ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.30 by root, Thu Nov 1 08:28:33 2007 UTC vs.
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
31#endif 33#endif
32 34
33#include <math.h> 35#include <math.h>
34#include <stdlib.h> 36#include <stdlib.h>
40#include <stdio.h> 42#include <stdio.h>
41 43
42#include <assert.h> 44#include <assert.h>
43#include <errno.h> 45#include <errno.h>
44#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
45#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
46#include <sys/time.h> 50#include <sys/time.h>
47#include <time.h> 51#include <time.h>
48 52
53/**/
54
49#ifndef EV_USE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 56# define EV_USE_MONOTONIC 1
52# endif
53#endif 57#endif
54 58
55#ifndef EV_USE_SELECT 59#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 60# define EV_USE_SELECT 1
57#endif 61#endif
58 62
63#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
59#ifndef EV_USE_EPOLL 67#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 68# define EV_USE_EPOLL 0
61#endif 69#endif
62 70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
63#ifndef EV_USE_REALTIME 75#ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 76# define EV_USE_REALTIME 1
65#endif 77#endif
78
79/**/
80
81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0
84#endif
85
86#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0
89#endif
90
91/**/
66 92
67#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
68#define MAX_BLOCKTIME 59.731 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
69#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
70 97
71#include "ev.h" 98#include "ev.h"
99
100#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
107
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
72 113
73typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
74typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
75typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
76 117
77static ev_tstamp now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
78ev_tstamp ev_now;
79int ev_method;
80
81static int have_monotonic; /* runtime */
82
83static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
84static void (*method_modify)(int fd, int oev, int nev);
85static void (*method_poll)(ev_tstamp timeout);
86 119
87/*****************************************************************************/ 120/*****************************************************************************/
88 121
89ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
90ev_time (void) 156ev_time (void)
91{ 157{
92#if EV_USE_REALTIME 158#if EV_USE_REALTIME
93 struct timespec ts; 159 struct timespec ts;
94 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
98 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
99 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
100#endif 166#endif
101} 167}
102 168
103static ev_tstamp 169inline ev_tstamp
104get_clock (void) 170get_clock (void)
105{ 171{
106#if EV_USE_MONOTONIC 172#if EV_USE_MONOTONIC
107 if (have_monotonic) 173 if (expect_true (have_monotonic))
108 { 174 {
109 struct timespec ts; 175 struct timespec ts;
110 clock_gettime (CLOCK_MONOTONIC, &ts); 176 clock_gettime (CLOCK_MONOTONIC, &ts);
111 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
112 } 178 }
113#endif 179#endif
114 180
115 return ev_time (); 181 return ev_time ();
116} 182}
117 183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
188}
189
118#define array_roundsize(base,n) ((n) | 4 & ~3) 190#define array_roundsize(base,n) ((n) | 4 & ~3)
119 191
120#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
121 if ((cnt) > cur) \ 193 if (expect_false ((cnt) > cur)) \
122 { \ 194 { \
123 int newcnt = cur; \ 195 int newcnt = cur; \
124 do \ 196 do \
125 { \ 197 { \
126 newcnt = array_roundsize (base, newcnt << 1); \ 198 newcnt = array_roundsize (base, newcnt << 1); \
132 cur = newcnt; \ 204 cur = newcnt; \
133 } 205 }
134 206
135/*****************************************************************************/ 207/*****************************************************************************/
136 208
137typedef struct
138{
139 struct ev_io *head;
140 int events;
141} ANFD;
142
143static ANFD *anfds;
144static int anfdmax;
145
146static void 209static void
147anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
148{ 211{
149 while (count--) 212 while (count--)
150 { 213 {
151 base->head = 0; 214 base->head = 0;
152 base->events = EV_NONE; 215 base->events = EV_NONE;
216 base->reify = 0;
217
153 ++base; 218 ++base;
154 } 219 }
155} 220}
156 221
157typedef struct
158{
159 W w;
160 int events;
161} ANPENDING;
162
163static ANPENDING *pendings;
164static int pendingmax, pendingcnt;
165
166static void 222static void
167event (W w, int events) 223event (EV_P_ W w, int events)
168{ 224{
225 if (w->pending)
226 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
229 }
230
169 w->pending = ++pendingcnt; 231 w->pending = ++pendingcnt [ABSPRI (w)];
170 array_needsize (pendings, pendingmax, pendingcnt, ); 232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
171 pendings [pendingcnt - 1].w = w; 233 pendings [ABSPRI (w)][w->pending - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 234 pendings [ABSPRI (w)][w->pending - 1].events = events;
173} 235}
174 236
175static void 237static void
176queue_events (W *events, int eventcnt, int type) 238queue_events (EV_P_ W *events, int eventcnt, int type)
177{ 239{
178 int i; 240 int i;
179 241
180 for (i = 0; i < eventcnt; ++i) 242 for (i = 0; i < eventcnt; ++i)
181 event (events [i], type); 243 event (EV_A_ events [i], type);
182} 244}
183 245
184static void 246static void
185fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
186{ 248{
187 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
188 struct ev_io *w; 250 struct ev_io *w;
189 251
190 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
191 { 253 {
192 int ev = w->events & events; 254 int ev = w->events & events;
193 255
194 if (ev) 256 if (ev)
195 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
196 } 258 }
197} 259}
198 260
199/*****************************************************************************/ 261/*****************************************************************************/
200 262
201static int *fdchanges;
202static int fdchangemax, fdchangecnt;
203
204static void 263static void
205fd_reify (void) 264fd_reify (EV_P)
206{ 265{
207 int i; 266 int i;
208 267
209 for (i = 0; i < fdchangecnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
210 { 269 {
212 ANFD *anfd = anfds + fd; 271 ANFD *anfd = anfds + fd;
213 struct ev_io *w; 272 struct ev_io *w;
214 273
215 int events = 0; 274 int events = 0;
216 275
217 for (w = anfd->head; w; w = w->next) 276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
218 events |= w->events; 277 events |= w->events;
219 278
220 anfd->events &= ~EV_REIFY; 279 anfd->reify = 0;
221 280
222 if (anfd->events != events) 281 if (anfd->events != events)
223 { 282 {
224 method_modify (fd, anfd->events, events); 283 method_modify (EV_A_ fd, anfd->events, events);
225 anfd->events = events; 284 anfd->events = events;
226 } 285 }
227 } 286 }
228 287
229 fdchangecnt = 0; 288 fdchangecnt = 0;
230} 289}
231 290
232static void 291static void
233fd_change (int fd) 292fd_change (EV_P_ int fd)
234{ 293{
235 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 294 if (anfds [fd].reify || fdchangecnt < 0)
236 return; 295 return;
237 296
238 anfds [fd].events |= EV_REIFY; 297 anfds [fd].reify = 1;
239 298
240 ++fdchangecnt; 299 ++fdchangecnt;
241 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
242 fdchanges [fdchangecnt - 1] = fd; 301 fdchanges [fdchangecnt - 1] = fd;
243} 302}
244 303
304static void
305fd_kill (EV_P_ int fd)
306{
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
314}
315
245/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
246static void 317static void
247fd_recheck (void) 318fd_ebadf (EV_P)
248{ 319{
249 int fd; 320 int fd;
250 321
251 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
252 if (anfds [fd].events) 323 if (anfds [fd].events)
253 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
254 while (anfds [fd].head) 325 fd_kill (EV_A_ fd);
326}
327
328/* called on ENOMEM in select/poll to kill some fds and retry */
329static void
330fd_enomem (EV_P)
331{
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
255 { 336 {
256 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 337 close (fd);
257 ev_io_stop (anfds [fd].head); 338 fd_kill (EV_A_ fd);
339 return;
258 } 340 }
341}
342
343/* susually called after fork if method needs to re-arm all fds from scratch */
344static void
345fd_rearm_all (EV_P)
346{
347 int fd;
348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
259} 356}
260 357
261/*****************************************************************************/ 358/*****************************************************************************/
262 359
263static struct ev_timer **timers;
264static int timermax, timercnt;
265
266static struct ev_periodic **periodics;
267static int periodicmax, periodiccnt;
268
269static void 360static void
270upheap (WT *timers, int k) 361upheap (WT *heap, int k)
271{ 362{
272 WT w = timers [k]; 363 WT w = heap [k];
273 364
274 while (k && timers [k >> 1]->at > w->at) 365 while (k && heap [k >> 1]->at > w->at)
275 { 366 {
276 timers [k] = timers [k >> 1]; 367 heap [k] = heap [k >> 1];
277 timers [k]->active = k + 1; 368 heap [k]->active = k + 1;
278 k >>= 1; 369 k >>= 1;
279 } 370 }
280 371
281 timers [k] = w; 372 heap [k] = w;
282 timers [k]->active = k + 1; 373 heap [k]->active = k + 1;
283 374
284} 375}
285 376
286static void 377static void
287downheap (WT *timers, int N, int k) 378downheap (WT *heap, int N, int k)
288{ 379{
289 WT w = timers [k]; 380 WT w = heap [k];
290 381
291 while (k < (N >> 1)) 382 while (k < (N >> 1))
292 { 383 {
293 int j = k << 1; 384 int j = k << 1;
294 385
295 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
296 ++j; 387 ++j;
297 388
298 if (w->at <= timers [j]->at) 389 if (w->at <= heap [j]->at)
299 break; 390 break;
300 391
301 timers [k] = timers [j]; 392 heap [k] = heap [j];
302 timers [k]->active = k + 1; 393 heap [k]->active = k + 1;
303 k = j; 394 k = j;
304 } 395 }
305 396
306 timers [k] = w; 397 heap [k] = w;
307 timers [k]->active = k + 1; 398 heap [k]->active = k + 1;
308} 399}
309 400
310/*****************************************************************************/ 401/*****************************************************************************/
311 402
312typedef struct 403typedef struct
313{ 404{
314 struct ev_signal *head; 405 struct ev_watcher_list *head;
315 sig_atomic_t gotsig; 406 sig_atomic_t volatile gotsig;
316} ANSIG; 407} ANSIG;
317 408
318static ANSIG *signals; 409static ANSIG *signals;
319static int signalmax; 410static int signalmax;
320 411
321static int sigpipe [2]; 412static int sigpipe [2];
322static sig_atomic_t gotsig; 413static sig_atomic_t volatile gotsig;
323static struct ev_io sigev; 414static struct ev_io sigev;
324 415
325static void 416static void
326signals_init (ANSIG *base, int count) 417signals_init (ANSIG *base, int count)
327{ 418{
328 while (count--) 419 while (count--)
329 { 420 {
330 base->head = 0; 421 base->head = 0;
331 base->gotsig = 0; 422 base->gotsig = 0;
423
332 ++base; 424 ++base;
333 } 425 }
334} 426}
335 427
336static void 428static void
338{ 430{
339 signals [signum - 1].gotsig = 1; 431 signals [signum - 1].gotsig = 1;
340 432
341 if (!gotsig) 433 if (!gotsig)
342 { 434 {
435 int old_errno = errno;
343 gotsig = 1; 436 gotsig = 1;
344 write (sigpipe [1], &gotsig, 1); 437 write (sigpipe [1], &signum, 1);
438 errno = old_errno;
345 } 439 }
346} 440}
347 441
348static void 442static void
349sigcb (struct ev_io *iow, int revents) 443sigcb (EV_P_ struct ev_io *iow, int revents)
350{ 444{
351 struct ev_signal *w; 445 struct ev_watcher_list *w;
352 int sig; 446 int signum;
353 447
448 read (sigpipe [0], &revents, 1);
354 gotsig = 0; 449 gotsig = 0;
355 read (sigpipe [0], &revents, 1);
356 450
357 for (sig = signalmax; sig--; ) 451 for (signum = signalmax; signum--; )
358 if (signals [sig].gotsig) 452 if (signals [signum].gotsig)
359 { 453 {
360 signals [sig].gotsig = 0; 454 signals [signum].gotsig = 0;
361 455
362 for (w = signals [sig].head; w; w = w->next) 456 for (w = signals [signum].head; w; w = w->next)
363 event ((W)w, EV_SIGNAL); 457 event (EV_A_ (W)w, EV_SIGNAL);
364 } 458 }
365} 459}
366 460
367static void 461static void
368siginit (void) 462siginit (EV_P)
369{ 463{
464#ifndef WIN32
370 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 465 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
371 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
372 467
373 /* rather than sort out wether we really need nb, set it */ 468 /* rather than sort out wether we really need nb, set it */
374 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 469 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
375 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
471#endif
376 472
377 ev_io_set (&sigev, sigpipe [0], EV_READ); 473 ev_io_set (&sigev, sigpipe [0], EV_READ);
378 ev_io_start (&sigev); 474 ev_io_start (EV_A_ &sigev);
475 ev_unref (EV_A); /* child watcher should not keep loop alive */
379} 476}
380 477
381/*****************************************************************************/ 478/*****************************************************************************/
382 479
383static struct ev_idle **idles; 480#ifndef WIN32
384static int idlemax, idlecnt;
385
386static struct ev_prepare **prepares;
387static int preparemax, preparecnt;
388
389static struct ev_check **checks;
390static int checkmax, checkcnt;
391
392/*****************************************************************************/
393 481
394static struct ev_child *childs [PID_HASHSIZE]; 482static struct ev_child *childs [PID_HASHSIZE];
395static struct ev_signal childev; 483static struct ev_signal childev;
396 484
397#ifndef WCONTINUED 485#ifndef WCONTINUED
398# define WCONTINUED 0 486# define WCONTINUED 0
399#endif 487#endif
400 488
401static void 489static void
402childcb (struct ev_signal *sw, int revents) 490child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
403{ 491{
404 struct ev_child *w; 492 struct ev_child *w;
493
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid)
496 {
497 w->priority = sw->priority; /* need to do it *now* */
498 w->rpid = pid;
499 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD);
501 }
502}
503
504static void
505childcb (EV_P_ struct ev_signal *sw, int revents)
506{
405 int pid, status; 507 int pid, status;
406 508
407 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
408 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 510 {
409 if (w->pid == pid || w->pid == -1) 511 /* make sure we are called again until all childs have been reaped */
410 { 512 event (EV_A_ (W)sw, EV_SIGNAL);
411 w->status = status; 513
412 event ((W)w, EV_CHILD); 514 child_reap (EV_A_ sw, pid, pid, status);
413 } 515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
516 }
414} 517}
518
519#endif
415 520
416/*****************************************************************************/ 521/*****************************************************************************/
417 522
523#if EV_USE_KQUEUE
524# include "ev_kqueue.c"
525#endif
418#if EV_USE_EPOLL 526#if EV_USE_EPOLL
419# include "ev_epoll.c" 527# include "ev_epoll.c"
420#endif 528#endif
529#if EV_USE_POLL
530# include "ev_poll.c"
531#endif
421#if EV_USE_SELECT 532#if EV_USE_SELECT
422# include "ev_select.c" 533# include "ev_select.c"
423#endif 534#endif
424 535
425int 536int
432ev_version_minor (void) 543ev_version_minor (void)
433{ 544{
434 return EV_VERSION_MINOR; 545 return EV_VERSION_MINOR;
435} 546}
436 547
437int ev_init (int flags) 548/* return true if we are running with elevated privileges and should ignore env variables */
549static int
550enable_secure (void)
438{ 551{
552#ifdef WIN32
553 return 0;
554#else
555 return getuid () != geteuid ()
556 || getgid () != getegid ();
557#endif
558}
559
560int
561ev_method (EV_P)
562{
563 return method;
564}
565
566static void
567loop_init (EV_P_ int methods)
568{
439 if (!ev_method) 569 if (!method)
440 { 570 {
441#if EV_USE_MONOTONIC 571#if EV_USE_MONOTONIC
442 { 572 {
443 struct timespec ts; 573 struct timespec ts;
444 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
445 have_monotonic = 1; 575 have_monotonic = 1;
446 } 576 }
447#endif 577#endif
448 578
449 ev_now = ev_time (); 579 rt_now = ev_time ();
450 now = get_clock (); 580 mn_now = get_clock ();
581 now_floor = mn_now;
451 diff = ev_now - now; 582 rtmn_diff = rt_now - mn_now;
452 583
453 if (pipe (sigpipe)) 584 if (methods == EVMETHOD_AUTO)
454 return 0; 585 if (!enable_secure () && getenv ("LIBEV_METHODS"))
455 586 methods = atoi (getenv ("LIBEV_METHODS"));
587 else
456 ev_method = EVMETHOD_NONE; 588 methods = EVMETHOD_ANY;
589
590 method = 0;
591#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593#endif
457#if EV_USE_EPOLL 594#if EV_USE_EPOLL
458 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
596#endif
597#if EV_USE_POLL
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
459#endif 599#endif
460#if EV_USE_SELECT 600#if EV_USE_SELECT
461 if (ev_method == EVMETHOD_NONE) select_init (flags); 601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
462#endif 602#endif
603 }
604}
463 605
606void
607loop_destroy (EV_P)
608{
609#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif
612#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
614#endif
615#if EV_USE_POLL
616 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
617#endif
618#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif
621
622 method = 0;
623 /*TODO*/
624}
625
626void
627loop_fork (EV_P)
628{
629 /*TODO*/
630#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif
633#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif
636}
637
638#if EV_MULTIPLICITY
639struct ev_loop *
640ev_loop_new (int methods)
641{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
643
644 loop_init (EV_A_ methods);
645
646 if (ev_methods (EV_A))
647 return loop;
648
649 return 0;
650}
651
652void
653ev_loop_destroy (EV_P)
654{
655 loop_destroy (EV_A);
656 free (loop);
657}
658
659void
660ev_loop_fork (EV_P)
661{
662 loop_fork (EV_A);
663}
664
665#endif
666
667#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop *
672#else
673static int default_loop;
674
675int
676#endif
677ev_default_loop (int methods)
678{
679 if (sigpipe [0] == sigpipe [1])
680 if (pipe (sigpipe))
681 return 0;
682
683 if (!default_loop)
684 {
685#if EV_MULTIPLICITY
686 struct ev_loop *loop = default_loop = &default_loop_struct;
687#else
688 default_loop = 1;
689#endif
690
691 loop_init (EV_A_ methods);
692
464 if (ev_method) 693 if (ev_method (EV_A))
465 { 694 {
466 ev_watcher_init (&sigev, sigcb); 695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
467 siginit (); 697 siginit (EV_A);
468 698
699#ifndef WIN32
469 ev_signal_init (&childev, childcb, SIGCHLD); 700 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI);
470 ev_signal_start (&childev); 702 ev_signal_start (EV_A_ &childev);
703 ev_unref (EV_A); /* child watcher should not keep loop alive */
704#endif
471 } 705 }
706 else
707 default_loop = 0;
472 } 708 }
473 709
474 return ev_method; 710 return default_loop;
475} 711}
476 712
477/*****************************************************************************/
478
479void 713void
480ev_prefork (void) 714ev_default_destroy (void)
481{ 715{
482 /* nop */ 716#if EV_MULTIPLICITY
483} 717 struct ev_loop *loop = default_loop;
484
485void
486ev_postfork_parent (void)
487{
488 /* nop */
489}
490
491void
492ev_postfork_child (void)
493{
494#if EV_USE_EPOLL
495 if (ev_method == EVMETHOD_EPOLL)
496 epoll_postfork_child ();
497#endif 718#endif
498 719
720 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev);
722
723 ev_ref (EV_A); /* signal watcher */
499 ev_io_stop (&sigev); 724 ev_io_stop (EV_A_ &sigev);
725
726 close (sigpipe [0]); sigpipe [0] = 0;
727 close (sigpipe [1]); sigpipe [1] = 0;
728
729 loop_destroy (EV_A);
730}
731
732void
733ev_default_fork (EV_P)
734{
735 loop_fork (EV_A);
736
737 ev_io_stop (EV_A_ &sigev);
500 close (sigpipe [0]); 738 close (sigpipe [0]);
501 close (sigpipe [1]); 739 close (sigpipe [1]);
502 pipe (sigpipe); 740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
503 siginit (); 743 siginit (EV_A);
504} 744}
505 745
506/*****************************************************************************/ 746/*****************************************************************************/
507 747
508static void 748static void
509call_pending (void) 749call_pending (EV_P)
510{ 750{
751 int pri;
752
753 for (pri = NUMPRI; pri--; )
511 while (pendingcnt) 754 while (pendingcnt [pri])
512 { 755 {
513 ANPENDING *p = pendings + --pendingcnt; 756 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
514 757
515 if (p->w) 758 if (p->w)
516 { 759 {
517 p->w->pending = 0; 760 p->w->pending = 0;
518 p->w->cb (p->w, p->events); 761 p->w->cb (EV_A_ p->w, p->events);
519 } 762 }
520 } 763 }
521} 764}
522 765
523static void 766static void
524timers_reify (void) 767timers_reify (EV_P)
525{ 768{
526 while (timercnt && timers [0]->at <= now) 769 while (timercnt && timers [0]->at <= mn_now)
527 { 770 {
528 struct ev_timer *w = timers [0]; 771 struct ev_timer *w = timers [0];
529 772
530 /* first reschedule or stop timer */ 773 /* first reschedule or stop timer */
531 if (w->repeat) 774 if (w->repeat)
532 { 775 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 777 w->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 778 downheap ((WT *)timers, timercnt, 0);
536 } 779 }
537 else 780 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 782
540 event ((W)w, EV_TIMEOUT); 783 event (EV_A_ (W)w, EV_TIMEOUT);
541 } 784 }
542} 785}
543 786
544static void 787static void
545periodics_reify (void) 788periodics_reify (EV_P)
546{ 789{
547 while (periodiccnt && periodics [0]->at <= ev_now) 790 while (periodiccnt && periodics [0]->at <= rt_now)
548 { 791 {
549 struct ev_periodic *w = periodics [0]; 792 struct ev_periodic *w = periodics [0];
550 793
551 /* first reschedule or stop timer */ 794 /* first reschedule or stop timer */
552 if (w->interval) 795 if (w->interval)
553 { 796 {
554 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
555 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
556 downheap ((WT *)periodics, periodiccnt, 0); 799 downheap ((WT *)periodics, periodiccnt, 0);
557 } 800 }
558 else 801 else
559 ev_periodic_stop (w); /* nonrepeating: stop timer */ 802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
560 803
561 event ((W)w, EV_TIMEOUT); 804 event (EV_A_ (W)w, EV_PERIODIC);
562 } 805 }
563} 806}
564 807
565static void 808static void
566periodics_reschedule (ev_tstamp diff) 809periodics_reschedule (EV_P)
567{ 810{
568 int i; 811 int i;
569 812
570 /* adjust periodics after time jump */ 813 /* adjust periodics after time jump */
571 for (i = 0; i < periodiccnt; ++i) 814 for (i = 0; i < periodiccnt; ++i)
572 { 815 {
573 struct ev_periodic *w = periodics [i]; 816 struct ev_periodic *w = periodics [i];
574 817
575 if (w->interval) 818 if (w->interval)
576 { 819 {
577 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
578 821
579 if (fabs (diff) >= 1e-4) 822 if (fabs (diff) >= 1e-4)
580 { 823 {
581 ev_periodic_stop (w); 824 ev_periodic_stop (EV_A_ w);
582 ev_periodic_start (w); 825 ev_periodic_start (EV_A_ w);
583 826
584 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
585 } 828 }
586 } 829 }
587 } 830 }
588} 831}
589 832
833inline int
834time_update_monotonic (EV_P)
835{
836 mn_now = get_clock ();
837
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
839 {
840 rt_now = rtmn_diff + mn_now;
841 return 0;
842 }
843 else
844 {
845 now_floor = mn_now;
846 rt_now = ev_time ();
847 return 1;
848 }
849}
850
590static void 851static void
591time_update (void) 852time_update (EV_P)
592{ 853{
593 int i; 854 int i;
594 855
595 ev_now = ev_time (); 856#if EV_USE_MONOTONIC
596
597 if (have_monotonic) 857 if (expect_true (have_monotonic))
598 { 858 {
599 ev_tstamp odiff = diff; 859 if (time_update_monotonic (EV_A))
600
601 for (i = 4; --i; ) /* loop a few times, before making important decisions */
602 { 860 {
603 now = get_clock (); 861 ev_tstamp odiff = rtmn_diff;
862
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */
864 {
604 diff = ev_now - now; 865 rtmn_diff = rt_now - mn_now;
605 866
606 if (fabs (odiff - diff) < MIN_TIMEJUMP) 867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
607 return; /* all is well */ 868 return; /* all is well */
608 869
609 ev_now = ev_time (); 870 rt_now = ev_time ();
871 mn_now = get_clock ();
872 now_floor = mn_now;
873 }
874
875 periodics_reschedule (EV_A);
876 /* no timer adjustment, as the monotonic clock doesn't jump */
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
610 } 878 }
611
612 periodics_reschedule (diff - odiff);
613 /* no timer adjustment, as the monotonic clock doesn't jump */
614 } 879 }
615 else 880 else
881#endif
616 { 882 {
617 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 883 rt_now = ev_time ();
884
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
618 { 886 {
619 periodics_reschedule (ev_now - now); 887 periodics_reschedule (EV_A);
620 888
621 /* adjust timers. this is easy, as the offset is the same for all */ 889 /* adjust timers. this is easy, as the offset is the same for all */
622 for (i = 0; i < timercnt; ++i) 890 for (i = 0; i < timercnt; ++i)
623 timers [i]->at += diff; 891 timers [i]->at += rt_now - mn_now;
624 } 892 }
625 893
626 now = ev_now; 894 mn_now = rt_now;
627 } 895 }
628} 896}
629 897
630int ev_loop_done; 898void
899ev_ref (EV_P)
900{
901 ++activecnt;
902}
631 903
904void
905ev_unref (EV_P)
906{
907 --activecnt;
908}
909
910static int loop_done;
911
912void
632void ev_loop (int flags) 913ev_loop (EV_P_ int flags)
633{ 914{
634 double block; 915 double block;
635 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 916 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
636 917
637 do 918 do
638 { 919 {
639 /* queue check watchers (and execute them) */ 920 /* queue check watchers (and execute them) */
640 if (preparecnt) 921 if (expect_false (preparecnt))
641 { 922 {
642 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
643 call_pending (); 924 call_pending (EV_A);
644 } 925 }
645 926
646 /* update fd-related kernel structures */ 927 /* update fd-related kernel structures */
647 fd_reify (); 928 fd_reify (EV_A);
648 929
649 /* calculate blocking time */ 930 /* calculate blocking time */
650 931
651 /* we only need this for !monotonic clockor timers, but as we basically 932 /* we only need this for !monotonic clockor timers, but as we basically
652 always have timers, we just calculate it always */ 933 always have timers, we just calculate it always */
934#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A);
937 else
938#endif
939 {
653 ev_now = ev_time (); 940 rt_now = ev_time ();
941 mn_now = rt_now;
942 }
654 943
655 if (flags & EVLOOP_NONBLOCK || idlecnt) 944 if (flags & EVLOOP_NONBLOCK || idlecnt)
656 block = 0.; 945 block = 0.;
657 else 946 else
658 { 947 {
659 block = MAX_BLOCKTIME; 948 block = MAX_BLOCKTIME;
660 949
661 if (timercnt) 950 if (timercnt)
662 { 951 {
663 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 952 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
664 if (block > to) block = to; 953 if (block > to) block = to;
665 } 954 }
666 955
667 if (periodiccnt) 956 if (periodiccnt)
668 { 957 {
669 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
670 if (block > to) block = to; 959 if (block > to) block = to;
671 } 960 }
672 961
673 if (block < 0.) block = 0.; 962 if (block < 0.) block = 0.;
674 } 963 }
675 964
676 method_poll (block); 965 method_poll (EV_A_ block);
677 966
678 /* update ev_now, do magic */ 967 /* update rt_now, do magic */
679 time_update (); 968 time_update (EV_A);
680 969
681 /* queue pending timers and reschedule them */ 970 /* queue pending timers and reschedule them */
682 timers_reify (); /* relative timers called last */ 971 timers_reify (EV_A); /* relative timers called last */
683 periodics_reify (); /* absolute timers called first */ 972 periodics_reify (EV_A); /* absolute timers called first */
684 973
685 /* queue idle watchers unless io or timers are pending */ 974 /* queue idle watchers unless io or timers are pending */
686 if (!pendingcnt) 975 if (!pendingcnt)
687 queue_events ((W *)idles, idlecnt, EV_IDLE); 976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
688 977
689 /* queue check watchers, to be executed first */ 978 /* queue check watchers, to be executed first */
690 if (checkcnt) 979 if (checkcnt)
691 queue_events ((W *)checks, checkcnt, EV_CHECK); 980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
692 981
693 call_pending (); 982 call_pending (EV_A);
694 } 983 }
695 while (!ev_loop_done); 984 while (activecnt && !loop_done);
696 985
697 if (ev_loop_done != 2) 986 if (loop_done != 2)
698 ev_loop_done = 0; 987 loop_done = 0;
988}
989
990void
991ev_unloop (EV_P_ int how)
992{
993 loop_done = how;
699} 994}
700 995
701/*****************************************************************************/ 996/*****************************************************************************/
702 997
703static void 998inline void
704wlist_add (WL *head, WL elem) 999wlist_add (WL *head, WL elem)
705{ 1000{
706 elem->next = *head; 1001 elem->next = *head;
707 *head = elem; 1002 *head = elem;
708} 1003}
709 1004
710static void 1005inline void
711wlist_del (WL *head, WL elem) 1006wlist_del (WL *head, WL elem)
712{ 1007{
713 while (*head) 1008 while (*head)
714 { 1009 {
715 if (*head == elem) 1010 if (*head == elem)
720 1015
721 head = &(*head)->next; 1016 head = &(*head)->next;
722 } 1017 }
723} 1018}
724 1019
725static void 1020inline void
726ev_clear (W w) 1021ev_clear_pending (EV_P_ W w)
727{ 1022{
728 if (w->pending) 1023 if (w->pending)
729 { 1024 {
730 pendings [w->pending - 1].w = 0; 1025 pendings [ABSPRI (w)][w->pending - 1].w = 0;
731 w->pending = 0; 1026 w->pending = 0;
732 } 1027 }
733} 1028}
734 1029
735static void 1030inline void
736ev_start (W w, int active) 1031ev_start (EV_P_ W w, int active)
737{ 1032{
1033 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1034 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1035
738 w->active = active; 1036 w->active = active;
1037 ev_ref (EV_A);
739} 1038}
740 1039
741static void 1040inline void
742ev_stop (W w) 1041ev_stop (EV_P_ W w)
743{ 1042{
1043 ev_unref (EV_A);
744 w->active = 0; 1044 w->active = 0;
745} 1045}
746 1046
747/*****************************************************************************/ 1047/*****************************************************************************/
748 1048
749void 1049void
750ev_io_start (struct ev_io *w) 1050ev_io_start (EV_P_ struct ev_io *w)
751{ 1051{
1052 int fd = w->fd;
1053
752 if (ev_is_active (w)) 1054 if (ev_is_active (w))
753 return; 1055 return;
754 1056
755 int fd = w->fd; 1057 assert (("ev_io_start called with negative fd", fd >= 0));
756 1058
757 ev_start ((W)w, 1); 1059 ev_start (EV_A_ (W)w, 1);
758 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
759 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1061 wlist_add ((WL *)&anfds[fd].head, (WL)w);
760 1062
761 fd_change (fd); 1063 fd_change (EV_A_ fd);
762} 1064}
763 1065
764void 1066void
765ev_io_stop (struct ev_io *w) 1067ev_io_stop (EV_P_ struct ev_io *w)
766{ 1068{
767 ev_clear ((W)w); 1069 ev_clear_pending (EV_A_ (W)w);
768 if (!ev_is_active (w)) 1070 if (!ev_is_active (w))
769 return; 1071 return;
770 1072
771 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
772 ev_stop ((W)w); 1074 ev_stop (EV_A_ (W)w);
773 1075
774 fd_change (w->fd); 1076 fd_change (EV_A_ w->fd);
775} 1077}
776 1078
777void 1079void
778ev_timer_start (struct ev_timer *w) 1080ev_timer_start (EV_P_ struct ev_timer *w)
779{ 1081{
780 if (ev_is_active (w)) 1082 if (ev_is_active (w))
781 return; 1083 return;
782 1084
783 w->at += now; 1085 w->at += mn_now;
784 1086
785 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
786 1088
787 ev_start ((W)w, ++timercnt); 1089 ev_start (EV_A_ (W)w, ++timercnt);
788 array_needsize (timers, timermax, timercnt, ); 1090 array_needsize (timers, timermax, timercnt, );
789 timers [timercnt - 1] = w; 1091 timers [timercnt - 1] = w;
790 upheap ((WT *)timers, timercnt - 1); 1092 upheap ((WT *)timers, timercnt - 1);
791} 1093}
792 1094
793void 1095void
794ev_timer_stop (struct ev_timer *w) 1096ev_timer_stop (EV_P_ struct ev_timer *w)
795{ 1097{
796 ev_clear ((W)w); 1098 ev_clear_pending (EV_A_ (W)w);
797 if (!ev_is_active (w)) 1099 if (!ev_is_active (w))
798 return; 1100 return;
799 1101
800 if (w->active < timercnt--) 1102 if (w->active < timercnt--)
801 { 1103 {
803 downheap ((WT *)timers, timercnt, w->active - 1); 1105 downheap ((WT *)timers, timercnt, w->active - 1);
804 } 1106 }
805 1107
806 w->at = w->repeat; 1108 w->at = w->repeat;
807 1109
808 ev_stop ((W)w); 1110 ev_stop (EV_A_ (W)w);
809} 1111}
810 1112
811void 1113void
812ev_timer_again (struct ev_timer *w) 1114ev_timer_again (EV_P_ struct ev_timer *w)
813{ 1115{
814 if (ev_is_active (w)) 1116 if (ev_is_active (w))
815 { 1117 {
816 if (w->repeat) 1118 if (w->repeat)
817 { 1119 {
818 w->at = now + w->repeat; 1120 w->at = mn_now + w->repeat;
819 downheap ((WT *)timers, timercnt, w->active - 1); 1121 downheap ((WT *)timers, timercnt, w->active - 1);
820 } 1122 }
821 else 1123 else
822 ev_timer_stop (w); 1124 ev_timer_stop (EV_A_ w);
823 } 1125 }
824 else if (w->repeat) 1126 else if (w->repeat)
825 ev_timer_start (w); 1127 ev_timer_start (EV_A_ w);
826} 1128}
827 1129
828void 1130void
829ev_periodic_start (struct ev_periodic *w) 1131ev_periodic_start (EV_P_ struct ev_periodic *w)
830{ 1132{
831 if (ev_is_active (w)) 1133 if (ev_is_active (w))
832 return; 1134 return;
833 1135
834 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
835 1137
836 /* this formula differs from the one in periodic_reify because we do not always round up */ 1138 /* this formula differs from the one in periodic_reify because we do not always round up */
837 if (w->interval) 1139 if (w->interval)
838 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
839 1141
840 ev_start ((W)w, ++periodiccnt); 1142 ev_start (EV_A_ (W)w, ++periodiccnt);
841 array_needsize (periodics, periodicmax, periodiccnt, ); 1143 array_needsize (periodics, periodicmax, periodiccnt, );
842 periodics [periodiccnt - 1] = w; 1144 periodics [periodiccnt - 1] = w;
843 upheap ((WT *)periodics, periodiccnt - 1); 1145 upheap ((WT *)periodics, periodiccnt - 1);
844} 1146}
845 1147
846void 1148void
847ev_periodic_stop (struct ev_periodic *w) 1149ev_periodic_stop (EV_P_ struct ev_periodic *w)
848{ 1150{
849 ev_clear ((W)w); 1151 ev_clear_pending (EV_A_ (W)w);
850 if (!ev_is_active (w)) 1152 if (!ev_is_active (w))
851 return; 1153 return;
852 1154
853 if (w->active < periodiccnt--) 1155 if (w->active < periodiccnt--)
854 { 1156 {
855 periodics [w->active - 1] = periodics [periodiccnt]; 1157 periodics [w->active - 1] = periodics [periodiccnt];
856 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1158 downheap ((WT *)periodics, periodiccnt, w->active - 1);
857 } 1159 }
858 1160
859 ev_stop ((W)w); 1161 ev_stop (EV_A_ (W)w);
860} 1162}
861 1163
862void 1164void
863ev_signal_start (struct ev_signal *w) 1165ev_idle_start (EV_P_ struct ev_idle *w)
864{ 1166{
865 if (ev_is_active (w)) 1167 if (ev_is_active (w))
866 return; 1168 return;
867 1169
1170 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, );
1172 idles [idlecnt - 1] = w;
1173}
1174
1175void
1176ev_idle_stop (EV_P_ struct ev_idle *w)
1177{
1178 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w))
1180 return;
1181
1182 idles [w->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w);
1184}
1185
1186void
1187ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{
1189 if (ev_is_active (w))
1190 return;
1191
1192 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, );
1194 prepares [preparecnt - 1] = w;
1195}
1196
1197void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{
1200 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w))
1202 return;
1203
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w);
1228}
1229
1230#ifndef SA_RESTART
1231# define SA_RESTART 0
1232#endif
1233
1234void
1235ev_signal_start (EV_P_ struct ev_signal *w)
1236{
1237#if EV_MULTIPLICITY
1238 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1239#endif
1240 if (ev_is_active (w))
1241 return;
1242
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244
868 ev_start ((W)w, 1); 1245 ev_start (EV_A_ (W)w, 1);
869 array_needsize (signals, signalmax, w->signum, signals_init); 1246 array_needsize (signals, signalmax, w->signum, signals_init);
870 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
871 1248
872 if (!w->next) 1249 if (!w->next)
873 { 1250 {
874 struct sigaction sa; 1251 struct sigaction sa;
875 sa.sa_handler = sighandler; 1252 sa.sa_handler = sighandler;
876 sigfillset (&sa.sa_mask); 1253 sigfillset (&sa.sa_mask);
877 sa.sa_flags = 0; 1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
878 sigaction (w->signum, &sa, 0); 1255 sigaction (w->signum, &sa, 0);
879 } 1256 }
880} 1257}
881 1258
882void 1259void
883ev_signal_stop (struct ev_signal *w) 1260ev_signal_stop (EV_P_ struct ev_signal *w)
884{ 1261{
885 ev_clear ((W)w); 1262 ev_clear_pending (EV_A_ (W)w);
886 if (!ev_is_active (w)) 1263 if (!ev_is_active (w))
887 return; 1264 return;
888 1265
889 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1266 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
890 ev_stop ((W)w); 1267 ev_stop (EV_A_ (W)w);
891 1268
892 if (!signals [w->signum - 1].head) 1269 if (!signals [w->signum - 1].head)
893 signal (w->signum, SIG_DFL); 1270 signal (w->signum, SIG_DFL);
894} 1271}
895 1272
896void 1273void
897ev_idle_start (struct ev_idle *w) 1274ev_child_start (EV_P_ struct ev_child *w)
898{ 1275{
1276#if EV_MULTIPLICITY
1277 assert (("child watchers are only supported in the default loop", loop == default_loop));
1278#endif
899 if (ev_is_active (w)) 1279 if (ev_is_active (w))
900 return; 1280 return;
901 1281
902 ev_start ((W)w, ++idlecnt); 1282 ev_start (EV_A_ (W)w, 1);
903 array_needsize (idles, idlemax, idlecnt, ); 1283 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
904 idles [idlecnt - 1] = w;
905} 1284}
906 1285
907void 1286void
908ev_idle_stop (struct ev_idle *w) 1287ev_child_stop (EV_P_ struct ev_child *w)
909{ 1288{
910 ev_clear ((W)w); 1289 ev_clear_pending (EV_A_ (W)w);
911 if (ev_is_active (w)) 1290 if (ev_is_active (w))
912 return; 1291 return;
913 1292
914 idles [w->active - 1] = idles [--idlecnt];
915 ev_stop ((W)w);
916}
917
918void
919ev_prepare_start (struct ev_prepare *w)
920{
921 if (ev_is_active (w))
922 return;
923
924 ev_start ((W)w, ++preparecnt);
925 array_needsize (prepares, preparemax, preparecnt, );
926 prepares [preparecnt - 1] = w;
927}
928
929void
930ev_prepare_stop (struct ev_prepare *w)
931{
932 ev_clear ((W)w);
933 if (ev_is_active (w))
934 return;
935
936 prepares [w->active - 1] = prepares [--preparecnt];
937 ev_stop ((W)w);
938}
939
940void
941ev_check_start (struct ev_check *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, ++checkcnt);
947 array_needsize (checks, checkmax, checkcnt, );
948 checks [checkcnt - 1] = w;
949}
950
951void
952ev_check_stop (struct ev_check *w)
953{
954 ev_clear ((W)w);
955 if (ev_is_active (w))
956 return;
957
958 checks [w->active - 1] = checks [--checkcnt];
959 ev_stop ((W)w);
960}
961
962void
963ev_child_start (struct ev_child *w)
964{
965 if (ev_is_active (w))
966 return;
967
968 ev_start ((W)w, 1);
969 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
970}
971
972void
973ev_child_stop (struct ev_child *w)
974{
975 ev_clear ((W)w);
976 if (ev_is_active (w))
977 return;
978
979 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
980 ev_stop ((W)w); 1294 ev_stop (EV_A_ (W)w);
981} 1295}
982 1296
983/*****************************************************************************/ 1297/*****************************************************************************/
984 1298
985struct ev_once 1299struct ev_once
989 void (*cb)(int revents, void *arg); 1303 void (*cb)(int revents, void *arg);
990 void *arg; 1304 void *arg;
991}; 1305};
992 1306
993static void 1307static void
994once_cb (struct ev_once *once, int revents) 1308once_cb (EV_P_ struct ev_once *once, int revents)
995{ 1309{
996 void (*cb)(int revents, void *arg) = once->cb; 1310 void (*cb)(int revents, void *arg) = once->cb;
997 void *arg = once->arg; 1311 void *arg = once->arg;
998 1312
999 ev_io_stop (&once->io); 1313 ev_io_stop (EV_A_ &once->io);
1000 ev_timer_stop (&once->to); 1314 ev_timer_stop (EV_A_ &once->to);
1001 free (once); 1315 free (once);
1002 1316
1003 cb (revents, arg); 1317 cb (revents, arg);
1004} 1318}
1005 1319
1006static void 1320static void
1007once_cb_io (struct ev_io *w, int revents) 1321once_cb_io (EV_P_ struct ev_io *w, int revents)
1008{ 1322{
1009 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1010} 1324}
1011 1325
1012static void 1326static void
1013once_cb_to (struct ev_timer *w, int revents) 1327once_cb_to (EV_P_ struct ev_timer *w, int revents)
1014{ 1328{
1015 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1329 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1016} 1330}
1017 1331
1018void 1332void
1019ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1020{ 1334{
1021 struct ev_once *once = malloc (sizeof (struct ev_once)); 1335 struct ev_once *once = malloc (sizeof (struct ev_once));
1022 1336
1023 if (!once) 1337 if (!once)
1024 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1029 1343
1030 ev_watcher_init (&once->io, once_cb_io); 1344 ev_watcher_init (&once->io, once_cb_io);
1031 if (fd >= 0) 1345 if (fd >= 0)
1032 { 1346 {
1033 ev_io_set (&once->io, fd, events); 1347 ev_io_set (&once->io, fd, events);
1034 ev_io_start (&once->io); 1348 ev_io_start (EV_A_ &once->io);
1035 } 1349 }
1036 1350
1037 ev_watcher_init (&once->to, once_cb_to); 1351 ev_watcher_init (&once->to, once_cb_to);
1038 if (timeout >= 0.) 1352 if (timeout >= 0.)
1039 { 1353 {
1040 ev_timer_set (&once->to, timeout, 0.); 1354 ev_timer_set (&once->to, timeout, 0.);
1041 ev_timer_start (&once->to); 1355 ev_timer_start (EV_A_ &once->to);
1042 } 1356 }
1043 } 1357 }
1044} 1358}
1045 1359
1046/*****************************************************************************/
1047
1048#if 0
1049
1050struct ev_io wio;
1051
1052static void
1053sin_cb (struct ev_io *w, int revents)
1054{
1055 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1056}
1057
1058static void
1059ocb (struct ev_timer *w, int revents)
1060{
1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1062 ev_timer_stop (w);
1063 ev_timer_start (w);
1064}
1065
1066static void
1067scb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1070 ev_io_stop (&wio);
1071 ev_io_start (&wio);
1072}
1073
1074static void
1075gcb (struct ev_signal *w, int revents)
1076{
1077 fprintf (stderr, "generic %x\n", revents);
1078
1079}
1080
1081int main (void)
1082{
1083 ev_init (0);
1084
1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1086 ev_io_start (&wio);
1087
1088 struct ev_timer t[10000];
1089
1090#if 0
1091 int i;
1092 for (i = 0; i < 10000; ++i)
1093 {
1094 struct ev_timer *w = t + i;
1095 ev_watcher_init (w, ocb, i);
1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1097 ev_timer_start (w);
1098 if (drand48 () < 0.5)
1099 ev_timer_stop (w);
1100 }
1101#endif
1102
1103 struct ev_timer t1;
1104 ev_timer_init (&t1, ocb, 5, 10);
1105 ev_timer_start (&t1);
1106
1107 struct ev_signal sig;
1108 ev_signal_init (&sig, scb, SIGQUIT);
1109 ev_signal_start (&sig);
1110
1111 struct ev_check cw;
1112 ev_check_init (&cw, gcb);
1113 ev_check_start (&cw);
1114
1115 struct ev_idle iw;
1116 ev_idle_init (&iw, gcb);
1117 ev_idle_start (&iw);
1118
1119 ev_loop (0);
1120
1121 return 0;
1122}
1123
1124#endif
1125
1126
1127
1128

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines