ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.30 by root, Thu Nov 1 08:28:33 2007 UTC vs.
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_EMBED
30# include "config.h" 32# include "config.h"
31#endif 33#endif
32 34
33#include <math.h> 35#include <math.h>
34#include <stdlib.h> 36#include <stdlib.h>
40#include <stdio.h> 42#include <stdio.h>
41 43
42#include <assert.h> 44#include <assert.h>
43#include <errno.h> 45#include <errno.h>
44#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
45#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
46#include <sys/time.h> 50#include <sys/time.h>
47#include <time.h> 51#include <time.h>
48 52
53/**/
54
49#ifndef EV_USE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 56# define EV_USE_MONOTONIC 1
52# endif
53#endif 57#endif
54 58
55#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
57#endif 61#endif
58 62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
59#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
61#endif 69#endif
62 70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
63#ifndef EV_USE_REALTIME 75#ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 76# define EV_USE_REALTIME 1
65#endif 77#endif
78
79/**/
80
81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0
84#endif
85
86#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0
89#endif
90
91/**/
66 92
67#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
68#define MAX_BLOCKTIME 59.731 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
69#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
70 97
98#ifndef EV_EMBED
71#include "ev.h" 99# include "ev.h"
100#endif
101
102#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value))
104# define inline inline
105#else
106# define expect(expr,value) (expr)
107# define inline static
108#endif
109
110#define expect_false(expr) expect ((expr) != 0, 0)
111#define expect_true(expr) expect ((expr) != 0, 1)
112
113#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
114#define ABSPRI(w) ((w)->priority - EV_MINPRI)
72 115
73typedef struct ev_watcher *W; 116typedef struct ev_watcher *W;
74typedef struct ev_watcher_list *WL; 117typedef struct ev_watcher_list *WL;
75typedef struct ev_watcher_time *WT; 118typedef struct ev_watcher_time *WT;
76 119
77static ev_tstamp now, diff; /* monotonic clock */ 120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
78ev_tstamp ev_now;
79int ev_method;
80
81static int have_monotonic; /* runtime */
82
83static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
84static void (*method_modify)(int fd, int oev, int nev);
85static void (*method_poll)(ev_tstamp timeout);
86 121
87/*****************************************************************************/ 122/*****************************************************************************/
88 123
89ev_tstamp 124typedef struct
125{
126 struct ev_watcher_list *head;
127 unsigned char events;
128 unsigned char reify;
129} ANFD;
130
131typedef struct
132{
133 W w;
134 int events;
135} ANPENDING;
136
137#if EV_MULTIPLICITY
138
139struct ev_loop
140{
141# define VAR(name,decl) decl;
142# include "ev_vars.h"
143};
144# undef VAR
145# include "ev_wrap.h"
146
147#else
148
149# define VAR(name,decl) static decl;
150# include "ev_vars.h"
151# undef VAR
152
153#endif
154
155/*****************************************************************************/
156
157inline ev_tstamp
90ev_time (void) 158ev_time (void)
91{ 159{
92#if EV_USE_REALTIME 160#if EV_USE_REALTIME
93 struct timespec ts; 161 struct timespec ts;
94 clock_gettime (CLOCK_REALTIME, &ts); 162 clock_gettime (CLOCK_REALTIME, &ts);
98 gettimeofday (&tv, 0); 166 gettimeofday (&tv, 0);
99 return tv.tv_sec + tv.tv_usec * 1e-6; 167 return tv.tv_sec + tv.tv_usec * 1e-6;
100#endif 168#endif
101} 169}
102 170
103static ev_tstamp 171inline ev_tstamp
104get_clock (void) 172get_clock (void)
105{ 173{
106#if EV_USE_MONOTONIC 174#if EV_USE_MONOTONIC
107 if (have_monotonic) 175 if (expect_true (have_monotonic))
108 { 176 {
109 struct timespec ts; 177 struct timespec ts;
110 clock_gettime (CLOCK_MONOTONIC, &ts); 178 clock_gettime (CLOCK_MONOTONIC, &ts);
111 return ts.tv_sec + ts.tv_nsec * 1e-9; 179 return ts.tv_sec + ts.tv_nsec * 1e-9;
112 } 180 }
113#endif 181#endif
114 182
115 return ev_time (); 183 return ev_time ();
116} 184}
117 185
186ev_tstamp
187ev_now (EV_P)
188{
189 return rt_now;
190}
191
118#define array_roundsize(base,n) ((n) | 4 & ~3) 192#define array_roundsize(base,n) ((n) | 4 & ~3)
119 193
120#define array_needsize(base,cur,cnt,init) \ 194#define array_needsize(base,cur,cnt,init) \
121 if ((cnt) > cur) \ 195 if (expect_false ((cnt) > cur)) \
122 { \ 196 { \
123 int newcnt = cur; \ 197 int newcnt = cur; \
124 do \ 198 do \
125 { \ 199 { \
126 newcnt = array_roundsize (base, newcnt << 1); \ 200 newcnt = array_roundsize (base, newcnt << 1); \
132 cur = newcnt; \ 206 cur = newcnt; \
133 } 207 }
134 208
135/*****************************************************************************/ 209/*****************************************************************************/
136 210
137typedef struct
138{
139 struct ev_io *head;
140 int events;
141} ANFD;
142
143static ANFD *anfds;
144static int anfdmax;
145
146static void 211static void
147anfds_init (ANFD *base, int count) 212anfds_init (ANFD *base, int count)
148{ 213{
149 while (count--) 214 while (count--)
150 { 215 {
151 base->head = 0; 216 base->head = 0;
152 base->events = EV_NONE; 217 base->events = EV_NONE;
218 base->reify = 0;
219
153 ++base; 220 ++base;
154 } 221 }
155} 222}
156 223
157typedef struct
158{
159 W w;
160 int events;
161} ANPENDING;
162
163static ANPENDING *pendings;
164static int pendingmax, pendingcnt;
165
166static void 224static void
167event (W w, int events) 225event (EV_P_ W w, int events)
168{ 226{
227 if (w->pending)
228 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events;
230 return;
231 }
232
169 w->pending = ++pendingcnt; 233 w->pending = ++pendingcnt [ABSPRI (w)];
170 array_needsize (pendings, pendingmax, pendingcnt, ); 234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
171 pendings [pendingcnt - 1].w = w; 235 pendings [ABSPRI (w)][w->pending - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 236 pendings [ABSPRI (w)][w->pending - 1].events = events;
173} 237}
174 238
175static void 239static void
176queue_events (W *events, int eventcnt, int type) 240queue_events (EV_P_ W *events, int eventcnt, int type)
177{ 241{
178 int i; 242 int i;
179 243
180 for (i = 0; i < eventcnt; ++i) 244 for (i = 0; i < eventcnt; ++i)
181 event (events [i], type); 245 event (EV_A_ events [i], type);
182} 246}
183 247
184static void 248static void
185fd_event (int fd, int events) 249fd_event (EV_P_ int fd, int events)
186{ 250{
187 ANFD *anfd = anfds + fd; 251 ANFD *anfd = anfds + fd;
188 struct ev_io *w; 252 struct ev_io *w;
189 253
190 for (w = anfd->head; w; w = w->next) 254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
191 { 255 {
192 int ev = w->events & events; 256 int ev = w->events & events;
193 257
194 if (ev) 258 if (ev)
195 event ((W)w, ev); 259 event (EV_A_ (W)w, ev);
196 } 260 }
197} 261}
198 262
199/*****************************************************************************/ 263/*****************************************************************************/
200 264
201static int *fdchanges;
202static int fdchangemax, fdchangecnt;
203
204static void 265static void
205fd_reify (void) 266fd_reify (EV_P)
206{ 267{
207 int i; 268 int i;
208 269
209 for (i = 0; i < fdchangecnt; ++i) 270 for (i = 0; i < fdchangecnt; ++i)
210 { 271 {
212 ANFD *anfd = anfds + fd; 273 ANFD *anfd = anfds + fd;
213 struct ev_io *w; 274 struct ev_io *w;
214 275
215 int events = 0; 276 int events = 0;
216 277
217 for (w = anfd->head; w; w = w->next) 278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
218 events |= w->events; 279 events |= w->events;
219 280
220 anfd->events &= ~EV_REIFY; 281 anfd->reify = 0;
221 282
222 if (anfd->events != events) 283 if (anfd->events != events)
223 { 284 {
224 method_modify (fd, anfd->events, events); 285 method_modify (EV_A_ fd, anfd->events, events);
225 anfd->events = events; 286 anfd->events = events;
226 } 287 }
227 } 288 }
228 289
229 fdchangecnt = 0; 290 fdchangecnt = 0;
230} 291}
231 292
232static void 293static void
233fd_change (int fd) 294fd_change (EV_P_ int fd)
234{ 295{
235 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 296 if (anfds [fd].reify || fdchangecnt < 0)
236 return; 297 return;
237 298
238 anfds [fd].events |= EV_REIFY; 299 anfds [fd].reify = 1;
239 300
240 ++fdchangecnt; 301 ++fdchangecnt;
241 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 302 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
242 fdchanges [fdchangecnt - 1] = fd; 303 fdchanges [fdchangecnt - 1] = fd;
243} 304}
244 305
306static void
307fd_kill (EV_P_ int fd)
308{
309 struct ev_io *w;
310
311 while ((w = (struct ev_io *)anfds [fd].head))
312 {
313 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 }
316}
317
245/* called on EBADF to verify fds */ 318/* called on EBADF to verify fds */
246static void 319static void
247fd_recheck (void) 320fd_ebadf (EV_P)
248{ 321{
249 int fd; 322 int fd;
250 323
251 for (fd = 0; fd < anfdmax; ++fd) 324 for (fd = 0; fd < anfdmax; ++fd)
252 if (anfds [fd].events) 325 if (anfds [fd].events)
253 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
254 while (anfds [fd].head) 327 fd_kill (EV_A_ fd);
328}
329
330/* called on ENOMEM in select/poll to kill some fds and retry */
331static void
332fd_enomem (EV_P)
333{
334 int fd = anfdmax;
335
336 while (fd--)
337 if (anfds [fd].events)
255 { 338 {
256 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 339 close (fd);
257 ev_io_stop (anfds [fd].head); 340 fd_kill (EV_A_ fd);
341 return;
258 } 342 }
343}
344
345/* susually called after fork if method needs to re-arm all fds from scratch */
346static void
347fd_rearm_all (EV_P)
348{
349 int fd;
350
351 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 {
355 anfds [fd].events = 0;
356 fd_change (fd);
357 }
259} 358}
260 359
261/*****************************************************************************/ 360/*****************************************************************************/
262 361
263static struct ev_timer **timers;
264static int timermax, timercnt;
265
266static struct ev_periodic **periodics;
267static int periodicmax, periodiccnt;
268
269static void 362static void
270upheap (WT *timers, int k) 363upheap (WT *heap, int k)
271{ 364{
272 WT w = timers [k]; 365 WT w = heap [k];
273 366
274 while (k && timers [k >> 1]->at > w->at) 367 while (k && heap [k >> 1]->at > w->at)
275 { 368 {
276 timers [k] = timers [k >> 1]; 369 heap [k] = heap [k >> 1];
277 timers [k]->active = k + 1; 370 heap [k]->active = k + 1;
278 k >>= 1; 371 k >>= 1;
279 } 372 }
280 373
281 timers [k] = w; 374 heap [k] = w;
282 timers [k]->active = k + 1; 375 heap [k]->active = k + 1;
283 376
284} 377}
285 378
286static void 379static void
287downheap (WT *timers, int N, int k) 380downheap (WT *heap, int N, int k)
288{ 381{
289 WT w = timers [k]; 382 WT w = heap [k];
290 383
291 while (k < (N >> 1)) 384 while (k < (N >> 1))
292 { 385 {
293 int j = k << 1; 386 int j = k << 1;
294 387
295 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 388 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
296 ++j; 389 ++j;
297 390
298 if (w->at <= timers [j]->at) 391 if (w->at <= heap [j]->at)
299 break; 392 break;
300 393
301 timers [k] = timers [j]; 394 heap [k] = heap [j];
302 timers [k]->active = k + 1; 395 heap [k]->active = k + 1;
303 k = j; 396 k = j;
304 } 397 }
305 398
306 timers [k] = w; 399 heap [k] = w;
307 timers [k]->active = k + 1; 400 heap [k]->active = k + 1;
308} 401}
309 402
310/*****************************************************************************/ 403/*****************************************************************************/
311 404
312typedef struct 405typedef struct
313{ 406{
314 struct ev_signal *head; 407 struct ev_watcher_list *head;
315 sig_atomic_t gotsig; 408 sig_atomic_t volatile gotsig;
316} ANSIG; 409} ANSIG;
317 410
318static ANSIG *signals; 411static ANSIG *signals;
319static int signalmax; 412static int signalmax;
320 413
321static int sigpipe [2]; 414static int sigpipe [2];
322static sig_atomic_t gotsig; 415static sig_atomic_t volatile gotsig;
323static struct ev_io sigev;
324 416
325static void 417static void
326signals_init (ANSIG *base, int count) 418signals_init (ANSIG *base, int count)
327{ 419{
328 while (count--) 420 while (count--)
329 { 421 {
330 base->head = 0; 422 base->head = 0;
331 base->gotsig = 0; 423 base->gotsig = 0;
424
332 ++base; 425 ++base;
333 } 426 }
334} 427}
335 428
336static void 429static void
338{ 431{
339 signals [signum - 1].gotsig = 1; 432 signals [signum - 1].gotsig = 1;
340 433
341 if (!gotsig) 434 if (!gotsig)
342 { 435 {
436 int old_errno = errno;
343 gotsig = 1; 437 gotsig = 1;
344 write (sigpipe [1], &gotsig, 1); 438 write (sigpipe [1], &signum, 1);
439 errno = old_errno;
345 } 440 }
346} 441}
347 442
348static void 443static void
349sigcb (struct ev_io *iow, int revents) 444sigcb (EV_P_ struct ev_io *iow, int revents)
350{ 445{
351 struct ev_signal *w; 446 struct ev_watcher_list *w;
352 int sig; 447 int signum;
353 448
449 read (sigpipe [0], &revents, 1);
354 gotsig = 0; 450 gotsig = 0;
355 read (sigpipe [0], &revents, 1);
356 451
357 for (sig = signalmax; sig--; ) 452 for (signum = signalmax; signum--; )
358 if (signals [sig].gotsig) 453 if (signals [signum].gotsig)
359 { 454 {
360 signals [sig].gotsig = 0; 455 signals [signum].gotsig = 0;
361 456
362 for (w = signals [sig].head; w; w = w->next) 457 for (w = signals [signum].head; w; w = w->next)
363 event ((W)w, EV_SIGNAL); 458 event (EV_A_ (W)w, EV_SIGNAL);
364 } 459 }
365} 460}
366 461
367static void 462static void
368siginit (void) 463siginit (EV_P)
369{ 464{
465#ifndef WIN32
370 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
371 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 467 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
372 468
373 /* rather than sort out wether we really need nb, set it */ 469 /* rather than sort out wether we really need nb, set it */
374 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
375 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 471 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
472#endif
376 473
377 ev_io_set (&sigev, sigpipe [0], EV_READ); 474 ev_io_set (&sigev, sigpipe [0], EV_READ);
378 ev_io_start (&sigev); 475 ev_io_start (EV_A_ &sigev);
476 ev_unref (EV_A); /* child watcher should not keep loop alive */
379} 477}
380 478
381/*****************************************************************************/ 479/*****************************************************************************/
382 480
383static struct ev_idle **idles; 481#ifndef WIN32
384static int idlemax, idlecnt;
385
386static struct ev_prepare **prepares;
387static int preparemax, preparecnt;
388
389static struct ev_check **checks;
390static int checkmax, checkcnt;
391
392/*****************************************************************************/
393
394static struct ev_child *childs [PID_HASHSIZE];
395static struct ev_signal childev;
396 482
397#ifndef WCONTINUED 483#ifndef WCONTINUED
398# define WCONTINUED 0 484# define WCONTINUED 0
399#endif 485#endif
400 486
401static void 487static void
402childcb (struct ev_signal *sw, int revents) 488child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
403{ 489{
404 struct ev_child *w; 490 struct ev_child *w;
491
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid)
494 {
495 w->priority = sw->priority; /* need to do it *now* */
496 w->rpid = pid;
497 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD);
499 }
500}
501
502static void
503childcb (EV_P_ struct ev_signal *sw, int revents)
504{
405 int pid, status; 505 int pid, status;
406 506
407 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
408 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 508 {
409 if (w->pid == pid || w->pid == -1) 509 /* make sure we are called again until all childs have been reaped */
410 { 510 event (EV_A_ (W)sw, EV_SIGNAL);
411 w->status = status; 511
412 event ((W)w, EV_CHILD); 512 child_reap (EV_A_ sw, pid, pid, status);
413 } 513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 }
414} 515}
516
517#endif
415 518
416/*****************************************************************************/ 519/*****************************************************************************/
417 520
521#if EV_USE_KQUEUE
522# include "ev_kqueue.c"
523#endif
418#if EV_USE_EPOLL 524#if EV_USE_EPOLL
419# include "ev_epoll.c" 525# include "ev_epoll.c"
420#endif 526#endif
527#if EV_USEV_POLL
528# include "ev_poll.c"
529#endif
421#if EV_USE_SELECT 530#if EV_USE_SELECT
422# include "ev_select.c" 531# include "ev_select.c"
423#endif 532#endif
424 533
425int 534int
432ev_version_minor (void) 541ev_version_minor (void)
433{ 542{
434 return EV_VERSION_MINOR; 543 return EV_VERSION_MINOR;
435} 544}
436 545
437int ev_init (int flags) 546/* return true if we are running with elevated privileges and should ignore env variables */
547static int
548enable_secure (void)
438{ 549{
550#ifdef WIN32
551 return 0;
552#else
553 return getuid () != geteuid ()
554 || getgid () != getegid ();
555#endif
556}
557
558int
559ev_method (EV_P)
560{
561 return method;
562}
563
564static void
565loop_init (EV_P_ int methods)
566{
439 if (!ev_method) 567 if (!method)
440 { 568 {
441#if EV_USE_MONOTONIC 569#if EV_USE_MONOTONIC
442 { 570 {
443 struct timespec ts; 571 struct timespec ts;
444 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 572 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
445 have_monotonic = 1; 573 have_monotonic = 1;
446 } 574 }
447#endif 575#endif
448 576
449 ev_now = ev_time (); 577 rt_now = ev_time ();
450 now = get_clock (); 578 mn_now = get_clock ();
579 now_floor = mn_now;
451 diff = ev_now - now; 580 rtmn_diff = rt_now - mn_now;
452 581
453 if (pipe (sigpipe)) 582 if (methods == EVMETHOD_AUTO)
454 return 0; 583 if (!enable_secure () && getenv ("LIBEV_METHODS"))
455 584 methods = atoi (getenv ("LIBEV_METHODS"));
585 else
456 ev_method = EVMETHOD_NONE; 586 methods = EVMETHOD_ANY;
587
588 method = 0;
589#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif
457#if EV_USE_EPOLL 592#if EV_USE_EPOLL
458 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif
595#if EV_USEV_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
459#endif 597#endif
460#if EV_USE_SELECT 598#if EV_USE_SELECT
461 if (ev_method == EVMETHOD_NONE) select_init (flags); 599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
462#endif 600#endif
601 }
602}
463 603
604void
605loop_destroy (EV_P)
606{
607#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif
610#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif
613#if EV_USEV_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif
616#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif
619
620 method = 0;
621 /*TODO*/
622}
623
624void
625loop_fork (EV_P)
626{
627 /*TODO*/
628#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif
631#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif
634}
635
636#if EV_MULTIPLICITY
637struct ev_loop *
638ev_loop_new (int methods)
639{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
641
642 loop_init (EV_A_ methods);
643
644 if (ev_methods (EV_A))
645 return loop;
646
647 return 0;
648}
649
650void
651ev_loop_destroy (EV_P)
652{
653 loop_destroy (EV_A);
654 free (loop);
655}
656
657void
658ev_loop_fork (EV_P)
659{
660 loop_fork (EV_A);
661}
662
663#endif
664
665#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop *
670#else
671static int default_loop;
672
673int
674#endif
675ev_default_loop (int methods)
676{
677 if (sigpipe [0] == sigpipe [1])
678 if (pipe (sigpipe))
679 return 0;
680
681 if (!default_loop)
682 {
683#if EV_MULTIPLICITY
684 struct ev_loop *loop = default_loop = &default_loop_struct;
685#else
686 default_loop = 1;
687#endif
688
689 loop_init (EV_A_ methods);
690
464 if (ev_method) 691 if (ev_method (EV_A))
465 { 692 {
466 ev_watcher_init (&sigev, sigcb); 693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
467 siginit (); 695 siginit (EV_A);
468 696
697#ifndef WIN32
469 ev_signal_init (&childev, childcb, SIGCHLD); 698 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI);
470 ev_signal_start (&childev); 700 ev_signal_start (EV_A_ &childev);
701 ev_unref (EV_A); /* child watcher should not keep loop alive */
702#endif
471 } 703 }
704 else
705 default_loop = 0;
472 } 706 }
473 707
474 return ev_method; 708 return default_loop;
475} 709}
476 710
477/*****************************************************************************/
478
479void 711void
480ev_prefork (void) 712ev_default_destroy (void)
481{ 713{
482 /* nop */ 714#if EV_MULTIPLICITY
483} 715 struct ev_loop *loop = default_loop;
484
485void
486ev_postfork_parent (void)
487{
488 /* nop */
489}
490
491void
492ev_postfork_child (void)
493{
494#if EV_USE_EPOLL
495 if (ev_method == EVMETHOD_EPOLL)
496 epoll_postfork_child ();
497#endif 716#endif
498 717
718 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev);
720
721 ev_ref (EV_A); /* signal watcher */
499 ev_io_stop (&sigev); 722 ev_io_stop (EV_A_ &sigev);
723
724 close (sigpipe [0]); sigpipe [0] = 0;
725 close (sigpipe [1]); sigpipe [1] = 0;
726
727 loop_destroy (EV_A);
728}
729
730void
731ev_default_fork (EV_P)
732{
733 loop_fork (EV_A);
734
735 ev_io_stop (EV_A_ &sigev);
500 close (sigpipe [0]); 736 close (sigpipe [0]);
501 close (sigpipe [1]); 737 close (sigpipe [1]);
502 pipe (sigpipe); 738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
503 siginit (); 741 siginit (EV_A);
504} 742}
505 743
506/*****************************************************************************/ 744/*****************************************************************************/
507 745
508static void 746static void
509call_pending (void) 747call_pending (EV_P)
510{ 748{
749 int pri;
750
751 for (pri = NUMPRI; pri--; )
511 while (pendingcnt) 752 while (pendingcnt [pri])
512 { 753 {
513 ANPENDING *p = pendings + --pendingcnt; 754 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
514 755
515 if (p->w) 756 if (p->w)
516 { 757 {
517 p->w->pending = 0; 758 p->w->pending = 0;
518 p->w->cb (p->w, p->events); 759 p->w->cb (EV_A_ p->w, p->events);
519 } 760 }
520 } 761 }
521} 762}
522 763
523static void 764static void
524timers_reify (void) 765timers_reify (EV_P)
525{ 766{
526 while (timercnt && timers [0]->at <= now) 767 while (timercnt && timers [0]->at <= mn_now)
527 { 768 {
528 struct ev_timer *w = timers [0]; 769 struct ev_timer *w = timers [0];
529 770
530 /* first reschedule or stop timer */ 771 /* first reschedule or stop timer */
531 if (w->repeat) 772 if (w->repeat)
532 { 773 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 775 w->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 776 downheap ((WT *)timers, timercnt, 0);
536 } 777 }
537 else 778 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 780
540 event ((W)w, EV_TIMEOUT); 781 event (EV_A_ (W)w, EV_TIMEOUT);
541 } 782 }
542} 783}
543 784
544static void 785static void
545periodics_reify (void) 786periodics_reify (EV_P)
546{ 787{
547 while (periodiccnt && periodics [0]->at <= ev_now) 788 while (periodiccnt && periodics [0]->at <= rt_now)
548 { 789 {
549 struct ev_periodic *w = periodics [0]; 790 struct ev_periodic *w = periodics [0];
550 791
551 /* first reschedule or stop timer */ 792 /* first reschedule or stop timer */
552 if (w->interval) 793 if (w->interval)
553 { 794 {
554 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
555 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
556 downheap ((WT *)periodics, periodiccnt, 0); 797 downheap ((WT *)periodics, periodiccnt, 0);
557 } 798 }
558 else 799 else
559 ev_periodic_stop (w); /* nonrepeating: stop timer */ 800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
560 801
561 event ((W)w, EV_TIMEOUT); 802 event (EV_A_ (W)w, EV_PERIODIC);
562 } 803 }
563} 804}
564 805
565static void 806static void
566periodics_reschedule (ev_tstamp diff) 807periodics_reschedule (EV_P)
567{ 808{
568 int i; 809 int i;
569 810
570 /* adjust periodics after time jump */ 811 /* adjust periodics after time jump */
571 for (i = 0; i < periodiccnt; ++i) 812 for (i = 0; i < periodiccnt; ++i)
572 { 813 {
573 struct ev_periodic *w = periodics [i]; 814 struct ev_periodic *w = periodics [i];
574 815
575 if (w->interval) 816 if (w->interval)
576 { 817 {
577 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
578 819
579 if (fabs (diff) >= 1e-4) 820 if (fabs (diff) >= 1e-4)
580 { 821 {
581 ev_periodic_stop (w); 822 ev_periodic_stop (EV_A_ w);
582 ev_periodic_start (w); 823 ev_periodic_start (EV_A_ w);
583 824
584 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
585 } 826 }
586 } 827 }
587 } 828 }
588} 829}
589 830
831inline int
832time_update_monotonic (EV_P)
833{
834 mn_now = get_clock ();
835
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 {
838 rt_now = rtmn_diff + mn_now;
839 return 0;
840 }
841 else
842 {
843 now_floor = mn_now;
844 rt_now = ev_time ();
845 return 1;
846 }
847}
848
590static void 849static void
591time_update (void) 850time_update (EV_P)
592{ 851{
593 int i; 852 int i;
594 853
595 ev_now = ev_time (); 854#if EV_USE_MONOTONIC
596
597 if (have_monotonic) 855 if (expect_true (have_monotonic))
598 { 856 {
599 ev_tstamp odiff = diff; 857 if (time_update_monotonic (EV_A))
600
601 for (i = 4; --i; ) /* loop a few times, before making important decisions */
602 { 858 {
603 now = get_clock (); 859 ev_tstamp odiff = rtmn_diff;
860
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862 {
604 diff = ev_now - now; 863 rtmn_diff = rt_now - mn_now;
605 864
606 if (fabs (odiff - diff) < MIN_TIMEJUMP) 865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
607 return; /* all is well */ 866 return; /* all is well */
608 867
609 ev_now = ev_time (); 868 rt_now = ev_time ();
869 mn_now = get_clock ();
870 now_floor = mn_now;
871 }
872
873 periodics_reschedule (EV_A);
874 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
610 } 876 }
611
612 periodics_reschedule (diff - odiff);
613 /* no timer adjustment, as the monotonic clock doesn't jump */
614 } 877 }
615 else 878 else
879#endif
616 { 880 {
617 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 881 rt_now = ev_time ();
882
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
618 { 884 {
619 periodics_reschedule (ev_now - now); 885 periodics_reschedule (EV_A);
620 886
621 /* adjust timers. this is easy, as the offset is the same for all */ 887 /* adjust timers. this is easy, as the offset is the same for all */
622 for (i = 0; i < timercnt; ++i) 888 for (i = 0; i < timercnt; ++i)
623 timers [i]->at += diff; 889 timers [i]->at += rt_now - mn_now;
624 } 890 }
625 891
626 now = ev_now; 892 mn_now = rt_now;
627 } 893 }
628} 894}
629 895
630int ev_loop_done; 896void
897ev_ref (EV_P)
898{
899 ++activecnt;
900}
631 901
902void
903ev_unref (EV_P)
904{
905 --activecnt;
906}
907
908static int loop_done;
909
910void
632void ev_loop (int flags) 911ev_loop (EV_P_ int flags)
633{ 912{
634 double block; 913 double block;
635 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 914 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
636 915
637 do 916 do
638 { 917 {
639 /* queue check watchers (and execute them) */ 918 /* queue check watchers (and execute them) */
640 if (preparecnt) 919 if (expect_false (preparecnt))
641 { 920 {
642 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
643 call_pending (); 922 call_pending (EV_A);
644 } 923 }
645 924
646 /* update fd-related kernel structures */ 925 /* update fd-related kernel structures */
647 fd_reify (); 926 fd_reify (EV_A);
648 927
649 /* calculate blocking time */ 928 /* calculate blocking time */
650 929
651 /* we only need this for !monotonic clockor timers, but as we basically 930 /* we only need this for !monotonic clockor timers, but as we basically
652 always have timers, we just calculate it always */ 931 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A);
935 else
936#endif
937 {
653 ev_now = ev_time (); 938 rt_now = ev_time ();
939 mn_now = rt_now;
940 }
654 941
655 if (flags & EVLOOP_NONBLOCK || idlecnt) 942 if (flags & EVLOOP_NONBLOCK || idlecnt)
656 block = 0.; 943 block = 0.;
657 else 944 else
658 { 945 {
659 block = MAX_BLOCKTIME; 946 block = MAX_BLOCKTIME;
660 947
661 if (timercnt) 948 if (timercnt)
662 { 949 {
663 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 950 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
664 if (block > to) block = to; 951 if (block > to) block = to;
665 } 952 }
666 953
667 if (periodiccnt) 954 if (periodiccnt)
668 { 955 {
669 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
670 if (block > to) block = to; 957 if (block > to) block = to;
671 } 958 }
672 959
673 if (block < 0.) block = 0.; 960 if (block < 0.) block = 0.;
674 } 961 }
675 962
676 method_poll (block); 963 method_poll (EV_A_ block);
677 964
678 /* update ev_now, do magic */ 965 /* update rt_now, do magic */
679 time_update (); 966 time_update (EV_A);
680 967
681 /* queue pending timers and reschedule them */ 968 /* queue pending timers and reschedule them */
682 timers_reify (); /* relative timers called last */ 969 timers_reify (EV_A); /* relative timers called last */
683 periodics_reify (); /* absolute timers called first */ 970 periodics_reify (EV_A); /* absolute timers called first */
684 971
685 /* queue idle watchers unless io or timers are pending */ 972 /* queue idle watchers unless io or timers are pending */
686 if (!pendingcnt) 973 if (!pendingcnt)
687 queue_events ((W *)idles, idlecnt, EV_IDLE); 974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
688 975
689 /* queue check watchers, to be executed first */ 976 /* queue check watchers, to be executed first */
690 if (checkcnt) 977 if (checkcnt)
691 queue_events ((W *)checks, checkcnt, EV_CHECK); 978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
692 979
693 call_pending (); 980 call_pending (EV_A);
694 } 981 }
695 while (!ev_loop_done); 982 while (activecnt && !loop_done);
696 983
697 if (ev_loop_done != 2) 984 if (loop_done != 2)
698 ev_loop_done = 0; 985 loop_done = 0;
986}
987
988void
989ev_unloop (EV_P_ int how)
990{
991 loop_done = how;
699} 992}
700 993
701/*****************************************************************************/ 994/*****************************************************************************/
702 995
703static void 996inline void
704wlist_add (WL *head, WL elem) 997wlist_add (WL *head, WL elem)
705{ 998{
706 elem->next = *head; 999 elem->next = *head;
707 *head = elem; 1000 *head = elem;
708} 1001}
709 1002
710static void 1003inline void
711wlist_del (WL *head, WL elem) 1004wlist_del (WL *head, WL elem)
712{ 1005{
713 while (*head) 1006 while (*head)
714 { 1007 {
715 if (*head == elem) 1008 if (*head == elem)
720 1013
721 head = &(*head)->next; 1014 head = &(*head)->next;
722 } 1015 }
723} 1016}
724 1017
725static void 1018inline void
726ev_clear (W w) 1019ev_clear_pending (EV_P_ W w)
727{ 1020{
728 if (w->pending) 1021 if (w->pending)
729 { 1022 {
730 pendings [w->pending - 1].w = 0; 1023 pendings [ABSPRI (w)][w->pending - 1].w = 0;
731 w->pending = 0; 1024 w->pending = 0;
732 } 1025 }
733} 1026}
734 1027
735static void 1028inline void
736ev_start (W w, int active) 1029ev_start (EV_P_ W w, int active)
737{ 1030{
1031 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1032 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1033
738 w->active = active; 1034 w->active = active;
1035 ev_ref (EV_A);
739} 1036}
740 1037
741static void 1038inline void
742ev_stop (W w) 1039ev_stop (EV_P_ W w)
743{ 1040{
1041 ev_unref (EV_A);
744 w->active = 0; 1042 w->active = 0;
745} 1043}
746 1044
747/*****************************************************************************/ 1045/*****************************************************************************/
748 1046
749void 1047void
750ev_io_start (struct ev_io *w) 1048ev_io_start (EV_P_ struct ev_io *w)
751{ 1049{
1050 int fd = w->fd;
1051
752 if (ev_is_active (w)) 1052 if (ev_is_active (w))
753 return; 1053 return;
754 1054
755 int fd = w->fd; 1055 assert (("ev_io_start called with negative fd", fd >= 0));
756 1056
757 ev_start ((W)w, 1); 1057 ev_start (EV_A_ (W)w, 1);
758 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
759 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1059 wlist_add ((WL *)&anfds[fd].head, (WL)w);
760 1060
761 fd_change (fd); 1061 fd_change (EV_A_ fd);
762} 1062}
763 1063
764void 1064void
765ev_io_stop (struct ev_io *w) 1065ev_io_stop (EV_P_ struct ev_io *w)
766{ 1066{
767 ev_clear ((W)w); 1067 ev_clear_pending (EV_A_ (W)w);
768 if (!ev_is_active (w)) 1068 if (!ev_is_active (w))
769 return; 1069 return;
770 1070
771 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
772 ev_stop ((W)w); 1072 ev_stop (EV_A_ (W)w);
773 1073
774 fd_change (w->fd); 1074 fd_change (EV_A_ w->fd);
775} 1075}
776 1076
777void 1077void
778ev_timer_start (struct ev_timer *w) 1078ev_timer_start (EV_P_ struct ev_timer *w)
779{ 1079{
780 if (ev_is_active (w)) 1080 if (ev_is_active (w))
781 return; 1081 return;
782 1082
783 w->at += now; 1083 w->at += mn_now;
784 1084
785 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
786 1086
787 ev_start ((W)w, ++timercnt); 1087 ev_start (EV_A_ (W)w, ++timercnt);
788 array_needsize (timers, timermax, timercnt, ); 1088 array_needsize (timers, timermax, timercnt, );
789 timers [timercnt - 1] = w; 1089 timers [timercnt - 1] = w;
790 upheap ((WT *)timers, timercnt - 1); 1090 upheap ((WT *)timers, timercnt - 1);
791} 1091}
792 1092
793void 1093void
794ev_timer_stop (struct ev_timer *w) 1094ev_timer_stop (EV_P_ struct ev_timer *w)
795{ 1095{
796 ev_clear ((W)w); 1096 ev_clear_pending (EV_A_ (W)w);
797 if (!ev_is_active (w)) 1097 if (!ev_is_active (w))
798 return; 1098 return;
799 1099
800 if (w->active < timercnt--) 1100 if (w->active < timercnt--)
801 { 1101 {
803 downheap ((WT *)timers, timercnt, w->active - 1); 1103 downheap ((WT *)timers, timercnt, w->active - 1);
804 } 1104 }
805 1105
806 w->at = w->repeat; 1106 w->at = w->repeat;
807 1107
808 ev_stop ((W)w); 1108 ev_stop (EV_A_ (W)w);
809} 1109}
810 1110
811void 1111void
812ev_timer_again (struct ev_timer *w) 1112ev_timer_again (EV_P_ struct ev_timer *w)
813{ 1113{
814 if (ev_is_active (w)) 1114 if (ev_is_active (w))
815 { 1115 {
816 if (w->repeat) 1116 if (w->repeat)
817 { 1117 {
818 w->at = now + w->repeat; 1118 w->at = mn_now + w->repeat;
819 downheap ((WT *)timers, timercnt, w->active - 1); 1119 downheap ((WT *)timers, timercnt, w->active - 1);
820 } 1120 }
821 else 1121 else
822 ev_timer_stop (w); 1122 ev_timer_stop (EV_A_ w);
823 } 1123 }
824 else if (w->repeat) 1124 else if (w->repeat)
825 ev_timer_start (w); 1125 ev_timer_start (EV_A_ w);
826} 1126}
827 1127
828void 1128void
829ev_periodic_start (struct ev_periodic *w) 1129ev_periodic_start (EV_P_ struct ev_periodic *w)
830{ 1130{
831 if (ev_is_active (w)) 1131 if (ev_is_active (w))
832 return; 1132 return;
833 1133
834 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
835 1135
836 /* this formula differs from the one in periodic_reify because we do not always round up */ 1136 /* this formula differs from the one in periodic_reify because we do not always round up */
837 if (w->interval) 1137 if (w->interval)
838 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
839 1139
840 ev_start ((W)w, ++periodiccnt); 1140 ev_start (EV_A_ (W)w, ++periodiccnt);
841 array_needsize (periodics, periodicmax, periodiccnt, ); 1141 array_needsize (periodics, periodicmax, periodiccnt, );
842 periodics [periodiccnt - 1] = w; 1142 periodics [periodiccnt - 1] = w;
843 upheap ((WT *)periodics, periodiccnt - 1); 1143 upheap ((WT *)periodics, periodiccnt - 1);
844} 1144}
845 1145
846void 1146void
847ev_periodic_stop (struct ev_periodic *w) 1147ev_periodic_stop (EV_P_ struct ev_periodic *w)
848{ 1148{
849 ev_clear ((W)w); 1149 ev_clear_pending (EV_A_ (W)w);
850 if (!ev_is_active (w)) 1150 if (!ev_is_active (w))
851 return; 1151 return;
852 1152
853 if (w->active < periodiccnt--) 1153 if (w->active < periodiccnt--)
854 { 1154 {
855 periodics [w->active - 1] = periodics [periodiccnt]; 1155 periodics [w->active - 1] = periodics [periodiccnt];
856 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1156 downheap ((WT *)periodics, periodiccnt, w->active - 1);
857 } 1157 }
858 1158
859 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
860} 1160}
861 1161
862void 1162void
863ev_signal_start (struct ev_signal *w) 1163ev_idle_start (EV_P_ struct ev_idle *w)
864{ 1164{
865 if (ev_is_active (w)) 1165 if (ev_is_active (w))
866 return; 1166 return;
867 1167
1168 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, );
1170 idles [idlecnt - 1] = w;
1171}
1172
1173void
1174ev_idle_stop (EV_P_ struct ev_idle *w)
1175{
1176 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w))
1178 return;
1179
1180 idles [w->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w);
1182}
1183
1184void
1185ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{
1187 if (ev_is_active (w))
1188 return;
1189
1190 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, );
1192 prepares [preparecnt - 1] = w;
1193}
1194
1195void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{
1198 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w))
1200 return;
1201
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w);
1226}
1227
1228#ifndef SA_RESTART
1229# define SA_RESTART 0
1230#endif
1231
1232void
1233ev_signal_start (EV_P_ struct ev_signal *w)
1234{
1235#if EV_MULTIPLICITY
1236 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1237#endif
1238 if (ev_is_active (w))
1239 return;
1240
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242
868 ev_start ((W)w, 1); 1243 ev_start (EV_A_ (W)w, 1);
869 array_needsize (signals, signalmax, w->signum, signals_init); 1244 array_needsize (signals, signalmax, w->signum, signals_init);
870 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
871 1246
872 if (!w->next) 1247 if (!w->next)
873 { 1248 {
874 struct sigaction sa; 1249 struct sigaction sa;
875 sa.sa_handler = sighandler; 1250 sa.sa_handler = sighandler;
876 sigfillset (&sa.sa_mask); 1251 sigfillset (&sa.sa_mask);
877 sa.sa_flags = 0; 1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
878 sigaction (w->signum, &sa, 0); 1253 sigaction (w->signum, &sa, 0);
879 } 1254 }
880} 1255}
881 1256
882void 1257void
883ev_signal_stop (struct ev_signal *w) 1258ev_signal_stop (EV_P_ struct ev_signal *w)
884{ 1259{
885 ev_clear ((W)w); 1260 ev_clear_pending (EV_A_ (W)w);
886 if (!ev_is_active (w)) 1261 if (!ev_is_active (w))
887 return; 1262 return;
888 1263
889 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1264 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
890 ev_stop ((W)w); 1265 ev_stop (EV_A_ (W)w);
891 1266
892 if (!signals [w->signum - 1].head) 1267 if (!signals [w->signum - 1].head)
893 signal (w->signum, SIG_DFL); 1268 signal (w->signum, SIG_DFL);
894} 1269}
895 1270
896void 1271void
897ev_idle_start (struct ev_idle *w) 1272ev_child_start (EV_P_ struct ev_child *w)
898{ 1273{
1274#if EV_MULTIPLICITY
1275 assert (("child watchers are only supported in the default loop", loop == default_loop));
1276#endif
899 if (ev_is_active (w)) 1277 if (ev_is_active (w))
900 return; 1278 return;
901 1279
902 ev_start ((W)w, ++idlecnt); 1280 ev_start (EV_A_ (W)w, 1);
903 array_needsize (idles, idlemax, idlecnt, ); 1281 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
904 idles [idlecnt - 1] = w;
905} 1282}
906 1283
907void 1284void
908ev_idle_stop (struct ev_idle *w) 1285ev_child_stop (EV_P_ struct ev_child *w)
909{ 1286{
910 ev_clear ((W)w); 1287 ev_clear_pending (EV_A_ (W)w);
911 if (ev_is_active (w)) 1288 if (ev_is_active (w))
912 return; 1289 return;
913 1290
914 idles [w->active - 1] = idles [--idlecnt];
915 ev_stop ((W)w);
916}
917
918void
919ev_prepare_start (struct ev_prepare *w)
920{
921 if (ev_is_active (w))
922 return;
923
924 ev_start ((W)w, ++preparecnt);
925 array_needsize (prepares, preparemax, preparecnt, );
926 prepares [preparecnt - 1] = w;
927}
928
929void
930ev_prepare_stop (struct ev_prepare *w)
931{
932 ev_clear ((W)w);
933 if (ev_is_active (w))
934 return;
935
936 prepares [w->active - 1] = prepares [--preparecnt];
937 ev_stop ((W)w);
938}
939
940void
941ev_check_start (struct ev_check *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, ++checkcnt);
947 array_needsize (checks, checkmax, checkcnt, );
948 checks [checkcnt - 1] = w;
949}
950
951void
952ev_check_stop (struct ev_check *w)
953{
954 ev_clear ((W)w);
955 if (ev_is_active (w))
956 return;
957
958 checks [w->active - 1] = checks [--checkcnt];
959 ev_stop ((W)w);
960}
961
962void
963ev_child_start (struct ev_child *w)
964{
965 if (ev_is_active (w))
966 return;
967
968 ev_start ((W)w, 1);
969 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
970}
971
972void
973ev_child_stop (struct ev_child *w)
974{
975 ev_clear ((W)w);
976 if (ev_is_active (w))
977 return;
978
979 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
980 ev_stop ((W)w); 1292 ev_stop (EV_A_ (W)w);
981} 1293}
982 1294
983/*****************************************************************************/ 1295/*****************************************************************************/
984 1296
985struct ev_once 1297struct ev_once
989 void (*cb)(int revents, void *arg); 1301 void (*cb)(int revents, void *arg);
990 void *arg; 1302 void *arg;
991}; 1303};
992 1304
993static void 1305static void
994once_cb (struct ev_once *once, int revents) 1306once_cb (EV_P_ struct ev_once *once, int revents)
995{ 1307{
996 void (*cb)(int revents, void *arg) = once->cb; 1308 void (*cb)(int revents, void *arg) = once->cb;
997 void *arg = once->arg; 1309 void *arg = once->arg;
998 1310
999 ev_io_stop (&once->io); 1311 ev_io_stop (EV_A_ &once->io);
1000 ev_timer_stop (&once->to); 1312 ev_timer_stop (EV_A_ &once->to);
1001 free (once); 1313 free (once);
1002 1314
1003 cb (revents, arg); 1315 cb (revents, arg);
1004} 1316}
1005 1317
1006static void 1318static void
1007once_cb_io (struct ev_io *w, int revents) 1319once_cb_io (EV_P_ struct ev_io *w, int revents)
1008{ 1320{
1009 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1321 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1010} 1322}
1011 1323
1012static void 1324static void
1013once_cb_to (struct ev_timer *w, int revents) 1325once_cb_to (EV_P_ struct ev_timer *w, int revents)
1014{ 1326{
1015 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1327 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1016} 1328}
1017 1329
1018void 1330void
1019ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1020{ 1332{
1021 struct ev_once *once = malloc (sizeof (struct ev_once)); 1333 struct ev_once *once = malloc (sizeof (struct ev_once));
1022 1334
1023 if (!once) 1335 if (!once)
1024 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1029 1341
1030 ev_watcher_init (&once->io, once_cb_io); 1342 ev_watcher_init (&once->io, once_cb_io);
1031 if (fd >= 0) 1343 if (fd >= 0)
1032 { 1344 {
1033 ev_io_set (&once->io, fd, events); 1345 ev_io_set (&once->io, fd, events);
1034 ev_io_start (&once->io); 1346 ev_io_start (EV_A_ &once->io);
1035 } 1347 }
1036 1348
1037 ev_watcher_init (&once->to, once_cb_to); 1349 ev_watcher_init (&once->to, once_cb_to);
1038 if (timeout >= 0.) 1350 if (timeout >= 0.)
1039 { 1351 {
1040 ev_timer_set (&once->to, timeout, 0.); 1352 ev_timer_set (&once->to, timeout, 0.);
1041 ev_timer_start (&once->to); 1353 ev_timer_start (EV_A_ &once->to);
1042 } 1354 }
1043 } 1355 }
1044} 1356}
1045 1357
1046/*****************************************************************************/
1047
1048#if 0
1049
1050struct ev_io wio;
1051
1052static void
1053sin_cb (struct ev_io *w, int revents)
1054{
1055 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1056}
1057
1058static void
1059ocb (struct ev_timer *w, int revents)
1060{
1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1062 ev_timer_stop (w);
1063 ev_timer_start (w);
1064}
1065
1066static void
1067scb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1070 ev_io_stop (&wio);
1071 ev_io_start (&wio);
1072}
1073
1074static void
1075gcb (struct ev_signal *w, int revents)
1076{
1077 fprintf (stderr, "generic %x\n", revents);
1078
1079}
1080
1081int main (void)
1082{
1083 ev_init (0);
1084
1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1086 ev_io_start (&wio);
1087
1088 struct ev_timer t[10000];
1089
1090#if 0
1091 int i;
1092 for (i = 0; i < 10000; ++i)
1093 {
1094 struct ev_timer *w = t + i;
1095 ev_watcher_init (w, ocb, i);
1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1097 ev_timer_start (w);
1098 if (drand48 () < 0.5)
1099 ev_timer_stop (w);
1100 }
1101#endif
1102
1103 struct ev_timer t1;
1104 ev_timer_init (&t1, ocb, 5, 10);
1105 ev_timer_start (&t1);
1106
1107 struct ev_signal sig;
1108 ev_signal_init (&sig, scb, SIGQUIT);
1109 ev_signal_start (&sig);
1110
1111 struct ev_check cw;
1112 ev_check_init (&cw, gcb);
1113 ev_check_start (&cw);
1114
1115 struct ev_idle iw;
1116 ev_idle_init (&iw, gcb);
1117 ev_idle_start (&iw);
1118
1119 ev_loop (0);
1120
1121 return 0;
1122}
1123
1124#endif
1125
1126
1127
1128

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines