ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.235 by root, Wed May 7 14:45:17 2008 UTC vs.
Revision 1.301 by root, Wed Jul 15 16:58:53 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 391# define inline_speed static noinline
316#else 392#else
317# define inline_speed static inline 393# define inline_speed static inline
318#endif 394#endif
319 395
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
322 403
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
325 406
326typedef ev_watcher *W; 407typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
329 410
330#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
332 413
333#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 422#endif
338 423
339#ifdef _WIN32 424#ifdef _WIN32
340# include "ev_win32.c" 425# include "ev_win32.c"
349{ 434{
350 syserr_cb = cb; 435 syserr_cb = cb;
351} 436}
352 437
353static void noinline 438static void noinline
354syserr (const char *msg) 439ev_syserr (const char *msg)
355{ 440{
356 if (!msg) 441 if (!msg)
357 msg = "(libev) system error"; 442 msg = "(libev) system error";
358 443
359 if (syserr_cb) 444 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
407 492
408/*****************************************************************************/ 493/*****************************************************************************/
409 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
410typedef struct 499typedef struct
411{ 500{
412 WL head; 501 WL head;
413 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
415#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 510 SOCKET handle;
417#endif 511#endif
418} ANFD; 512} ANFD;
419 513
514/* stores the pending event set for a given watcher */
420typedef struct 515typedef struct
421{ 516{
422 W w; 517 W w;
423 int events; 518 int events; /* the pending event set for the given watcher */
424} ANPENDING; 519} ANPENDING;
425 520
426#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
427typedef struct 523typedef struct
428{ 524{
429 WL head; 525 WL head;
430} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
431#endif 547#endif
432 548
433#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
434 550
435 struct ev_loop 551 struct ev_loop
454 570
455 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
456 572
457#endif 573#endif
458 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
459/*****************************************************************************/ 587/*****************************************************************************/
460 588
589#ifndef EV_HAVE_EV_TIME
461ev_tstamp 590ev_tstamp
462ev_time (void) 591ev_time (void)
463{ 592{
464#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
465 struct timespec ts; 596 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 599 }
600#endif
601
469 struct timeval tv; 602 struct timeval tv;
470 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 605}
606#endif
474 607
475ev_tstamp inline_size 608inline_size ev_tstamp
476get_clock (void) 609get_clock (void)
477{ 610{
478#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
480 { 613 {
513 struct timeval tv; 646 struct timeval tv;
514 647
515 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
518 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
519#endif 655#endif
520 } 656 }
521} 657}
522 658
523/*****************************************************************************/ 659/*****************************************************************************/
524 660
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 662
527int inline_size 663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
528array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
529{ 667{
530 int ncur = cur + 1; 668 int ncur = cur + 1;
531 669
532 do 670 do
549array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
550{ 688{
551 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
553} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 695
555#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
557 { \ 698 { \
558 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 712 }
572#endif 713#endif
573 714
574#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 717
577/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
578 725
579void noinline 726void noinline
580ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
581{ 728{
582 W w_ = (W)w; 729 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
593 } 740 }
594} 741}
595 742
596void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 760{
599 int i; 761 int i;
600 762
601 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
603} 765}
604 766
605/*****************************************************************************/ 767/*****************************************************************************/
606 768
607void inline_size 769inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
622{ 771{
623 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
624 ev_io *w; 773 ev_io *w;
625 774
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 779 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
632 } 781 }
633} 782}
634 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
635void 795void
636ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 797{
638 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
640} 800}
641 801
642void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
643fd_reify (EV_P) 805fd_reify (EV_P)
644{ 806{
645 int i; 807 int i;
646 808
647 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 818 events |= (unsigned char)w->events;
657 819
658#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
659 if (events) 821 if (events)
660 { 822 {
661 unsigned long argp; 823 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else 826 #else
665 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
666 #endif 828 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 830 }
669#endif 831#endif
670 832
671 { 833 {
672 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
674 836
675 anfd->reify = 0; 837 anfd->reify = 0;
676 anfd->events = events; 838 anfd->events = events;
677 839
678 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
680 } 842 }
681 } 843 }
682 844
683 fdchangecnt = 0; 845 fdchangecnt = 0;
684} 846}
685 847
686void inline_size 848/* something about the given fd changed */
849inline_size void
687fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
688{ 851{
689 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
691 854
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
697 } 860 }
698} 861}
699 862
700void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
701fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
702{ 866{
703 ev_io *w; 867 ev_io *w;
704 868
705 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 873 }
710} 874}
711 875
712int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
713fd_valid (int fd) 878fd_valid (int fd)
714{ 879{
715#ifdef _WIN32 880#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
717#else 882#else
725{ 890{
726 int fd; 891 int fd;
727 892
728 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 894 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
732} 897}
733 898
734/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 900static void noinline
753 918
754 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 920 if (anfds [fd].events)
756 { 921 {
757 anfds [fd].events = 0; 922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 925 }
760} 926}
761 927
762/*****************************************************************************/ 928/*****************************************************************************/
929
930/*
931 * the heap functions want a real array index. array index 0 uis guaranteed to not
932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933 * the branching factor of the d-tree.
934 */
763 935
764/* 936/*
765 * at the moment we allow libev the luxury of two heaps, 937 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient. 939 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers. 940 * the difference is about 5% with 50000+ watchers.
769 */ 941 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP 942#if EV_USE_4HEAP
772 943
944#define DHEAP 4
773#define HEAP0 3 /* index of first element in heap */ 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
774 948
775/* towards the root */ 949/* away from the root */
776void inline_speed 950inline_speed void
777upheap (WT *heap, int k) 951downheap (ANHE *heap, int N, int k)
778{ 952{
779 WT w = heap [k]; 953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
780 955
781 for (;;) 956 for (;;)
782 { 957 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
788 heap [k] = heap [p];
789 ev_active (heap [k]) = k;
790 k = p;
791 }
792
793 heap [k] = w;
794 ev_active (heap [k]) = k;
795}
796
797/* away from the root */
798void inline_speed
799downheap (WT *heap, int N, int k)
800{
801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
803
804 for (;;)
805 {
806 ev_tstamp minat; 958 ev_tstamp minat;
807 WT *minpos; 959 ANHE *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0; 960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
809 961
810 // find minimum child 962 /* find minimum child */
811 if (expect_true (pos +3 < E)) 963 if (expect_true (pos + DHEAP - 1 < E))
812 { 964 {
813 (minpos = pos + 0), (minat = (*minpos)->at); 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
814 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at); 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
815 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at); 967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
816 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at); 968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
817 } 976 }
818 else 977 else
819 {
820 if (pos >= E)
821 break;
822
823 (minpos = pos + 0), (minat = (*minpos)->at);
824 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
825 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
826 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
827 }
828
829 if (w->at <= minat)
830 break; 978 break;
831 979
832 ev_active (*minpos) = k; 980 if (ANHE_at (he) <= minat)
981 break;
982
833 heap [k] = *minpos; 983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
834 985
835 k = minpos - heap; 986 k = minpos - heap;
836 } 987 }
837 988
838 heap [k] = w; 989 heap [k] = he;
839 ev_active (heap [k]) = k; 990 ev_active (ANHE_w (he)) = k;
840} 991}
841 992
842#else // 4HEAP 993#else /* 4HEAP */
843 994
844#define HEAP0 1 995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
845 998
846/* towards the root */ 999/* away from the root */
847void inline_speed 1000inline_speed void
848upheap (WT *heap, int k) 1001downheap (ANHE *heap, int N, int k)
849{ 1002{
850 WT w = heap [k]; 1003 ANHE he = heap [k];
851 1004
852 for (;;) 1005 for (;;)
853 { 1006 {
854 int p = k >> 1; 1007 int c = k << 1;
855 1008
856 /* maybe we could use a dummy element at heap [0]? */ 1009 if (c > N + HEAP0 - 1)
857 if (!p || heap [p]->at <= w->at)
858 break; 1010 break;
859 1011
860 heap [k] = heap [p]; 1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
861 ev_active (heap [k]) = k; 1013 ? 1 : 0;
862 k = p;
863 }
864 1014
865 heap [k] = w; 1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
866 ev_active (heap [k]) = k;
867}
868
869/* away from the root */
870void inline_speed
871downheap (WT *heap, int N, int k)
872{
873 WT w = heap [k];
874
875 for (;;)
876 {
877 int c = k << 1;
878
879 if (c > N)
880 break; 1016 break;
881 1017
882 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
883 ? 1 : 0;
884
885 if (w->at <= heap [c]->at)
886 break;
887
888 heap [k] = heap [c]; 1018 heap [k] = heap [c];
889 ((W)heap [k])->active = k; 1019 ev_active (ANHE_w (heap [k])) = k;
890 1020
891 k = c; 1021 k = c;
892 } 1022 }
893 1023
894 heap [k] = w; 1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
1042 heap [k] = heap [p];
895 ev_active (heap [k]) = k; 1043 ev_active (ANHE_w (heap [k])) = k;
896} 1044 k = p;
897#endif 1045 }
898 1046
899void inline_size 1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
1052inline_size void
900adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
901{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
902 upheap (heap, k); 1056 upheap (heap, k);
1057 else
903 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
904} 1071}
905 1072
906/*****************************************************************************/ 1073/*****************************************************************************/
907 1074
1075/* associate signal watchers to a signal signal */
908typedef struct 1076typedef struct
909{ 1077{
910 WL head; 1078 WL head;
911 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
912} ANSIG; 1080} ANSIG;
914static ANSIG *signals; 1082static ANSIG *signals;
915static int signalmax; 1083static int signalmax;
916 1084
917static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
918 1086
919void inline_size
920signals_init (ANSIG *base, int count)
921{
922 while (count--)
923 {
924 base->head = 0;
925 base->gotsig = 0;
926
927 ++base;
928 }
929}
930
931/*****************************************************************************/ 1087/*****************************************************************************/
932 1088
933void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
934fd_intern (int fd) 1092fd_intern (int fd)
935{ 1093{
936#ifdef _WIN32 1094#ifdef _WIN32
937 int arg = 1; 1095 unsigned long arg = 1;
938 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
939#else 1097#else
940 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
941 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
942#endif 1100#endif
943} 1101}
944 1102
945static void noinline 1103static void noinline
946evpipe_init (EV_P) 1104evpipe_init (EV_P)
947{ 1105{
948 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
949 { 1107 {
950#if EV_USE_EVENTFD 1108#if EV_USE_EVENTFD
951 if ((evfd = eventfd (0, 0)) >= 0) 1109 if ((evfd = eventfd (0, 0)) >= 0)
952 { 1110 {
953 evpipe [0] = -1; 1111 evpipe [0] = -1;
954 fd_intern (evfd); 1112 fd_intern (evfd);
955 ev_io_set (&pipeev, evfd, EV_READ); 1113 ev_io_set (&pipe_w, evfd, EV_READ);
956 } 1114 }
957 else 1115 else
958#endif 1116#endif
959 { 1117 {
960 while (pipe (evpipe)) 1118 while (pipe (evpipe))
961 syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
962 1120
963 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
964 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
965 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
966 } 1124 }
967 1125
968 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
969 ev_unref (EV_A); /* watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
970 } 1128 }
971} 1129}
972 1130
973void inline_size 1131inline_size void
974evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
975{ 1133{
976 if (!*flag) 1134 if (!*flag)
977 { 1135 {
978 int old_errno = errno; /* save errno because write might clobber it */ 1136 int old_errno = errno; /* save errno because write might clobber it */
991 1149
992 errno = old_errno; 1150 errno = old_errno;
993 } 1151 }
994} 1152}
995 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
996static void 1156static void
997pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
998{ 1158{
999#if EV_USE_EVENTFD 1159#if EV_USE_EVENTFD
1000 if (evfd >= 0) 1160 if (evfd >= 0)
1056ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
1057{ 1217{
1058 WL w; 1218 WL w;
1059 1219
1060#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
1061 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1062#endif 1222#endif
1063 1223
1064 --signum; 1224 --signum;
1065 1225
1066 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
1082 1242
1083#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
1084# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
1085#endif 1245#endif
1086 1246
1087void inline_speed 1247/* handle a single child status event */
1248inline_speed void
1088child_reap (EV_P_ int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
1089{ 1250{
1090 ev_child *w; 1251 ev_child *w;
1091 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1092 1253
1105 1266
1106#ifndef WCONTINUED 1267#ifndef WCONTINUED
1107# define WCONTINUED 0 1268# define WCONTINUED 0
1108#endif 1269#endif
1109 1270
1271/* called on sigchld etc., calls waitpid */
1110static void 1272static void
1111childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
1112{ 1274{
1113 int pid, status; 1275 int pid, status;
1114 1276
1195 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
1196 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1197 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
1198#endif 1360#endif
1199#ifdef __APPLE__ 1361#ifdef __APPLE__
1200 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
1201 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1202#endif 1365#endif
1203 1366
1204 return flags; 1367 return flags;
1205} 1368}
1206 1369
1220ev_backend (EV_P) 1383ev_backend (EV_P)
1221{ 1384{
1222 return backend; 1385 return backend;
1223} 1386}
1224 1387
1388#if EV_MINIMAL < 2
1225unsigned int 1389unsigned int
1226ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1227{ 1391{
1228 return loop_count; 1392 return loop_count;
1229} 1393}
1230 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1231void 1401void
1232ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1233{ 1403{
1234 io_blocktime = interval; 1404 io_blocktime = interval;
1235} 1405}
1238ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1239{ 1409{
1240 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1241} 1411}
1242 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1243static void noinline 1438static void noinline
1244loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1245{ 1440{
1246 if (!backend) 1441 if (!backend)
1247 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1248#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1249 { 1455 {
1250 struct timespec ts; 1456 struct timespec ts;
1457
1251 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1252 have_monotonic = 1; 1459 have_monotonic = 1;
1253 } 1460 }
1254#endif 1461#endif
1255 1462
1256 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1257 mn_now = get_clock (); 1464 mn_now = get_clock ();
1258 now_floor = mn_now; 1465 now_floor = mn_now;
1259 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1260 1470
1261 io_blocktime = 0.; 1471 io_blocktime = 0.;
1262 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1263 backend = 0; 1473 backend = 0;
1264 backend_fd = -1; 1474 backend_fd = -1;
1295#endif 1505#endif
1296#if EV_USE_SELECT 1506#if EV_USE_SELECT
1297 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1298#endif 1508#endif
1299 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1300 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1301 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1302 } 1514 }
1303} 1515}
1304 1516
1517/* free up a loop structure */
1305static void noinline 1518static void noinline
1306loop_destroy (EV_P) 1519loop_destroy (EV_P)
1307{ 1520{
1308 int i; 1521 int i;
1309 1522
1310 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1311 { 1524 {
1312 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1313 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1314 1527
1315#if EV_USE_EVENTFD 1528#if EV_USE_EVENTFD
1316 if (evfd >= 0) 1529 if (evfd >= 0)
1317 close (evfd); 1530 close (evfd);
1318#endif 1531#endif
1357 } 1570 }
1358 1571
1359 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1360 1573
1361 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1362 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1363 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1364#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1365 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1366#endif 1580#endif
1375 1589
1376 backend = 0; 1590 backend = 0;
1377} 1591}
1378 1592
1379#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1380void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1381#endif 1595#endif
1382 1596
1383void inline_size 1597inline_size void
1384loop_fork (EV_P) 1598loop_fork (EV_P)
1385{ 1599{
1386#if EV_USE_PORT 1600#if EV_USE_PORT
1387 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1388#endif 1602#endif
1394#endif 1608#endif
1395#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1396 infy_fork (EV_A); 1610 infy_fork (EV_A);
1397#endif 1611#endif
1398 1612
1399 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1400 { 1614 {
1401 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1402 /* while we modify the fd vars */ 1616 /* while we modify the fd vars */
1403 gotsig = 1; 1617 gotsig = 1;
1404#if EV_ASYNC_ENABLE 1618#if EV_ASYNC_ENABLE
1405 gotasync = 1; 1619 gotasync = 1;
1406#endif 1620#endif
1407 1621
1408 ev_ref (EV_A); 1622 ev_ref (EV_A);
1409 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1410 1624
1411#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1412 if (evfd >= 0) 1626 if (evfd >= 0)
1413 close (evfd); 1627 close (evfd);
1414#endif 1628#endif
1419 close (evpipe [1]); 1633 close (evpipe [1]);
1420 } 1634 }
1421 1635
1422 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1423 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1424 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1425 } 1639 }
1426 1640
1427 postfork = 0; 1641 postfork = 0;
1428} 1642}
1429 1643
1430#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1431struct ev_loop * 1646struct ev_loop *
1432ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1433{ 1648{
1434 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1435 1650
1452 1667
1453void 1668void
1454ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1455{ 1670{
1456 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1672}
1673#endif /* multiplicity */
1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1457} 1773}
1458#endif 1774#endif
1459 1775
1460#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1461struct ev_loop * 1777struct ev_loop *
1496{ 1812{
1497#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1498 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1499#endif 1815#endif
1500 1816
1817 ev_default_loop_ptr = 0;
1818
1501#ifndef _WIN32 1819#ifndef _WIN32
1502 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1503 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1504#endif 1822#endif
1505 1823
1511{ 1829{
1512#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1513 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1514#endif 1832#endif
1515 1833
1516 if (backend)
1517 postfork = 1; /* must be in line with ev_loop_fork */ 1834 postfork = 1; /* must be in line with ev_loop_fork */
1518} 1835}
1519 1836
1520/*****************************************************************************/ 1837/*****************************************************************************/
1521 1838
1522void 1839void
1523ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1524{ 1841{
1525 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1526} 1843}
1527 1844
1528void inline_speed 1845unsigned int
1529call_pending (EV_P) 1846ev_pending_count (EV_P)
1847{
1848 int pri;
1849 unsigned int count = 0;
1850
1851 for (pri = NUMPRI; pri--; )
1852 count += pendingcnt [pri];
1853
1854 return count;
1855}
1856
1857void noinline
1858ev_invoke_pending (EV_P)
1530{ 1859{
1531 int pri; 1860 int pri;
1532 1861
1533 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
1534 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
1535 { 1864 {
1536 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1537 1866
1538 if (expect_true (p->w))
1539 {
1540 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868 /* ^ this is no longer true, as pending_w could be here */
1541 1869
1542 p->w->pending = 0; 1870 p->w->pending = 0;
1543 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
1544 } 1872 EV_FREQUENT_CHECK;
1545 } 1873 }
1546} 1874}
1547 1875
1548#if EV_IDLE_ENABLE 1876#if EV_IDLE_ENABLE
1549void inline_size 1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1550idle_reify (EV_P) 1880idle_reify (EV_P)
1551{ 1881{
1552 if (expect_false (idleall)) 1882 if (expect_false (idleall))
1553 { 1883 {
1554 int pri; 1884 int pri;
1566 } 1896 }
1567 } 1897 }
1568} 1898}
1569#endif 1899#endif
1570 1900
1571void inline_size 1901/* make timers pending */
1902inline_size void
1572timers_reify (EV_P) 1903timers_reify (EV_P)
1573{ 1904{
1905 EV_FREQUENT_CHECK;
1906
1574 while (timercnt && ev_at (timers [HEAP0]) <= mn_now) 1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1575 { 1908 {
1576 ev_timer *w = (ev_timer *)timers [HEAP0]; 1909 do
1577
1578 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1579
1580 /* first reschedule or stop timer */
1581 if (w->repeat)
1582 { 1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
1583 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1584 1923
1585 ev_at (w) += w->repeat; 1924 ANHE_at_cache (timers [HEAP0]);
1586 if (ev_at (w) < mn_now)
1587 ev_at (w) = mn_now;
1588
1589 downheap (timers, timercnt, HEAP0); 1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1590 } 1932 }
1591 else 1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1592 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1593 1934
1594 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1595 } 1936 }
1596} 1937}
1597 1938
1598#if EV_PERIODIC_ENABLE 1939#if EV_PERIODIC_ENABLE
1599void inline_size 1940/* make periodics pending */
1941inline_size void
1600periodics_reify (EV_P) 1942periodics_reify (EV_P)
1601{ 1943{
1944 EV_FREQUENT_CHECK;
1945
1602 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now) 1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1603 { 1947 {
1604 ev_periodic *w = (ev_periodic *)periodics [HEAP0]; 1948 int feed_count = 0;
1605 1949
1606 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1950 do
1607
1608 /* first reschedule or stop timer */
1609 if (w->reschedule_cb)
1610 { 1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1611 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1612 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now)); 1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1613 downheap (periodics, periodiccnt, 1); 1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1614 } 1990 }
1615 else if (w->interval) 1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1616 {
1617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1618 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1619 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1620 downheap (periodics, periodiccnt, HEAP0);
1621 }
1622 else
1623 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1624 1992
1625 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1626 } 1994 }
1627} 1995}
1628 1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1629static void noinline 1999static void noinline
1630periodics_reschedule (EV_P) 2000periodics_reschedule (EV_P)
1631{ 2001{
1632 int i; 2002 int i;
1633 2003
1634 /* adjust periodics after time jump */ 2004 /* adjust periodics after time jump */
1635 for (i = 1; i <= periodiccnt; ++i) 2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1636 { 2006 {
1637 ev_periodic *w = (ev_periodic *)periodics [i]; 2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1638 2008
1639 if (w->reschedule_cb) 2009 if (w->reschedule_cb)
1640 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1641 else if (w->interval) 2011 else if (w->interval)
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013
2014 ANHE_at_cache (periodics [i]);
2015 }
2016
2017 reheap (periodics, periodiccnt);
2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
1643 } 2028 {
1644 2029 ANHE *he = timers + i + HEAP0;
1645 /* now rebuild the heap */ 2030 ANHE_w (*he)->at += adjust;
1646 for (i = periodiccnt >> 1; --i; ) 2031 ANHE_at_cache (*he);
1647 downheap (periodics, periodiccnt, i + HEAP0); 2032 }
1648} 2033}
1649#endif
1650 2034
1651void inline_speed 2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
1652time_update (EV_P_ ev_tstamp max_block) 2038time_update (EV_P_ ev_tstamp max_block)
1653{ 2039{
1654 int i;
1655
1656#if EV_USE_MONOTONIC 2040#if EV_USE_MONOTONIC
1657 if (expect_true (have_monotonic)) 2041 if (expect_true (have_monotonic))
1658 { 2042 {
2043 int i;
1659 ev_tstamp odiff = rtmn_diff; 2044 ev_tstamp odiff = rtmn_diff;
1660 2045
1661 mn_now = get_clock (); 2046 mn_now = get_clock ();
1662 2047
1663 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1690 mn_now = get_clock (); 2075 mn_now = get_clock ();
1691 now_floor = mn_now; 2076 now_floor = mn_now;
1692 } 2077 }
1693 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1694# if EV_PERIODIC_ENABLE 2081# if EV_PERIODIC_ENABLE
1695 periodics_reschedule (EV_A); 2082 periodics_reschedule (EV_A);
1696# endif 2083# endif
1697 /* no timer adjustment, as the monotonic clock doesn't jump */
1698 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1699 } 2084 }
1700 else 2085 else
1701#endif 2086#endif
1702 { 2087 {
1703 ev_rt_now = ev_time (); 2088 ev_rt_now = ev_time ();
1704 2089
1705 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1706 { 2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1707#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1708 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1709#endif 2096#endif
1710 /* adjust timers. this is easy, as the offset is the same for all of them */
1711 for (i = 1; i <= timercnt; ++i)
1712 ev_at (timers [i]) += ev_rt_now - mn_now;
1713 } 2097 }
1714 2098
1715 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1716 } 2100 }
1717} 2101}
1718 2102
1719void 2103void
1720ev_ref (EV_P)
1721{
1722 ++activecnt;
1723}
1724
1725void
1726ev_unref (EV_P)
1727{
1728 --activecnt;
1729}
1730
1731static int loop_done;
1732
1733void
1734ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1735{ 2105{
2106#if EV_MINIMAL < 2
2107 ++loop_depth;
2108#endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
1736 loop_done = EVUNLOOP_CANCEL; 2112 loop_done = EVUNLOOP_CANCEL;
1737 2113
1738 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1739 2115
1740 do 2116 do
1741 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
1742#ifndef _WIN32 2122#ifndef _WIN32
1743 if (expect_false (curpid)) /* penalise the forking check even more */ 2123 if (expect_false (curpid)) /* penalise the forking check even more */
1744 if (expect_false (getpid () != curpid)) 2124 if (expect_false (getpid () != curpid))
1745 { 2125 {
1746 curpid = getpid (); 2126 curpid = getpid ();
1752 /* we might have forked, so queue fork handlers */ 2132 /* we might have forked, so queue fork handlers */
1753 if (expect_false (postfork)) 2133 if (expect_false (postfork))
1754 if (forkcnt) 2134 if (forkcnt)
1755 { 2135 {
1756 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1757 call_pending (EV_A); 2137 EV_INVOKE_PENDING;
1758 } 2138 }
1759#endif 2139#endif
1760 2140
1761 /* queue prepare watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1762 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1763 { 2143 {
1764 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1765 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1766 } 2146 }
1767 2147
1768 if (expect_false (!activecnt)) 2148 if (expect_false (loop_done))
1769 break; 2149 break;
1770 2150
1771 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1772 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1773 loop_fork (EV_A); 2153 loop_fork (EV_A);
1780 ev_tstamp waittime = 0.; 2160 ev_tstamp waittime = 0.;
1781 ev_tstamp sleeptime = 0.; 2161 ev_tstamp sleeptime = 0.;
1782 2162
1783 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1784 { 2164 {
2165 /* remember old timestamp for io_blocktime calculation */
2166 ev_tstamp prev_mn_now = mn_now;
2167
1785 /* update time to cancel out callback processing overhead */ 2168 /* update time to cancel out callback processing overhead */
1786 time_update (EV_A_ 1e100); 2169 time_update (EV_A_ 1e100);
1787 2170
1788 waittime = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1789 2172
1790 if (timercnt) 2173 if (timercnt)
1791 { 2174 {
1792 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge; 2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1793 if (waittime > to) waittime = to; 2176 if (waittime > to) waittime = to;
1794 } 2177 }
1795 2178
1796#if EV_PERIODIC_ENABLE 2179#if EV_PERIODIC_ENABLE
1797 if (periodiccnt) 2180 if (periodiccnt)
1798 { 2181 {
1799 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1800 if (waittime > to) waittime = to; 2183 if (waittime > to) waittime = to;
1801 } 2184 }
1802#endif 2185#endif
1803 2186
2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
1804 if (expect_false (waittime < timeout_blocktime)) 2188 if (expect_false (waittime < timeout_blocktime))
1805 waittime = timeout_blocktime; 2189 waittime = timeout_blocktime;
1806 2190
1807 sleeptime = waittime - backend_fudge; 2191 /* extra check because io_blocktime is commonly 0 */
1808
1809 if (expect_true (sleeptime > io_blocktime)) 2192 if (expect_false (io_blocktime))
1810 sleeptime = io_blocktime;
1811
1812 if (sleeptime)
1813 { 2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
1814 ev_sleep (sleeptime); 2201 ev_sleep (sleeptime);
1815 waittime -= sleeptime; 2202 waittime -= sleeptime;
2203 }
1816 } 2204 }
1817 } 2205 }
1818 2206
2207#if EV_MINIMAL < 2
1819 ++loop_count; 2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1820 backend_poll (EV_A_ waittime); 2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1821 2213
1822 /* update ev_rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
1823 time_update (EV_A_ waittime + sleeptime); 2215 time_update (EV_A_ waittime + sleeptime);
1824 } 2216 }
1825 2217
1836 2228
1837 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
1838 if (expect_false (checkcnt)) 2230 if (expect_false (checkcnt))
1839 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1840 2232
1841 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1842 } 2234 }
1843 while (expect_true ( 2235 while (expect_true (
1844 activecnt 2236 activecnt
1845 && !loop_done 2237 && !loop_done
1846 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1847 )); 2239 ));
1848 2240
1849 if (loop_done == EVUNLOOP_ONE) 2241 if (loop_done == EVUNLOOP_ONE)
1850 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
1851} 2247}
1852 2248
1853void 2249void
1854ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
1855{ 2251{
1856 loop_done = how; 2252 loop_done = how;
1857} 2253}
1858 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
1859/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
1860 2294
1861void inline_size 2295inline_size void
1862wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
1863{ 2297{
1864 elem->next = *head; 2298 elem->next = *head;
1865 *head = elem; 2299 *head = elem;
1866} 2300}
1867 2301
1868void inline_size 2302inline_size void
1869wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
1870{ 2304{
1871 while (*head) 2305 while (*head)
1872 { 2306 {
1873 if (*head == elem) 2307 if (*head == elem)
1878 2312
1879 head = &(*head)->next; 2313 head = &(*head)->next;
1880 } 2314 }
1881} 2315}
1882 2316
1883void inline_speed 2317/* internal, faster, version of ev_clear_pending */
2318inline_speed void
1884clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
1885{ 2320{
1886 if (w->pending) 2321 if (w->pending)
1887 { 2322 {
1888 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1889 w->pending = 0; 2324 w->pending = 0;
1890 } 2325 }
1891} 2326}
1892 2327
1893int 2328int
1897 int pending = w_->pending; 2332 int pending = w_->pending;
1898 2333
1899 if (expect_true (pending)) 2334 if (expect_true (pending))
1900 { 2335 {
1901 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
1902 w_->pending = 0; 2338 w_->pending = 0;
1903 p->w = 0;
1904 return p->events; 2339 return p->events;
1905 } 2340 }
1906 else 2341 else
1907 return 0; 2342 return 0;
1908} 2343}
1909 2344
1910void inline_size 2345inline_size void
1911pri_adjust (EV_P_ W w) 2346pri_adjust (EV_P_ W w)
1912{ 2347{
1913 int pri = w->priority; 2348 int pri = ev_priority (w);
1914 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1915 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1916 w->priority = pri; 2351 ev_set_priority (w, pri);
1917} 2352}
1918 2353
1919void inline_speed 2354inline_speed void
1920ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
1921{ 2356{
1922 pri_adjust (EV_A_ w); 2357 pri_adjust (EV_A_ w);
1923 w->active = active; 2358 w->active = active;
1924 ev_ref (EV_A); 2359 ev_ref (EV_A);
1925} 2360}
1926 2361
1927void inline_size 2362inline_size void
1928ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
1929{ 2364{
1930 ev_unref (EV_A); 2365 ev_unref (EV_A);
1931 w->active = 0; 2366 w->active = 0;
1932} 2367}
1939 int fd = w->fd; 2374 int fd = w->fd;
1940 2375
1941 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1942 return; 2377 return;
1943 2378
1944 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
1945 2383
1946 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
1947 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1948 wlist_add (&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
1949 2387
1950 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1951 w->events &= ~EV_IOFDSET; 2389 w->events &= ~EV__IOFDSET;
2390
2391 EV_FREQUENT_CHECK;
1952} 2392}
1953 2393
1954void noinline 2394void noinline
1955ev_io_stop (EV_P_ ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
1956{ 2396{
1957 clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1958 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
1959 return; 2399 return;
1960 2400
1961 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2402
2403 EV_FREQUENT_CHECK;
1962 2404
1963 wlist_del (&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
1964 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
1965 2407
1966 fd_change (EV_A_ w->fd, 1); 2408 fd_change (EV_A_ w->fd, 1);
2409
2410 EV_FREQUENT_CHECK;
1967} 2411}
1968 2412
1969void noinline 2413void noinline
1970ev_timer_start (EV_P_ ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
1971{ 2415{
1972 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1973 return; 2417 return;
1974 2418
1975 ev_at (w) += mn_now; 2419 ev_at (w) += mn_now;
1976 2420
1977 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1978 2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
1979 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1980 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2); 2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1981 timers [ev_active (w)] = (WT)w; 2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
2429 ANHE_at_cache (timers [ev_active (w)]);
1982 upheap (timers, ev_active (w)); 2430 upheap (timers, ev_active (w));
1983 2431
2432 EV_FREQUENT_CHECK;
2433
1984 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1985} 2435}
1986 2436
1987void noinline 2437void noinline
1988ev_timer_stop (EV_P_ ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
1989{ 2439{
1990 clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1991 if (expect_false (!ev_is_active (w))) 2441 if (expect_false (!ev_is_active (w)))
1992 return; 2442 return;
1993 2443
2444 EV_FREQUENT_CHECK;
2445
1994 { 2446 {
1995 int active = ev_active (w); 2447 int active = ev_active (w);
1996 2448
1997 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1998 2450
2451 --timercnt;
2452
1999 if (expect_true (active < timercnt + HEAP0 - 1)) 2453 if (expect_true (active < timercnt + HEAP0))
2000 { 2454 {
2001 timers [active] = timers [timercnt + HEAP0 - 1]; 2455 timers [active] = timers [timercnt + HEAP0];
2002 adjustheap (timers, timercnt, active); 2456 adjustheap (timers, timercnt, active);
2003 } 2457 }
2004
2005 --timercnt;
2006 } 2458 }
2459
2460 EV_FREQUENT_CHECK;
2007 2461
2008 ev_at (w) -= mn_now; 2462 ev_at (w) -= mn_now;
2009 2463
2010 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
2011} 2465}
2012 2466
2013void noinline 2467void noinline
2014ev_timer_again (EV_P_ ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
2015{ 2469{
2470 EV_FREQUENT_CHECK;
2471
2016 if (ev_is_active (w)) 2472 if (ev_is_active (w))
2017 { 2473 {
2018 if (w->repeat) 2474 if (w->repeat)
2019 { 2475 {
2020 ev_at (w) = mn_now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
2477 ANHE_at_cache (timers [ev_active (w)]);
2021 adjustheap (timers, timercnt, ev_active (w)); 2478 adjustheap (timers, timercnt, ev_active (w));
2022 } 2479 }
2023 else 2480 else
2024 ev_timer_stop (EV_A_ w); 2481 ev_timer_stop (EV_A_ w);
2025 } 2482 }
2026 else if (w->repeat) 2483 else if (w->repeat)
2027 { 2484 {
2028 ev_at (w) = w->repeat; 2485 ev_at (w) = w->repeat;
2029 ev_timer_start (EV_A_ w); 2486 ev_timer_start (EV_A_ w);
2030 } 2487 }
2488
2489 EV_FREQUENT_CHECK;
2490}
2491
2492ev_tstamp
2493ev_timer_remaining (EV_P_ ev_timer *w)
2494{
2495 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2031} 2496}
2032 2497
2033#if EV_PERIODIC_ENABLE 2498#if EV_PERIODIC_ENABLE
2034void noinline 2499void noinline
2035ev_periodic_start (EV_P_ ev_periodic *w) 2500ev_periodic_start (EV_P_ ev_periodic *w)
2039 2504
2040 if (w->reschedule_cb) 2505 if (w->reschedule_cb)
2041 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2506 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2042 else if (w->interval) 2507 else if (w->interval)
2043 { 2508 {
2044 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2509 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2045 /* this formula differs from the one in periodic_reify because we do not always round up */ 2510 /* this formula differs from the one in periodic_reify because we do not always round up */
2046 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2511 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2047 } 2512 }
2048 else 2513 else
2049 ev_at (w) = w->offset; 2514 ev_at (w) = w->offset;
2050 2515
2516 EV_FREQUENT_CHECK;
2517
2518 ++periodiccnt;
2051 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2519 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2052 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2); 2520 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2053 periodics [ev_active (w)] = (WT)w; 2521 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2522 ANHE_at_cache (periodics [ev_active (w)]);
2054 upheap (periodics, ev_active (w)); 2523 upheap (periodics, ev_active (w));
2055 2524
2525 EV_FREQUENT_CHECK;
2526
2056 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2527 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2057} 2528}
2058 2529
2059void noinline 2530void noinline
2060ev_periodic_stop (EV_P_ ev_periodic *w) 2531ev_periodic_stop (EV_P_ ev_periodic *w)
2061{ 2532{
2062 clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
2063 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
2064 return; 2535 return;
2065 2536
2537 EV_FREQUENT_CHECK;
2538
2066 { 2539 {
2067 int active = ev_active (w); 2540 int active = ev_active (w);
2068 2541
2069 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2542 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2070 2543
2544 --periodiccnt;
2545
2071 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2546 if (expect_true (active < periodiccnt + HEAP0))
2072 { 2547 {
2073 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2548 periodics [active] = periodics [periodiccnt + HEAP0];
2074 adjustheap (periodics, periodiccnt, active); 2549 adjustheap (periodics, periodiccnt, active);
2075 } 2550 }
2076
2077 --periodiccnt;
2078 } 2551 }
2552
2553 EV_FREQUENT_CHECK;
2079 2554
2080 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
2081} 2556}
2082 2557
2083void noinline 2558void noinline
2095 2570
2096void noinline 2571void noinline
2097ev_signal_start (EV_P_ ev_signal *w) 2572ev_signal_start (EV_P_ ev_signal *w)
2098{ 2573{
2099#if EV_MULTIPLICITY 2574#if EV_MULTIPLICITY
2100 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2575 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2101#endif 2576#endif
2102 if (expect_false (ev_is_active (w))) 2577 if (expect_false (ev_is_active (w)))
2103 return; 2578 return;
2104 2579
2105 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2580 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2106 2581
2107 evpipe_init (EV_A); 2582 evpipe_init (EV_A);
2583
2584 EV_FREQUENT_CHECK;
2108 2585
2109 { 2586 {
2110#ifndef _WIN32 2587#ifndef _WIN32
2111 sigset_t full, prev; 2588 sigset_t full, prev;
2112 sigfillset (&full); 2589 sigfillset (&full);
2113 sigprocmask (SIG_SETMASK, &full, &prev); 2590 sigprocmask (SIG_SETMASK, &full, &prev);
2114#endif 2591#endif
2115 2592
2116 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2593 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2117 2594
2118#ifndef _WIN32 2595#ifndef _WIN32
2119 sigprocmask (SIG_SETMASK, &prev, 0); 2596 sigprocmask (SIG_SETMASK, &prev, 0);
2120#endif 2597#endif
2121 } 2598 }
2126 if (!((WL)w)->next) 2603 if (!((WL)w)->next)
2127 { 2604 {
2128#if _WIN32 2605#if _WIN32
2129 signal (w->signum, ev_sighandler); 2606 signal (w->signum, ev_sighandler);
2130#else 2607#else
2131 struct sigaction sa; 2608 struct sigaction sa = { };
2132 sa.sa_handler = ev_sighandler; 2609 sa.sa_handler = ev_sighandler;
2133 sigfillset (&sa.sa_mask); 2610 sigfillset (&sa.sa_mask);
2134 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2611 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2135 sigaction (w->signum, &sa, 0); 2612 sigaction (w->signum, &sa, 0);
2136#endif 2613#endif
2137 } 2614 }
2615
2616 EV_FREQUENT_CHECK;
2138} 2617}
2139 2618
2140void noinline 2619void noinline
2141ev_signal_stop (EV_P_ ev_signal *w) 2620ev_signal_stop (EV_P_ ev_signal *w)
2142{ 2621{
2143 clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
2145 return; 2624 return;
2146 2625
2626 EV_FREQUENT_CHECK;
2627
2147 wlist_del (&signals [w->signum - 1].head, (WL)w); 2628 wlist_del (&signals [w->signum - 1].head, (WL)w);
2148 ev_stop (EV_A_ (W)w); 2629 ev_stop (EV_A_ (W)w);
2149 2630
2150 if (!signals [w->signum - 1].head) 2631 if (!signals [w->signum - 1].head)
2151 signal (w->signum, SIG_DFL); 2632 signal (w->signum, SIG_DFL);
2633
2634 EV_FREQUENT_CHECK;
2152} 2635}
2153 2636
2154void 2637void
2155ev_child_start (EV_P_ ev_child *w) 2638ev_child_start (EV_P_ ev_child *w)
2156{ 2639{
2157#if EV_MULTIPLICITY 2640#if EV_MULTIPLICITY
2158 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2159#endif 2642#endif
2160 if (expect_false (ev_is_active (w))) 2643 if (expect_false (ev_is_active (w)))
2161 return; 2644 return;
2162 2645
2646 EV_FREQUENT_CHECK;
2647
2163 ev_start (EV_A_ (W)w, 1); 2648 ev_start (EV_A_ (W)w, 1);
2164 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2649 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2650
2651 EV_FREQUENT_CHECK;
2165} 2652}
2166 2653
2167void 2654void
2168ev_child_stop (EV_P_ ev_child *w) 2655ev_child_stop (EV_P_ ev_child *w)
2169{ 2656{
2170 clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 2658 if (expect_false (!ev_is_active (w)))
2172 return; 2659 return;
2173 2660
2661 EV_FREQUENT_CHECK;
2662
2174 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2663 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2175 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2665
2666 EV_FREQUENT_CHECK;
2176} 2667}
2177 2668
2178#if EV_STAT_ENABLE 2669#if EV_STAT_ENABLE
2179 2670
2180# ifdef _WIN32 2671# ifdef _WIN32
2181# undef lstat 2672# undef lstat
2182# define lstat(a,b) _stati64 (a,b) 2673# define lstat(a,b) _stati64 (a,b)
2183# endif 2674# endif
2184 2675
2185#define DEF_STAT_INTERVAL 5.0074891 2676#define DEF_STAT_INTERVAL 5.0074891
2677#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2186#define MIN_STAT_INTERVAL 0.1074891 2678#define MIN_STAT_INTERVAL 0.1074891
2187 2679
2188static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2680static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2189 2681
2190#if EV_USE_INOTIFY 2682#if EV_USE_INOTIFY
2191# define EV_INOTIFY_BUFSIZE 8192 2683# define EV_INOTIFY_BUFSIZE 8192
2195{ 2687{
2196 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2688 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2197 2689
2198 if (w->wd < 0) 2690 if (w->wd < 0)
2199 { 2691 {
2692 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2200 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2693 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2201 2694
2202 /* monitor some parent directory for speedup hints */ 2695 /* monitor some parent directory for speedup hints */
2203 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2696 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2204 /* but an efficiency issue only */ 2697 /* but an efficiency issue only */
2205 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2698 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2206 { 2699 {
2207 char path [4096]; 2700 char path [4096];
2208 strcpy (path, w->path); 2701 strcpy (path, w->path);
2212 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2705 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2213 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2706 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2214 2707
2215 char *pend = strrchr (path, '/'); 2708 char *pend = strrchr (path, '/');
2216 2709
2217 if (!pend) 2710 if (!pend || pend == path)
2218 break; /* whoops, no '/', complain to your admin */ 2711 break;
2219 2712
2220 *pend = 0; 2713 *pend = 0;
2221 w->wd = inotify_add_watch (fs_fd, path, mask); 2714 w->wd = inotify_add_watch (fs_fd, path, mask);
2222 } 2715 }
2223 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2716 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2224 } 2717 }
2225 } 2718 }
2226 else
2227 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2228 2719
2229 if (w->wd >= 0) 2720 if (w->wd >= 0)
2721 {
2230 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2722 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2723
2724 /* now local changes will be tracked by inotify, but remote changes won't */
2725 /* unless the filesystem it known to be local, we therefore still poll */
2726 /* also do poll on <2.6.25, but with normal frequency */
2727 struct statfs sfs;
2728
2729 if (fs_2625 && !statfs (w->path, &sfs))
2730 if (sfs.f_type == 0x1373 /* devfs */
2731 || sfs.f_type == 0xEF53 /* ext2/3 */
2732 || sfs.f_type == 0x3153464a /* jfs */
2733 || sfs.f_type == 0x52654973 /* reiser3 */
2734 || sfs.f_type == 0x01021994 /* tempfs */
2735 || sfs.f_type == 0x58465342 /* xfs */)
2736 return;
2737
2738 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2739 ev_timer_again (EV_A_ &w->timer);
2740 }
2231} 2741}
2232 2742
2233static void noinline 2743static void noinline
2234infy_del (EV_P_ ev_stat *w) 2744infy_del (EV_P_ ev_stat *w)
2235{ 2745{
2249 2759
2250static void noinline 2760static void noinline
2251infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2761infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2252{ 2762{
2253 if (slot < 0) 2763 if (slot < 0)
2254 /* overflow, need to check for all hahs slots */ 2764 /* overflow, need to check for all hash slots */
2255 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2765 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2256 infy_wd (EV_A_ slot, wd, ev); 2766 infy_wd (EV_A_ slot, wd, ev);
2257 else 2767 else
2258 { 2768 {
2259 WL w_; 2769 WL w_;
2265 2775
2266 if (w->wd == wd || wd == -1) 2776 if (w->wd == wd || wd == -1)
2267 { 2777 {
2268 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2778 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2269 { 2779 {
2780 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2270 w->wd = -1; 2781 w->wd = -1;
2271 infy_add (EV_A_ w); /* re-add, no matter what */ 2782 infy_add (EV_A_ w); /* re-add, no matter what */
2272 } 2783 }
2273 2784
2274 stat_timer_cb (EV_A_ &w->timer, 0); 2785 stat_timer_cb (EV_A_ &w->timer, 0);
2287 2798
2288 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2799 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2289 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2800 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2290} 2801}
2291 2802
2292void inline_size 2803inline_size void
2804check_2625 (EV_P)
2805{
2806 /* kernels < 2.6.25 are borked
2807 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2808 */
2809 struct utsname buf;
2810 int major, minor, micro;
2811
2812 if (uname (&buf))
2813 return;
2814
2815 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2816 return;
2817
2818 if (major < 2
2819 || (major == 2 && minor < 6)
2820 || (major == 2 && minor == 6 && micro < 25))
2821 return;
2822
2823 fs_2625 = 1;
2824}
2825
2826inline_size void
2293infy_init (EV_P) 2827infy_init (EV_P)
2294{ 2828{
2295 if (fs_fd != -2) 2829 if (fs_fd != -2)
2296 return; 2830 return;
2831
2832 fs_fd = -1;
2833
2834 check_2625 (EV_A);
2297 2835
2298 fs_fd = inotify_init (); 2836 fs_fd = inotify_init ();
2299 2837
2300 if (fs_fd >= 0) 2838 if (fs_fd >= 0)
2301 { 2839 {
2303 ev_set_priority (&fs_w, EV_MAXPRI); 2841 ev_set_priority (&fs_w, EV_MAXPRI);
2304 ev_io_start (EV_A_ &fs_w); 2842 ev_io_start (EV_A_ &fs_w);
2305 } 2843 }
2306} 2844}
2307 2845
2308void inline_size 2846inline_size void
2309infy_fork (EV_P) 2847infy_fork (EV_P)
2310{ 2848{
2311 int slot; 2849 int slot;
2312 2850
2313 if (fs_fd < 0) 2851 if (fs_fd < 0)
2329 w->wd = -1; 2867 w->wd = -1;
2330 2868
2331 if (fs_fd >= 0) 2869 if (fs_fd >= 0)
2332 infy_add (EV_A_ w); /* re-add, no matter what */ 2870 infy_add (EV_A_ w); /* re-add, no matter what */
2333 else 2871 else
2334 ev_timer_start (EV_A_ &w->timer); 2872 ev_timer_again (EV_A_ &w->timer);
2335 } 2873 }
2336
2337 } 2874 }
2338} 2875}
2339 2876
2877#endif
2878
2879#ifdef _WIN32
2880# define EV_LSTAT(p,b) _stati64 (p, b)
2881#else
2882# define EV_LSTAT(p,b) lstat (p, b)
2340#endif 2883#endif
2341 2884
2342void 2885void
2343ev_stat_stat (EV_P_ ev_stat *w) 2886ev_stat_stat (EV_P_ ev_stat *w)
2344{ 2887{
2371 || w->prev.st_atime != w->attr.st_atime 2914 || w->prev.st_atime != w->attr.st_atime
2372 || w->prev.st_mtime != w->attr.st_mtime 2915 || w->prev.st_mtime != w->attr.st_mtime
2373 || w->prev.st_ctime != w->attr.st_ctime 2916 || w->prev.st_ctime != w->attr.st_ctime
2374 ) { 2917 ) {
2375 #if EV_USE_INOTIFY 2918 #if EV_USE_INOTIFY
2919 if (fs_fd >= 0)
2920 {
2376 infy_del (EV_A_ w); 2921 infy_del (EV_A_ w);
2377 infy_add (EV_A_ w); 2922 infy_add (EV_A_ w);
2378 ev_stat_stat (EV_A_ w); /* avoid race... */ 2923 ev_stat_stat (EV_A_ w); /* avoid race... */
2924 }
2379 #endif 2925 #endif
2380 2926
2381 ev_feed_event (EV_A_ w, EV_STAT); 2927 ev_feed_event (EV_A_ w, EV_STAT);
2382 } 2928 }
2383} 2929}
2386ev_stat_start (EV_P_ ev_stat *w) 2932ev_stat_start (EV_P_ ev_stat *w)
2387{ 2933{
2388 if (expect_false (ev_is_active (w))) 2934 if (expect_false (ev_is_active (w)))
2389 return; 2935 return;
2390 2936
2391 /* since we use memcmp, we need to clear any padding data etc. */
2392 memset (&w->prev, 0, sizeof (ev_statdata));
2393 memset (&w->attr, 0, sizeof (ev_statdata));
2394
2395 ev_stat_stat (EV_A_ w); 2937 ev_stat_stat (EV_A_ w);
2396 2938
2939 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2397 if (w->interval < MIN_STAT_INTERVAL) 2940 w->interval = MIN_STAT_INTERVAL;
2398 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2399 2941
2400 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2942 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2401 ev_set_priority (&w->timer, ev_priority (w)); 2943 ev_set_priority (&w->timer, ev_priority (w));
2402 2944
2403#if EV_USE_INOTIFY 2945#if EV_USE_INOTIFY
2404 infy_init (EV_A); 2946 infy_init (EV_A);
2405 2947
2406 if (fs_fd >= 0) 2948 if (fs_fd >= 0)
2407 infy_add (EV_A_ w); 2949 infy_add (EV_A_ w);
2408 else 2950 else
2409#endif 2951#endif
2410 ev_timer_start (EV_A_ &w->timer); 2952 ev_timer_again (EV_A_ &w->timer);
2411 2953
2412 ev_start (EV_A_ (W)w, 1); 2954 ev_start (EV_A_ (W)w, 1);
2955
2956 EV_FREQUENT_CHECK;
2413} 2957}
2414 2958
2415void 2959void
2416ev_stat_stop (EV_P_ ev_stat *w) 2960ev_stat_stop (EV_P_ ev_stat *w)
2417{ 2961{
2418 clear_pending (EV_A_ (W)w); 2962 clear_pending (EV_A_ (W)w);
2419 if (expect_false (!ev_is_active (w))) 2963 if (expect_false (!ev_is_active (w)))
2420 return; 2964 return;
2421 2965
2966 EV_FREQUENT_CHECK;
2967
2422#if EV_USE_INOTIFY 2968#if EV_USE_INOTIFY
2423 infy_del (EV_A_ w); 2969 infy_del (EV_A_ w);
2424#endif 2970#endif
2425 ev_timer_stop (EV_A_ &w->timer); 2971 ev_timer_stop (EV_A_ &w->timer);
2426 2972
2427 ev_stop (EV_A_ (W)w); 2973 ev_stop (EV_A_ (W)w);
2974
2975 EV_FREQUENT_CHECK;
2428} 2976}
2429#endif 2977#endif
2430 2978
2431#if EV_IDLE_ENABLE 2979#if EV_IDLE_ENABLE
2432void 2980void
2434{ 2982{
2435 if (expect_false (ev_is_active (w))) 2983 if (expect_false (ev_is_active (w)))
2436 return; 2984 return;
2437 2985
2438 pri_adjust (EV_A_ (W)w); 2986 pri_adjust (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2439 2989
2440 { 2990 {
2441 int active = ++idlecnt [ABSPRI (w)]; 2991 int active = ++idlecnt [ABSPRI (w)];
2442 2992
2443 ++idleall; 2993 ++idleall;
2444 ev_start (EV_A_ (W)w, active); 2994 ev_start (EV_A_ (W)w, active);
2445 2995
2446 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2996 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2447 idles [ABSPRI (w)][active - 1] = w; 2997 idles [ABSPRI (w)][active - 1] = w;
2448 } 2998 }
2999
3000 EV_FREQUENT_CHECK;
2449} 3001}
2450 3002
2451void 3003void
2452ev_idle_stop (EV_P_ ev_idle *w) 3004ev_idle_stop (EV_P_ ev_idle *w)
2453{ 3005{
2454 clear_pending (EV_A_ (W)w); 3006 clear_pending (EV_A_ (W)w);
2455 if (expect_false (!ev_is_active (w))) 3007 if (expect_false (!ev_is_active (w)))
2456 return; 3008 return;
2457 3009
3010 EV_FREQUENT_CHECK;
3011
2458 { 3012 {
2459 int active = ev_active (w); 3013 int active = ev_active (w);
2460 3014
2461 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3015 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2462 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3016 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2463 3017
2464 ev_stop (EV_A_ (W)w); 3018 ev_stop (EV_A_ (W)w);
2465 --idleall; 3019 --idleall;
2466 } 3020 }
3021
3022 EV_FREQUENT_CHECK;
2467} 3023}
2468#endif 3024#endif
2469 3025
2470void 3026void
2471ev_prepare_start (EV_P_ ev_prepare *w) 3027ev_prepare_start (EV_P_ ev_prepare *w)
2472{ 3028{
2473 if (expect_false (ev_is_active (w))) 3029 if (expect_false (ev_is_active (w)))
2474 return; 3030 return;
3031
3032 EV_FREQUENT_CHECK;
2475 3033
2476 ev_start (EV_A_ (W)w, ++preparecnt); 3034 ev_start (EV_A_ (W)w, ++preparecnt);
2477 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3035 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2478 prepares [preparecnt - 1] = w; 3036 prepares [preparecnt - 1] = w;
3037
3038 EV_FREQUENT_CHECK;
2479} 3039}
2480 3040
2481void 3041void
2482ev_prepare_stop (EV_P_ ev_prepare *w) 3042ev_prepare_stop (EV_P_ ev_prepare *w)
2483{ 3043{
2484 clear_pending (EV_A_ (W)w); 3044 clear_pending (EV_A_ (W)w);
2485 if (expect_false (!ev_is_active (w))) 3045 if (expect_false (!ev_is_active (w)))
2486 return; 3046 return;
2487 3047
3048 EV_FREQUENT_CHECK;
3049
2488 { 3050 {
2489 int active = ev_active (w); 3051 int active = ev_active (w);
2490 3052
2491 prepares [active - 1] = prepares [--preparecnt]; 3053 prepares [active - 1] = prepares [--preparecnt];
2492 ev_active (prepares [active - 1]) = active; 3054 ev_active (prepares [active - 1]) = active;
2493 } 3055 }
2494 3056
2495 ev_stop (EV_A_ (W)w); 3057 ev_stop (EV_A_ (W)w);
3058
3059 EV_FREQUENT_CHECK;
2496} 3060}
2497 3061
2498void 3062void
2499ev_check_start (EV_P_ ev_check *w) 3063ev_check_start (EV_P_ ev_check *w)
2500{ 3064{
2501 if (expect_false (ev_is_active (w))) 3065 if (expect_false (ev_is_active (w)))
2502 return; 3066 return;
3067
3068 EV_FREQUENT_CHECK;
2503 3069
2504 ev_start (EV_A_ (W)w, ++checkcnt); 3070 ev_start (EV_A_ (W)w, ++checkcnt);
2505 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3071 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2506 checks [checkcnt - 1] = w; 3072 checks [checkcnt - 1] = w;
3073
3074 EV_FREQUENT_CHECK;
2507} 3075}
2508 3076
2509void 3077void
2510ev_check_stop (EV_P_ ev_check *w) 3078ev_check_stop (EV_P_ ev_check *w)
2511{ 3079{
2512 clear_pending (EV_A_ (W)w); 3080 clear_pending (EV_A_ (W)w);
2513 if (expect_false (!ev_is_active (w))) 3081 if (expect_false (!ev_is_active (w)))
2514 return; 3082 return;
2515 3083
3084 EV_FREQUENT_CHECK;
3085
2516 { 3086 {
2517 int active = ev_active (w); 3087 int active = ev_active (w);
2518 3088
2519 checks [active - 1] = checks [--checkcnt]; 3089 checks [active - 1] = checks [--checkcnt];
2520 ev_active (checks [active - 1]) = active; 3090 ev_active (checks [active - 1]) = active;
2521 } 3091 }
2522 3092
2523 ev_stop (EV_A_ (W)w); 3093 ev_stop (EV_A_ (W)w);
3094
3095 EV_FREQUENT_CHECK;
2524} 3096}
2525 3097
2526#if EV_EMBED_ENABLE 3098#if EV_EMBED_ENABLE
2527void noinline 3099void noinline
2528ev_embed_sweep (EV_P_ ev_embed *w) 3100ev_embed_sweep (EV_P_ ev_embed *w)
2555 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3127 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2556 } 3128 }
2557 } 3129 }
2558} 3130}
2559 3131
3132static void
3133embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3134{
3135 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3136
3137 ev_embed_stop (EV_A_ w);
3138
3139 {
3140 struct ev_loop *loop = w->other;
3141
3142 ev_loop_fork (EV_A);
3143 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3144 }
3145
3146 ev_embed_start (EV_A_ w);
3147}
3148
2560#if 0 3149#if 0
2561static void 3150static void
2562embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3151embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2563{ 3152{
2564 ev_idle_stop (EV_A_ idle); 3153 ev_idle_stop (EV_A_ idle);
2571 if (expect_false (ev_is_active (w))) 3160 if (expect_false (ev_is_active (w)))
2572 return; 3161 return;
2573 3162
2574 { 3163 {
2575 struct ev_loop *loop = w->other; 3164 struct ev_loop *loop = w->other;
2576 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3165 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2577 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3166 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2578 } 3167 }
3168
3169 EV_FREQUENT_CHECK;
2579 3170
2580 ev_set_priority (&w->io, ev_priority (w)); 3171 ev_set_priority (&w->io, ev_priority (w));
2581 ev_io_start (EV_A_ &w->io); 3172 ev_io_start (EV_A_ &w->io);
2582 3173
2583 ev_prepare_init (&w->prepare, embed_prepare_cb); 3174 ev_prepare_init (&w->prepare, embed_prepare_cb);
2584 ev_set_priority (&w->prepare, EV_MINPRI); 3175 ev_set_priority (&w->prepare, EV_MINPRI);
2585 ev_prepare_start (EV_A_ &w->prepare); 3176 ev_prepare_start (EV_A_ &w->prepare);
2586 3177
3178 ev_fork_init (&w->fork, embed_fork_cb);
3179 ev_fork_start (EV_A_ &w->fork);
3180
2587 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3181 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2588 3182
2589 ev_start (EV_A_ (W)w, 1); 3183 ev_start (EV_A_ (W)w, 1);
3184
3185 EV_FREQUENT_CHECK;
2590} 3186}
2591 3187
2592void 3188void
2593ev_embed_stop (EV_P_ ev_embed *w) 3189ev_embed_stop (EV_P_ ev_embed *w)
2594{ 3190{
2595 clear_pending (EV_A_ (W)w); 3191 clear_pending (EV_A_ (W)w);
2596 if (expect_false (!ev_is_active (w))) 3192 if (expect_false (!ev_is_active (w)))
2597 return; 3193 return;
2598 3194
3195 EV_FREQUENT_CHECK;
3196
2599 ev_io_stop (EV_A_ &w->io); 3197 ev_io_stop (EV_A_ &w->io);
2600 ev_prepare_stop (EV_A_ &w->prepare); 3198 ev_prepare_stop (EV_A_ &w->prepare);
3199 ev_fork_stop (EV_A_ &w->fork);
2601 3200
2602 ev_stop (EV_A_ (W)w); 3201 EV_FREQUENT_CHECK;
2603} 3202}
2604#endif 3203#endif
2605 3204
2606#if EV_FORK_ENABLE 3205#if EV_FORK_ENABLE
2607void 3206void
2608ev_fork_start (EV_P_ ev_fork *w) 3207ev_fork_start (EV_P_ ev_fork *w)
2609{ 3208{
2610 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
2611 return; 3210 return;
3211
3212 EV_FREQUENT_CHECK;
2612 3213
2613 ev_start (EV_A_ (W)w, ++forkcnt); 3214 ev_start (EV_A_ (W)w, ++forkcnt);
2614 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3215 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2615 forks [forkcnt - 1] = w; 3216 forks [forkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
2616} 3219}
2617 3220
2618void 3221void
2619ev_fork_stop (EV_P_ ev_fork *w) 3222ev_fork_stop (EV_P_ ev_fork *w)
2620{ 3223{
2621 clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
2622 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
2623 return; 3226 return;
2624 3227
3228 EV_FREQUENT_CHECK;
3229
2625 { 3230 {
2626 int active = ev_active (w); 3231 int active = ev_active (w);
2627 3232
2628 forks [active - 1] = forks [--forkcnt]; 3233 forks [active - 1] = forks [--forkcnt];
2629 ev_active (forks [active - 1]) = active; 3234 ev_active (forks [active - 1]) = active;
2630 } 3235 }
2631 3236
2632 ev_stop (EV_A_ (W)w); 3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
2633} 3240}
2634#endif 3241#endif
2635 3242
2636#if EV_ASYNC_ENABLE 3243#if EV_ASYNC_ENABLE
2637void 3244void
2639{ 3246{
2640 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
2641 return; 3248 return;
2642 3249
2643 evpipe_init (EV_A); 3250 evpipe_init (EV_A);
3251
3252 EV_FREQUENT_CHECK;
2644 3253
2645 ev_start (EV_A_ (W)w, ++asynccnt); 3254 ev_start (EV_A_ (W)w, ++asynccnt);
2646 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2647 asyncs [asynccnt - 1] = w; 3256 asyncs [asynccnt - 1] = w;
3257
3258 EV_FREQUENT_CHECK;
2648} 3259}
2649 3260
2650void 3261void
2651ev_async_stop (EV_P_ ev_async *w) 3262ev_async_stop (EV_P_ ev_async *w)
2652{ 3263{
2653 clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
2654 if (expect_false (!ev_is_active (w))) 3265 if (expect_false (!ev_is_active (w)))
2655 return; 3266 return;
2656 3267
3268 EV_FREQUENT_CHECK;
3269
2657 { 3270 {
2658 int active = ev_active (w); 3271 int active = ev_active (w);
2659 3272
2660 asyncs [active - 1] = asyncs [--asynccnt]; 3273 asyncs [active - 1] = asyncs [--asynccnt];
2661 ev_active (asyncs [active - 1]) = active; 3274 ev_active (asyncs [active - 1]) = active;
2662 } 3275 }
2663 3276
2664 ev_stop (EV_A_ (W)w); 3277 ev_stop (EV_A_ (W)w);
3278
3279 EV_FREQUENT_CHECK;
2665} 3280}
2666 3281
2667void 3282void
2668ev_async_send (EV_P_ ev_async *w) 3283ev_async_send (EV_P_ ev_async *w)
2669{ 3284{
2686once_cb (EV_P_ struct ev_once *once, int revents) 3301once_cb (EV_P_ struct ev_once *once, int revents)
2687{ 3302{
2688 void (*cb)(int revents, void *arg) = once->cb; 3303 void (*cb)(int revents, void *arg) = once->cb;
2689 void *arg = once->arg; 3304 void *arg = once->arg;
2690 3305
2691 ev_io_stop (EV_A_ &once->io); 3306 ev_io_stop (EV_A_ &once->io);
2692 ev_timer_stop (EV_A_ &once->to); 3307 ev_timer_stop (EV_A_ &once->to);
2693 ev_free (once); 3308 ev_free (once);
2694 3309
2695 cb (revents, arg); 3310 cb (revents, arg);
2696} 3311}
2697 3312
2698static void 3313static void
2699once_cb_io (EV_P_ ev_io *w, int revents) 3314once_cb_io (EV_P_ ev_io *w, int revents)
2700{ 3315{
2701 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3317
3318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2702} 3319}
2703 3320
2704static void 3321static void
2705once_cb_to (EV_P_ ev_timer *w, int revents) 3322once_cb_to (EV_P_ ev_timer *w, int revents)
2706{ 3323{
2707 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3325
3326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2708} 3327}
2709 3328
2710void 3329void
2711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3330ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2712{ 3331{
2734 ev_timer_set (&once->to, timeout, 0.); 3353 ev_timer_set (&once->to, timeout, 0.);
2735 ev_timer_start (EV_A_ &once->to); 3354 ev_timer_start (EV_A_ &once->to);
2736 } 3355 }
2737} 3356}
2738 3357
3358/*****************************************************************************/
3359
3360#if EV_WALK_ENABLE
3361void
3362ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3363{
3364 int i, j;
3365 ev_watcher_list *wl, *wn;
3366
3367 if (types & (EV_IO | EV_EMBED))
3368 for (i = 0; i < anfdmax; ++i)
3369 for (wl = anfds [i].head; wl; )
3370 {
3371 wn = wl->next;
3372
3373#if EV_EMBED_ENABLE
3374 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3375 {
3376 if (types & EV_EMBED)
3377 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3378 }
3379 else
3380#endif
3381#if EV_USE_INOTIFY
3382 if (ev_cb ((ev_io *)wl) == infy_cb)
3383 ;
3384 else
3385#endif
3386 if ((ev_io *)wl != &pipe_w)
3387 if (types & EV_IO)
3388 cb (EV_A_ EV_IO, wl);
3389
3390 wl = wn;
3391 }
3392
3393 if (types & (EV_TIMER | EV_STAT))
3394 for (i = timercnt + HEAP0; i-- > HEAP0; )
3395#if EV_STAT_ENABLE
3396 /*TODO: timer is not always active*/
3397 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3398 {
3399 if (types & EV_STAT)
3400 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3401 }
3402 else
3403#endif
3404 if (types & EV_TIMER)
3405 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3406
3407#if EV_PERIODIC_ENABLE
3408 if (types & EV_PERIODIC)
3409 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3410 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3411#endif
3412
3413#if EV_IDLE_ENABLE
3414 if (types & EV_IDLE)
3415 for (j = NUMPRI; i--; )
3416 for (i = idlecnt [j]; i--; )
3417 cb (EV_A_ EV_IDLE, idles [j][i]);
3418#endif
3419
3420#if EV_FORK_ENABLE
3421 if (types & EV_FORK)
3422 for (i = forkcnt; i--; )
3423 if (ev_cb (forks [i]) != embed_fork_cb)
3424 cb (EV_A_ EV_FORK, forks [i]);
3425#endif
3426
3427#if EV_ASYNC_ENABLE
3428 if (types & EV_ASYNC)
3429 for (i = asynccnt; i--; )
3430 cb (EV_A_ EV_ASYNC, asyncs [i]);
3431#endif
3432
3433 if (types & EV_PREPARE)
3434 for (i = preparecnt; i--; )
3435#if EV_EMBED_ENABLE
3436 if (ev_cb (prepares [i]) != embed_prepare_cb)
3437#endif
3438 cb (EV_A_ EV_PREPARE, prepares [i]);
3439
3440 if (types & EV_CHECK)
3441 for (i = checkcnt; i--; )
3442 cb (EV_A_ EV_CHECK, checks [i]);
3443
3444 if (types & EV_SIGNAL)
3445 for (i = 0; i < signalmax; ++i)
3446 for (wl = signals [i].head; wl; )
3447 {
3448 wn = wl->next;
3449 cb (EV_A_ EV_SIGNAL, wl);
3450 wl = wn;
3451 }
3452
3453 if (types & EV_CHILD)
3454 for (i = EV_PID_HASHSIZE; i--; )
3455 for (wl = childs [i]; wl; )
3456 {
3457 wn = wl->next;
3458 cb (EV_A_ EV_CHILD, wl);
3459 wl = wn;
3460 }
3461/* EV_STAT 0x00001000 /* stat data changed */
3462/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3463}
3464#endif
3465
2739#if EV_MULTIPLICITY 3466#if EV_MULTIPLICITY
2740 #include "ev_wrap.h" 3467 #include "ev_wrap.h"
2741#endif 3468#endif
2742 3469
2743#ifdef __cplusplus 3470#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines