 3206 clear_pending (EV_A_ (W)w);
2540 if (expect_false (!ev_is_active (w))) 3207 if (expect_false (!ev_is_active (w)))
2541 return; 3208 return;
2542 3209
3210 EV_FREQUENT_CHECK;
3211
2543 { 3212 {
2544 int active = ev_active (w); 3213 int active = ev_active (w);
2545 3214
2546 forks [active - 1] = forks [--forkcnt]; 3215 forks [active - 1] = forks [--forkcnt];
2547 ev_active (forks [active - 1]) = active; 3216 ev_active (forks [active - 1]) = active;
2548 } 3217 }
2549 3218
2550 ev_stop (EV_A_ (W)w); 3219 ev_stop (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
2551} 3222}
2552#endif 3223#endif
2553 3224
2554#if EV_ASYNC_ENABLE 3225#if EV_ASYNC_ENABLE
2555void 3226void
2557{ 3228{
2558 if (expect_false (ev_is_active (w))) 3229 if (expect_false (ev_is_active (w)))
2559 return; 3230 return;
2560 3231
2561 evpipe_init (EV_A); 3232 evpipe_init (EV_A);
3233
3234 EV_FREQUENT_CHECK;
2562 3235
2563 ev_start (EV_A_ (W)w, ++asynccnt); 3236 ev_start (EV_A_ (W)w, ++asynccnt);
2564 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2565 asyncs [asynccnt - 1] = w; 3238 asyncs [asynccnt - 1] = w;
3239
3240 EV_FREQUENT_CHECK;
2566} 3241}
2567 3242
2568void 3243void
2569ev_async_stop (EV_P_ ev_async *w) 3244ev_async_stop (EV_P_ ev_async *w)
2570{ 3245{
2571 clear_pending (EV_A_ (W)w); 3246 clear_pending (EV_A_ (W)w);
2572 if (expect_false (!ev_is_active (w))) 3247 if (expect_false (!ev_is_active (w)))
2573 return; 3248 return;
2574 3249
3250 EV_FREQUENT_CHECK;
3251
2575 { 3252 {
2576 int active = ev_active (w); 3253 int active = ev_active (w);
2577 3254
2578 asyncs [active - 1] = asyncs [--asynccnt]; 3255 asyncs [active - 1] = asyncs [--asynccnt];
2579 ev_active (asyncs [active - 1]) = active; 3256 ev_active (asyncs [active - 1]) = active;
2580 } 3257 }
2581 3258
2582 ev_stop (EV_A_ (W)w); 3259 ev_stop (EV_A_ (W)w);
3260
3261 EV_FREQUENT_CHECK;
2583} 3262}
2584 3263
2585void 3264void
2586ev_async_send (EV_P_ ev_async *w) 3265ev_async_send (EV_P_ ev_async *w)
2587{ 3266{
2604once_cb (EV_P_ struct ev_once *once, int revents) 3283once_cb (EV_P_ struct ev_once *once, int revents)
2605{ 3284{
2606 void (*cb)(int revents, void *arg) = once->cb; 3285 void (*cb)(int revents, void *arg) = once->cb;
2607 void *arg = once->arg; 3286 void *arg = once->arg;
2608 3287
2609 ev_io_stop (EV_A_ &once->io); 3288 ev_io_stop (EV_A_ &once->io);
2610 ev_timer_stop (EV_A_ &once->to); 3289 ev_timer_stop (EV_A_ &once->to);
2611 ev_free (once); 3290 ev_free (once);
2612 3291
2613 cb (revents, arg); 3292 cb (revents, arg);
2614} 3293}
2615 3294
2616static void 3295static void
2617once_cb_io (EV_P_ ev_io *w, int revents) 3296once_cb_io (EV_P_ ev_io *w, int revents)
2618{ 3297{
2619 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3299
3300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2620} 3301}
2621 3302
2622static void 3303static void
2623once_cb_to (EV_P_ ev_timer *w, int revents) 3304once_cb_to (EV_P_ ev_timer *w, int revents)
2624{ 3305{
2625 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3307
3308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2626} 3309}
2627 3310
2628void 3311void
2629ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2630{ 3313{
2652 ev_timer_set (&once->to, timeout, 0.); 3335 ev_timer_set (&once->to, timeout, 0.);
2653 ev_timer_start (EV_A_ &once->to); 3336 ev_timer_start (EV_A_ &once->to);
2654 } 3337 }
2655} 3338}
2656 3339
3340/*****************************************************************************/
3341
3342#if EV_WALK_ENABLE
3343void
3344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3345{
3346 int i, j;
3347 ev_watcher_list *wl, *wn;
3348
3349 if (types & (EV_IO | EV_EMBED))
3350 for (i = 0; i < anfdmax; ++i)
3351 for (wl = anfds [i].head; wl; )
3352 {
3353 wn = wl->next;
3354
3355#if EV_EMBED_ENABLE
3356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3357 {
3358 if (types & EV_EMBED)
3359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3360 }
3361 else
3362#endif
3363#if EV_USE_INOTIFY
3364 if (ev_cb ((ev_io *)wl) == infy_cb)
3365 ;
3366 else
3367#endif
3368 if ((ev_io *)wl != &pipe_w)
3369 if (types & EV_IO)
3370 cb (EV_A_ EV_IO, wl);
3371
3372 wl = wn;
3373 }
3374
3375 if (types & (EV_TIMER | EV_STAT))
3376 for (i = timercnt + HEAP0; i-- > HEAP0; )
3377#if EV_STAT_ENABLE
3378 /*TODO: timer is not always active*/
3379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3380 {
3381 if (types & EV_STAT)
3382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3383 }
3384 else
3385#endif
3386 if (types & EV_TIMER)
3387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3388
3389#if EV_PERIODIC_ENABLE
3390 if (types & EV_PERIODIC)
3391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3393#endif
3394
3395#if EV_IDLE_ENABLE
3396 if (types & EV_IDLE)
3397 for (j = NUMPRI; i--; )
3398 for (i = idlecnt [j]; i--; )
3399 cb (EV_A_ EV_IDLE, idles [j][i]);
3400#endif
3401
3402#if EV_FORK_ENABLE
3403 if (types & EV_FORK)
3404 for (i = forkcnt; i--; )
3405 if (ev_cb (forks [i]) != embed_fork_cb)
3406 cb (EV_A_ EV_FORK, forks [i]);
3407#endif
3408
3409#if EV_ASYNC_ENABLE
3410 if (types & EV_ASYNC)
3411 for (i = asynccnt; i--; )
3412 cb (EV_A_ EV_ASYNC, asyncs [i]);
3413#endif
3414
3415 if (types & EV_PREPARE)
3416 for (i = preparecnt; i--; )
3417#if EV_EMBED_ENABLE
3418 if (ev_cb (prepares [i]) != embed_prepare_cb)
3419#endif
3420 cb (EV_A_ EV_PREPARE, prepares [i]);
3421
3422 if (types & EV_CHECK)
3423 for (i = checkcnt; i--; )
3424 cb (EV_A_ EV_CHECK, checks [i]);
3425
3426 if (types & EV_SIGNAL)
3427 for (i = 0; i < signalmax; ++i)
3428 for (wl = signals [i].head; wl; )
3429 {
3430 wn = wl->next;
3431 cb (EV_A_ EV_SIGNAL, wl);
3432 wl = wn;
3433 }
3434
3435 if (types & EV_CHILD)
3436 for (i = EV_PID_HASHSIZE; i--; )
3437 for (wl = childs [i]; wl; )
3438 {
3439 wn = wl->next;
3440 cb (EV_A_ EV_CHILD, wl);
3441 wl = wn;
3442 }
3443/* EV_STAT 0x00001000 /* stat data changed */
3444/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3445}
3446#endif
3447
2657#if EV_MULTIPLICITY 3448#if EV_MULTIPLICITY
2658 #include "ev_wrap.h" 3449 #include "ev_wrap.h"
2659#endif 3450#endif
2660 3451
2661#ifdef __cplusplus 3452#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines