ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.301 by root, Wed Jul 15 16:58:53 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 391# define inline_speed static noinline
316#else 392#else
317# define inline_speed static inline 393# define inline_speed static inline
318#endif 394#endif
319 395
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
322 403
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
325 406
326typedef ev_watcher *W; 407typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
329 410
411#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
331 413
332#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
336#endif 422#endif
337 423
338#ifdef _WIN32 424#ifdef _WIN32
339# include "ev_win32.c" 425# include "ev_win32.c"
348{ 434{
349 syserr_cb = cb; 435 syserr_cb = cb;
350} 436}
351 437
352static void noinline 438static void noinline
353syserr (const char *msg) 439ev_syserr (const char *msg)
354{ 440{
355 if (!msg) 441 if (!msg)
356 msg = "(libev) system error"; 442 msg = "(libev) system error";
357 443
358 if (syserr_cb) 444 if (syserr_cb)
404#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
406 492
407/*****************************************************************************/ 493/*****************************************************************************/
408 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
409typedef struct 499typedef struct
410{ 500{
411 WL head; 501 WL head;
412 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
414#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
415 SOCKET handle; 510 SOCKET handle;
416#endif 511#endif
417} ANFD; 512} ANFD;
418 513
514/* stores the pending event set for a given watcher */
419typedef struct 515typedef struct
420{ 516{
421 W w; 517 W w;
422 int events; 518 int events; /* the pending event set for the given watcher */
423} ANPENDING; 519} ANPENDING;
424 520
425#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
426typedef struct 523typedef struct
427{ 524{
428 WL head; 525 WL head;
429} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
430#endif 547#endif
431 548
432#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
433 550
434 struct ev_loop 551 struct ev_loop
453 570
454 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
455 572
456#endif 573#endif
457 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
458/*****************************************************************************/ 587/*****************************************************************************/
459 588
589#ifndef EV_HAVE_EV_TIME
460ev_tstamp 590ev_tstamp
461ev_time (void) 591ev_time (void)
462{ 592{
463#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
464 struct timespec ts; 596 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 599 }
600#endif
601
468 struct timeval tv; 602 struct timeval tv;
469 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 605}
606#endif
473 607
474ev_tstamp inline_size 608inline_size ev_tstamp
475get_clock (void) 609get_clock (void)
476{ 610{
477#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
479 { 613 {
512 struct timeval tv; 646 struct timeval tv;
513 647
514 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516 650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
517 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
518#endif 655#endif
519 } 656 }
520} 657}
521 658
522/*****************************************************************************/ 659/*****************************************************************************/
523 660
524int inline_size 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
525array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
526{ 667{
527 int ncur = cur + 1; 668 int ncur = cur + 1;
528 669
529 do 670 do
530 ncur <<= 1; 671 ncur <<= 1;
531 while (cnt > ncur); 672 while (cnt > ncur);
532 673
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 676 {
536 ncur *= elem; 677 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 679 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 680 ncur /= elem;
540 } 681 }
541 682
542 return ncur; 683 return ncur;
546array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
547{ 688{
548 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
550} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 695
552#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
554 { \ 698 { \
555 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 712 }
569#endif 713#endif
570 714
571#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 717
574/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
575 725
576void noinline 726void noinline
577ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
578{ 728{
579 W w_ = (W)w; 729 W w_ = (W)w;
588 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
590 } 740 }
591} 741}
592 742
593void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 760{
596 int i; 761 int i;
597 762
598 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
600} 765}
601 766
602/*****************************************************************************/ 767/*****************************************************************************/
603 768
604void inline_size 769inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
619{ 771{
620 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
621 ev_io *w; 773 ev_io *w;
622 774
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 779 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
629 } 781 }
630} 782}
631 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
632void 795void
633ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
634{ 797{
635 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
637} 800}
638 801
639void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
640fd_reify (EV_P) 805fd_reify (EV_P)
641{ 806{
642 int i; 807 int i;
643 808
644 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
653 events |= (unsigned char)w->events; 818 events |= (unsigned char)w->events;
654 819
655#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
656 if (events) 821 if (events)
657 { 822 {
658 unsigned long argp; 823 unsigned long arg;
659 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else 826 #else
662 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
663 #endif 828 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
665 } 830 }
666#endif 831#endif
667 832
668 { 833 {
669 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
671 836
672 anfd->reify = 0; 837 anfd->reify = 0;
673 anfd->events = events; 838 anfd->events = events;
674 839
675 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
677 } 842 }
678 } 843 }
679 844
680 fdchangecnt = 0; 845 fdchangecnt = 0;
681} 846}
682 847
683void inline_size 848/* something about the given fd changed */
849inline_size void
684fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
685{ 851{
686 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
688 854
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
694 } 860 }
695} 861}
696 862
697void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
698fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
699{ 866{
700 ev_io *w; 867 ev_io *w;
701 868
702 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 873 }
707} 874}
708 875
709int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
710fd_valid (int fd) 878fd_valid (int fd)
711{ 879{
712#ifdef _WIN32 880#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
714#else 882#else
722{ 890{
723 int fd; 891 int fd;
724 892
725 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 894 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
729} 897}
730 898
731/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 900static void noinline
750 918
751 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 920 if (anfds [fd].events)
753 { 921 {
754 anfds [fd].events = 0; 922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 925 }
757} 926}
758 927
759/*****************************************************************************/ 928/*****************************************************************************/
760 929
930/*
931 * the heap functions want a real array index. array index 0 uis guaranteed to not
932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933 * the branching factor of the d-tree.
934 */
935
936/*
937 * at the moment we allow libev the luxury of two heaps,
938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942#if EV_USE_4HEAP
943
944#define DHEAP 4
945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
948
949/* away from the root */
950inline_speed void
951downheap (ANHE *heap, int N, int k)
952{
953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
955
956 for (;;)
957 {
958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961
962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
964 {
965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
978 break;
979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
761/* towards the root */ 1029/* towards the root */
762void inline_speed 1030inline_speed void
763upheap (WT *heap, int k) 1031upheap (ANHE *heap, int k)
764{ 1032{
765 WT w = heap [k]; 1033 ANHE he = heap [k];
766 1034
767 for (;;) 1035 for (;;)
768 { 1036 {
769 int p = k >> 1; 1037 int p = HPARENT (k);
770 1038
771 /* maybe we could use a dummy element at heap [0]? */ 1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
772 if (!p || heap [p]->at <= w->at)
773 break; 1040 break;
774 1041
775 heap [k] = heap [p]; 1042 heap [k] = heap [p];
776 ((W)heap [k])->active = k; 1043 ev_active (ANHE_w (heap [k])) = k;
777 k = p; 1044 k = p;
778 } 1045 }
779 1046
780 heap [k] = w; 1047 heap [k] = he;
781 ((W)heap [k])->active = k; 1048 ev_active (ANHE_w (he)) = k;
782} 1049}
783 1050
784/* away from the root */ 1051/* move an element suitably so it is in a correct place */
785void inline_speed 1052inline_size void
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
815{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
816 upheap (heap, k); 1056 upheap (heap, k);
1057 else
817 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
818} 1071}
819 1072
820/*****************************************************************************/ 1073/*****************************************************************************/
821 1074
1075/* associate signal watchers to a signal signal */
822typedef struct 1076typedef struct
823{ 1077{
824 WL head; 1078 WL head;
825 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
826} ANSIG; 1080} ANSIG;
828static ANSIG *signals; 1082static ANSIG *signals;
829static int signalmax; 1083static int signalmax;
830 1084
831static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
832 1086
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/ 1087/*****************************************************************************/
846 1088
847void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
848fd_intern (int fd) 1092fd_intern (int fd)
849{ 1093{
850#ifdef _WIN32 1094#ifdef _WIN32
851 int arg = 1; 1095 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
853#else 1097#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1100#endif
857} 1101}
858 1102
859static void noinline 1103static void noinline
860evpipe_init (EV_P) 1104evpipe_init (EV_P)
861{ 1105{
862 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
863 { 1107 {
864#if EV_USE_EVENTFD 1108#if EV_USE_EVENTFD
865 if ((evfd = eventfd (0, 0)) >= 0) 1109 if ((evfd = eventfd (0, 0)) >= 0)
866 { 1110 {
867 evpipe [0] = -1; 1111 evpipe [0] = -1;
868 fd_intern (evfd); 1112 fd_intern (evfd);
869 ev_io_set (&pipeev, evfd, EV_READ); 1113 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1114 }
871 else 1115 else
872#endif 1116#endif
873 { 1117 {
874 while (pipe (evpipe)) 1118 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
876 1120
877 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1124 }
881 1125
882 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1128 }
885} 1129}
886 1130
887void inline_size 1131inline_size void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1133{
890 if (!*flag) 1134 if (!*flag)
891 { 1135 {
892 int old_errno = errno; /* save errno because write might clobber it */ 1136 int old_errno = errno; /* save errno because write might clobber it */
905 1149
906 errno = old_errno; 1150 errno = old_errno;
907 } 1151 }
908} 1152}
909 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
910static void 1156static void
911pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
912{ 1158{
913#if EV_USE_EVENTFD 1159#if EV_USE_EVENTFD
914 if (evfd >= 0) 1160 if (evfd >= 0)
915 { 1161 {
916 uint64_t counter = 1; 1162 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1163 read (evfd, &counter, sizeof (uint64_t));
918 } 1164 }
919 else 1165 else
920#endif 1166#endif
921 { 1167 {
970ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
971{ 1217{
972 WL w; 1218 WL w;
973 1219
974#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif 1222#endif
977 1223
978 --signum; 1224 --signum;
979 1225
980 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
996 1242
997#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
999#endif 1245#endif
1000 1246
1001void inline_speed 1247/* handle a single child status event */
1248inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
1003{ 1250{
1004 ev_child *w; 1251 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 1253
1019 1266
1020#ifndef WCONTINUED 1267#ifndef WCONTINUED
1021# define WCONTINUED 0 1268# define WCONTINUED 0
1022#endif 1269#endif
1023 1270
1271/* called on sigchld etc., calls waitpid */
1024static void 1272static void
1025childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
1026{ 1274{
1027 int pid, status; 1275 int pid, status;
1028 1276
1109 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
1112#endif 1360#endif
1113#ifdef __APPLE__ 1361#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1116#endif 1365#endif
1117 1366
1118 return flags; 1367 return flags;
1119} 1368}
1120 1369
1134ev_backend (EV_P) 1383ev_backend (EV_P)
1135{ 1384{
1136 return backend; 1385 return backend;
1137} 1386}
1138 1387
1388#if EV_MINIMAL < 2
1139unsigned int 1389unsigned int
1140ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1141{ 1391{
1142 return loop_count; 1392 return loop_count;
1143} 1393}
1144 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1145void 1401void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{ 1403{
1148 io_blocktime = interval; 1404 io_blocktime = interval;
1149} 1405}
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{ 1409{
1154 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1155} 1411}
1156 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1157static void noinline 1438static void noinline
1158loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1159{ 1440{
1160 if (!backend) 1441 if (!backend)
1161 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1162#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1163 { 1455 {
1164 struct timespec ts; 1456 struct timespec ts;
1457
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 1459 have_monotonic = 1;
1167 } 1460 }
1168#endif 1461#endif
1169 1462
1170 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1171 mn_now = get_clock (); 1464 mn_now = get_clock ();
1172 now_floor = mn_now; 1465 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1174 1470
1175 io_blocktime = 0.; 1471 io_blocktime = 0.;
1176 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1177 backend = 0; 1473 backend = 0;
1178 backend_fd = -1; 1474 backend_fd = -1;
1209#endif 1505#endif
1210#if EV_USE_SELECT 1506#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 1508#endif
1213 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1214 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1216 } 1514 }
1217} 1515}
1218 1516
1517/* free up a loop structure */
1219static void noinline 1518static void noinline
1220loop_destroy (EV_P) 1519loop_destroy (EV_P)
1221{ 1520{
1222 int i; 1521 int i;
1223 1522
1224 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1225 { 1524 {
1226 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1227 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1228 1527
1229#if EV_USE_EVENTFD 1528#if EV_USE_EVENTFD
1230 if (evfd >= 0) 1529 if (evfd >= 0)
1231 close (evfd); 1530 close (evfd);
1232#endif 1531#endif
1271 } 1570 }
1272 1571
1273 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1274 1573
1275 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1280#endif 1580#endif
1289 1589
1290 backend = 0; 1590 backend = 0;
1291} 1591}
1292 1592
1293#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1295#endif 1595#endif
1296 1596
1297void inline_size 1597inline_size void
1298loop_fork (EV_P) 1598loop_fork (EV_P)
1299{ 1599{
1300#if EV_USE_PORT 1600#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 1602#endif
1308#endif 1608#endif
1309#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 1610 infy_fork (EV_A);
1311#endif 1611#endif
1312 1612
1313 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1314 { 1614 {
1315 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */ 1616 /* while we modify the fd vars */
1317 gotsig = 1; 1617 gotsig = 1;
1318#if EV_ASYNC_ENABLE 1618#if EV_ASYNC_ENABLE
1319 gotasync = 1; 1619 gotasync = 1;
1320#endif 1620#endif
1321 1621
1322 ev_ref (EV_A); 1622 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1324 1624
1325#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1326 if (evfd >= 0) 1626 if (evfd >= 0)
1327 close (evfd); 1627 close (evfd);
1328#endif 1628#endif
1333 close (evpipe [1]); 1633 close (evpipe [1]);
1334 } 1634 }
1335 1635
1336 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1339 } 1639 }
1340 1640
1341 postfork = 0; 1641 postfork = 0;
1342} 1642}
1343 1643
1344#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1345struct ev_loop * 1646struct ev_loop *
1346ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1347{ 1648{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 1650
1367void 1668void
1368ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1369{ 1670{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1371} 1672}
1673#endif /* multiplicity */
1372 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1373#endif 1774#endif
1374 1775
1375#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1376struct ev_loop * 1777struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1411{ 1812{
1412#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1414#endif 1815#endif
1415 1816
1817 ev_default_loop_ptr = 0;
1818
1416#ifndef _WIN32 1819#ifndef _WIN32
1417 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1419#endif 1822#endif
1420 1823
1426{ 1829{
1427#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1429#endif 1832#endif
1430 1833
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 1834 postfork = 1; /* must be in line with ev_loop_fork */
1433} 1835}
1434 1836
1435/*****************************************************************************/ 1837/*****************************************************************************/
1436 1838
1437void 1839void
1438ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1439{ 1841{
1440 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1441} 1843}
1442 1844
1443void inline_speed 1845unsigned int
1444call_pending (EV_P) 1846ev_pending_count (EV_P)
1847{
1848 int pri;
1849 unsigned int count = 0;
1850
1851 for (pri = NUMPRI; pri--; )
1852 count += pendingcnt [pri];
1853
1854 return count;
1855}
1856
1857void noinline
1858ev_invoke_pending (EV_P)
1445{ 1859{
1446 int pri; 1860 int pri;
1447 1861
1448 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
1449 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
1450 { 1864 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452 1866
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868 /* ^ this is no longer true, as pending_w could be here */
1456 1869
1457 p->w->pending = 0; 1870 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
1459 } 1872 EV_FREQUENT_CHECK;
1460 } 1873 }
1461} 1874}
1462 1875
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 1876#if EV_IDLE_ENABLE
1544void inline_size 1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1545idle_reify (EV_P) 1880idle_reify (EV_P)
1546{ 1881{
1547 if (expect_false (idleall)) 1882 if (expect_false (idleall))
1548 { 1883 {
1549 int pri; 1884 int pri;
1561 } 1896 }
1562 } 1897 }
1563} 1898}
1564#endif 1899#endif
1565 1900
1566void inline_speed 1901/* make timers pending */
1902inline_size void
1903timers_reify (EV_P)
1904{
1905 EV_FREQUENT_CHECK;
1906
1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1908 {
1909 do
1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1923
1924 ANHE_at_cache (timers [HEAP0]);
1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1932 }
1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1934
1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1936 }
1937}
1938
1939#if EV_PERIODIC_ENABLE
1940/* make periodics pending */
1941inline_size void
1942periodics_reify (EV_P)
1943{
1944 EV_FREQUENT_CHECK;
1945
1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1947 {
1948 int feed_count = 0;
1949
1950 do
1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1990 }
1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992
1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 }
1995}
1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999static void noinline
2000periodics_reschedule (EV_P)
2001{
2002 int i;
2003
2004 /* adjust periodics after time jump */
2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 {
2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008
2009 if (w->reschedule_cb)
2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2011 else if (w->interval)
2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013
2014 ANHE_at_cache (periodics [i]);
2015 }
2016
2017 reheap (periodics, periodiccnt);
2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033}
2034
2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2038time_update (EV_P_ ev_tstamp max_block)
1568{ 2039{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2040#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2041 if (expect_true (have_monotonic))
1573 { 2042 {
2043 int i;
1574 ev_tstamp odiff = rtmn_diff; 2044 ev_tstamp odiff = rtmn_diff;
1575 2045
1576 mn_now = get_clock (); 2046 mn_now = get_clock ();
1577 2047
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1596 */ 2066 */
1597 for (i = 4; --i; ) 2067 for (i = 4; --i; )
1598 { 2068 {
1599 rtmn_diff = ev_rt_now - mn_now; 2069 rtmn_diff = ev_rt_now - mn_now;
1600 2070
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2071 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2072 return; /* all is well */
1603 2073
1604 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2075 mn_now = get_clock ();
1606 now_floor = mn_now; 2076 now_floor = mn_now;
1607 } 2077 }
1608 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 2081# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 2082 periodics_reschedule (EV_A);
1611# endif 2083# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 2084 }
1615 else 2085 else
1616#endif 2086#endif
1617 { 2087 {
1618 ev_rt_now = ev_time (); 2088 ev_rt_now = ev_time ();
1619 2089
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1624#endif 2096#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2097 }
1629 2098
1630 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1631 } 2100 }
1632} 2101}
1633 2102
1634void 2103void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1650{ 2105{
2106#if EV_MINIMAL < 2
2107 ++loop_depth;
2108#endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
1651 loop_done = EVUNLOOP_CANCEL; 2112 loop_done = EVUNLOOP_CANCEL;
1652 2113
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 2115
1655 do 2116 do
1656 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
1657#ifndef _WIN32 2122#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2123 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2124 if (expect_false (getpid () != curpid))
1660 { 2125 {
1661 curpid = getpid (); 2126 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 2132 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 2133 if (expect_false (postfork))
1669 if (forkcnt) 2134 if (forkcnt)
1670 { 2135 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 2137 EV_INVOKE_PENDING;
1673 } 2138 }
1674#endif 2139#endif
1675 2140
1676 /* queue prepare watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1678 { 2143 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1681 } 2146 }
1682 2147
1683 if (expect_false (!activecnt)) 2148 if (expect_false (loop_done))
1684 break; 2149 break;
1685 2150
1686 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1688 loop_fork (EV_A); 2153 loop_fork (EV_A);
1695 ev_tstamp waittime = 0.; 2160 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 2161 ev_tstamp sleeptime = 0.;
1697 2162
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1699 { 2164 {
2165 /* remember old timestamp for io_blocktime calculation */
2166 ev_tstamp prev_mn_now = mn_now;
2167
1700 /* update time to cancel out callback processing overhead */ 2168 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100); 2169 time_update (EV_A_ 1e100);
1702 2170
1703 waittime = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1704 2172
1705 if (timercnt) 2173 if (timercnt)
1706 { 2174 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 2176 if (waittime > to) waittime = to;
1709 } 2177 }
1710 2178
1711#if EV_PERIODIC_ENABLE 2179#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 2180 if (periodiccnt)
1713 { 2181 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 2183 if (waittime > to) waittime = to;
1716 } 2184 }
1717#endif 2185#endif
1718 2186
2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 2188 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 2189 waittime = timeout_blocktime;
1721 2190
1722 sleeptime = waittime - backend_fudge; 2191 /* extra check because io_blocktime is commonly 0 */
1723
1724 if (expect_true (sleeptime > io_blocktime)) 2192 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
1729 ev_sleep (sleeptime); 2201 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 2202 waittime -= sleeptime;
2203 }
1731 } 2204 }
1732 } 2205 }
1733 2206
2207#if EV_MINIMAL < 2
1734 ++loop_count; 2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1736 2213
1737 /* update ev_rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 2215 time_update (EV_A_ waittime + sleeptime);
1739 } 2216 }
1740 2217
1751 2228
1752 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 2230 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1755 2232
1756 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1757 } 2234 }
1758 while (expect_true ( 2235 while (expect_true (
1759 activecnt 2236 activecnt
1760 && !loop_done 2237 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 )); 2239 ));
1763 2240
1764 if (loop_done == EVUNLOOP_ONE) 2241 if (loop_done == EVUNLOOP_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
1766} 2247}
1767 2248
1768void 2249void
1769ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
1770{ 2251{
1771 loop_done = how; 2252 loop_done = how;
1772} 2253}
1773 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
1774/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
1775 2294
1776void inline_size 2295inline_size void
1777wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
1778{ 2297{
1779 elem->next = *head; 2298 elem->next = *head;
1780 *head = elem; 2299 *head = elem;
1781} 2300}
1782 2301
1783void inline_size 2302inline_size void
1784wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
1785{ 2304{
1786 while (*head) 2305 while (*head)
1787 { 2306 {
1788 if (*head == elem) 2307 if (*head == elem)
1793 2312
1794 head = &(*head)->next; 2313 head = &(*head)->next;
1795 } 2314 }
1796} 2315}
1797 2316
1798void inline_speed 2317/* internal, faster, version of ev_clear_pending */
2318inline_speed void
1799clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
1800{ 2320{
1801 if (w->pending) 2321 if (w->pending)
1802 { 2322 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 2324 w->pending = 0;
1805 } 2325 }
1806} 2326}
1807 2327
1808int 2328int
1812 int pending = w_->pending; 2332 int pending = w_->pending;
1813 2333
1814 if (expect_true (pending)) 2334 if (expect_true (pending))
1815 { 2335 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
1817 w_->pending = 0; 2338 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 2339 return p->events;
1820 } 2340 }
1821 else 2341 else
1822 return 0; 2342 return 0;
1823} 2343}
1824 2344
1825void inline_size 2345inline_size void
1826pri_adjust (EV_P_ W w) 2346pri_adjust (EV_P_ W w)
1827{ 2347{
1828 int pri = w->priority; 2348 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 2351 ev_set_priority (w, pri);
1832} 2352}
1833 2353
1834void inline_speed 2354inline_speed void
1835ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
1836{ 2356{
1837 pri_adjust (EV_A_ w); 2357 pri_adjust (EV_A_ w);
1838 w->active = active; 2358 w->active = active;
1839 ev_ref (EV_A); 2359 ev_ref (EV_A);
1840} 2360}
1841 2361
1842void inline_size 2362inline_size void
1843ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
1844{ 2364{
1845 ev_unref (EV_A); 2365 ev_unref (EV_A);
1846 w->active = 0; 2366 w->active = 0;
1847} 2367}
1854 int fd = w->fd; 2374 int fd = w->fd;
1855 2375
1856 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1857 return; 2377 return;
1858 2378
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
1860 2383
1861 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
1864 2387
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 2389 w->events &= ~EV__IOFDSET;
2390
2391 EV_FREQUENT_CHECK;
1867} 2392}
1868 2393
1869void noinline 2394void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
1871{ 2396{
1872 clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
1874 return; 2399 return;
1875 2400
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2402
2403 EV_FREQUENT_CHECK;
1877 2404
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
1880 2407
1881 fd_change (EV_A_ w->fd, 1); 2408 fd_change (EV_A_ w->fd, 1);
2409
2410 EV_FREQUENT_CHECK;
1882} 2411}
1883 2412
1884void noinline 2413void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
1886{ 2415{
1887 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1888 return; 2417 return;
1889 2418
1890 ev_at (w) += mn_now; 2419 ev_at (w) += mn_now;
1891 2420
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
2429 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2430 upheap (timers, ev_active (w));
1898 2431
2432 EV_FREQUENT_CHECK;
2433
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2435}
1901 2436
1902void noinline 2437void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2439{
1905 clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2441 if (expect_false (!ev_is_active (w)))
1907 return; 2442 return;
1908 2443
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2444 EV_FREQUENT_CHECK;
1910 2445
1911 { 2446 {
1912 int active = ((W)w)->active; 2447 int active = ev_active (w);
1913 2448
2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2450
2451 --timercnt;
2452
1914 if (expect_true (active < timercnt)) 2453 if (expect_true (active < timercnt + HEAP0))
1915 { 2454 {
1916 timers [active] = timers [timercnt]; 2455 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2456 adjustheap (timers, timercnt, active);
1918 } 2457 }
1919
1920 --timercnt;
1921 } 2458 }
2459
2460 EV_FREQUENT_CHECK;
1922 2461
1923 ev_at (w) -= mn_now; 2462 ev_at (w) -= mn_now;
1924 2463
1925 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1926} 2465}
1927 2466
1928void noinline 2467void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
1930{ 2469{
2470 EV_FREQUENT_CHECK;
2471
1931 if (ev_is_active (w)) 2472 if (ev_is_active (w))
1932 { 2473 {
1933 if (w->repeat) 2474 if (w->repeat)
1934 { 2475 {
1935 ev_at (w) = mn_now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
2477 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2478 adjustheap (timers, timercnt, ev_active (w));
1937 } 2479 }
1938 else 2480 else
1939 ev_timer_stop (EV_A_ w); 2481 ev_timer_stop (EV_A_ w);
1940 } 2482 }
1941 else if (w->repeat) 2483 else if (w->repeat)
1942 { 2484 {
1943 w->at = w->repeat; 2485 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2486 ev_timer_start (EV_A_ w);
1945 } 2487 }
2488
2489 EV_FREQUENT_CHECK;
2490}
2491
2492ev_tstamp
2493ev_timer_remaining (EV_P_ ev_timer *w)
2494{
2495 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 2496}
1947 2497
1948#if EV_PERIODIC_ENABLE 2498#if EV_PERIODIC_ENABLE
1949void noinline 2499void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2500ev_periodic_start (EV_P_ ev_periodic *w)
1954 2504
1955 if (w->reschedule_cb) 2505 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2506 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 2507 else if (w->interval)
1958 { 2508 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2509 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 2510 /* this formula differs from the one in periodic_reify because we do not always round up */
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2511 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2512 }
1963 else 2513 else
1964 ev_at (w) = w->offset; 2514 ev_at (w) = w->offset;
1965 2515
2516 EV_FREQUENT_CHECK;
2517
2518 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2519 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2520 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2521 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2522 ANHE_at_cache (periodics [ev_active (w)]);
2523 upheap (periodics, ev_active (w));
1970 2524
2525 EV_FREQUENT_CHECK;
2526
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2527 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2528}
1973 2529
1974void noinline 2530void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2531ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2532{
1977 clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
1979 return; 2535 return;
1980 2536
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2537 EV_FREQUENT_CHECK;
1982 2538
1983 { 2539 {
1984 int active = ((W)w)->active; 2540 int active = ev_active (w);
1985 2541
2542 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2543
2544 --periodiccnt;
2545
1986 if (expect_true (active < periodiccnt)) 2546 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2547 {
1988 periodics [active] = periodics [periodiccnt]; 2548 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2549 adjustheap (periodics, periodiccnt, active);
1990 } 2550 }
1991
1992 --periodiccnt;
1993 } 2551 }
2552
2553 EV_FREQUENT_CHECK;
1994 2554
1995 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1996} 2556}
1997 2557
1998void noinline 2558void noinline
2010 2570
2011void noinline 2571void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 2572ev_signal_start (EV_P_ ev_signal *w)
2013{ 2573{
2014#if EV_MULTIPLICITY 2574#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2575 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif 2576#endif
2017 if (expect_false (ev_is_active (w))) 2577 if (expect_false (ev_is_active (w)))
2018 return; 2578 return;
2019 2579
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2580 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2021 2581
2022 evpipe_init (EV_A); 2582 evpipe_init (EV_A);
2583
2584 EV_FREQUENT_CHECK;
2023 2585
2024 { 2586 {
2025#ifndef _WIN32 2587#ifndef _WIN32
2026 sigset_t full, prev; 2588 sigset_t full, prev;
2027 sigfillset (&full); 2589 sigfillset (&full);
2028 sigprocmask (SIG_SETMASK, &full, &prev); 2590 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif 2591#endif
2030 2592
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2593 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2032 2594
2033#ifndef _WIN32 2595#ifndef _WIN32
2034 sigprocmask (SIG_SETMASK, &prev, 0); 2596 sigprocmask (SIG_SETMASK, &prev, 0);
2035#endif 2597#endif
2036 } 2598 }
2041 if (!((WL)w)->next) 2603 if (!((WL)w)->next)
2042 { 2604 {
2043#if _WIN32 2605#if _WIN32
2044 signal (w->signum, ev_sighandler); 2606 signal (w->signum, ev_sighandler);
2045#else 2607#else
2046 struct sigaction sa; 2608 struct sigaction sa = { };
2047 sa.sa_handler = ev_sighandler; 2609 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 2610 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2611 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 2612 sigaction (w->signum, &sa, 0);
2051#endif 2613#endif
2052 } 2614 }
2615
2616 EV_FREQUENT_CHECK;
2053} 2617}
2054 2618
2055void noinline 2619void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 2620ev_signal_stop (EV_P_ ev_signal *w)
2057{ 2621{
2058 clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
2060 return; 2624 return;
2061 2625
2626 EV_FREQUENT_CHECK;
2627
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 2628 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 2629 ev_stop (EV_A_ (W)w);
2064 2630
2065 if (!signals [w->signum - 1].head) 2631 if (!signals [w->signum - 1].head)
2066 signal (w->signum, SIG_DFL); 2632 signal (w->signum, SIG_DFL);
2633
2634 EV_FREQUENT_CHECK;
2067} 2635}
2068 2636
2069void 2637void
2070ev_child_start (EV_P_ ev_child *w) 2638ev_child_start (EV_P_ ev_child *w)
2071{ 2639{
2072#if EV_MULTIPLICITY 2640#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 2642#endif
2075 if (expect_false (ev_is_active (w))) 2643 if (expect_false (ev_is_active (w)))
2076 return; 2644 return;
2077 2645
2646 EV_FREQUENT_CHECK;
2647
2078 ev_start (EV_A_ (W)w, 1); 2648 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2649 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2650
2651 EV_FREQUENT_CHECK;
2080} 2652}
2081 2653
2082void 2654void
2083ev_child_stop (EV_P_ ev_child *w) 2655ev_child_stop (EV_P_ ev_child *w)
2084{ 2656{
2085 clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 2658 if (expect_false (!ev_is_active (w)))
2087 return; 2659 return;
2088 2660
2661 EV_FREQUENT_CHECK;
2662
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2663 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2665
2666 EV_FREQUENT_CHECK;
2091} 2667}
2092 2668
2093#if EV_STAT_ENABLE 2669#if EV_STAT_ENABLE
2094 2670
2095# ifdef _WIN32 2671# ifdef _WIN32
2096# undef lstat 2672# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 2673# define lstat(a,b) _stati64 (a,b)
2098# endif 2674# endif
2099 2675
2100#define DEF_STAT_INTERVAL 5.0074891 2676#define DEF_STAT_INTERVAL 5.0074891
2677#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 2678#define MIN_STAT_INTERVAL 0.1074891
2102 2679
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2680static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 2681
2105#if EV_USE_INOTIFY 2682#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 2683# define EV_INOTIFY_BUFSIZE 8192
2110{ 2687{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2688 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 2689
2113 if (w->wd < 0) 2690 if (w->wd < 0)
2114 { 2691 {
2692 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2693 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116 2694
2117 /* monitor some parent directory for speedup hints */ 2695 /* monitor some parent directory for speedup hints */
2696 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2697 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2698 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2699 {
2120 char path [4096]; 2700 char path [4096];
2121 strcpy (path, w->path); 2701 strcpy (path, w->path);
2122 2702
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2705 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2706 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 2707
2128 char *pend = strrchr (path, '/'); 2708 char *pend = strrchr (path, '/');
2129 2709
2130 if (!pend) 2710 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 2711 break;
2132 2712
2133 *pend = 0; 2713 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 2714 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 2715 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2716 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 2717 }
2138 } 2718 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 2719
2142 if (w->wd >= 0) 2720 if (w->wd >= 0)
2721 {
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2722 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2723
2724 /* now local changes will be tracked by inotify, but remote changes won't */
2725 /* unless the filesystem it known to be local, we therefore still poll */
2726 /* also do poll on <2.6.25, but with normal frequency */
2727 struct statfs sfs;
2728
2729 if (fs_2625 && !statfs (w->path, &sfs))
2730 if (sfs.f_type == 0x1373 /* devfs */
2731 || sfs.f_type == 0xEF53 /* ext2/3 */
2732 || sfs.f_type == 0x3153464a /* jfs */
2733 || sfs.f_type == 0x52654973 /* reiser3 */
2734 || sfs.f_type == 0x01021994 /* tempfs */
2735 || sfs.f_type == 0x58465342 /* xfs */)
2736 return;
2737
2738 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2739 ev_timer_again (EV_A_ &w->timer);
2740 }
2144} 2741}
2145 2742
2146static void noinline 2743static void noinline
2147infy_del (EV_P_ ev_stat *w) 2744infy_del (EV_P_ ev_stat *w)
2148{ 2745{
2162 2759
2163static void noinline 2760static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2761infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 2762{
2166 if (slot < 0) 2763 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 2764 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2765 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 2766 infy_wd (EV_A_ slot, wd, ev);
2170 else 2767 else
2171 { 2768 {
2172 WL w_; 2769 WL w_;
2178 2775
2179 if (w->wd == wd || wd == -1) 2776 if (w->wd == wd || wd == -1)
2180 { 2777 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2778 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 2779 {
2780 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2183 w->wd = -1; 2781 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 2782 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 2783 }
2186 2784
2187 stat_timer_cb (EV_A_ &w->timer, 0); 2785 stat_timer_cb (EV_A_ &w->timer, 0);
2200 2798
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2799 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2800 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2203} 2801}
2204 2802
2205void inline_size 2803inline_size void
2804check_2625 (EV_P)
2805{
2806 /* kernels < 2.6.25 are borked
2807 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2808 */
2809 struct utsname buf;
2810 int major, minor, micro;
2811
2812 if (uname (&buf))
2813 return;
2814
2815 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2816 return;
2817
2818 if (major < 2
2819 || (major == 2 && minor < 6)
2820 || (major == 2 && minor == 6 && micro < 25))
2821 return;
2822
2823 fs_2625 = 1;
2824}
2825
2826inline_size void
2206infy_init (EV_P) 2827infy_init (EV_P)
2207{ 2828{
2208 if (fs_fd != -2) 2829 if (fs_fd != -2)
2209 return; 2830 return;
2831
2832 fs_fd = -1;
2833
2834 check_2625 (EV_A);
2210 2835
2211 fs_fd = inotify_init (); 2836 fs_fd = inotify_init ();
2212 2837
2213 if (fs_fd >= 0) 2838 if (fs_fd >= 0)
2214 { 2839 {
2216 ev_set_priority (&fs_w, EV_MAXPRI); 2841 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 2842 ev_io_start (EV_A_ &fs_w);
2218 } 2843 }
2219} 2844}
2220 2845
2221void inline_size 2846inline_size void
2222infy_fork (EV_P) 2847infy_fork (EV_P)
2223{ 2848{
2224 int slot; 2849 int slot;
2225 2850
2226 if (fs_fd < 0) 2851 if (fs_fd < 0)
2242 w->wd = -1; 2867 w->wd = -1;
2243 2868
2244 if (fs_fd >= 0) 2869 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 2870 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 2871 else
2247 ev_timer_start (EV_A_ &w->timer); 2872 ev_timer_again (EV_A_ &w->timer);
2248 } 2873 }
2249
2250 } 2874 }
2251} 2875}
2252 2876
2877#endif
2878
2879#ifdef _WIN32
2880# define EV_LSTAT(p,b) _stati64 (p, b)
2881#else
2882# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 2883#endif
2254 2884
2255void 2885void
2256ev_stat_stat (EV_P_ ev_stat *w) 2886ev_stat_stat (EV_P_ ev_stat *w)
2257{ 2887{
2284 || w->prev.st_atime != w->attr.st_atime 2914 || w->prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 2915 || w->prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 2916 || w->prev.st_ctime != w->attr.st_ctime
2287 ) { 2917 ) {
2288 #if EV_USE_INOTIFY 2918 #if EV_USE_INOTIFY
2919 if (fs_fd >= 0)
2920 {
2289 infy_del (EV_A_ w); 2921 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 2922 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 2923 ev_stat_stat (EV_A_ w); /* avoid race... */
2924 }
2292 #endif 2925 #endif
2293 2926
2294 ev_feed_event (EV_A_ w, EV_STAT); 2927 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 2928 }
2296} 2929}
2299ev_stat_start (EV_P_ ev_stat *w) 2932ev_stat_start (EV_P_ ev_stat *w)
2300{ 2933{
2301 if (expect_false (ev_is_active (w))) 2934 if (expect_false (ev_is_active (w)))
2302 return; 2935 return;
2303 2936
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 2937 ev_stat_stat (EV_A_ w);
2309 2938
2939 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 2940 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 2941
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2942 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 2943 ev_set_priority (&w->timer, ev_priority (w));
2315 2944
2316#if EV_USE_INOTIFY 2945#if EV_USE_INOTIFY
2317 infy_init (EV_A); 2946 infy_init (EV_A);
2318 2947
2319 if (fs_fd >= 0) 2948 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 2949 infy_add (EV_A_ w);
2321 else 2950 else
2322#endif 2951#endif
2323 ev_timer_start (EV_A_ &w->timer); 2952 ev_timer_again (EV_A_ &w->timer);
2324 2953
2325 ev_start (EV_A_ (W)w, 1); 2954 ev_start (EV_A_ (W)w, 1);
2955
2956 EV_FREQUENT_CHECK;
2326} 2957}
2327 2958
2328void 2959void
2329ev_stat_stop (EV_P_ ev_stat *w) 2960ev_stat_stop (EV_P_ ev_stat *w)
2330{ 2961{
2331 clear_pending (EV_A_ (W)w); 2962 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2963 if (expect_false (!ev_is_active (w)))
2333 return; 2964 return;
2334 2965
2966 EV_FREQUENT_CHECK;
2967
2335#if EV_USE_INOTIFY 2968#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 2969 infy_del (EV_A_ w);
2337#endif 2970#endif
2338 ev_timer_stop (EV_A_ &w->timer); 2971 ev_timer_stop (EV_A_ &w->timer);
2339 2972
2340 ev_stop (EV_A_ (W)w); 2973 ev_stop (EV_A_ (W)w);
2974
2975 EV_FREQUENT_CHECK;
2341} 2976}
2342#endif 2977#endif
2343 2978
2344#if EV_IDLE_ENABLE 2979#if EV_IDLE_ENABLE
2345void 2980void
2347{ 2982{
2348 if (expect_false (ev_is_active (w))) 2983 if (expect_false (ev_is_active (w)))
2349 return; 2984 return;
2350 2985
2351 pri_adjust (EV_A_ (W)w); 2986 pri_adjust (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2352 2989
2353 { 2990 {
2354 int active = ++idlecnt [ABSPRI (w)]; 2991 int active = ++idlecnt [ABSPRI (w)];
2355 2992
2356 ++idleall; 2993 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 2994 ev_start (EV_A_ (W)w, active);
2358 2995
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2996 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 2997 idles [ABSPRI (w)][active - 1] = w;
2361 } 2998 }
2999
3000 EV_FREQUENT_CHECK;
2362} 3001}
2363 3002
2364void 3003void
2365ev_idle_stop (EV_P_ ev_idle *w) 3004ev_idle_stop (EV_P_ ev_idle *w)
2366{ 3005{
2367 clear_pending (EV_A_ (W)w); 3006 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3007 if (expect_false (!ev_is_active (w)))
2369 return; 3008 return;
2370 3009
3010 EV_FREQUENT_CHECK;
3011
2371 { 3012 {
2372 int active = ((W)w)->active; 3013 int active = ev_active (w);
2373 3014
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3015 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3016 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 3017
2377 ev_stop (EV_A_ (W)w); 3018 ev_stop (EV_A_ (W)w);
2378 --idleall; 3019 --idleall;
2379 } 3020 }
3021
3022 EV_FREQUENT_CHECK;
2380} 3023}
2381#endif 3024#endif
2382 3025
2383void 3026void
2384ev_prepare_start (EV_P_ ev_prepare *w) 3027ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 3028{
2386 if (expect_false (ev_is_active (w))) 3029 if (expect_false (ev_is_active (w)))
2387 return; 3030 return;
3031
3032 EV_FREQUENT_CHECK;
2388 3033
2389 ev_start (EV_A_ (W)w, ++preparecnt); 3034 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3035 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 3036 prepares [preparecnt - 1] = w;
3037
3038 EV_FREQUENT_CHECK;
2392} 3039}
2393 3040
2394void 3041void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 3042ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 3043{
2397 clear_pending (EV_A_ (W)w); 3044 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3045 if (expect_false (!ev_is_active (w)))
2399 return; 3046 return;
2400 3047
3048 EV_FREQUENT_CHECK;
3049
2401 { 3050 {
2402 int active = ((W)w)->active; 3051 int active = ev_active (w);
3052
2403 prepares [active - 1] = prepares [--preparecnt]; 3053 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 3054 ev_active (prepares [active - 1]) = active;
2405 } 3055 }
2406 3056
2407 ev_stop (EV_A_ (W)w); 3057 ev_stop (EV_A_ (W)w);
3058
3059 EV_FREQUENT_CHECK;
2408} 3060}
2409 3061
2410void 3062void
2411ev_check_start (EV_P_ ev_check *w) 3063ev_check_start (EV_P_ ev_check *w)
2412{ 3064{
2413 if (expect_false (ev_is_active (w))) 3065 if (expect_false (ev_is_active (w)))
2414 return; 3066 return;
3067
3068 EV_FREQUENT_CHECK;
2415 3069
2416 ev_start (EV_A_ (W)w, ++checkcnt); 3070 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3071 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 3072 checks [checkcnt - 1] = w;
3073
3074 EV_FREQUENT_CHECK;
2419} 3075}
2420 3076
2421void 3077void
2422ev_check_stop (EV_P_ ev_check *w) 3078ev_check_stop (EV_P_ ev_check *w)
2423{ 3079{
2424 clear_pending (EV_A_ (W)w); 3080 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 3081 if (expect_false (!ev_is_active (w)))
2426 return; 3082 return;
2427 3083
3084 EV_FREQUENT_CHECK;
3085
2428 { 3086 {
2429 int active = ((W)w)->active; 3087 int active = ev_active (w);
3088
2430 checks [active - 1] = checks [--checkcnt]; 3089 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 3090 ev_active (checks [active - 1]) = active;
2432 } 3091 }
2433 3092
2434 ev_stop (EV_A_ (W)w); 3093 ev_stop (EV_A_ (W)w);
3094
3095 EV_FREQUENT_CHECK;
2435} 3096}
2436 3097
2437#if EV_EMBED_ENABLE 3098#if EV_EMBED_ENABLE
2438void noinline 3099void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 3100ev_embed_sweep (EV_P_ ev_embed *w)
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3127 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 } 3128 }
2468 } 3129 }
2469} 3130}
2470 3131
3132static void
3133embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3134{
3135 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3136
3137 ev_embed_stop (EV_A_ w);
3138
3139 {
3140 struct ev_loop *loop = w->other;
3141
3142 ev_loop_fork (EV_A);
3143 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3144 }
3145
3146 ev_embed_start (EV_A_ w);
3147}
3148
2471#if 0 3149#if 0
2472static void 3150static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3151embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{ 3152{
2475 ev_idle_stop (EV_A_ idle); 3153 ev_idle_stop (EV_A_ idle);
2482 if (expect_false (ev_is_active (w))) 3160 if (expect_false (ev_is_active (w)))
2483 return; 3161 return;
2484 3162
2485 { 3163 {
2486 struct ev_loop *loop = w->other; 3164 struct ev_loop *loop = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3165 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3166 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 3167 }
3168
3169 EV_FREQUENT_CHECK;
2490 3170
2491 ev_set_priority (&w->io, ev_priority (w)); 3171 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 3172 ev_io_start (EV_A_ &w->io);
2493 3173
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 3174 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 3175 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 3176 ev_prepare_start (EV_A_ &w->prepare);
2497 3177
3178 ev_fork_init (&w->fork, embed_fork_cb);
3179 ev_fork_start (EV_A_ &w->fork);
3180
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3181 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 3182
2500 ev_start (EV_A_ (W)w, 1); 3183 ev_start (EV_A_ (W)w, 1);
3184
3185 EV_FREQUENT_CHECK;
2501} 3186}
2502 3187
2503void 3188void
2504ev_embed_stop (EV_P_ ev_embed *w) 3189ev_embed_stop (EV_P_ ev_embed *w)
2505{ 3190{
2506 clear_pending (EV_A_ (W)w); 3191 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 3192 if (expect_false (!ev_is_active (w)))
2508 return; 3193 return;
2509 3194
3195 EV_FREQUENT_CHECK;
3196
2510 ev_io_stop (EV_A_ &w->io); 3197 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 3198 ev_prepare_stop (EV_A_ &w->prepare);
3199 ev_fork_stop (EV_A_ &w->fork);
2512 3200
2513 ev_stop (EV_A_ (W)w); 3201 EV_FREQUENT_CHECK;
2514} 3202}
2515#endif 3203#endif
2516 3204
2517#if EV_FORK_ENABLE 3205#if EV_FORK_ENABLE
2518void 3206void
2519ev_fork_start (EV_P_ ev_fork *w) 3207ev_fork_start (EV_P_ ev_fork *w)
2520{ 3208{
2521 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
2522 return; 3210 return;
3211
3212 EV_FREQUENT_CHECK;
2523 3213
2524 ev_start (EV_A_ (W)w, ++forkcnt); 3214 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3215 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 3216 forks [forkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
2527} 3219}
2528 3220
2529void 3221void
2530ev_fork_stop (EV_P_ ev_fork *w) 3222ev_fork_stop (EV_P_ ev_fork *w)
2531{ 3223{
2532 clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
2534 return; 3226 return;
2535 3227
3228 EV_FREQUENT_CHECK;
3229
2536 { 3230 {
2537 int active = ((W)w)->active; 3231 int active = ev_active (w);
3232
2538 forks [active - 1] = forks [--forkcnt]; 3233 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 3234 ev_active (forks [active - 1]) = active;
2540 } 3235 }
2541 3236
2542 ev_stop (EV_A_ (W)w); 3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
2543} 3240}
2544#endif 3241#endif
2545 3242
2546#if EV_ASYNC_ENABLE 3243#if EV_ASYNC_ENABLE
2547void 3244void
2549{ 3246{
2550 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
2551 return; 3248 return;
2552 3249
2553 evpipe_init (EV_A); 3250 evpipe_init (EV_A);
3251
3252 EV_FREQUENT_CHECK;
2554 3253
2555 ev_start (EV_A_ (W)w, ++asynccnt); 3254 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 3256 asyncs [asynccnt - 1] = w;
3257
3258 EV_FREQUENT_CHECK;
2558} 3259}
2559 3260
2560void 3261void
2561ev_async_stop (EV_P_ ev_async *w) 3262ev_async_stop (EV_P_ ev_async *w)
2562{ 3263{
2563 clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 3265 if (expect_false (!ev_is_active (w)))
2565 return; 3266 return;
2566 3267
3268 EV_FREQUENT_CHECK;
3269
2567 { 3270 {
2568 int active = ((W)w)->active; 3271 int active = ev_active (w);
3272
2569 asyncs [active - 1] = asyncs [--asynccnt]; 3273 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 3274 ev_active (asyncs [active - 1]) = active;
2571 } 3275 }
2572 3276
2573 ev_stop (EV_A_ (W)w); 3277 ev_stop (EV_A_ (W)w);
3278
3279 EV_FREQUENT_CHECK;
2574} 3280}
2575 3281
2576void 3282void
2577ev_async_send (EV_P_ ev_async *w) 3283ev_async_send (EV_P_ ev_async *w)
2578{ 3284{
2595once_cb (EV_P_ struct ev_once *once, int revents) 3301once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 3302{
2597 void (*cb)(int revents, void *arg) = once->cb; 3303 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 3304 void *arg = once->arg;
2599 3305
2600 ev_io_stop (EV_A_ &once->io); 3306 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 3307 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 3308 ev_free (once);
2603 3309
2604 cb (revents, arg); 3310 cb (revents, arg);
2605} 3311}
2606 3312
2607static void 3313static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 3314once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 3315{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3317
3318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 3319}
2612 3320
2613static void 3321static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 3322once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 3323{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3325
3326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 3327}
2618 3328
2619void 3329void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3330ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 3331{
2643 ev_timer_set (&once->to, timeout, 0.); 3353 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 3354 ev_timer_start (EV_A_ &once->to);
2645 } 3355 }
2646} 3356}
2647 3357
3358/*****************************************************************************/
3359
3360#if EV_WALK_ENABLE
3361void
3362ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3363{
3364 int i, j;
3365 ev_watcher_list *wl, *wn;
3366
3367 if (types & (EV_IO | EV_EMBED))
3368 for (i = 0; i < anfdmax; ++i)
3369 for (wl = anfds [i].head; wl; )
3370 {
3371 wn = wl->next;
3372
3373#if EV_EMBED_ENABLE
3374 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3375 {
3376 if (types & EV_EMBED)
3377 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3378 }
3379 else
3380#endif
3381#if EV_USE_INOTIFY
3382 if (ev_cb ((ev_io *)wl) == infy_cb)
3383 ;
3384 else
3385#endif
3386 if ((ev_io *)wl != &pipe_w)
3387 if (types & EV_IO)
3388 cb (EV_A_ EV_IO, wl);
3389
3390 wl = wn;
3391 }
3392
3393 if (types & (EV_TIMER | EV_STAT))
3394 for (i = timercnt + HEAP0; i-- > HEAP0; )
3395#if EV_STAT_ENABLE
3396 /*TODO: timer is not always active*/
3397 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3398 {
3399 if (types & EV_STAT)
3400 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3401 }
3402 else
3403#endif
3404 if (types & EV_TIMER)
3405 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3406
3407#if EV_PERIODIC_ENABLE
3408 if (types & EV_PERIODIC)
3409 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3410 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3411#endif
3412
3413#if EV_IDLE_ENABLE
3414 if (types & EV_IDLE)
3415 for (j = NUMPRI; i--; )
3416 for (i = idlecnt [j]; i--; )
3417 cb (EV_A_ EV_IDLE, idles [j][i]);
3418#endif
3419
3420#if EV_FORK_ENABLE
3421 if (types & EV_FORK)
3422 for (i = forkcnt; i--; )
3423 if (ev_cb (forks [i]) != embed_fork_cb)
3424 cb (EV_A_ EV_FORK, forks [i]);
3425#endif
3426
3427#if EV_ASYNC_ENABLE
3428 if (types & EV_ASYNC)
3429 for (i = asynccnt; i--; )
3430 cb (EV_A_ EV_ASYNC, asyncs [i]);
3431#endif
3432
3433 if (types & EV_PREPARE)
3434 for (i = preparecnt; i--; )
3435#if EV_EMBED_ENABLE
3436 if (ev_cb (prepares [i]) != embed_prepare_cb)
3437#endif
3438 cb (EV_A_ EV_PREPARE, prepares [i]);
3439
3440 if (types & EV_CHECK)
3441 for (i = checkcnt; i--; )
3442 cb (EV_A_ EV_CHECK, checks [i]);
3443
3444 if (types & EV_SIGNAL)
3445 for (i = 0; i < signalmax; ++i)
3446 for (wl = signals [i].head; wl; )
3447 {
3448 wn = wl->next;
3449 cb (EV_A_ EV_SIGNAL, wl);
3450 wl = wn;
3451 }
3452
3453 if (types & EV_CHILD)
3454 for (i = EV_PID_HASHSIZE; i--; )
3455 for (wl = childs [i]; wl; )
3456 {
3457 wn = wl->next;
3458 cb (EV_A_ EV_CHILD, wl);
3459 wl = wn;
3460 }
3461/* EV_STAT 0x00001000 /* stat data changed */
3462/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3463}
3464#endif
3465
2648#if EV_MULTIPLICITY 3466#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 3467 #include "ev_wrap.h"
2650#endif 3468#endif
2651 3469
2652#ifdef __cplusplus 3470#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines