ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.301 by root, Wed Jul 15 16:58:53 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
52# endif 87# endif
53# endif 88# endif
54 89
55# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 125# else
91# define EV_USE_PORT 0 126# define EV_USE_PORT 0
92# endif 127# endif
93# endif 128# endif
94 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
95#endif 146#endif
96 147
97#include <math.h> 148#include <math.h>
98#include <stdlib.h> 149#include <stdlib.h>
99#include <fcntl.h> 150#include <fcntl.h>
106#include <sys/types.h> 157#include <sys/types.h>
107#include <time.h> 158#include <time.h>
108 159
109#include <signal.h> 160#include <signal.h>
110 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
111#ifndef _WIN32 168#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 169# include <sys/time.h>
114# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
115#else 172#else
173# include <io.h>
116# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 175# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
120# endif 178# endif
121#endif 179#endif
122 180
123/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
124 190
125#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
126# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
127#endif 197#endif
128 198
129#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
131#endif 209#endif
132 210
133#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
135#endif 213#endif
141# define EV_USE_POLL 1 219# define EV_USE_POLL 1
142# endif 220# endif
143#endif 221#endif
144 222
145#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
146# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
147#endif 229#endif
148 230
149#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
151#endif 233#endif
152 234
153#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 236# define EV_USE_PORT 0
155#endif 237#endif
156 238
157/**/ 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
244# endif
245#endif
246
247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 304
159#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
162#endif 308#endif
164#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
167#endif 313#endif
168 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
169#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 338# include <winsock.h>
171#endif 339#endif
172 340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
173/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 370
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 374
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 375#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 377# define noinline __attribute__ ((noinline))
189#else 378#else
190# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
191# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
192#endif 384#endif
193 385
194#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
196 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
199 403
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
202 406
203typedef struct ev_watcher *W; 407typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
206 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
208 423
209#ifdef _WIN32 424#ifdef _WIN32
210# include "ev_win32.c" 425# include "ev_win32.c"
211#endif 426#endif
212 427
213/*****************************************************************************/ 428/*****************************************************************************/
214 429
215static void (*syserr_cb)(const char *msg); 430static void (*syserr_cb)(const char *msg);
216 431
432void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 433ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 434{
219 syserr_cb = cb; 435 syserr_cb = cb;
220} 436}
221 437
222static void 438static void noinline
223syserr (const char *msg) 439ev_syserr (const char *msg)
224{ 440{
225 if (!msg) 441 if (!msg)
226 msg = "(libev) system error"; 442 msg = "(libev) system error";
227 443
228 if (syserr_cb) 444 if (syserr_cb)
232 perror (msg); 448 perror (msg);
233 abort (); 449 abort ();
234 } 450 }
235} 451}
236 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
237static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 469
470void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 472{
241 alloc = cb; 473 alloc = cb;
242} 474}
243 475
244static void * 476inline_speed void *
245ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
246{ 478{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
248 480
249 if (!ptr && size) 481 if (!ptr && size)
250 { 482 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 484 abort ();
258#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
260 492
261/*****************************************************************************/ 493/*****************************************************************************/
262 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
263typedef struct 499typedef struct
264{ 500{
265 WL head; 501 WL head;
266 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
268#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle; 510 SOCKET handle;
270#endif 511#endif
271} ANFD; 512} ANFD;
272 513
514/* stores the pending event set for a given watcher */
273typedef struct 515typedef struct
274{ 516{
275 W w; 517 W w;
276 int events; 518 int events; /* the pending event set for the given watcher */
277} ANPENDING; 519} ANPENDING;
520
521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
523typedef struct
524{
525 WL head;
526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
547#endif
278 548
279#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
280 550
281 struct ev_loop 551 struct ev_loop
282 { 552 {
300 570
301 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
302 572
303#endif 573#endif
304 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
305/*****************************************************************************/ 587/*****************************************************************************/
306 588
589#ifndef EV_HAVE_EV_TIME
307ev_tstamp 590ev_tstamp
308ev_time (void) 591ev_time (void)
309{ 592{
310#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
311 struct timespec ts; 596 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 599 }
600#endif
601
315 struct timeval tv; 602 struct timeval tv;
316 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 605}
606#endif
320 607
321inline ev_tstamp 608inline_size ev_tstamp
322get_clock (void) 609get_clock (void)
323{ 610{
324#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
326 { 613 {
339{ 626{
340 return ev_rt_now; 627 return ev_rt_now;
341} 628}
342#endif 629#endif
343 630
344#define array_roundsize(type,n) (((n) | 4) & ~3) 631void
632ev_sleep (ev_tstamp delay)
633{
634 if (delay > 0.)
635 {
636#if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643#elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645#else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655#endif
656 }
657}
658
659/*****************************************************************************/
660
661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
666array_nextsize (int elem, int cur, int cnt)
667{
668 int ncur = cur + 1;
669
670 do
671 ncur <<= 1;
672 while (cnt > ncur);
673
674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
676 {
677 ncur *= elem;
678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
679 ncur = ncur - sizeof (void *) * 4;
680 ncur /= elem;
681 }
682
683 return ncur;
684}
685
686static noinline void *
687array_realloc (int elem, void *base, int *cur, int cnt)
688{
689 *cur = array_nextsize (elem, *cur, cnt);
690 return ev_realloc (base, elem * *cur);
691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 695
346#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 697 if (expect_false ((cnt) > (cur))) \
348 { \ 698 { \
349 int newcnt = cur; \ 699 int ocur_ = (cur); \
350 do \ 700 (base) = (type *)array_realloc \
351 { \ 701 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 702 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 703 }
360 704
705#if 0
361#define array_slim(type,stem) \ 706#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 707 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 708 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 709 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 710 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 712 }
713#endif
368 714
369#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 717
372/*****************************************************************************/ 718/*****************************************************************************/
373 719
374static void 720/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 723{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 724}
386 725
387void 726void noinline
388ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
389{ 728{
390 W w_ = (W)w; 729 W w_ = (W)w;
730 int pri = ABSPRI (w_);
391 731
392 if (expect_false (w_->pending)) 732 if (expect_false (w_->pending))
733 pendings [pri][w_->pending - 1].events |= revents;
734 else
393 { 735 {
736 w_->pending = ++pendingcnt [pri];
737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 739 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 740 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 741}
403 742
404static void 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 760{
407 int i; 761 int i;
408 762
409 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
411} 765}
412 766
767/*****************************************************************************/
768
413inline void 769inline_speed void
414fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
415{ 771{
416 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 773 ev_io *w;
418 774
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 776 {
421 int ev = w->events & revents; 777 int ev = w->events & revents;
422 778
423 if (ev) 779 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
425 } 781 }
426} 782}
427 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
428void 795void
429ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 797{
798 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
432} 800}
433 801
434/*****************************************************************************/ 802/* make sure the external fd watch events are in-sync */
435 803/* with the kernel/libev internal state */
436inline void 804inline_size void
437fd_reify (EV_P) 805fd_reify (EV_P)
438{ 806{
439 int i; 807 int i;
440 808
441 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
442 { 810 {
443 int fd = fdchanges [i]; 811 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 812 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 813 ev_io *w;
446 814
447 int events = 0; 815 unsigned char events = 0;
448 816
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 817 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 818 events |= (unsigned char)w->events;
451 819
452#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
453 if (events) 821 if (events)
454 { 822 {
455 unsigned long argp; 823 unsigned long arg;
824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
456 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
828 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
458 } 830 }
459#endif 831#endif
460 832
833 {
834 unsigned char o_events = anfd->events;
835 unsigned char o_reify = anfd->reify;
836
461 anfd->reify = 0; 837 anfd->reify = 0;
462
463 method_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 838 anfd->events = events;
839
840 if (o_events != events || o_reify & EV__IOFDSET)
841 backend_modify (EV_A_ fd, o_events, events);
842 }
465 } 843 }
466 844
467 fdchangecnt = 0; 845 fdchangecnt = 0;
468} 846}
469 847
470static void 848/* something about the given fd changed */
849inline_size void
471fd_change (EV_P_ int fd) 850fd_change (EV_P_ int fd, int flags)
472{ 851{
473 if (expect_false (anfds [fd].reify)) 852 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 853 anfds [fd].reify |= flags;
477 854
855 if (expect_true (!reify))
856 {
478 ++fdchangecnt; 857 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
860 }
481} 861}
482 862
483static void 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
484fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
485{ 866{
486 struct ev_io *w; 867 ev_io *w;
487 868
488 while ((w = (struct ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
489 { 870 {
490 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 873 }
493} 874}
494 875
876/* check whether the given fd is atcually valid, for error recovery */
495inline int 877inline_size int
496fd_valid (int fd) 878fd_valid (int fd)
497{ 879{
498#ifdef _WIN32 880#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
500#else 882#else
501 return fcntl (fd, F_GETFD) != -1; 883 return fcntl (fd, F_GETFD) != -1;
502#endif 884#endif
503} 885}
504 886
505/* called on EBADF to verify fds */ 887/* called on EBADF to verify fds */
506static void 888static void noinline
507fd_ebadf (EV_P) 889fd_ebadf (EV_P)
508{ 890{
509 int fd; 891 int fd;
510 892
511 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 894 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
515} 897}
516 898
517/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 900static void noinline
519fd_enomem (EV_P) 901fd_enomem (EV_P)
520{ 902{
521 int fd; 903 int fd;
522 904
523 for (fd = anfdmax; fd--; ) 905 for (fd = anfdmax; fd--; )
526 fd_kill (EV_A_ fd); 908 fd_kill (EV_A_ fd);
527 return; 909 return;
528 } 910 }
529} 911}
530 912
531/* usually called after fork if method needs to re-arm all fds from scratch */ 913/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 914static void noinline
533fd_rearm_all (EV_P) 915fd_rearm_all (EV_P)
534{ 916{
535 int fd; 917 int fd;
536 918
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 920 if (anfds [fd].events)
540 { 921 {
541 anfds [fd].events = 0; 922 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 923 anfds [fd].emask = 0;
924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 925 }
544} 926}
545 927
546/*****************************************************************************/ 928/*****************************************************************************/
547 929
548static void 930/*
549upheap (WT *heap, int k) 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
550{ 932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
551 WT w = heap [k]; 933 * the branching factor of the d-tree.
934 */
552 935
553 while (k && heap [k >> 1]->at > w->at) 936/*
554 { 937 * at the moment we allow libev the luxury of two heaps,
555 heap [k] = heap [k >> 1]; 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
556 ((W)heap [k])->active = k + 1; 939 * which is more cache-efficient.
557 k >>= 1; 940 * the difference is about 5% with 50000+ watchers.
558 } 941 */
942#if EV_USE_4HEAP
559 943
560 heap [k] = w; 944#define DHEAP 4
561 ((W)heap [k])->active = k + 1; 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
562 948
563} 949/* away from the root */
564 950inline_speed void
565static void
566downheap (WT *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
567{ 952{
568 WT w = heap [k]; 953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
569 955
570 while (k < (N >> 1)) 956 for (;;)
571 { 957 {
572 int j = k << 1; 958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
573 961
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
575 ++j; 964 {
576 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
577 if (w->at <= heap [j]->at) 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
578 break; 978 break;
579 979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
580 heap [k] = heap [j]; 1018 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 1019 ev_active (ANHE_w (heap [k])) = k;
1020
582 k = j; 1021 k = c;
583 } 1022 }
584 1023
585 heap [k] = w; 1024 heap [k] = he;
586 ((W)heap [k])->active = k + 1; 1025 ev_active (ANHE_w (he)) = k;
587} 1026}
1027#endif
588 1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
589inline void 1052inline_size void
590adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
591{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
592 upheap (heap, k); 1056 upheap (heap, k);
1057 else
593 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
594} 1071}
595 1072
596/*****************************************************************************/ 1073/*****************************************************************************/
597 1074
1075/* associate signal watchers to a signal signal */
598typedef struct 1076typedef struct
599{ 1077{
600 WL head; 1078 WL head;
601 sig_atomic_t volatile gotsig; 1079 EV_ATOMIC_T gotsig;
602} ANSIG; 1080} ANSIG;
603 1081
604static ANSIG *signals; 1082static ANSIG *signals;
605static int signalmax; 1083static int signalmax;
606 1084
607static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 1086
611static void 1087/*****************************************************************************/
612signals_init (ANSIG *base, int count)
613{
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618 1088
619 ++base; 1089/* used to prepare libev internal fd's */
620 } 1090/* this is not fork-safe */
621} 1091inline_speed void
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1092fd_intern (int fd)
676{ 1093{
677#ifdef _WIN32 1094#ifdef _WIN32
678 int arg = 1; 1095 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
680#else 1097#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1100#endif
684} 1101}
685 1102
1103static void noinline
1104evpipe_init (EV_P)
1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
1121 fd_intern (evpipe [0]);
1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
1125
1126 ev_io_start (EV_A_ &pipe_w);
1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
686static void 1156static void
687siginit (EV_P) 1157pipecb (EV_P_ ev_io *iow, int revents)
688{ 1158{
689 fd_intern (sigpipe [0]); 1159#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
1164 }
1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
691 1171
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1172 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 1173 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1174 int signum;
1175 gotsig = 0;
1176
1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
695} 1196}
696 1197
697/*****************************************************************************/ 1198/*****************************************************************************/
698 1199
699static struct ev_child *childs [PID_HASHSIZE]; 1200static void
1201ev_sighandler (int signum)
1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
1207#if _WIN32
1208 signal (signum, ev_sighandler);
1209#endif
1210
1211 signals [signum - 1].gotsig = 1;
1212 evpipe_write (EV_A_ &gotsig);
1213}
1214
1215void noinline
1216ev_feed_signal_event (EV_P_ int signum)
1217{
1218 WL w;
1219
1220#if EV_MULTIPLICITY
1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222#endif
1223
1224 --signum;
1225
1226 if (signum < 0 || signum >= signalmax)
1227 return;
1228
1229 signals [signum].gotsig = 0;
1230
1231 for (w = signals [signum].head; w; w = w->next)
1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1233}
1234
1235/*****************************************************************************/
1236
1237static WL childs [EV_PID_HASHSIZE];
700 1238
701#ifndef _WIN32 1239#ifndef _WIN32
702 1240
703static struct ev_signal childev; 1241static ev_signal childev;
1242
1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
1249child_reap (EV_P_ int chain, int pid, int status)
1250{
1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1253
1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
1258 {
1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1260 w->rpid = pid;
1261 w->rstatus = status;
1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1263 }
1264 }
1265}
704 1266
705#ifndef WCONTINUED 1267#ifndef WCONTINUED
706# define WCONTINUED 0 1268# define WCONTINUED 0
707#endif 1269#endif
708 1270
1271/* called on sigchld etc., calls waitpid */
709static void 1272static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
726{ 1274{
727 int pid, status; 1275 int pid, status;
728 1276
1277 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1278 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1279 if (!WCONTINUED
1280 || errno != EINVAL
1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1282 return;
1283
731 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
1285 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1287
734 child_reap (EV_A_ sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
1289 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1291}
738 1292
739#endif 1293#endif
740 1294
741/*****************************************************************************/ 1295/*****************************************************************************/
767{ 1321{
768 return EV_VERSION_MINOR; 1322 return EV_VERSION_MINOR;
769} 1323}
770 1324
771/* return true if we are running with elevated privileges and should ignore env variables */ 1325/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1326int inline_size
773enable_secure (void) 1327enable_secure (void)
774{ 1328{
775#ifdef _WIN32 1329#ifdef _WIN32
776 return 0; 1330 return 0;
777#else 1331#else
781} 1335}
782 1336
783unsigned int 1337unsigned int
784ev_supported_backends (void) 1338ev_supported_backends (void)
785{ 1339{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 1340 unsigned int flags = 0;
792 1341
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1342 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 1343 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 1344 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 1345 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 1347
799 return flags; 1348 return flags;
800} 1349}
801 1350
802unsigned int 1351unsigned int
803ev_backend (EV_P) 1352ev_recommended_backends (void)
804{ 1353{
805 unsigned int flags = ev_recommended_backends (); 1354 unsigned int flags = ev_supported_backends ();
806 1355
807#ifndef __NetBSD__ 1356#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
811#endif 1360#endif
812#ifdef __APPLE__ 1361#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
814 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
815#endif 1365#endif
816 1366
817 return flags; 1367 return flags;
818} 1368}
819 1369
820static void 1370unsigned int
1371ev_embeddable_backends (void)
1372{
1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1374
1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
1380}
1381
1382unsigned int
1383ev_backend (EV_P)
1384{
1385 return backend;
1386}
1387
1388#if EV_MINIMAL < 2
1389unsigned int
1390ev_loop_count (EV_P)
1391{
1392 return loop_count;
1393}
1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1401void
1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403{
1404 io_blocktime = interval;
1405}
1406
1407void
1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409{
1410 timeout_blocktime = interval;
1411}
1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1438static void noinline
821loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
822{ 1440{
823 if (!method) 1441 if (!backend)
824 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
825#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
826 { 1455 {
827 struct timespec ts; 1456 struct timespec ts;
1457
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
829 have_monotonic = 1; 1459 have_monotonic = 1;
830 } 1460 }
831#endif 1461#endif
832 1462
833 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
834 mn_now = get_clock (); 1464 mn_now = get_clock ();
835 now_floor = mn_now; 1465 now_floor = mn_now;
836 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1470
1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
1479
1480 /* pid check not overridable via env */
1481#ifndef _WIN32
1482 if (flags & EVFLAG_FORKCHECK)
1483 curpid = getpid ();
1484#endif
837 1485
838 if (!(flags & EVFLAG_NOENV) 1486 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 1487 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 1488 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 1489 flags = atoi (getenv ("LIBEV_FLAGS"));
842 1490
843 if (!(flags & 0x0000ffffUL)) 1491 if (!(flags & 0x0000ffffU))
844 flags |= ev_recommended_backends (); 1492 flags |= ev_recommended_backends ();
845 1493
846 method = 0;
847#if EV_USE_PORT 1494#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 1496#endif
850#if EV_USE_KQUEUE 1497#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 1498 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 1499#endif
853#if EV_USE_EPOLL 1500#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 1501 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 1502#endif
856#if EV_USE_POLL 1503#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 1504 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 1505#endif
859#if EV_USE_SELECT 1506#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 1508#endif
862 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
863 ev_init (&sigev, sigcb); 1512 ev_init (&pipe_w, pipecb);
864 ev_set_priority (&sigev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
865 } 1514 }
866} 1515}
867 1516
868static void 1517/* free up a loop structure */
1518static void noinline
869loop_destroy (EV_P) 1519loop_destroy (EV_P)
870{ 1520{
871 int i; 1521 int i;
872 1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
1539
1540#if EV_USE_INOTIFY
1541 if (fs_fd >= 0)
1542 close (fs_fd);
1543#endif
1544
1545 if (backend_fd >= 0)
1546 close (backend_fd);
1547
873#if EV_USE_PORT 1548#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 1549 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 1550#endif
876#if EV_USE_KQUEUE 1551#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1552 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 1553#endif
879#if EV_USE_EPOLL 1554#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 1555 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 1556#endif
882#if EV_USE_POLL 1557#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 1558 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 1559#endif
885#if EV_USE_SELECT 1560#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 1561 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 1562#endif
888 1563
889 for (i = NUMPRI; i--; ) 1564 for (i = NUMPRI; i--; )
1565 {
890 array_free (pending, [i]); 1566 array_free (pending, [i]);
1567#if EV_IDLE_ENABLE
1568 array_free (idle, [i]);
1569#endif
1570 }
1571
1572 ev_free (anfds); anfdmax = 0;
891 1573
892 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
893 array_free (fdchange, EMPTY0); 1576 array_free (fdchange, EMPTY);
894 array_free (timer, EMPTY0); 1577 array_free (timer, EMPTY);
895#if EV_PERIODICS 1578#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 1579 array_free (periodic, EMPTY);
897#endif 1580#endif
1581#if EV_FORK_ENABLE
898 array_free (idle, EMPTY0); 1582 array_free (fork, EMPTY);
1583#endif
899 array_free (prepare, EMPTY0); 1584 array_free (prepare, EMPTY);
900 array_free (check, EMPTY0); 1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
901 1589
902 method = 0; 1590 backend = 0;
903} 1591}
904 1592
905static void 1593#if EV_USE_INOTIFY
1594inline_size void infy_fork (EV_P);
1595#endif
1596
1597inline_size void
906loop_fork (EV_P) 1598loop_fork (EV_P)
907{ 1599{
908#if EV_USE_PORT 1600#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 1602#endif
911#if EV_USE_KQUEUE 1603#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1604 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 1605#endif
914#if EV_USE_EPOLL 1606#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1607 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
916#endif 1608#endif
1609#if EV_USE_INOTIFY
1610 infy_fork (EV_A);
1611#endif
917 1612
918 if (ev_is_active (&sigev)) 1613 if (ev_is_active (&pipe_w))
919 { 1614 {
920 /* default loop */ 1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
921 1621
922 ev_ref (EV_A); 1622 ev_ref (EV_A);
923 ev_io_stop (EV_A_ &sigev); 1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
924 close (sigpipe [0]); 1632 close (evpipe [0]);
925 close (sigpipe [1]); 1633 close (evpipe [1]);
1634 }
926 1635
927 while (pipe (sigpipe))
928 syserr ("(libev) error creating pipe");
929
930 siginit (EV_A); 1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
931 } 1639 }
932 1640
933 postfork = 0; 1641 postfork = 0;
934} 1642}
935 1643
936#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
937struct ev_loop * 1646struct ev_loop *
938ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
939{ 1648{
940 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
941 1650
942 memset (loop, 0, sizeof (struct ev_loop)); 1651 memset (loop, 0, sizeof (struct ev_loop));
943 1652
944 loop_init (EV_A_ flags); 1653 loop_init (EV_A_ flags);
945 1654
946 if (ev_method (EV_A)) 1655 if (ev_backend (EV_A))
947 return loop; 1656 return loop;
948 1657
949 return 0; 1658 return 0;
950} 1659}
951 1660
957} 1666}
958 1667
959void 1668void
960ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
961{ 1670{
962 postfork = 1; 1671 postfork = 1; /* must be in line with ev_default_fork */
963} 1672}
1673#endif /* multiplicity */
964 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
965#endif 1774#endif
966 1775
967#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
968struct ev_loop * 1777struct ev_loop *
969ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
970#else 1779#else
971int 1780int
972ev_default_loop (unsigned int flags) 1781ev_default_loop (unsigned int flags)
973#endif 1782#endif
974{ 1783{
975 if (sigpipe [0] == sigpipe [1])
976 if (pipe (sigpipe))
977 return 0;
978
979 if (!ev_default_loop_ptr) 1784 if (!ev_default_loop_ptr)
980 { 1785 {
981#if EV_MULTIPLICITY 1786#if EV_MULTIPLICITY
982 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
983#else 1788#else
984 ev_default_loop_ptr = 1; 1789 ev_default_loop_ptr = 1;
985#endif 1790#endif
986 1791
987 loop_init (EV_A_ flags); 1792 loop_init (EV_A_ flags);
988 1793
989 if (ev_method (EV_A)) 1794 if (ev_backend (EV_A))
990 { 1795 {
991 siginit (EV_A);
992
993#ifndef _WIN32 1796#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
995 ev_set_priority (&childev, EV_MAXPRI); 1798 ev_set_priority (&childev, EV_MAXPRI);
996 ev_signal_start (EV_A_ &childev); 1799 ev_signal_start (EV_A_ &childev);
997 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
1009{ 1812{
1010#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1012#endif 1815#endif
1013 1816
1817 ev_default_loop_ptr = 0;
1818
1014#ifndef _WIN32 1819#ifndef _WIN32
1015 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1016 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1017#endif 1822#endif
1018 1823
1019 ev_ref (EV_A); /* signal watcher */
1020 ev_io_stop (EV_A_ &sigev);
1021
1022 close (sigpipe [0]); sigpipe [0] = 0;
1023 close (sigpipe [1]); sigpipe [1] = 0;
1024
1025 loop_destroy (EV_A); 1824 loop_destroy (EV_A);
1026} 1825}
1027 1826
1028void 1827void
1029ev_default_fork (void) 1828ev_default_fork (void)
1030{ 1829{
1031#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1033#endif 1832#endif
1034 1833
1035 if (method) 1834 postfork = 1; /* must be in line with ev_loop_fork */
1036 postfork = 1;
1037} 1835}
1038 1836
1039/*****************************************************************************/ 1837/*****************************************************************************/
1040 1838
1041static int 1839void
1042any_pending (EV_P) 1840ev_invoke (EV_P_ void *w, int revents)
1841{
1842 EV_CB_INVOKE ((W)w, revents);
1843}
1844
1845unsigned int
1846ev_pending_count (EV_P)
1043{ 1847{
1044 int pri; 1848 int pri;
1849 unsigned int count = 0;
1045 1850
1046 for (pri = NUMPRI; pri--; ) 1851 for (pri = NUMPRI; pri--; )
1047 if (pendingcnt [pri]) 1852 count += pendingcnt [pri];
1048 return 1;
1049 1853
1050 return 0; 1854 return count;
1051} 1855}
1052 1856
1053inline void 1857void noinline
1054call_pending (EV_P) 1858ev_invoke_pending (EV_P)
1055{ 1859{
1056 int pri; 1860 int pri;
1057 1861
1058 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
1059 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
1060 { 1864 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 1866
1063 if (expect_true (p->w)) 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1064 { 1868 /* ^ this is no longer true, as pending_w could be here */
1869
1065 p->w->pending = 0; 1870 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
1067 } 1872 EV_FREQUENT_CHECK;
1068 } 1873 }
1069} 1874}
1070 1875
1876#if EV_IDLE_ENABLE
1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1071inline void 1879inline_size void
1880idle_reify (EV_P)
1881{
1882 if (expect_false (idleall))
1883 {
1884 int pri;
1885
1886 for (pri = NUMPRI; pri--; )
1887 {
1888 if (pendingcnt [pri])
1889 break;
1890
1891 if (idlecnt [pri])
1892 {
1893 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1894 break;
1895 }
1896 }
1897 }
1898}
1899#endif
1900
1901/* make timers pending */
1902inline_size void
1072timers_reify (EV_P) 1903timers_reify (EV_P)
1073{ 1904{
1905 EV_FREQUENT_CHECK;
1906
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1075 { 1908 {
1076 struct ev_timer *w = timers [0]; 1909 do
1077
1078 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1079
1080 /* first reschedule or stop timer */
1081 if (w->repeat)
1082 { 1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1084 1923
1085 ((WT)w)->at += w->repeat; 1924 ANHE_at_cache (timers [HEAP0]);
1086 if (((WT)w)->at < mn_now)
1087 ((WT)w)->at = mn_now;
1088
1089 downheap ((WT *)timers, timercnt, 0); 1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1090 } 1932 }
1091 else 1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1092 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1093 1934
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1095 } 1936 }
1096} 1937}
1097 1938
1098#if EV_PERIODICS 1939#if EV_PERIODIC_ENABLE
1940/* make periodics pending */
1099inline void 1941inline_size void
1100periodics_reify (EV_P) 1942periodics_reify (EV_P)
1101{ 1943{
1944 EV_FREQUENT_CHECK;
1945
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1103 { 1947 {
1104 struct ev_periodic *w = periodics [0]; 1948 int feed_count = 0;
1105 1949
1950 do
1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 1955
1108 /* first reschedule or stop timer */ 1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1990 }
1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992
1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 }
1995}
1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999static void noinline
2000periodics_reschedule (EV_P)
2001{
2002 int i;
2003
2004 /* adjust periodics after time jump */
2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 {
2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008
1109 if (w->reschedule_cb) 2009 if (w->reschedule_cb)
2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2011 else if (w->interval)
2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013
2014 ANHE_at_cache (periodics [i]);
2015 }
2016
2017 reheap (periodics, periodiccnt);
2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033}
2034
2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
2038time_update (EV_P_ ev_tstamp max_block)
2039{
2040#if EV_USE_MONOTONIC
2041 if (expect_true (have_monotonic))
2042 {
2043 int i;
2044 ev_tstamp odiff = rtmn_diff;
2045
2046 mn_now = get_clock ();
2047
2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2049 /* interpolate in the meantime */
2050 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1110 { 2051 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2052 ev_rt_now = rtmn_diff + mn_now;
1112 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2053 return;
1113 downheap ((WT *)periodics, periodiccnt, 0);
1114 } 2054 }
1115 else if (w->interval)
1116 {
1117 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1118 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 }
1121 else
1122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1123 2055
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 }
1126}
1127
1128static void
1129periodics_reschedule (EV_P)
1130{
1131 int i;
1132
1133 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i)
1135 {
1136 struct ev_periodic *w = periodics [i];
1137
1138 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1142 }
1143
1144 /* now rebuild the heap */
1145 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i);
1147}
1148#endif
1149
1150inline int
1151time_update_monotonic (EV_P)
1152{
1153 mn_now = get_clock ();
1154
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1156 {
1157 ev_rt_now = rtmn_diff + mn_now;
1158 return 0;
1159 }
1160 else
1161 {
1162 now_floor = mn_now; 2056 now_floor = mn_now;
1163 ev_rt_now = ev_time (); 2057 ev_rt_now = ev_time ();
1164 return 1;
1165 }
1166}
1167 2058
1168inline void 2059 /* loop a few times, before making important decisions.
1169time_update (EV_P) 2060 * on the choice of "4": one iteration isn't enough,
1170{ 2061 * in case we get preempted during the calls to
1171 int i; 2062 * ev_time and get_clock. a second call is almost guaranteed
1172 2063 * to succeed in that case, though. and looping a few more times
1173#if EV_USE_MONOTONIC 2064 * doesn't hurt either as we only do this on time-jumps or
1174 if (expect_true (have_monotonic)) 2065 * in the unlikely event of having been preempted here.
1175 { 2066 */
1176 if (time_update_monotonic (EV_A)) 2067 for (i = 4; --i; )
1177 { 2068 {
1178 ev_tstamp odiff = rtmn_diff;
1179
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1181 {
1182 rtmn_diff = ev_rt_now - mn_now; 2069 rtmn_diff = ev_rt_now - mn_now;
1183 2070
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2071 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1185 return; /* all is well */ 2072 return; /* all is well */
1186 2073
1187 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 2075 mn_now = get_clock ();
1189 now_floor = mn_now; 2076 now_floor = mn_now;
1190 } 2077 }
1191 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1192# if EV_PERIODICS 2081# if EV_PERIODIC_ENABLE
2082 periodics_reschedule (EV_A);
2083# endif
2084 }
2085 else
2086#endif
2087 {
2088 ev_rt_now = ev_time ();
2089
2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2094#if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1194# endif 2096#endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1197 } 2097 }
1198 }
1199 else
1200#endif
1201 {
1202 ev_rt_now = ev_time ();
1203
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 {
1206#if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208#endif
1209
1210 /* adjust timers. this is easy, as the offset is the same for all */
1211 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 }
1214 2098
1215 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1216 } 2100 }
1217} 2101}
1218 2102
1219void 2103void
1220ev_ref (EV_P)
1221{
1222 ++activecnt;
1223}
1224
1225void
1226ev_unref (EV_P)
1227{
1228 --activecnt;
1229}
1230
1231static int loop_done;
1232
1233void
1234ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1235{ 2105{
1236 double block; 2106#if EV_MINIMAL < 2
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2107 ++loop_depth;
2108#endif
1238 2109
1239 while (activecnt) 2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
2112 loop_done = EVUNLOOP_CANCEL;
2113
2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2115
2116 do
1240 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
2122#ifndef _WIN32
2123 if (expect_false (curpid)) /* penalise the forking check even more */
2124 if (expect_false (getpid () != curpid))
2125 {
2126 curpid = getpid ();
2127 postfork = 1;
2128 }
2129#endif
2130
2131#if EV_FORK_ENABLE
2132 /* we might have forked, so queue fork handlers */
2133 if (expect_false (postfork))
2134 if (forkcnt)
2135 {
2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2137 EV_INVOKE_PENDING;
2138 }
2139#endif
2140
1241 /* queue check watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1242 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1243 { 2143 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1246 } 2146 }
2147
2148 if (expect_false (loop_done))
2149 break;
1247 2150
1248 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1250 loop_fork (EV_A); 2153 loop_fork (EV_A);
1251 2154
1252 /* update fd-related kernel structures */ 2155 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 2156 fd_reify (EV_A);
1254 2157
1255 /* calculate blocking time */ 2158 /* calculate blocking time */
2159 {
2160 ev_tstamp waittime = 0.;
2161 ev_tstamp sleeptime = 0.;
1256 2162
1257 /* we only need this for !monotonic clock or timers, but as we basically 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1258 always have timers, we just calculate it always */
1259#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A);
1262 else
1263#endif
1264 { 2164 {
1265 ev_rt_now = ev_time (); 2165 /* remember old timestamp for io_blocktime calculation */
1266 mn_now = ev_rt_now; 2166 ev_tstamp prev_mn_now = mn_now;
1267 }
1268 2167
1269 if (flags & EVLOOP_NONBLOCK || idlecnt) 2168 /* update time to cancel out callback processing overhead */
1270 block = 0.; 2169 time_update (EV_A_ 1e100);
1271 else 2170
1272 {
1273 block = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1274 2172
1275 if (timercnt) 2173 if (timercnt)
1276 { 2174 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1278 if (block > to) block = to; 2176 if (waittime > to) waittime = to;
1279 } 2177 }
1280 2178
1281#if EV_PERIODICS 2179#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 2180 if (periodiccnt)
1283 { 2181 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 2183 if (waittime > to) waittime = to;
1286 } 2184 }
1287#endif 2185#endif
1288 2186
1289 if (expect_false (block < 0.)) block = 0.; 2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
2188 if (expect_false (waittime < timeout_blocktime))
2189 waittime = timeout_blocktime;
2190
2191 /* extra check because io_blocktime is commonly 0 */
2192 if (expect_false (io_blocktime))
2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
2201 ev_sleep (sleeptime);
2202 waittime -= sleeptime;
2203 }
2204 }
1290 } 2205 }
1291 2206
1292 method_poll (EV_A_ block); 2207#if EV_MINIMAL < 2
2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1293 2213
1294 /* update ev_rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 2215 time_update (EV_A_ waittime + sleeptime);
2216 }
1296 2217
1297 /* queue pending timers and reschedule them */ 2218 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 2219 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 2220#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 2221 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 2222#endif
1302 2223
2224#if EV_IDLE_ENABLE
1303 /* queue idle watchers unless io or timers are pending */ 2225 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 2226 idle_reify (EV_A);
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2227#endif
1306 2228
1307 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 2230 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1310 2232
1311 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1312
1313 if (expect_false (loop_done))
1314 break;
1315 } 2234 }
2235 while (expect_true (
2236 activecnt
2237 && !loop_done
2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2239 ));
1316 2240
1317 if (loop_done != 2) 2241 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
1319} 2247}
1320 2248
1321void 2249void
1322ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
1323{ 2251{
1324 loop_done = how; 2252 loop_done = how;
1325} 2253}
1326 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
1327/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
1328 2294
1329inline void 2295inline_size void
1330wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
1331{ 2297{
1332 elem->next = *head; 2298 elem->next = *head;
1333 *head = elem; 2299 *head = elem;
1334} 2300}
1335 2301
1336inline void 2302inline_size void
1337wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
1338{ 2304{
1339 while (*head) 2305 while (*head)
1340 { 2306 {
1341 if (*head == elem) 2307 if (*head == elem)
1346 2312
1347 head = &(*head)->next; 2313 head = &(*head)->next;
1348 } 2314 }
1349} 2315}
1350 2316
2317/* internal, faster, version of ev_clear_pending */
1351inline void 2318inline_speed void
1352ev_clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
1353{ 2320{
1354 if (w->pending) 2321 if (w->pending)
1355 { 2322 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1357 w->pending = 0; 2324 w->pending = 0;
1358 } 2325 }
1359} 2326}
1360 2327
2328int
2329ev_clear_pending (EV_P_ void *w)
2330{
2331 W w_ = (W)w;
2332 int pending = w_->pending;
2333
2334 if (expect_true (pending))
2335 {
2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
2338 w_->pending = 0;
2339 return p->events;
2340 }
2341 else
2342 return 0;
2343}
2344
1361inline void 2345inline_size void
2346pri_adjust (EV_P_ W w)
2347{
2348 int pri = ev_priority (w);
2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2351 ev_set_priority (w, pri);
2352}
2353
2354inline_speed void
1362ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
1363{ 2356{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2357 pri_adjust (EV_A_ w);
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366
1367 w->active = active; 2358 w->active = active;
1368 ev_ref (EV_A); 2359 ev_ref (EV_A);
1369} 2360}
1370 2361
1371inline void 2362inline_size void
1372ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
1373{ 2364{
1374 ev_unref (EV_A); 2365 ev_unref (EV_A);
1375 w->active = 0; 2366 w->active = 0;
1376} 2367}
1377 2368
1378/*****************************************************************************/ 2369/*****************************************************************************/
1379 2370
1380void 2371void noinline
1381ev_io_start (EV_P_ struct ev_io *w) 2372ev_io_start (EV_P_ ev_io *w)
1382{ 2373{
1383 int fd = w->fd; 2374 int fd = w->fd;
1384 2375
1385 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1386 return; 2377 return;
1387 2378
1388 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
1389 2383
1390 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
1391 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1392 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
1393 2387
1394 fd_change (EV_A_ fd); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1395} 2389 w->events &= ~EV__IOFDSET;
1396 2390
1397void 2391 EV_FREQUENT_CHECK;
2392}
2393
2394void noinline
1398ev_io_stop (EV_P_ struct ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
1399{ 2396{
1400 ev_clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
1402 return; 2399 return;
1403 2400
1404 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1405 2402
2403 EV_FREQUENT_CHECK;
2404
1406 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
1407 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
1408 2407
1409 fd_change (EV_A_ w->fd); 2408 fd_change (EV_A_ w->fd, 1);
1410}
1411 2409
1412void 2410 EV_FREQUENT_CHECK;
2411}
2412
2413void noinline
1413ev_timer_start (EV_P_ struct ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
1414{ 2415{
1415 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1416 return; 2417 return;
1417 2418
1418 ((WT)w)->at += mn_now; 2419 ev_at (w) += mn_now;
1419 2420
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
1422 ev_start (EV_A_ (W)w, ++timercnt); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1424 timers [timercnt - 1] = w; 2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
1425 upheap ((WT *)timers, timercnt - 1); 2429 ANHE_at_cache (timers [ev_active (w)]);
2430 upheap (timers, ev_active (w));
1426 2431
2432 EV_FREQUENT_CHECK;
2433
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1428} 2435}
1429 2436
1430void 2437void noinline
1431ev_timer_stop (EV_P_ struct ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
1432{ 2439{
1433 ev_clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 2441 if (expect_false (!ev_is_active (w)))
1435 return; 2442 return;
1436 2443
2444 EV_FREQUENT_CHECK;
2445
2446 {
2447 int active = ev_active (w);
2448
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1438 2450
2451 --timercnt;
2452
1439 if (expect_true (((W)w)->active < timercnt--)) 2453 if (expect_true (active < timercnt + HEAP0))
1440 { 2454 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 2455 timers [active] = timers [timercnt + HEAP0];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2456 adjustheap (timers, timercnt, active);
1443 } 2457 }
2458 }
1444 2459
1445 ((WT)w)->at -= mn_now; 2460 EV_FREQUENT_CHECK;
2461
2462 ev_at (w) -= mn_now;
1446 2463
1447 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1448} 2465}
1449 2466
1450void 2467void noinline
1451ev_timer_again (EV_P_ struct ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
1452{ 2469{
2470 EV_FREQUENT_CHECK;
2471
1453 if (ev_is_active (w)) 2472 if (ev_is_active (w))
1454 { 2473 {
1455 if (w->repeat) 2474 if (w->repeat)
1456 { 2475 {
1457 ((WT)w)->at = mn_now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
2477 ANHE_at_cache (timers [ev_active (w)]);
1458 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2478 adjustheap (timers, timercnt, ev_active (w));
1459 } 2479 }
1460 else 2480 else
1461 ev_timer_stop (EV_A_ w); 2481 ev_timer_stop (EV_A_ w);
1462 } 2482 }
1463 else if (w->repeat) 2483 else if (w->repeat)
1464 { 2484 {
1465 w->at = w->repeat; 2485 ev_at (w) = w->repeat;
1466 ev_timer_start (EV_A_ w); 2486 ev_timer_start (EV_A_ w);
1467 } 2487 }
1468}
1469 2488
2489 EV_FREQUENT_CHECK;
2490}
2491
2492ev_tstamp
2493ev_timer_remaining (EV_P_ ev_timer *w)
2494{
2495 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2496}
2497
1470#if EV_PERIODICS 2498#if EV_PERIODIC_ENABLE
1471void 2499void noinline
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 2500ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 2501{
1474 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1475 return; 2503 return;
1476 2504
1477 if (w->reschedule_cb) 2505 if (w->reschedule_cb)
1478 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2506 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1479 else if (w->interval) 2507 else if (w->interval)
1480 { 2508 {
1481 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2509 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 2510 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2511 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1484 } 2512 }
2513 else
2514 ev_at (w) = w->offset;
1485 2515
2516 EV_FREQUENT_CHECK;
2517
2518 ++periodiccnt;
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 2519 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2520 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 2521 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 2522 ANHE_at_cache (periodics [ev_active (w)]);
2523 upheap (periodics, ev_active (w));
1490 2524
2525 EV_FREQUENT_CHECK;
2526
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2527 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1492} 2528}
1493 2529
1494void 2530void noinline
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 2531ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 2532{
1497 ev_clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
1499 return; 2535 return;
1500 2536
2537 EV_FREQUENT_CHECK;
2538
2539 {
2540 int active = ev_active (w);
2541
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2542 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1502 2543
2544 --periodiccnt;
2545
1503 if (expect_true (((W)w)->active < periodiccnt--)) 2546 if (expect_true (active < periodiccnt + HEAP0))
1504 { 2547 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2548 periodics [active] = periodics [periodiccnt + HEAP0];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2549 adjustheap (periodics, periodiccnt, active);
1507 } 2550 }
2551 }
2552
2553 EV_FREQUENT_CHECK;
1508 2554
1509 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1510} 2556}
1511 2557
1512void 2558void noinline
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 2559ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 2560{
1515 /* TODO: use adjustheap and recalculation */ 2561 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 2562 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 2563 ev_periodic_start (EV_A_ w);
1518} 2564}
1519#endif 2565#endif
1520 2566
1521void 2567#ifndef SA_RESTART
1522ev_idle_start (EV_P_ struct ev_idle *w) 2568# define SA_RESTART 0
2569#endif
2570
2571void noinline
2572ev_signal_start (EV_P_ ev_signal *w)
1523{ 2573{
2574#if EV_MULTIPLICITY
2575 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2576#endif
1524 if (expect_false (ev_is_active (w))) 2577 if (expect_false (ev_is_active (w)))
1525 return; 2578 return;
1526 2579
1527 ev_start (EV_A_ (W)w, ++idlecnt);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1529 idles [idlecnt - 1] = w;
1530}
1531
1532void
1533ev_idle_stop (EV_P_ struct ev_idle *w)
1534{
1535 ev_clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w)))
1537 return;
1538
1539 idles [((W)w)->active - 1] = idles [--idlecnt];
1540 ev_stop (EV_A_ (W)w);
1541}
1542
1543void
1544ev_prepare_start (EV_P_ struct ev_prepare *w)
1545{
1546 if (expect_false (ev_is_active (w)))
1547 return;
1548
1549 ev_start (EV_A_ (W)w, ++preparecnt);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1551 prepares [preparecnt - 1] = w;
1552}
1553
1554void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w)
1556{
1557 ev_clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w)))
1559 return;
1560
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1562 ev_stop (EV_A_ (W)w);
1563}
1564
1565void
1566ev_check_start (EV_P_ struct ev_check *w)
1567{
1568 if (expect_false (ev_is_active (w)))
1569 return;
1570
1571 ev_start (EV_A_ (W)w, ++checkcnt);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w;
1574}
1575
1576void
1577ev_check_stop (EV_P_ struct ev_check *w)
1578{
1579 ev_clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w)))
1581 return;
1582
1583 checks [((W)w)->active - 1] = checks [--checkcnt];
1584 ev_stop (EV_A_ (W)w);
1585}
1586
1587#ifndef SA_RESTART
1588# define SA_RESTART 0
1589#endif
1590
1591void
1592ev_signal_start (EV_P_ struct ev_signal *w)
1593{
1594#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif
1597 if (expect_false (ev_is_active (w)))
1598 return;
1599
1600 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2580 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2581
2582 evpipe_init (EV_A);
2583
2584 EV_FREQUENT_CHECK;
2585
2586 {
2587#ifndef _WIN32
2588 sigset_t full, prev;
2589 sigfillset (&full);
2590 sigprocmask (SIG_SETMASK, &full, &prev);
2591#endif
2592
2593 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2594
2595#ifndef _WIN32
2596 sigprocmask (SIG_SETMASK, &prev, 0);
2597#endif
2598 }
1601 2599
1602 ev_start (EV_A_ (W)w, 1); 2600 ev_start (EV_A_ (W)w, 1);
1603 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1604 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2601 wlist_add (&signals [w->signum - 1].head, (WL)w);
1605 2602
1606 if (!((WL)w)->next) 2603 if (!((WL)w)->next)
1607 { 2604 {
1608#if _WIN32 2605#if _WIN32
1609 signal (w->signum, sighandler); 2606 signal (w->signum, ev_sighandler);
1610#else 2607#else
1611 struct sigaction sa; 2608 struct sigaction sa = { };
1612 sa.sa_handler = sighandler; 2609 sa.sa_handler = ev_sighandler;
1613 sigfillset (&sa.sa_mask); 2610 sigfillset (&sa.sa_mask);
1614 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2611 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1615 sigaction (w->signum, &sa, 0); 2612 sigaction (w->signum, &sa, 0);
1616#endif 2613#endif
1617 } 2614 }
1618}
1619 2615
1620void 2616 EV_FREQUENT_CHECK;
2617}
2618
2619void noinline
1621ev_signal_stop (EV_P_ struct ev_signal *w) 2620ev_signal_stop (EV_P_ ev_signal *w)
1622{ 2621{
1623 ev_clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
1625 return; 2624 return;
1626 2625
2626 EV_FREQUENT_CHECK;
2627
1627 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2628 wlist_del (&signals [w->signum - 1].head, (WL)w);
1628 ev_stop (EV_A_ (W)w); 2629 ev_stop (EV_A_ (W)w);
1629 2630
1630 if (!signals [w->signum - 1].head) 2631 if (!signals [w->signum - 1].head)
1631 signal (w->signum, SIG_DFL); 2632 signal (w->signum, SIG_DFL);
1632}
1633 2633
2634 EV_FREQUENT_CHECK;
2635}
2636
1634void 2637void
1635ev_child_start (EV_P_ struct ev_child *w) 2638ev_child_start (EV_P_ ev_child *w)
1636{ 2639{
1637#if EV_MULTIPLICITY 2640#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 2642#endif
1640 if (expect_false (ev_is_active (w))) 2643 if (expect_false (ev_is_active (w)))
1641 return; 2644 return;
1642 2645
2646 EV_FREQUENT_CHECK;
2647
1643 ev_start (EV_A_ (W)w, 1); 2648 ev_start (EV_A_ (W)w, 1);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2649 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1645}
1646 2650
2651 EV_FREQUENT_CHECK;
2652}
2653
1647void 2654void
1648ev_child_stop (EV_P_ struct ev_child *w) 2655ev_child_stop (EV_P_ ev_child *w)
1649{ 2656{
1650 ev_clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 2658 if (expect_false (!ev_is_active (w)))
1652 return; 2659 return;
1653 2660
2661 EV_FREQUENT_CHECK;
2662
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2663 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1655 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2665
2666 EV_FREQUENT_CHECK;
1656} 2667}
2668
2669#if EV_STAT_ENABLE
2670
2671# ifdef _WIN32
2672# undef lstat
2673# define lstat(a,b) _stati64 (a,b)
2674# endif
2675
2676#define DEF_STAT_INTERVAL 5.0074891
2677#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2678#define MIN_STAT_INTERVAL 0.1074891
2679
2680static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2681
2682#if EV_USE_INOTIFY
2683# define EV_INOTIFY_BUFSIZE 8192
2684
2685static void noinline
2686infy_add (EV_P_ ev_stat *w)
2687{
2688 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2689
2690 if (w->wd < 0)
2691 {
2692 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2693 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2694
2695 /* monitor some parent directory for speedup hints */
2696 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2697 /* but an efficiency issue only */
2698 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2699 {
2700 char path [4096];
2701 strcpy (path, w->path);
2702
2703 do
2704 {
2705 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2706 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2707
2708 char *pend = strrchr (path, '/');
2709
2710 if (!pend || pend == path)
2711 break;
2712
2713 *pend = 0;
2714 w->wd = inotify_add_watch (fs_fd, path, mask);
2715 }
2716 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2717 }
2718 }
2719
2720 if (w->wd >= 0)
2721 {
2722 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2723
2724 /* now local changes will be tracked by inotify, but remote changes won't */
2725 /* unless the filesystem it known to be local, we therefore still poll */
2726 /* also do poll on <2.6.25, but with normal frequency */
2727 struct statfs sfs;
2728
2729 if (fs_2625 && !statfs (w->path, &sfs))
2730 if (sfs.f_type == 0x1373 /* devfs */
2731 || sfs.f_type == 0xEF53 /* ext2/3 */
2732 || sfs.f_type == 0x3153464a /* jfs */
2733 || sfs.f_type == 0x52654973 /* reiser3 */
2734 || sfs.f_type == 0x01021994 /* tempfs */
2735 || sfs.f_type == 0x58465342 /* xfs */)
2736 return;
2737
2738 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2739 ev_timer_again (EV_A_ &w->timer);
2740 }
2741}
2742
2743static void noinline
2744infy_del (EV_P_ ev_stat *w)
2745{
2746 int slot;
2747 int wd = w->wd;
2748
2749 if (wd < 0)
2750 return;
2751
2752 w->wd = -2;
2753 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2754 wlist_del (&fs_hash [slot].head, (WL)w);
2755
2756 /* remove this watcher, if others are watching it, they will rearm */
2757 inotify_rm_watch (fs_fd, wd);
2758}
2759
2760static void noinline
2761infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2762{
2763 if (slot < 0)
2764 /* overflow, need to check for all hash slots */
2765 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2766 infy_wd (EV_A_ slot, wd, ev);
2767 else
2768 {
2769 WL w_;
2770
2771 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2772 {
2773 ev_stat *w = (ev_stat *)w_;
2774 w_ = w_->next; /* lets us remove this watcher and all before it */
2775
2776 if (w->wd == wd || wd == -1)
2777 {
2778 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2779 {
2780 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2781 w->wd = -1;
2782 infy_add (EV_A_ w); /* re-add, no matter what */
2783 }
2784
2785 stat_timer_cb (EV_A_ &w->timer, 0);
2786 }
2787 }
2788 }
2789}
2790
2791static void
2792infy_cb (EV_P_ ev_io *w, int revents)
2793{
2794 char buf [EV_INOTIFY_BUFSIZE];
2795 struct inotify_event *ev = (struct inotify_event *)buf;
2796 int ofs;
2797 int len = read (fs_fd, buf, sizeof (buf));
2798
2799 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2800 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2801}
2802
2803inline_size void
2804check_2625 (EV_P)
2805{
2806 /* kernels < 2.6.25 are borked
2807 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2808 */
2809 struct utsname buf;
2810 int major, minor, micro;
2811
2812 if (uname (&buf))
2813 return;
2814
2815 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2816 return;
2817
2818 if (major < 2
2819 || (major == 2 && minor < 6)
2820 || (major == 2 && minor == 6 && micro < 25))
2821 return;
2822
2823 fs_2625 = 1;
2824}
2825
2826inline_size void
2827infy_init (EV_P)
2828{
2829 if (fs_fd != -2)
2830 return;
2831
2832 fs_fd = -1;
2833
2834 check_2625 (EV_A);
2835
2836 fs_fd = inotify_init ();
2837
2838 if (fs_fd >= 0)
2839 {
2840 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2841 ev_set_priority (&fs_w, EV_MAXPRI);
2842 ev_io_start (EV_A_ &fs_w);
2843 }
2844}
2845
2846inline_size void
2847infy_fork (EV_P)
2848{
2849 int slot;
2850
2851 if (fs_fd < 0)
2852 return;
2853
2854 close (fs_fd);
2855 fs_fd = inotify_init ();
2856
2857 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2858 {
2859 WL w_ = fs_hash [slot].head;
2860 fs_hash [slot].head = 0;
2861
2862 while (w_)
2863 {
2864 ev_stat *w = (ev_stat *)w_;
2865 w_ = w_->next; /* lets us add this watcher */
2866
2867 w->wd = -1;
2868
2869 if (fs_fd >= 0)
2870 infy_add (EV_A_ w); /* re-add, no matter what */
2871 else
2872 ev_timer_again (EV_A_ &w->timer);
2873 }
2874 }
2875}
2876
2877#endif
2878
2879#ifdef _WIN32
2880# define EV_LSTAT(p,b) _stati64 (p, b)
2881#else
2882# define EV_LSTAT(p,b) lstat (p, b)
2883#endif
2884
2885void
2886ev_stat_stat (EV_P_ ev_stat *w)
2887{
2888 if (lstat (w->path, &w->attr) < 0)
2889 w->attr.st_nlink = 0;
2890 else if (!w->attr.st_nlink)
2891 w->attr.st_nlink = 1;
2892}
2893
2894static void noinline
2895stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2896{
2897 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2898
2899 /* we copy this here each the time so that */
2900 /* prev has the old value when the callback gets invoked */
2901 w->prev = w->attr;
2902 ev_stat_stat (EV_A_ w);
2903
2904 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2905 if (
2906 w->prev.st_dev != w->attr.st_dev
2907 || w->prev.st_ino != w->attr.st_ino
2908 || w->prev.st_mode != w->attr.st_mode
2909 || w->prev.st_nlink != w->attr.st_nlink
2910 || w->prev.st_uid != w->attr.st_uid
2911 || w->prev.st_gid != w->attr.st_gid
2912 || w->prev.st_rdev != w->attr.st_rdev
2913 || w->prev.st_size != w->attr.st_size
2914 || w->prev.st_atime != w->attr.st_atime
2915 || w->prev.st_mtime != w->attr.st_mtime
2916 || w->prev.st_ctime != w->attr.st_ctime
2917 ) {
2918 #if EV_USE_INOTIFY
2919 if (fs_fd >= 0)
2920 {
2921 infy_del (EV_A_ w);
2922 infy_add (EV_A_ w);
2923 ev_stat_stat (EV_A_ w); /* avoid race... */
2924 }
2925 #endif
2926
2927 ev_feed_event (EV_A_ w, EV_STAT);
2928 }
2929}
2930
2931void
2932ev_stat_start (EV_P_ ev_stat *w)
2933{
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 ev_stat_stat (EV_A_ w);
2938
2939 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2940 w->interval = MIN_STAT_INTERVAL;
2941
2942 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2943 ev_set_priority (&w->timer, ev_priority (w));
2944
2945#if EV_USE_INOTIFY
2946 infy_init (EV_A);
2947
2948 if (fs_fd >= 0)
2949 infy_add (EV_A_ w);
2950 else
2951#endif
2952 ev_timer_again (EV_A_ &w->timer);
2953
2954 ev_start (EV_A_ (W)w, 1);
2955
2956 EV_FREQUENT_CHECK;
2957}
2958
2959void
2960ev_stat_stop (EV_P_ ev_stat *w)
2961{
2962 clear_pending (EV_A_ (W)w);
2963 if (expect_false (!ev_is_active (w)))
2964 return;
2965
2966 EV_FREQUENT_CHECK;
2967
2968#if EV_USE_INOTIFY
2969 infy_del (EV_A_ w);
2970#endif
2971 ev_timer_stop (EV_A_ &w->timer);
2972
2973 ev_stop (EV_A_ (W)w);
2974
2975 EV_FREQUENT_CHECK;
2976}
2977#endif
2978
2979#if EV_IDLE_ENABLE
2980void
2981ev_idle_start (EV_P_ ev_idle *w)
2982{
2983 if (expect_false (ev_is_active (w)))
2984 return;
2985
2986 pri_adjust (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2989
2990 {
2991 int active = ++idlecnt [ABSPRI (w)];
2992
2993 ++idleall;
2994 ev_start (EV_A_ (W)w, active);
2995
2996 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2997 idles [ABSPRI (w)][active - 1] = w;
2998 }
2999
3000 EV_FREQUENT_CHECK;
3001}
3002
3003void
3004ev_idle_stop (EV_P_ ev_idle *w)
3005{
3006 clear_pending (EV_A_ (W)w);
3007 if (expect_false (!ev_is_active (w)))
3008 return;
3009
3010 EV_FREQUENT_CHECK;
3011
3012 {
3013 int active = ev_active (w);
3014
3015 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3016 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3017
3018 ev_stop (EV_A_ (W)w);
3019 --idleall;
3020 }
3021
3022 EV_FREQUENT_CHECK;
3023}
3024#endif
3025
3026void
3027ev_prepare_start (EV_P_ ev_prepare *w)
3028{
3029 if (expect_false (ev_is_active (w)))
3030 return;
3031
3032 EV_FREQUENT_CHECK;
3033
3034 ev_start (EV_A_ (W)w, ++preparecnt);
3035 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3036 prepares [preparecnt - 1] = w;
3037
3038 EV_FREQUENT_CHECK;
3039}
3040
3041void
3042ev_prepare_stop (EV_P_ ev_prepare *w)
3043{
3044 clear_pending (EV_A_ (W)w);
3045 if (expect_false (!ev_is_active (w)))
3046 return;
3047
3048 EV_FREQUENT_CHECK;
3049
3050 {
3051 int active = ev_active (w);
3052
3053 prepares [active - 1] = prepares [--preparecnt];
3054 ev_active (prepares [active - 1]) = active;
3055 }
3056
3057 ev_stop (EV_A_ (W)w);
3058
3059 EV_FREQUENT_CHECK;
3060}
3061
3062void
3063ev_check_start (EV_P_ ev_check *w)
3064{
3065 if (expect_false (ev_is_active (w)))
3066 return;
3067
3068 EV_FREQUENT_CHECK;
3069
3070 ev_start (EV_A_ (W)w, ++checkcnt);
3071 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3072 checks [checkcnt - 1] = w;
3073
3074 EV_FREQUENT_CHECK;
3075}
3076
3077void
3078ev_check_stop (EV_P_ ev_check *w)
3079{
3080 clear_pending (EV_A_ (W)w);
3081 if (expect_false (!ev_is_active (w)))
3082 return;
3083
3084 EV_FREQUENT_CHECK;
3085
3086 {
3087 int active = ev_active (w);
3088
3089 checks [active - 1] = checks [--checkcnt];
3090 ev_active (checks [active - 1]) = active;
3091 }
3092
3093 ev_stop (EV_A_ (W)w);
3094
3095 EV_FREQUENT_CHECK;
3096}
3097
3098#if EV_EMBED_ENABLE
3099void noinline
3100ev_embed_sweep (EV_P_ ev_embed *w)
3101{
3102 ev_loop (w->other, EVLOOP_NONBLOCK);
3103}
3104
3105static void
3106embed_io_cb (EV_P_ ev_io *io, int revents)
3107{
3108 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3109
3110 if (ev_cb (w))
3111 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3112 else
3113 ev_loop (w->other, EVLOOP_NONBLOCK);
3114}
3115
3116static void
3117embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3118{
3119 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 while (fdchangecnt)
3125 {
3126 fd_reify (EV_A);
3127 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3128 }
3129 }
3130}
3131
3132static void
3133embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3134{
3135 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3136
3137 ev_embed_stop (EV_A_ w);
3138
3139 {
3140 struct ev_loop *loop = w->other;
3141
3142 ev_loop_fork (EV_A);
3143 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3144 }
3145
3146 ev_embed_start (EV_A_ w);
3147}
3148
3149#if 0
3150static void
3151embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3152{
3153 ev_idle_stop (EV_A_ idle);
3154}
3155#endif
3156
3157void
3158ev_embed_start (EV_P_ ev_embed *w)
3159{
3160 if (expect_false (ev_is_active (w)))
3161 return;
3162
3163 {
3164 struct ev_loop *loop = w->other;
3165 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3166 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3167 }
3168
3169 EV_FREQUENT_CHECK;
3170
3171 ev_set_priority (&w->io, ev_priority (w));
3172 ev_io_start (EV_A_ &w->io);
3173
3174 ev_prepare_init (&w->prepare, embed_prepare_cb);
3175 ev_set_priority (&w->prepare, EV_MINPRI);
3176 ev_prepare_start (EV_A_ &w->prepare);
3177
3178 ev_fork_init (&w->fork, embed_fork_cb);
3179 ev_fork_start (EV_A_ &w->fork);
3180
3181 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3182
3183 ev_start (EV_A_ (W)w, 1);
3184
3185 EV_FREQUENT_CHECK;
3186}
3187
3188void
3189ev_embed_stop (EV_P_ ev_embed *w)
3190{
3191 clear_pending (EV_A_ (W)w);
3192 if (expect_false (!ev_is_active (w)))
3193 return;
3194
3195 EV_FREQUENT_CHECK;
3196
3197 ev_io_stop (EV_A_ &w->io);
3198 ev_prepare_stop (EV_A_ &w->prepare);
3199 ev_fork_stop (EV_A_ &w->fork);
3200
3201 EV_FREQUENT_CHECK;
3202}
3203#endif
3204
3205#if EV_FORK_ENABLE
3206void
3207ev_fork_start (EV_P_ ev_fork *w)
3208{
3209 if (expect_false (ev_is_active (w)))
3210 return;
3211
3212 EV_FREQUENT_CHECK;
3213
3214 ev_start (EV_A_ (W)w, ++forkcnt);
3215 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3216 forks [forkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
3219}
3220
3221void
3222ev_fork_stop (EV_P_ ev_fork *w)
3223{
3224 clear_pending (EV_A_ (W)w);
3225 if (expect_false (!ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230 {
3231 int active = ev_active (w);
3232
3233 forks [active - 1] = forks [--forkcnt];
3234 ev_active (forks [active - 1]) = active;
3235 }
3236
3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
3240}
3241#endif
3242
3243#if EV_ASYNC_ENABLE
3244void
3245ev_async_start (EV_P_ ev_async *w)
3246{
3247 if (expect_false (ev_is_active (w)))
3248 return;
3249
3250 evpipe_init (EV_A);
3251
3252 EV_FREQUENT_CHECK;
3253
3254 ev_start (EV_A_ (W)w, ++asynccnt);
3255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3256 asyncs [asynccnt - 1] = w;
3257
3258 EV_FREQUENT_CHECK;
3259}
3260
3261void
3262ev_async_stop (EV_P_ ev_async *w)
3263{
3264 clear_pending (EV_A_ (W)w);
3265 if (expect_false (!ev_is_active (w)))
3266 return;
3267
3268 EV_FREQUENT_CHECK;
3269
3270 {
3271 int active = ev_active (w);
3272
3273 asyncs [active - 1] = asyncs [--asynccnt];
3274 ev_active (asyncs [active - 1]) = active;
3275 }
3276
3277 ev_stop (EV_A_ (W)w);
3278
3279 EV_FREQUENT_CHECK;
3280}
3281
3282void
3283ev_async_send (EV_P_ ev_async *w)
3284{
3285 w->sent = 1;
3286 evpipe_write (EV_A_ &gotasync);
3287}
3288#endif
1657 3289
1658/*****************************************************************************/ 3290/*****************************************************************************/
1659 3291
1660struct ev_once 3292struct ev_once
1661{ 3293{
1662 struct ev_io io; 3294 ev_io io;
1663 struct ev_timer to; 3295 ev_timer to;
1664 void (*cb)(int revents, void *arg); 3296 void (*cb)(int revents, void *arg);
1665 void *arg; 3297 void *arg;
1666}; 3298};
1667 3299
1668static void 3300static void
1669once_cb (EV_P_ struct ev_once *once, int revents) 3301once_cb (EV_P_ struct ev_once *once, int revents)
1670{ 3302{
1671 void (*cb)(int revents, void *arg) = once->cb; 3303 void (*cb)(int revents, void *arg) = once->cb;
1672 void *arg = once->arg; 3304 void *arg = once->arg;
1673 3305
1674 ev_io_stop (EV_A_ &once->io); 3306 ev_io_stop (EV_A_ &once->io);
1675 ev_timer_stop (EV_A_ &once->to); 3307 ev_timer_stop (EV_A_ &once->to);
1676 ev_free (once); 3308 ev_free (once);
1677 3309
1678 cb (revents, arg); 3310 cb (revents, arg);
1679} 3311}
1680 3312
1681static void 3313static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 3314once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 3315{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3317
3318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1685} 3319}
1686 3320
1687static void 3321static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 3322once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 3323{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3325
3326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1691} 3327}
1692 3328
1693void 3329void
1694ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3330ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1695{ 3331{
1717 ev_timer_set (&once->to, timeout, 0.); 3353 ev_timer_set (&once->to, timeout, 0.);
1718 ev_timer_start (EV_A_ &once->to); 3354 ev_timer_start (EV_A_ &once->to);
1719 } 3355 }
1720} 3356}
1721 3357
3358/*****************************************************************************/
3359
3360#if EV_WALK_ENABLE
3361void
3362ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3363{
3364 int i, j;
3365 ev_watcher_list *wl, *wn;
3366
3367 if (types & (EV_IO | EV_EMBED))
3368 for (i = 0; i < anfdmax; ++i)
3369 for (wl = anfds [i].head; wl; )
3370 {
3371 wn = wl->next;
3372
3373#if EV_EMBED_ENABLE
3374 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3375 {
3376 if (types & EV_EMBED)
3377 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3378 }
3379 else
3380#endif
3381#if EV_USE_INOTIFY
3382 if (ev_cb ((ev_io *)wl) == infy_cb)
3383 ;
3384 else
3385#endif
3386 if ((ev_io *)wl != &pipe_w)
3387 if (types & EV_IO)
3388 cb (EV_A_ EV_IO, wl);
3389
3390 wl = wn;
3391 }
3392
3393 if (types & (EV_TIMER | EV_STAT))
3394 for (i = timercnt + HEAP0; i-- > HEAP0; )
3395#if EV_STAT_ENABLE
3396 /*TODO: timer is not always active*/
3397 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3398 {
3399 if (types & EV_STAT)
3400 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3401 }
3402 else
3403#endif
3404 if (types & EV_TIMER)
3405 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3406
3407#if EV_PERIODIC_ENABLE
3408 if (types & EV_PERIODIC)
3409 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3410 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3411#endif
3412
3413#if EV_IDLE_ENABLE
3414 if (types & EV_IDLE)
3415 for (j = NUMPRI; i--; )
3416 for (i = idlecnt [j]; i--; )
3417 cb (EV_A_ EV_IDLE, idles [j][i]);
3418#endif
3419
3420#if EV_FORK_ENABLE
3421 if (types & EV_FORK)
3422 for (i = forkcnt; i--; )
3423 if (ev_cb (forks [i]) != embed_fork_cb)
3424 cb (EV_A_ EV_FORK, forks [i]);
3425#endif
3426
3427#if EV_ASYNC_ENABLE
3428 if (types & EV_ASYNC)
3429 for (i = asynccnt; i--; )
3430 cb (EV_A_ EV_ASYNC, asyncs [i]);
3431#endif
3432
3433 if (types & EV_PREPARE)
3434 for (i = preparecnt; i--; )
3435#if EV_EMBED_ENABLE
3436 if (ev_cb (prepares [i]) != embed_prepare_cb)
3437#endif
3438 cb (EV_A_ EV_PREPARE, prepares [i]);
3439
3440 if (types & EV_CHECK)
3441 for (i = checkcnt; i--; )
3442 cb (EV_A_ EV_CHECK, checks [i]);
3443
3444 if (types & EV_SIGNAL)
3445 for (i = 0; i < signalmax; ++i)
3446 for (wl = signals [i].head; wl; )
3447 {
3448 wn = wl->next;
3449 cb (EV_A_ EV_SIGNAL, wl);
3450 wl = wn;
3451 }
3452
3453 if (types & EV_CHILD)
3454 for (i = EV_PID_HASHSIZE; i--; )
3455 for (wl = childs [i]; wl; )
3456 {
3457 wn = wl->next;
3458 cb (EV_A_ EV_CHILD, wl);
3459 wl = wn;
3460 }
3461/* EV_STAT 0x00001000 /* stat data changed */
3462/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3463}
3464#endif
3465
3466#if EV_MULTIPLICITY
3467 #include "ev_wrap.h"
3468#endif
3469
1722#ifdef __cplusplus 3470#ifdef __cplusplus
1723} 3471}
1724#endif 3472#endif
1725 3473

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines