ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.30 by root, Thu Nov 1 08:28:33 2007 UTC vs.
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
63#ifndef EV_USE_REALTIME 105#ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
65#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
66 122
67#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
68#define MAX_BLOCKTIME 59.731 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
69#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
70 127
71#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
72 143
73typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
74typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
75typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
76 147
77static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
78ev_tstamp ev_now;
79int ev_method;
80
81static int have_monotonic; /* runtime */
82
83static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
84static void (*method_modify)(int fd, int oev, int nev);
85static void (*method_poll)(ev_tstamp timeout);
86 149
87/*****************************************************************************/ 150/*****************************************************************************/
88 151
89ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
90ev_time (void) 186ev_time (void)
91{ 187{
92#if EV_USE_REALTIME 188#if EV_USE_REALTIME
93 struct timespec ts; 189 struct timespec ts;
94 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
98 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
99 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
100#endif 196#endif
101} 197}
102 198
103static ev_tstamp 199inline ev_tstamp
104get_clock (void) 200get_clock (void)
105{ 201{
106#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
107 if (have_monotonic) 203 if (expect_true (have_monotonic))
108 { 204 {
109 struct timespec ts; 205 struct timespec ts;
110 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
111 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
112 } 208 }
113#endif 209#endif
114 210
115 return ev_time (); 211 return ev_time ();
116} 212}
117 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
118#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
119 221
120#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
121 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
122 { \ 224 { \
123 int newcnt = cur; \ 225 int newcnt = cur; \
124 do \ 226 do \
125 { \ 227 { \
126 newcnt = array_roundsize (base, newcnt << 1); \ 228 newcnt = array_roundsize (base, newcnt << 1); \
132 cur = newcnt; \ 234 cur = newcnt; \
133 } 235 }
134 236
135/*****************************************************************************/ 237/*****************************************************************************/
136 238
137typedef struct
138{
139 struct ev_io *head;
140 int events;
141} ANFD;
142
143static ANFD *anfds;
144static int anfdmax;
145
146static void 239static void
147anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
148{ 241{
149 while (count--) 242 while (count--)
150 { 243 {
151 base->head = 0; 244 base->head = 0;
152 base->events = EV_NONE; 245 base->events = EV_NONE;
246 base->reify = 0;
247
153 ++base; 248 ++base;
154 } 249 }
155} 250}
156 251
157typedef struct
158{
159 W w;
160 int events;
161} ANPENDING;
162
163static ANPENDING *pendings;
164static int pendingmax, pendingcnt;
165
166static void 252static void
167event (W w, int events) 253event (EV_P_ W w, int events)
168{ 254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
169 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
170 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
171 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
173} 265}
174 266
175static void 267static void
176queue_events (W *events, int eventcnt, int type) 268queue_events (EV_P_ W *events, int eventcnt, int type)
177{ 269{
178 int i; 270 int i;
179 271
180 for (i = 0; i < eventcnt; ++i) 272 for (i = 0; i < eventcnt; ++i)
181 event (events [i], type); 273 event (EV_A_ events [i], type);
182} 274}
183 275
184static void 276static void
185fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
186{ 278{
187 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
188 struct ev_io *w; 280 struct ev_io *w;
189 281
190 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
191 { 283 {
192 int ev = w->events & events; 284 int ev = w->events & events;
193 285
194 if (ev) 286 if (ev)
195 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
196 } 288 }
197} 289}
198 290
199/*****************************************************************************/ 291/*****************************************************************************/
200 292
201static int *fdchanges;
202static int fdchangemax, fdchangecnt;
203
204static void 293static void
205fd_reify (void) 294fd_reify (EV_P)
206{ 295{
207 int i; 296 int i;
208 297
209 for (i = 0; i < fdchangecnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
210 { 299 {
212 ANFD *anfd = anfds + fd; 301 ANFD *anfd = anfds + fd;
213 struct ev_io *w; 302 struct ev_io *w;
214 303
215 int events = 0; 304 int events = 0;
216 305
217 for (w = anfd->head; w; w = w->next) 306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
218 events |= w->events; 307 events |= w->events;
219 308
220 anfd->events &= ~EV_REIFY; 309 anfd->reify = 0;
221 310
222 if (anfd->events != events)
223 {
224 method_modify (fd, anfd->events, events); 311 method_modify (EV_A_ fd, anfd->events, events);
225 anfd->events = events; 312 anfd->events = events;
226 }
227 } 313 }
228 314
229 fdchangecnt = 0; 315 fdchangecnt = 0;
230} 316}
231 317
232static void 318static void
233fd_change (int fd) 319fd_change (EV_P_ int fd)
234{ 320{
235 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 321 if (anfds [fd].reify || fdchangecnt < 0)
236 return; 322 return;
237 323
238 anfds [fd].events |= EV_REIFY; 324 anfds [fd].reify = 1;
239 325
240 ++fdchangecnt; 326 ++fdchangecnt;
241 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 327 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
242 fdchanges [fdchangecnt - 1] = fd; 328 fdchanges [fdchangecnt - 1] = fd;
243} 329}
244 330
331static void
332fd_kill (EV_P_ int fd)
333{
334 struct ev_io *w;
335
336 while ((w = (struct ev_io *)anfds [fd].head))
337 {
338 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 }
341}
342
245/* called on EBADF to verify fds */ 343/* called on EBADF to verify fds */
246static void 344static void
247fd_recheck (void) 345fd_ebadf (EV_P)
248{ 346{
249 int fd; 347 int fd;
250 348
251 for (fd = 0; fd < anfdmax; ++fd) 349 for (fd = 0; fd < anfdmax; ++fd)
252 if (anfds [fd].events) 350 if (anfds [fd].events)
253 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
254 while (anfds [fd].head) 352 fd_kill (EV_A_ fd);
353}
354
355/* called on ENOMEM in select/poll to kill some fds and retry */
356static void
357fd_enomem (EV_P)
358{
359 int fd;
360
361 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events)
255 { 363 {
256 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 364 close (fd);
257 ev_io_stop (anfds [fd].head); 365 fd_kill (EV_A_ fd);
366 return;
258 } 367 }
368}
369
370/* susually called after fork if method needs to re-arm all fds from scratch */
371static void
372fd_rearm_all (EV_P)
373{
374 int fd;
375
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events)
379 {
380 anfds [fd].events = 0;
381 fd_change (EV_A_ fd);
382 }
259} 383}
260 384
261/*****************************************************************************/ 385/*****************************************************************************/
262 386
263static struct ev_timer **timers;
264static int timermax, timercnt;
265
266static struct ev_periodic **periodics;
267static int periodicmax, periodiccnt;
268
269static void 387static void
270upheap (WT *timers, int k) 388upheap (WT *heap, int k)
271{ 389{
272 WT w = timers [k]; 390 WT w = heap [k];
273 391
274 while (k && timers [k >> 1]->at > w->at) 392 while (k && heap [k >> 1]->at > w->at)
275 { 393 {
276 timers [k] = timers [k >> 1]; 394 heap [k] = heap [k >> 1];
277 timers [k]->active = k + 1; 395 ((W)heap [k])->active = k + 1;
278 k >>= 1; 396 k >>= 1;
279 } 397 }
280 398
281 timers [k] = w; 399 heap [k] = w;
282 timers [k]->active = k + 1; 400 ((W)heap [k])->active = k + 1;
283 401
284} 402}
285 403
286static void 404static void
287downheap (WT *timers, int N, int k) 405downheap (WT *heap, int N, int k)
288{ 406{
289 WT w = timers [k]; 407 WT w = heap [k];
290 408
291 while (k < (N >> 1)) 409 while (k < (N >> 1))
292 { 410 {
293 int j = k << 1; 411 int j = k << 1;
294 412
295 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
296 ++j; 414 ++j;
297 415
298 if (w->at <= timers [j]->at) 416 if (w->at <= heap [j]->at)
299 break; 417 break;
300 418
301 timers [k] = timers [j]; 419 heap [k] = heap [j];
302 timers [k]->active = k + 1; 420 ((W)heap [k])->active = k + 1;
303 k = j; 421 k = j;
304 } 422 }
305 423
306 timers [k] = w; 424 heap [k] = w;
307 timers [k]->active = k + 1; 425 ((W)heap [k])->active = k + 1;
308} 426}
309 427
310/*****************************************************************************/ 428/*****************************************************************************/
311 429
312typedef struct 430typedef struct
313{ 431{
314 struct ev_signal *head; 432 struct ev_watcher_list *head;
315 sig_atomic_t gotsig; 433 sig_atomic_t volatile gotsig;
316} ANSIG; 434} ANSIG;
317 435
318static ANSIG *signals; 436static ANSIG *signals;
319static int signalmax; 437static int signalmax;
320 438
321static int sigpipe [2]; 439static int sigpipe [2];
322static sig_atomic_t gotsig; 440static sig_atomic_t volatile gotsig;
323static struct ev_io sigev; 441static struct ev_io sigev;
324 442
325static void 443static void
326signals_init (ANSIG *base, int count) 444signals_init (ANSIG *base, int count)
327{ 445{
328 while (count--) 446 while (count--)
329 { 447 {
330 base->head = 0; 448 base->head = 0;
331 base->gotsig = 0; 449 base->gotsig = 0;
450
332 ++base; 451 ++base;
333 } 452 }
334} 453}
335 454
336static void 455static void
338{ 457{
339 signals [signum - 1].gotsig = 1; 458 signals [signum - 1].gotsig = 1;
340 459
341 if (!gotsig) 460 if (!gotsig)
342 { 461 {
462 int old_errno = errno;
343 gotsig = 1; 463 gotsig = 1;
344 write (sigpipe [1], &gotsig, 1); 464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
345 } 466 }
346} 467}
347 468
348static void 469static void
349sigcb (struct ev_io *iow, int revents) 470sigcb (EV_P_ struct ev_io *iow, int revents)
350{ 471{
351 struct ev_signal *w; 472 struct ev_watcher_list *w;
352 int sig; 473 int signum;
353 474
475 read (sigpipe [0], &revents, 1);
354 gotsig = 0; 476 gotsig = 0;
355 read (sigpipe [0], &revents, 1);
356 477
357 for (sig = signalmax; sig--; ) 478 for (signum = signalmax; signum--; )
358 if (signals [sig].gotsig) 479 if (signals [signum].gotsig)
359 { 480 {
360 signals [sig].gotsig = 0; 481 signals [signum].gotsig = 0;
361 482
362 for (w = signals [sig].head; w; w = w->next) 483 for (w = signals [signum].head; w; w = w->next)
363 event ((W)w, EV_SIGNAL); 484 event (EV_A_ (W)w, EV_SIGNAL);
364 } 485 }
365} 486}
366 487
367static void 488static void
368siginit (void) 489siginit (EV_P)
369{ 490{
491#ifndef WIN32
370 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
371 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
372 494
373 /* rather than sort out wether we really need nb, set it */ 495 /* rather than sort out wether we really need nb, set it */
374 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
375 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
376 499
377 ev_io_set (&sigev, sigpipe [0], EV_READ); 500 ev_io_set (&sigev, sigpipe [0], EV_READ);
378 ev_io_start (&sigev); 501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
379} 503}
380 504
381/*****************************************************************************/ 505/*****************************************************************************/
382 506
383static struct ev_idle **idles; 507#ifndef WIN32
384static int idlemax, idlecnt;
385
386static struct ev_prepare **prepares;
387static int preparemax, preparecnt;
388
389static struct ev_check **checks;
390static int checkmax, checkcnt;
391
392/*****************************************************************************/
393 508
394static struct ev_child *childs [PID_HASHSIZE]; 509static struct ev_child *childs [PID_HASHSIZE];
395static struct ev_signal childev; 510static struct ev_signal childev;
396 511
397#ifndef WCONTINUED 512#ifndef WCONTINUED
398# define WCONTINUED 0 513# define WCONTINUED 0
399#endif 514#endif
400 515
401static void 516static void
402childcb (struct ev_signal *sw, int revents) 517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
403{ 518{
404 struct ev_child *w; 519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents)
533{
405 int pid, status; 534 int pid, status;
406 535
407 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
408 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 537 {
409 if (w->pid == pid || w->pid == -1) 538 /* make sure we are called again until all childs have been reaped */
410 { 539 event (EV_A_ (W)sw, EV_SIGNAL);
411 w->status = status; 540
412 event ((W)w, EV_CHILD); 541 child_reap (EV_A_ sw, pid, pid, status);
413 } 542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
543 }
414} 544}
545
546#endif
415 547
416/*****************************************************************************/ 548/*****************************************************************************/
417 549
550#if EV_USE_KQUEUE
551# include "ev_kqueue.c"
552#endif
418#if EV_USE_EPOLL 553#if EV_USE_EPOLL
419# include "ev_epoll.c" 554# include "ev_epoll.c"
420#endif 555#endif
556#if EV_USE_POLL
557# include "ev_poll.c"
558#endif
421#if EV_USE_SELECT 559#if EV_USE_SELECT
422# include "ev_select.c" 560# include "ev_select.c"
423#endif 561#endif
424 562
425int 563int
432ev_version_minor (void) 570ev_version_minor (void)
433{ 571{
434 return EV_VERSION_MINOR; 572 return EV_VERSION_MINOR;
435} 573}
436 574
437int ev_init (int flags) 575/* return true if we are running with elevated privileges and should ignore env variables */
576static int
577enable_secure (void)
438{ 578{
579#ifdef WIN32
580 return 0;
581#else
582 return getuid () != geteuid ()
583 || getgid () != getegid ();
584#endif
585}
586
587int
588ev_method (EV_P)
589{
590 return method;
591}
592
593static void
594loop_init (EV_P_ int methods)
595{
439 if (!ev_method) 596 if (!method)
440 { 597 {
441#if EV_USE_MONOTONIC 598#if EV_USE_MONOTONIC
442 { 599 {
443 struct timespec ts; 600 struct timespec ts;
444 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 601 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
445 have_monotonic = 1; 602 have_monotonic = 1;
446 } 603 }
447#endif 604#endif
448 605
449 ev_now = ev_time (); 606 rt_now = ev_time ();
450 now = get_clock (); 607 mn_now = get_clock ();
608 now_floor = mn_now;
451 diff = ev_now - now; 609 rtmn_diff = rt_now - mn_now;
452 610
453 if (pipe (sigpipe)) 611 if (methods == EVMETHOD_AUTO)
454 return 0; 612 if (!enable_secure () && getenv ("LIBEV_METHODS"))
455 613 methods = atoi (getenv ("LIBEV_METHODS"));
614 else
456 ev_method = EVMETHOD_NONE; 615 methods = EVMETHOD_ANY;
616
617 method = 0;
618#if EV_USE_WIN32
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
620#endif
621#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
623#endif
457#if EV_USE_EPOLL 624#if EV_USE_EPOLL
458 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
626#endif
627#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
459#endif 629#endif
460#if EV_USE_SELECT 630#if EV_USE_SELECT
461 if (ev_method == EVMETHOD_NONE) select_init (flags); 631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
462#endif 632#endif
633 }
634}
463 635
636void
637loop_destroy (EV_P)
638{
639#if EV_USE_WIN32
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
641#endif
642#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
644#endif
645#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
647#endif
648#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
650#endif
651#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
653#endif
654
655 method = 0;
656 /*TODO*/
657}
658
659void
660loop_fork (EV_P)
661{
662 /*TODO*/
663#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
665#endif
666#if EV_USE_KQUEUE
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
668#endif
669}
670
671#if EV_MULTIPLICITY
672struct ev_loop *
673ev_loop_new (int methods)
674{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
676
677 loop_init (EV_A_ methods);
678
679 if (ev_method (EV_A))
680 return loop;
681
682 return 0;
683}
684
685void
686ev_loop_destroy (EV_P)
687{
688 loop_destroy (EV_A);
689 free (loop);
690}
691
692void
693ev_loop_fork (EV_P)
694{
695 loop_fork (EV_A);
696}
697
698#endif
699
700#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop *
705#else
706static int default_loop;
707
708int
709#endif
710ev_default_loop (int methods)
711{
712 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe))
714 return 0;
715
716 if (!default_loop)
717 {
718#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct;
720#else
721 default_loop = 1;
722#endif
723
724 loop_init (EV_A_ methods);
725
464 if (ev_method) 726 if (ev_method (EV_A))
465 { 727 {
466 ev_watcher_init (&sigev, sigcb); 728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
467 siginit (); 730 siginit (EV_A);
468 731
732#ifndef WIN32
469 ev_signal_init (&childev, childcb, SIGCHLD); 733 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI);
470 ev_signal_start (&childev); 735 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif
471 } 738 }
739 else
740 default_loop = 0;
472 } 741 }
473 742
474 return ev_method; 743 return default_loop;
475} 744}
476 745
477/*****************************************************************************/
478
479void 746void
480ev_prefork (void) 747ev_default_destroy (void)
481{ 748{
482 /* nop */ 749#if EV_MULTIPLICITY
483} 750 struct ev_loop *loop = default_loop;
484
485void
486ev_postfork_parent (void)
487{
488 /* nop */
489}
490
491void
492ev_postfork_child (void)
493{
494#if EV_USE_EPOLL
495 if (ev_method == EVMETHOD_EPOLL)
496 epoll_postfork_child ();
497#endif 751#endif
498 752
753 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev);
755
756 ev_ref (EV_A); /* signal watcher */
499 ev_io_stop (&sigev); 757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761
762 loop_destroy (EV_A);
763}
764
765void
766ev_default_fork (void)
767{
768#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop;
770#endif
771
772 loop_fork (EV_A);
773
774 ev_io_stop (EV_A_ &sigev);
500 close (sigpipe [0]); 775 close (sigpipe [0]);
501 close (sigpipe [1]); 776 close (sigpipe [1]);
502 pipe (sigpipe); 777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
503 siginit (); 780 siginit (EV_A);
504} 781}
505 782
506/*****************************************************************************/ 783/*****************************************************************************/
507 784
508static void 785static void
509call_pending (void) 786call_pending (EV_P)
510{ 787{
788 int pri;
789
790 for (pri = NUMPRI; pri--; )
511 while (pendingcnt) 791 while (pendingcnt [pri])
512 { 792 {
513 ANPENDING *p = pendings + --pendingcnt; 793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
514 794
515 if (p->w) 795 if (p->w)
516 { 796 {
517 p->w->pending = 0; 797 p->w->pending = 0;
518 p->w->cb (p->w, p->events); 798
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
519 } 800 }
520 } 801 }
521} 802}
522 803
523static void 804static void
524timers_reify (void) 805timers_reify (EV_P)
525{ 806{
526 while (timercnt && timers [0]->at <= now) 807 while (timercnt && ((WT)timers [0])->at <= mn_now)
527 { 808 {
528 struct ev_timer *w = timers [0]; 809 struct ev_timer *w = timers [0];
810
811 assert (("inactive timer on timer heap detected", ev_is_active (w)));
529 812
530 /* first reschedule or stop timer */ 813 /* first reschedule or stop timer */
531 if (w->repeat) 814 if (w->repeat)
532 { 815 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
533 w->at = now + w->repeat; 817 ((WT)w)->at = mn_now + w->repeat;
534 assert (("timer timeout in the past, negative repeat?", w->at > now));
535 downheap ((WT *)timers, timercnt, 0); 818 downheap ((WT *)timers, timercnt, 0);
536 } 819 }
537 else 820 else
538 ev_timer_stop (w); /* nonrepeating: stop timer */ 821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
539 822
540 event ((W)w, EV_TIMEOUT); 823 event (EV_A_ (W)w, EV_TIMEOUT);
541 } 824 }
542} 825}
543 826
544static void 827static void
545periodics_reify (void) 828periodics_reify (EV_P)
546{ 829{
547 while (periodiccnt && periodics [0]->at <= ev_now) 830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
548 { 831 {
549 struct ev_periodic *w = periodics [0]; 832 struct ev_periodic *w = periodics [0];
833
834 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
550 835
551 /* first reschedule or stop timer */ 836 /* first reschedule or stop timer */
552 if (w->interval) 837 if (w->interval)
553 { 838 {
554 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
555 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
556 downheap ((WT *)periodics, periodiccnt, 0); 841 downheap ((WT *)periodics, periodiccnt, 0);
557 } 842 }
558 else 843 else
559 ev_periodic_stop (w); /* nonrepeating: stop timer */ 844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
560 845
561 event ((W)w, EV_TIMEOUT); 846 event (EV_A_ (W)w, EV_PERIODIC);
562 } 847 }
563} 848}
564 849
565static void 850static void
566periodics_reschedule (ev_tstamp diff) 851periodics_reschedule (EV_P)
567{ 852{
568 int i; 853 int i;
569 854
570 /* adjust periodics after time jump */ 855 /* adjust periodics after time jump */
571 for (i = 0; i < periodiccnt; ++i) 856 for (i = 0; i < periodiccnt; ++i)
572 { 857 {
573 struct ev_periodic *w = periodics [i]; 858 struct ev_periodic *w = periodics [i];
574 859
575 if (w->interval) 860 if (w->interval)
576 { 861 {
577 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
578 863
579 if (fabs (diff) >= 1e-4) 864 if (fabs (diff) >= 1e-4)
580 { 865 {
581 ev_periodic_stop (w); 866 ev_periodic_stop (EV_A_ w);
582 ev_periodic_start (w); 867 ev_periodic_start (EV_A_ w);
583 868
584 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
585 } 870 }
586 } 871 }
587 } 872 }
588} 873}
589 874
875inline int
876time_update_monotonic (EV_P)
877{
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891}
892
590static void 893static void
591time_update (void) 894time_update (EV_P)
592{ 895{
593 int i; 896 int i;
594 897
595 ev_now = ev_time (); 898#if EV_USE_MONOTONIC
596
597 if (have_monotonic) 899 if (expect_true (have_monotonic))
598 { 900 {
599 ev_tstamp odiff = diff; 901 if (time_update_monotonic (EV_A))
600
601 for (i = 4; --i; ) /* loop a few times, before making important decisions */
602 { 902 {
603 now = get_clock (); 903 ev_tstamp odiff = rtmn_diff;
904
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */
906 {
604 diff = ev_now - now; 907 rtmn_diff = rt_now - mn_now;
605 908
606 if (fabs (odiff - diff) < MIN_TIMEJUMP) 909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
607 return; /* all is well */ 910 return; /* all is well */
608 911
609 ev_now = ev_time (); 912 rt_now = ev_time ();
913 mn_now = get_clock ();
914 now_floor = mn_now;
915 }
916
917 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
610 } 920 }
611
612 periodics_reschedule (diff - odiff);
613 /* no timer adjustment, as the monotonic clock doesn't jump */
614 } 921 }
615 else 922 else
923#endif
616 { 924 {
617 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 925 rt_now = ev_time ();
926
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
618 { 928 {
619 periodics_reschedule (ev_now - now); 929 periodics_reschedule (EV_A);
620 930
621 /* adjust timers. this is easy, as the offset is the same for all */ 931 /* adjust timers. this is easy, as the offset is the same for all */
622 for (i = 0; i < timercnt; ++i) 932 for (i = 0; i < timercnt; ++i)
623 timers [i]->at += diff; 933 ((WT)timers [i])->at += rt_now - mn_now;
624 } 934 }
625 935
626 now = ev_now; 936 mn_now = rt_now;
627 } 937 }
628} 938}
629 939
630int ev_loop_done; 940void
941ev_ref (EV_P)
942{
943 ++activecnt;
944}
631 945
946void
947ev_unref (EV_P)
948{
949 --activecnt;
950}
951
952static int loop_done;
953
954void
632void ev_loop (int flags) 955ev_loop (EV_P_ int flags)
633{ 956{
634 double block; 957 double block;
635 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
636 959
637 do 960 do
638 { 961 {
639 /* queue check watchers (and execute them) */ 962 /* queue check watchers (and execute them) */
640 if (preparecnt) 963 if (expect_false (preparecnt))
641 { 964 {
642 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
643 call_pending (); 966 call_pending (EV_A);
644 } 967 }
645 968
646 /* update fd-related kernel structures */ 969 /* update fd-related kernel structures */
647 fd_reify (); 970 fd_reify (EV_A);
648 971
649 /* calculate blocking time */ 972 /* calculate blocking time */
650 973
651 /* we only need this for !monotonic clockor timers, but as we basically 974 /* we only need this for !monotonic clockor timers, but as we basically
652 always have timers, we just calculate it always */ 975 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else
980#endif
981 {
653 ev_now = ev_time (); 982 rt_now = ev_time ();
983 mn_now = rt_now;
984 }
654 985
655 if (flags & EVLOOP_NONBLOCK || idlecnt) 986 if (flags & EVLOOP_NONBLOCK || idlecnt)
656 block = 0.; 987 block = 0.;
657 else 988 else
658 { 989 {
659 block = MAX_BLOCKTIME; 990 block = MAX_BLOCKTIME;
660 991
661 if (timercnt) 992 if (timercnt)
662 { 993 {
663 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
664 if (block > to) block = to; 995 if (block > to) block = to;
665 } 996 }
666 997
667 if (periodiccnt) 998 if (periodiccnt)
668 { 999 {
669 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
670 if (block > to) block = to; 1001 if (block > to) block = to;
671 } 1002 }
672 1003
673 if (block < 0.) block = 0.; 1004 if (block < 0.) block = 0.;
674 } 1005 }
675 1006
676 method_poll (block); 1007 method_poll (EV_A_ block);
677 1008
678 /* update ev_now, do magic */ 1009 /* update rt_now, do magic */
679 time_update (); 1010 time_update (EV_A);
680 1011
681 /* queue pending timers and reschedule them */ 1012 /* queue pending timers and reschedule them */
682 timers_reify (); /* relative timers called last */ 1013 timers_reify (EV_A); /* relative timers called last */
683 periodics_reify (); /* absolute timers called first */ 1014 periodics_reify (EV_A); /* absolute timers called first */
684 1015
685 /* queue idle watchers unless io or timers are pending */ 1016 /* queue idle watchers unless io or timers are pending */
686 if (!pendingcnt) 1017 if (!pendingcnt)
687 queue_events ((W *)idles, idlecnt, EV_IDLE); 1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
688 1019
689 /* queue check watchers, to be executed first */ 1020 /* queue check watchers, to be executed first */
690 if (checkcnt) 1021 if (checkcnt)
691 queue_events ((W *)checks, checkcnt, EV_CHECK); 1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
692 1023
693 call_pending (); 1024 call_pending (EV_A);
694 } 1025 }
695 while (!ev_loop_done); 1026 while (activecnt && !loop_done);
696 1027
697 if (ev_loop_done != 2) 1028 if (loop_done != 2)
698 ev_loop_done = 0; 1029 loop_done = 0;
1030}
1031
1032void
1033ev_unloop (EV_P_ int how)
1034{
1035 loop_done = how;
699} 1036}
700 1037
701/*****************************************************************************/ 1038/*****************************************************************************/
702 1039
703static void 1040inline void
704wlist_add (WL *head, WL elem) 1041wlist_add (WL *head, WL elem)
705{ 1042{
706 elem->next = *head; 1043 elem->next = *head;
707 *head = elem; 1044 *head = elem;
708} 1045}
709 1046
710static void 1047inline void
711wlist_del (WL *head, WL elem) 1048wlist_del (WL *head, WL elem)
712{ 1049{
713 while (*head) 1050 while (*head)
714 { 1051 {
715 if (*head == elem) 1052 if (*head == elem)
720 1057
721 head = &(*head)->next; 1058 head = &(*head)->next;
722 } 1059 }
723} 1060}
724 1061
725static void 1062inline void
726ev_clear (W w) 1063ev_clear_pending (EV_P_ W w)
727{ 1064{
728 if (w->pending) 1065 if (w->pending)
729 { 1066 {
730 pendings [w->pending - 1].w = 0; 1067 pendings [ABSPRI (w)][w->pending - 1].w = 0;
731 w->pending = 0; 1068 w->pending = 0;
732 } 1069 }
733} 1070}
734 1071
735static void 1072inline void
736ev_start (W w, int active) 1073ev_start (EV_P_ W w, int active)
737{ 1074{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
738 w->active = active; 1078 w->active = active;
1079 ev_ref (EV_A);
739} 1080}
740 1081
741static void 1082inline void
742ev_stop (W w) 1083ev_stop (EV_P_ W w)
743{ 1084{
1085 ev_unref (EV_A);
744 w->active = 0; 1086 w->active = 0;
745} 1087}
746 1088
747/*****************************************************************************/ 1089/*****************************************************************************/
748 1090
749void 1091void
750ev_io_start (struct ev_io *w) 1092ev_io_start (EV_P_ struct ev_io *w)
751{ 1093{
1094 int fd = w->fd;
1095
752 if (ev_is_active (w)) 1096 if (ev_is_active (w))
753 return; 1097 return;
754 1098
755 int fd = w->fd; 1099 assert (("ev_io_start called with negative fd", fd >= 0));
756 1100
757 ev_start ((W)w, 1); 1101 ev_start (EV_A_ (W)w, 1);
758 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
759 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1103 wlist_add ((WL *)&anfds[fd].head, (WL)w);
760 1104
761 fd_change (fd); 1105 fd_change (EV_A_ fd);
762} 1106}
763 1107
764void 1108void
765ev_io_stop (struct ev_io *w) 1109ev_io_stop (EV_P_ struct ev_io *w)
766{ 1110{
767 ev_clear ((W)w); 1111 ev_clear_pending (EV_A_ (W)w);
768 if (!ev_is_active (w)) 1112 if (!ev_is_active (w))
769 return; 1113 return;
770 1114
771 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
772 ev_stop ((W)w); 1116 ev_stop (EV_A_ (W)w);
773 1117
774 fd_change (w->fd); 1118 fd_change (EV_A_ w->fd);
775} 1119}
776 1120
777void 1121void
778ev_timer_start (struct ev_timer *w) 1122ev_timer_start (EV_P_ struct ev_timer *w)
779{ 1123{
780 if (ev_is_active (w)) 1124 if (ev_is_active (w))
781 return; 1125 return;
782 1126
783 w->at += now; 1127 ((WT)w)->at += mn_now;
784 1128
785 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
786 1130
787 ev_start ((W)w, ++timercnt); 1131 ev_start (EV_A_ (W)w, ++timercnt);
788 array_needsize (timers, timermax, timercnt, ); 1132 array_needsize (timers, timermax, timercnt, );
789 timers [timercnt - 1] = w; 1133 timers [timercnt - 1] = w;
790 upheap ((WT *)timers, timercnt - 1); 1134 upheap ((WT *)timers, timercnt - 1);
791}
792 1135
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137}
1138
793void 1139void
794ev_timer_stop (struct ev_timer *w) 1140ev_timer_stop (EV_P_ struct ev_timer *w)
795{ 1141{
796 ev_clear ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
797 if (!ev_is_active (w)) 1143 if (!ev_is_active (w))
798 return; 1144 return;
799 1145
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1147
800 if (w->active < timercnt--) 1148 if (((W)w)->active < timercnt--)
801 { 1149 {
802 timers [w->active - 1] = timers [timercnt]; 1150 timers [((W)w)->active - 1] = timers [timercnt];
803 downheap ((WT *)timers, timercnt, w->active - 1); 1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
804 } 1152 }
805 1153
806 w->at = w->repeat; 1154 ((WT)w)->at = w->repeat;
807 1155
808 ev_stop ((W)w); 1156 ev_stop (EV_A_ (W)w);
809} 1157}
810 1158
811void 1159void
812ev_timer_again (struct ev_timer *w) 1160ev_timer_again (EV_P_ struct ev_timer *w)
813{ 1161{
814 if (ev_is_active (w)) 1162 if (ev_is_active (w))
815 { 1163 {
816 if (w->repeat) 1164 if (w->repeat)
817 { 1165 {
818 w->at = now + w->repeat; 1166 ((WT)w)->at = mn_now + w->repeat;
819 downheap ((WT *)timers, timercnt, w->active - 1); 1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
820 } 1168 }
821 else 1169 else
822 ev_timer_stop (w); 1170 ev_timer_stop (EV_A_ w);
823 } 1171 }
824 else if (w->repeat) 1172 else if (w->repeat)
825 ev_timer_start (w); 1173 ev_timer_start (EV_A_ w);
826} 1174}
827 1175
828void 1176void
829ev_periodic_start (struct ev_periodic *w) 1177ev_periodic_start (EV_P_ struct ev_periodic *w)
830{ 1178{
831 if (ev_is_active (w)) 1179 if (ev_is_active (w))
832 return; 1180 return;
833 1181
834 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
835 1183
836 /* this formula differs from the one in periodic_reify because we do not always round up */ 1184 /* this formula differs from the one in periodic_reify because we do not always round up */
837 if (w->interval) 1185 if (w->interval)
838 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
839 1187
840 ev_start ((W)w, ++periodiccnt); 1188 ev_start (EV_A_ (W)w, ++periodiccnt);
841 array_needsize (periodics, periodicmax, periodiccnt, ); 1189 array_needsize (periodics, periodicmax, periodiccnt, );
842 periodics [periodiccnt - 1] = w; 1190 periodics [periodiccnt - 1] = w;
843 upheap ((WT *)periodics, periodiccnt - 1); 1191 upheap ((WT *)periodics, periodiccnt - 1);
844}
845 1192
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194}
1195
846void 1196void
847ev_periodic_stop (struct ev_periodic *w) 1197ev_periodic_stop (EV_P_ struct ev_periodic *w)
848{ 1198{
849 ev_clear ((W)w); 1199 ev_clear_pending (EV_A_ (W)w);
850 if (!ev_is_active (w)) 1200 if (!ev_is_active (w))
851 return; 1201 return;
852 1202
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1204
853 if (w->active < periodiccnt--) 1205 if (((W)w)->active < periodiccnt--)
854 { 1206 {
855 periodics [w->active - 1] = periodics [periodiccnt]; 1207 periodics [((W)w)->active - 1] = periodics [periodiccnt];
856 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
857 } 1209 }
858 1210
859 ev_stop ((W)w); 1211 ev_stop (EV_A_ (W)w);
860} 1212}
861 1213
862void 1214void
863ev_signal_start (struct ev_signal *w) 1215ev_idle_start (EV_P_ struct ev_idle *w)
864{ 1216{
865 if (ev_is_active (w)) 1217 if (ev_is_active (w))
866 return; 1218 return;
867 1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w);
1234}
1235
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279
1280#ifndef SA_RESTART
1281# define SA_RESTART 0
1282#endif
1283
1284void
1285ev_signal_start (EV_P_ struct ev_signal *w)
1286{
1287#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1289#endif
1290 if (ev_is_active (w))
1291 return;
1292
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294
868 ev_start ((W)w, 1); 1295 ev_start (EV_A_ (W)w, 1);
869 array_needsize (signals, signalmax, w->signum, signals_init); 1296 array_needsize (signals, signalmax, w->signum, signals_init);
870 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
871 1298
872 if (!w->next) 1299 if (!((WL)w)->next)
873 { 1300 {
874 struct sigaction sa; 1301 struct sigaction sa;
875 sa.sa_handler = sighandler; 1302 sa.sa_handler = sighandler;
876 sigfillset (&sa.sa_mask); 1303 sigfillset (&sa.sa_mask);
877 sa.sa_flags = 0; 1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
878 sigaction (w->signum, &sa, 0); 1305 sigaction (w->signum, &sa, 0);
879 } 1306 }
880} 1307}
881 1308
882void 1309void
883ev_signal_stop (struct ev_signal *w) 1310ev_signal_stop (EV_P_ struct ev_signal *w)
884{ 1311{
885 ev_clear ((W)w); 1312 ev_clear_pending (EV_A_ (W)w);
886 if (!ev_is_active (w)) 1313 if (!ev_is_active (w))
887 return; 1314 return;
888 1315
889 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
890 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
891 1318
892 if (!signals [w->signum - 1].head) 1319 if (!signals [w->signum - 1].head)
893 signal (w->signum, SIG_DFL); 1320 signal (w->signum, SIG_DFL);
894} 1321}
895 1322
896void 1323void
897ev_idle_start (struct ev_idle *w) 1324ev_child_start (EV_P_ struct ev_child *w)
898{ 1325{
1326#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop));
1328#endif
899 if (ev_is_active (w)) 1329 if (ev_is_active (w))
900 return; 1330 return;
901 1331
902 ev_start ((W)w, ++idlecnt); 1332 ev_start (EV_A_ (W)w, 1);
903 array_needsize (idles, idlemax, idlecnt, ); 1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
904 idles [idlecnt - 1] = w;
905} 1334}
906 1335
907void 1336void
908ev_idle_stop (struct ev_idle *w) 1337ev_child_stop (EV_P_ struct ev_child *w)
909{ 1338{
910 ev_clear ((W)w); 1339 ev_clear_pending (EV_A_ (W)w);
911 if (ev_is_active (w)) 1340 if (ev_is_active (w))
912 return; 1341 return;
913 1342
914 idles [w->active - 1] = idles [--idlecnt];
915 ev_stop ((W)w);
916}
917
918void
919ev_prepare_start (struct ev_prepare *w)
920{
921 if (ev_is_active (w))
922 return;
923
924 ev_start ((W)w, ++preparecnt);
925 array_needsize (prepares, preparemax, preparecnt, );
926 prepares [preparecnt - 1] = w;
927}
928
929void
930ev_prepare_stop (struct ev_prepare *w)
931{
932 ev_clear ((W)w);
933 if (ev_is_active (w))
934 return;
935
936 prepares [w->active - 1] = prepares [--preparecnt];
937 ev_stop ((W)w);
938}
939
940void
941ev_check_start (struct ev_check *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, ++checkcnt);
947 array_needsize (checks, checkmax, checkcnt, );
948 checks [checkcnt - 1] = w;
949}
950
951void
952ev_check_stop (struct ev_check *w)
953{
954 ev_clear ((W)w);
955 if (ev_is_active (w))
956 return;
957
958 checks [w->active - 1] = checks [--checkcnt];
959 ev_stop ((W)w);
960}
961
962void
963ev_child_start (struct ev_child *w)
964{
965 if (ev_is_active (w))
966 return;
967
968 ev_start ((W)w, 1);
969 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
970}
971
972void
973ev_child_stop (struct ev_child *w)
974{
975 ev_clear ((W)w);
976 if (ev_is_active (w))
977 return;
978
979 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
980 ev_stop ((W)w); 1344 ev_stop (EV_A_ (W)w);
981} 1345}
982 1346
983/*****************************************************************************/ 1347/*****************************************************************************/
984 1348
985struct ev_once 1349struct ev_once
989 void (*cb)(int revents, void *arg); 1353 void (*cb)(int revents, void *arg);
990 void *arg; 1354 void *arg;
991}; 1355};
992 1356
993static void 1357static void
994once_cb (struct ev_once *once, int revents) 1358once_cb (EV_P_ struct ev_once *once, int revents)
995{ 1359{
996 void (*cb)(int revents, void *arg) = once->cb; 1360 void (*cb)(int revents, void *arg) = once->cb;
997 void *arg = once->arg; 1361 void *arg = once->arg;
998 1362
999 ev_io_stop (&once->io); 1363 ev_io_stop (EV_A_ &once->io);
1000 ev_timer_stop (&once->to); 1364 ev_timer_stop (EV_A_ &once->to);
1001 free (once); 1365 free (once);
1002 1366
1003 cb (revents, arg); 1367 cb (revents, arg);
1004} 1368}
1005 1369
1006static void 1370static void
1007once_cb_io (struct ev_io *w, int revents) 1371once_cb_io (EV_P_ struct ev_io *w, int revents)
1008{ 1372{
1009 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1010} 1374}
1011 1375
1012static void 1376static void
1013once_cb_to (struct ev_timer *w, int revents) 1377once_cb_to (EV_P_ struct ev_timer *w, int revents)
1014{ 1378{
1015 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1016} 1380}
1017 1381
1018void 1382void
1019ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1020{ 1384{
1021 struct ev_once *once = malloc (sizeof (struct ev_once)); 1385 struct ev_once *once = malloc (sizeof (struct ev_once));
1022 1386
1023 if (!once) 1387 if (!once)
1024 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1029 1393
1030 ev_watcher_init (&once->io, once_cb_io); 1394 ev_watcher_init (&once->io, once_cb_io);
1031 if (fd >= 0) 1395 if (fd >= 0)
1032 { 1396 {
1033 ev_io_set (&once->io, fd, events); 1397 ev_io_set (&once->io, fd, events);
1034 ev_io_start (&once->io); 1398 ev_io_start (EV_A_ &once->io);
1035 } 1399 }
1036 1400
1037 ev_watcher_init (&once->to, once_cb_to); 1401 ev_watcher_init (&once->to, once_cb_to);
1038 if (timeout >= 0.) 1402 if (timeout >= 0.)
1039 { 1403 {
1040 ev_timer_set (&once->to, timeout, 0.); 1404 ev_timer_set (&once->to, timeout, 0.);
1041 ev_timer_start (&once->to); 1405 ev_timer_start (EV_A_ &once->to);
1042 } 1406 }
1043 } 1407 }
1044} 1408}
1045 1409
1046/*****************************************************************************/
1047
1048#if 0
1049
1050struct ev_io wio;
1051
1052static void
1053sin_cb (struct ev_io *w, int revents)
1054{
1055 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1056}
1057
1058static void
1059ocb (struct ev_timer *w, int revents)
1060{
1061 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1062 ev_timer_stop (w);
1063 ev_timer_start (w);
1064}
1065
1066static void
1067scb (struct ev_signal *w, int revents)
1068{
1069 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1070 ev_io_stop (&wio);
1071 ev_io_start (&wio);
1072}
1073
1074static void
1075gcb (struct ev_signal *w, int revents)
1076{
1077 fprintf (stderr, "generic %x\n", revents);
1078
1079}
1080
1081int main (void)
1082{
1083 ev_init (0);
1084
1085 ev_io_init (&wio, sin_cb, 0, EV_READ);
1086 ev_io_start (&wio);
1087
1088 struct ev_timer t[10000];
1089
1090#if 0
1091 int i;
1092 for (i = 0; i < 10000; ++i)
1093 {
1094 struct ev_timer *w = t + i;
1095 ev_watcher_init (w, ocb, i);
1096 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1097 ev_timer_start (w);
1098 if (drand48 () < 0.5)
1099 ev_timer_stop (w);
1100 }
1101#endif
1102
1103 struct ev_timer t1;
1104 ev_timer_init (&t1, ocb, 5, 10);
1105 ev_timer_start (&t1);
1106
1107 struct ev_signal sig;
1108 ev_signal_init (&sig, scb, SIGQUIT);
1109 ev_signal_start (&sig);
1110
1111 struct ev_check cw;
1112 ev_check_init (&cw, gcb);
1113 ev_check_start (&cw);
1114
1115 struct ev_idle iw;
1116 ev_idle_init (&iw, gcb);
1117 ev_idle_start (&iw);
1118
1119 ev_loop (0);
1120
1121 return 0;
1122}
1123
1124#endif
1125
1126
1127
1128

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines