ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.282 by root, Sat Mar 28 22:17:17 2009 UTC vs.
Revision 1.301 by root, Wed Jul 15 16:58:53 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
282 284
283#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif 287#endif
286 288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 304
289#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
320 336
321#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 338# include <winsock.h>
323#endif 339#endif
324 340
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 341#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 343# include <stdint.h>
337# ifdef __cplusplus 344# ifdef __cplusplus
338extern "C" { 345extern "C" {
384# define inline_speed static noinline 391# define inline_speed static noinline
385#else 392#else
386# define inline_speed static inline 393# define inline_speed static inline
387#endif 394#endif
388 395
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
391 403
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
394 406
395typedef ev_watcher *W; 407typedef ev_watcher *W;
478#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
480 492
481/*****************************************************************************/ 493/*****************************************************************************/
482 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
483typedef struct 499typedef struct
484{ 500{
485 WL head; 501 WL head;
486 unsigned char events; 502 unsigned char events; /* the events watched for */
487 unsigned char reify; 503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 505 unsigned char unused;
490#if EV_USE_EPOLL 506#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 507 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 508#endif
493#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 510 SOCKET handle;
495#endif 511#endif
496} ANFD; 512} ANFD;
497 513
514/* stores the pending event set for a given watcher */
498typedef struct 515typedef struct
499{ 516{
500 W w; 517 W w;
501 int events; 518 int events; /* the pending event set for the given watcher */
502} ANPENDING; 519} ANPENDING;
503 520
504#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 522/* hash table entry per inotify-id */
506typedef struct 523typedef struct
509} ANFS; 526} ANFS;
510#endif 527#endif
511 528
512/* Heap Entry */ 529/* Heap Entry */
513#if EV_HEAP_CACHE_AT 530#if EV_HEAP_CACHE_AT
531 /* a heap element */
514 typedef struct { 532 typedef struct {
515 ev_tstamp at; 533 ev_tstamp at;
516 WT w; 534 WT w;
517 } ANHE; 535 } ANHE;
518 536
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 537 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 538 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 540#else
541 /* a heap element */
523 typedef WT ANHE; 542 typedef WT ANHE;
524 543
525 #define ANHE_w(he) (he) 544 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 545 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 546 #define ANHE_at_cache(he)
551 570
552 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
553 572
554#endif 573#endif
555 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
556/*****************************************************************************/ 587/*****************************************************************************/
557 588
589#ifndef EV_HAVE_EV_TIME
558ev_tstamp 590ev_tstamp
559ev_time (void) 591ev_time (void)
560{ 592{
561#if EV_USE_REALTIME 593#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 594 if (expect_true (have_realtime))
569 601
570 struct timeval tv; 602 struct timeval tv;
571 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 605}
606#endif
574 607
575ev_tstamp inline_size 608inline_size ev_tstamp
576get_clock (void) 609get_clock (void)
577{ 610{
578#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
580 { 613 {
614 647
615 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617 650
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 652 /* somehting not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 653 /* by older ones */
621 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
622#endif 655#endif
623 } 656 }
624} 657}
625 658
626/*****************************************************************************/ 659/*****************************************************************************/
627 660
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 662
630int inline_size 663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
631array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
632{ 667{
633 int ncur = cur + 1; 668 int ncur = cur + 1;
634 669
635 do 670 do
680#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 717
683/*****************************************************************************/ 718/*****************************************************************************/
684 719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
725
685void noinline 726void noinline
686ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
687{ 728{
688 W w_ = (W)w; 729 W w_ = (W)w;
689 int pri = ABSPRI (w_); 730 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
699 } 740 }
700} 741}
701 742
702void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 760{
705 int i; 761 int i;
706 762
707 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
709} 765}
710 766
711/*****************************************************************************/ 767/*****************************************************************************/
712 768
713void inline_speed 769inline_speed void
714fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
715{ 771{
716 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
717 ev_io *w; 773 ev_io *w;
718 774
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 779 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
725 } 781 }
726} 782}
727 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
728void 795void
729ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 797{
731 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
733} 800}
734 801
735void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
736fd_reify (EV_P) 805fd_reify (EV_P)
737{ 806{
738 int i; 807 int i;
739 808
740 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
774 } 843 }
775 844
776 fdchangecnt = 0; 845 fdchangecnt = 0;
777} 846}
778 847
779void inline_size 848/* something about the given fd changed */
849inline_size void
780fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
781{ 851{
782 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
784 854
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
790 } 860 }
791} 861}
792 862
793void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
794fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
795{ 866{
796 ev_io *w; 867 ev_io *w;
797 868
798 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 873 }
803} 874}
804 875
805int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
806fd_valid (int fd) 878fd_valid (int fd)
807{ 879{
808#ifdef _WIN32 880#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
810#else 882#else
847 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 920 if (anfds [fd].events)
849 { 921 {
850 anfds [fd].events = 0; 922 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 923 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 925 }
854} 926}
855 927
856/*****************************************************************************/ 928/*****************************************************************************/
857 929
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 947#define UPHEAP_DONE(p,k) ((p) == (k))
876 948
877/* away from the root */ 949/* away from the root */
878void inline_speed 950inline_speed void
879downheap (ANHE *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
880{ 952{
881 ANHE he = heap [k]; 953 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 954 ANHE *E = heap + N + HEAP0;
883 955
923#define HEAP0 1 995#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 996#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 997#define UPHEAP_DONE(p,k) (!(p))
926 998
927/* away from the root */ 999/* away from the root */
928void inline_speed 1000inline_speed void
929downheap (ANHE *heap, int N, int k) 1001downheap (ANHE *heap, int N, int k)
930{ 1002{
931 ANHE he = heap [k]; 1003 ANHE he = heap [k];
932 1004
933 for (;;) 1005 for (;;)
953 ev_active (ANHE_w (he)) = k; 1025 ev_active (ANHE_w (he)) = k;
954} 1026}
955#endif 1027#endif
956 1028
957/* towards the root */ 1029/* towards the root */
958void inline_speed 1030inline_speed void
959upheap (ANHE *heap, int k) 1031upheap (ANHE *heap, int k)
960{ 1032{
961 ANHE he = heap [k]; 1033 ANHE he = heap [k];
962 1034
963 for (;;) 1035 for (;;)
974 1046
975 heap [k] = he; 1047 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1048 ev_active (ANHE_w (he)) = k;
977} 1049}
978 1050
979void inline_size 1051/* move an element suitably so it is in a correct place */
1052inline_size void
980adjustheap (ANHE *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
981{ 1054{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k); 1056 upheap (heap, k);
984 else 1057 else
985 downheap (heap, N, k); 1058 downheap (heap, N, k);
986} 1059}
987 1060
988/* rebuild the heap: this function is used only once and executed rarely */ 1061/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1062inline_size void
990reheap (ANHE *heap, int N) 1063reheap (ANHE *heap, int N)
991{ 1064{
992 int i; 1065 int i;
993 1066
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1070 upheap (heap, i + HEAP0);
998} 1071}
999 1072
1000/*****************************************************************************/ 1073/*****************************************************************************/
1001 1074
1075/* associate signal watchers to a signal signal */
1002typedef struct 1076typedef struct
1003{ 1077{
1004 WL head; 1078 WL head;
1005 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
1006} ANSIG; 1080} ANSIG;
1010 1084
1011static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
1012 1086
1013/*****************************************************************************/ 1087/*****************************************************************************/
1014 1088
1015void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
1016fd_intern (int fd) 1092fd_intern (int fd)
1017{ 1093{
1018#ifdef _WIN32 1094#ifdef _WIN32
1019 unsigned long arg = 1; 1095 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1025} 1101}
1026 1102
1027static void noinline 1103static void noinline
1028evpipe_init (EV_P) 1104evpipe_init (EV_P)
1029{ 1105{
1030 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
1031 { 1107 {
1032#if EV_USE_EVENTFD 1108#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0) 1109 if ((evfd = eventfd (0, 0)) >= 0)
1034 { 1110 {
1035 evpipe [0] = -1; 1111 evpipe [0] = -1;
1036 fd_intern (evfd); 1112 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ); 1113 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1114 }
1039 else 1115 else
1040#endif 1116#endif
1041 { 1117 {
1042 while (pipe (evpipe)) 1118 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
1044 1120
1045 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1124 }
1049 1125
1050 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1128 }
1053} 1129}
1054 1130
1055void inline_size 1131inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1133{
1058 if (!*flag) 1134 if (!*flag)
1059 { 1135 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1136 int old_errno = errno; /* save errno because write might clobber it */
1073 1149
1074 errno = old_errno; 1150 errno = old_errno;
1075 } 1151 }
1076} 1152}
1077 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
1078static void 1156static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1158{
1081#if EV_USE_EVENTFD 1159#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1160 if (evfd >= 0)
1164 1242
1165#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
1167#endif 1245#endif
1168 1246
1169void inline_speed 1247/* handle a single child status event */
1248inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
1171{ 1250{
1172 ev_child *w; 1251 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1253
1187 1266
1188#ifndef WCONTINUED 1267#ifndef WCONTINUED
1189# define WCONTINUED 0 1268# define WCONTINUED 0
1190#endif 1269#endif
1191 1270
1271/* called on sigchld etc., calls waitpid */
1192static void 1272static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1274{
1195 int pid, status; 1275 int pid, status;
1196 1276
1303ev_backend (EV_P) 1383ev_backend (EV_P)
1304{ 1384{
1305 return backend; 1385 return backend;
1306} 1386}
1307 1387
1388#if EV_MINIMAL < 2
1308unsigned int 1389unsigned int
1309ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1310{ 1391{
1311 return loop_count; 1392 return loop_count;
1312} 1393}
1313 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1314void 1401void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1403{
1317 io_blocktime = interval; 1404 io_blocktime = interval;
1318} 1405}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1409{
1323 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1324} 1411}
1325 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1438static void noinline
1327loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1328{ 1440{
1329 if (!backend) 1441 if (!backend)
1330 { 1442 {
1350 1462
1351 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1464 mn_now = get_clock ();
1353 now_floor = mn_now; 1465 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1355 1470
1356 io_blocktime = 0.; 1471 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1358 backend = 0; 1473 backend = 0;
1359 backend_fd = -1; 1474 backend_fd = -1;
1390#endif 1505#endif
1391#if EV_USE_SELECT 1506#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1508#endif
1394 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1395 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1397 } 1514 }
1398} 1515}
1399 1516
1517/* free up a loop structure */
1400static void noinline 1518static void noinline
1401loop_destroy (EV_P) 1519loop_destroy (EV_P)
1402{ 1520{
1403 int i; 1521 int i;
1404 1522
1405 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1406 { 1524 {
1407 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1409 1527
1410#if EV_USE_EVENTFD 1528#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1529 if (evfd >= 0)
1412 close (evfd); 1530 close (evfd);
1413#endif 1531#endif
1452 } 1570 }
1453 1571
1454 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1455 1573
1456 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1461#endif 1580#endif
1470 1589
1471 backend = 0; 1590 backend = 0;
1472} 1591}
1473 1592
1474#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1476#endif 1595#endif
1477 1596
1478void inline_size 1597inline_size void
1479loop_fork (EV_P) 1598loop_fork (EV_P)
1480{ 1599{
1481#if EV_USE_PORT 1600#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1602#endif
1489#endif 1608#endif
1490#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1610 infy_fork (EV_A);
1492#endif 1611#endif
1493 1612
1494 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1495 { 1614 {
1496 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1616 /* while we modify the fd vars */
1498 gotsig = 1; 1617 gotsig = 1;
1499#if EV_ASYNC_ENABLE 1618#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1619 gotasync = 1;
1501#endif 1620#endif
1502 1621
1503 ev_ref (EV_A); 1622 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1505 1624
1506#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1626 if (evfd >= 0)
1508 close (evfd); 1627 close (evfd);
1509#endif 1628#endif
1514 close (evpipe [1]); 1633 close (evpipe [1]);
1515 } 1634 }
1516 1635
1517 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1520 } 1639 }
1521 1640
1522 postfork = 0; 1641 postfork = 0;
1523} 1642}
1524 1643
1549void 1668void
1550ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1551{ 1670{
1552 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1553} 1672}
1673#endif /* multiplicity */
1554 1674
1555#if EV_VERIFY 1675#if EV_VERIFY
1556static void noinline 1676static void noinline
1557verify_watcher (EV_P_ W w) 1677verify_watcher (EV_P_ W w)
1558{ 1678{
1586 verify_watcher (EV_A_ ws [cnt]); 1706 verify_watcher (EV_A_ ws [cnt]);
1587 } 1707 }
1588} 1708}
1589#endif 1709#endif
1590 1710
1711#if EV_MINIMAL < 2
1591void 1712void
1592ev_loop_verify (EV_P) 1713ev_loop_verify (EV_P)
1593{ 1714{
1594#if EV_VERIFY 1715#if EV_VERIFY
1595 int i; 1716 int i;
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1650# endif 1771# endif
1651#endif 1772#endif
1652} 1773}
1653 1774#endif
1654#endif /* multiplicity */
1655 1775
1656#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1657struct ev_loop * 1777struct ev_loop *
1658ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1659#else 1779#else
1720ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1721{ 1841{
1722 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1723} 1843}
1724 1844
1725void inline_speed 1845unsigned int
1726call_pending (EV_P) 1846ev_pending_count (EV_P)
1847{
1848 int pri;
1849 unsigned int count = 0;
1850
1851 for (pri = NUMPRI; pri--; )
1852 count += pendingcnt [pri];
1853
1854 return count;
1855}
1856
1857void noinline
1858ev_invoke_pending (EV_P)
1727{ 1859{
1728 int pri; 1860 int pri;
1729 1861
1730 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
1732 { 1864 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 1866
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868 /* ^ this is no longer true, as pending_w could be here */
1738 1869
1739 p->w->pending = 0; 1870 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 1872 EV_FREQUENT_CHECK;
1742 }
1743 } 1873 }
1744} 1874}
1745 1875
1746#if EV_IDLE_ENABLE 1876#if EV_IDLE_ENABLE
1747void inline_size 1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1748idle_reify (EV_P) 1880idle_reify (EV_P)
1749{ 1881{
1750 if (expect_false (idleall)) 1882 if (expect_false (idleall))
1751 { 1883 {
1752 int pri; 1884 int pri;
1764 } 1896 }
1765 } 1897 }
1766} 1898}
1767#endif 1899#endif
1768 1900
1769void inline_size 1901/* make timers pending */
1902inline_size void
1770timers_reify (EV_P) 1903timers_reify (EV_P)
1771{ 1904{
1772 EV_FREQUENT_CHECK; 1905 EV_FREQUENT_CHECK;
1773 1906
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 1908 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1909 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1783 ev_at (w) += w->repeat; 1918 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 1919 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 1920 ev_at (w) = mn_now;
1786 1921
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 1923
1789 ANHE_at_cache (timers [HEAP0]); 1924 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1791 } 1932 }
1792 else 1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 1934
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1797 } 1936 }
1798} 1937}
1799 1938
1800#if EV_PERIODIC_ENABLE 1939#if EV_PERIODIC_ENABLE
1801void inline_size 1940/* make periodics pending */
1941inline_size void
1802periodics_reify (EV_P) 1942periodics_reify (EV_P)
1803{ 1943{
1804 EV_FREQUENT_CHECK; 1944 EV_FREQUENT_CHECK;
1805 1945
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 1947 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1948 int feed_count = 0;
1809 1949
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 1950 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 1960
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 1962
1819 ANHE_at_cache (periodics [HEAP0]); 1963 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1821 } 1990 }
1822 else if (w->interval) 1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 1992
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 1994 }
1847} 1995}
1848 1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1849static void noinline 1999static void noinline
1850periodics_reschedule (EV_P) 2000periodics_reschedule (EV_P)
1851{ 2001{
1852 int i; 2002 int i;
1853 2003
1866 2016
1867 reheap (periodics, periodiccnt); 2017 reheap (periodics, periodiccnt);
1868} 2018}
1869#endif 2019#endif
1870 2020
1871void inline_speed 2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033}
2034
2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2038time_update (EV_P_ ev_tstamp max_block)
1873{ 2039{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2040#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2041 if (expect_true (have_monotonic))
1878 { 2042 {
2043 int i;
1879 ev_tstamp odiff = rtmn_diff; 2044 ev_tstamp odiff = rtmn_diff;
1880 2045
1881 mn_now = get_clock (); 2046 mn_now = get_clock ();
1882 2047
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2075 mn_now = get_clock ();
1911 now_floor = mn_now; 2076 now_floor = mn_now;
1912 } 2077 }
1913 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2081# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2082 periodics_reschedule (EV_A);
1916# endif 2083# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2084 }
1920 else 2085 else
1921#endif 2086#endif
1922 { 2087 {
1923 ev_rt_now = ev_time (); 2088 ev_rt_now = ev_time ();
1924 2089
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1929#endif 2096#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2097 }
1938 2098
1939 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1940 } 2100 }
1941} 2101}
1942 2102
1943void 2103void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1965{ 2105{
2106#if EV_MINIMAL < 2
2107 ++loop_depth;
2108#endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
1966 loop_done = EVUNLOOP_CANCEL; 2112 loop_done = EVUNLOOP_CANCEL;
1967 2113
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2115
1970 do 2116 do
1971 { 2117 {
1972#if EV_VERIFY >= 2 2118#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2119 ev_loop_verify (EV_A);
1986 /* we might have forked, so queue fork handlers */ 2132 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2133 if (expect_false (postfork))
1988 if (forkcnt) 2134 if (forkcnt)
1989 { 2135 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2137 EV_INVOKE_PENDING;
1992 } 2138 }
1993#endif 2139#endif
1994 2140
1995 /* queue prepare watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1997 { 2143 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
2000 } 2146 }
2001 2147
2002 if (expect_false (!activecnt)) 2148 if (expect_false (loop_done))
2003 break; 2149 break;
2004 2150
2005 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
2006 if (expect_false (postfork)) 2152 if (expect_false (postfork))
2007 loop_fork (EV_A); 2153 loop_fork (EV_A);
2014 ev_tstamp waittime = 0.; 2160 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.; 2161 ev_tstamp sleeptime = 0.;
2016 2162
2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2018 { 2164 {
2165 /* remember old timestamp for io_blocktime calculation */
2166 ev_tstamp prev_mn_now = mn_now;
2167
2019 /* update time to cancel out callback processing overhead */ 2168 /* update time to cancel out callback processing overhead */
2020 time_update (EV_A_ 1e100); 2169 time_update (EV_A_ 1e100);
2021 2170
2022 waittime = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
2023 2172
2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2034 if (waittime > to) waittime = to; 2183 if (waittime > to) waittime = to;
2035 } 2184 }
2036#endif 2185#endif
2037 2186
2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
2038 if (expect_false (waittime < timeout_blocktime)) 2188 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime; 2189 waittime = timeout_blocktime;
2040 2190
2041 sleeptime = waittime - backend_fudge; 2191 /* extra check because io_blocktime is commonly 0 */
2042
2043 if (expect_true (sleeptime > io_blocktime)) 2192 if (expect_false (io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 { 2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
2048 ev_sleep (sleeptime); 2201 ev_sleep (sleeptime);
2049 waittime -= sleeptime; 2202 waittime -= sleeptime;
2203 }
2050 } 2204 }
2051 } 2205 }
2052 2206
2207#if EV_MINIMAL < 2
2053 ++loop_count; 2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2054 backend_poll (EV_A_ waittime); 2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2055 2213
2056 /* update ev_rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
2057 time_update (EV_A_ waittime + sleeptime); 2215 time_update (EV_A_ waittime + sleeptime);
2058 } 2216 }
2059 2217
2070 2228
2071 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
2072 if (expect_false (checkcnt)) 2230 if (expect_false (checkcnt))
2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2074 2232
2075 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
2076 } 2234 }
2077 while (expect_true ( 2235 while (expect_true (
2078 activecnt 2236 activecnt
2079 && !loop_done 2237 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 )); 2239 ));
2082 2240
2083 if (loop_done == EVUNLOOP_ONE) 2241 if (loop_done == EVUNLOOP_ONE)
2084 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
2085} 2247}
2086 2248
2087void 2249void
2088ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
2089{ 2251{
2090 loop_done = how; 2252 loop_done = how;
2091} 2253}
2092 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
2093/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
2094 2294
2095void inline_size 2295inline_size void
2096wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
2097{ 2297{
2098 elem->next = *head; 2298 elem->next = *head;
2099 *head = elem; 2299 *head = elem;
2100} 2300}
2101 2301
2102void inline_size 2302inline_size void
2103wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
2104{ 2304{
2105 while (*head) 2305 while (*head)
2106 { 2306 {
2107 if (*head == elem) 2307 if (*head == elem)
2112 2312
2113 head = &(*head)->next; 2313 head = &(*head)->next;
2114 } 2314 }
2115} 2315}
2116 2316
2117void inline_speed 2317/* internal, faster, version of ev_clear_pending */
2318inline_speed void
2118clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
2119{ 2320{
2120 if (w->pending) 2321 if (w->pending)
2121 { 2322 {
2122 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2123 w->pending = 0; 2324 w->pending = 0;
2124 } 2325 }
2125} 2326}
2126 2327
2127int 2328int
2131 int pending = w_->pending; 2332 int pending = w_->pending;
2132 2333
2133 if (expect_true (pending)) 2334 if (expect_true (pending))
2134 { 2335 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
2136 w_->pending = 0; 2338 w_->pending = 0;
2137 p->w = 0;
2138 return p->events; 2339 return p->events;
2139 } 2340 }
2140 else 2341 else
2141 return 0; 2342 return 0;
2142} 2343}
2143 2344
2144void inline_size 2345inline_size void
2145pri_adjust (EV_P_ W w) 2346pri_adjust (EV_P_ W w)
2146{ 2347{
2147 int pri = w->priority; 2348 int pri = ev_priority (w);
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri; 2351 ev_set_priority (w, pri);
2151} 2352}
2152 2353
2153void inline_speed 2354inline_speed void
2154ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
2155{ 2356{
2156 pri_adjust (EV_A_ w); 2357 pri_adjust (EV_A_ w);
2157 w->active = active; 2358 w->active = active;
2158 ev_ref (EV_A); 2359 ev_ref (EV_A);
2159} 2360}
2160 2361
2161void inline_size 2362inline_size void
2162ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
2163{ 2364{
2164 ev_unref (EV_A); 2365 ev_unref (EV_A);
2165 w->active = 0; 2366 w->active = 0;
2166} 2367}
2182 2383
2183 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
2186 2387
2187 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2188 w->events &= ~EV__IOFDSET; 2389 w->events &= ~EV__IOFDSET;
2189 2390
2190 EV_FREQUENT_CHECK; 2391 EV_FREQUENT_CHECK;
2191} 2392}
2192 2393
2286 } 2487 }
2287 2488
2288 EV_FREQUENT_CHECK; 2489 EV_FREQUENT_CHECK;
2289} 2490}
2290 2491
2492ev_tstamp
2493ev_timer_remaining (EV_P_ ev_timer *w)
2494{
2495 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2496}
2497
2291#if EV_PERIODIC_ENABLE 2498#if EV_PERIODIC_ENABLE
2292void noinline 2499void noinline
2293ev_periodic_start (EV_P_ ev_periodic *w) 2500ev_periodic_start (EV_P_ ev_periodic *w)
2294{ 2501{
2295 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
2396 if (!((WL)w)->next) 2603 if (!((WL)w)->next)
2397 { 2604 {
2398#if _WIN32 2605#if _WIN32
2399 signal (w->signum, ev_sighandler); 2606 signal (w->signum, ev_sighandler);
2400#else 2607#else
2401 struct sigaction sa; 2608 struct sigaction sa = { };
2402 sa.sa_handler = ev_sighandler; 2609 sa.sa_handler = ev_sighandler;
2403 sigfillset (&sa.sa_mask); 2610 sigfillset (&sa.sa_mask);
2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2611 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2405 sigaction (w->signum, &sa, 0); 2612 sigaction (w->signum, &sa, 0);
2406#endif 2613#endif
2591 2798
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2799 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2800 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2594} 2801}
2595 2802
2596void inline_size 2803inline_size void
2597check_2625 (EV_P) 2804check_2625 (EV_P)
2598{ 2805{
2599 /* kernels < 2.6.25 are borked 2806 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2807 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */ 2808 */
2614 return; 2821 return;
2615 2822
2616 fs_2625 = 1; 2823 fs_2625 = 1;
2617} 2824}
2618 2825
2619void inline_size 2826inline_size void
2620infy_init (EV_P) 2827infy_init (EV_P)
2621{ 2828{
2622 if (fs_fd != -2) 2829 if (fs_fd != -2)
2623 return; 2830 return;
2624 2831
2634 ev_set_priority (&fs_w, EV_MAXPRI); 2841 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w); 2842 ev_io_start (EV_A_ &fs_w);
2636 } 2843 }
2637} 2844}
2638 2845
2639void inline_size 2846inline_size void
2640infy_fork (EV_P) 2847infy_fork (EV_P)
2641{ 2848{
2642 int slot; 2849 int slot;
2643 2850
2644 if (fs_fd < 0) 2851 if (fs_fd < 0)
3148 } 3355 }
3149} 3356}
3150 3357
3151/*****************************************************************************/ 3358/*****************************************************************************/
3152 3359
3153#if 0 3360#if EV_WALK_ENABLE
3154void 3361void
3155ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 3362ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3156{ 3363{
3157 int i, j; 3364 int i, j;
3158 ev_watcher_list *wl, *wn; 3365 ev_watcher_list *wl, *wn;
3174#if EV_USE_INOTIFY 3381#if EV_USE_INOTIFY
3175 if (ev_cb ((ev_io *)wl) == infy_cb) 3382 if (ev_cb ((ev_io *)wl) == infy_cb)
3176 ; 3383 ;
3177 else 3384 else
3178#endif 3385#endif
3179 if ((ev_io *)wl != &pipeev) 3386 if ((ev_io *)wl != &pipe_w)
3180 if (types & EV_IO) 3387 if (types & EV_IO)
3181 cb (EV_A_ EV_IO, wl); 3388 cb (EV_A_ EV_IO, wl);
3182 3389
3183 wl = wn; 3390 wl = wn;
3184 } 3391 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines