ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.49 by root, Sat Nov 3 16:16:58 2007 UTC vs.
Revision 1.301 by root, Wed Jul 15 16:58:53 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
33#endif 146#endif
34 147
35#include <math.h> 148#include <math.h>
36#include <stdlib.h> 149#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 150#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 151#include <stddef.h>
41 152
42#include <stdio.h> 153#include <stdio.h>
43 154
44#include <assert.h> 155#include <assert.h>
45#include <errno.h> 156#include <errno.h>
46#include <sys/types.h> 157#include <sys/types.h>
158#include <time.h>
159
160#include <signal.h>
161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
47#ifndef WIN32 168#ifndef _WIN32
169# include <sys/time.h>
48# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
49#endif 178# endif
50#include <sys/time.h> 179#endif
51#include <time.h>
52 180
53/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
54 190
55#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
56# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
57#endif 209#endif
58 210
59#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
61#endif 213#endif
62 214
63#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
65#endif 221#endif
66 222
67#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
68# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
69#endif 229#endif
70 230
71#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
73#endif 233#endif
74 234
75#ifndef EV_USE_REALTIME 235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 241# define EV_USE_INOTIFY 1
242# else
243# define EV_USE_INOTIFY 0
77#endif 244# endif
245#endif
78 246
79/**/ 247#ifndef EV_PID_HASHSIZE
248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
252# endif
253#endif
254
255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 304
81#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
84#endif 308#endif
86#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
89#endif 313#endif
90 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
91/**/ 353/**/
92 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 374
98#include "ev.h"
99
100#if __GNUC__ >= 3 375#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 377# define noinline __attribute__ ((noinline))
103#else 378#else
104# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
105# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
106#endif 384#endif
107 385
108#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
110 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
113 403
404#define EMPTY /* required for microsofts broken pseudo-c compiler */
405#define EMPTY2(a,b) /* used to suppress some warnings */
406
114typedef struct ev_watcher *W; 407typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
117 410
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 411#define ev_active(w) ((W)(w))->active
119ev_tstamp ev_now; 412#define ev_at(w) ((WT)(w))->at
120int ev_method;
121 413
122static int have_monotonic; /* runtime */ 414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
123 419
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 420#if EV_USE_MONOTONIC
125static void (*method_modify)(int fd, int oev, int nev); 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
126static void (*method_poll)(ev_tstamp timeout); 422#endif
423
424#ifdef _WIN32
425# include "ev_win32.c"
426#endif
127 427
128/*****************************************************************************/ 428/*****************************************************************************/
129 429
430static void (*syserr_cb)(const char *msg);
431
432void
433ev_set_syserr_cb (void (*cb)(const char *msg))
434{
435 syserr_cb = cb;
436}
437
438static void noinline
439ev_syserr (const char *msg)
440{
441 if (!msg)
442 msg = "(libev) system error";
443
444 if (syserr_cb)
445 syserr_cb (msg);
446 else
447 {
448 perror (msg);
449 abort ();
450 }
451}
452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
469
470void
471ev_set_allocator (void *(*cb)(void *ptr, long size))
472{
473 alloc = cb;
474}
475
476inline_speed void *
477ev_realloc (void *ptr, long size)
478{
479 ptr = alloc (ptr, size);
480
481 if (!ptr && size)
482 {
483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
484 abort ();
485 }
486
487 return ptr;
488}
489
490#define ev_malloc(size) ev_realloc (0, (size))
491#define ev_free(ptr) ev_realloc ((ptr), 0)
492
493/*****************************************************************************/
494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
499typedef struct
500{
501 WL head;
502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
509#if EV_SELECT_IS_WINSOCKET
510 SOCKET handle;
511#endif
512} ANFD;
513
514/* stores the pending event set for a given watcher */
515typedef struct
516{
517 W w;
518 int events; /* the pending event set for the given watcher */
519} ANPENDING;
520
521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
523typedef struct
524{
525 WL head;
526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
547#endif
548
549#if EV_MULTIPLICITY
550
551 struct ev_loop
552 {
553 ev_tstamp ev_rt_now;
554 #define ev_rt_now ((loop)->ev_rt_now)
555 #define VAR(name,decl) decl;
556 #include "ev_vars.h"
557 #undef VAR
558 };
559 #include "ev_wrap.h"
560
561 static struct ev_loop default_loop_struct;
562 struct ev_loop *ev_default_loop_ptr;
563
564#else
565
566 ev_tstamp ev_rt_now;
567 #define VAR(name,decl) static decl;
568 #include "ev_vars.h"
569 #undef VAR
570
571 static int ev_default_loop_ptr;
572
573#endif
574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
587/*****************************************************************************/
588
589#ifndef EV_HAVE_EV_TIME
130ev_tstamp 590ev_tstamp
131ev_time (void) 591ev_time (void)
132{ 592{
133#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
134 struct timespec ts; 596 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
136 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
137#else 599 }
600#endif
601
138 struct timeval tv; 602 struct timeval tv;
139 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif
142} 605}
606#endif
143 607
144static ev_tstamp 608inline_size ev_tstamp
145get_clock (void) 609get_clock (void)
146{ 610{
147#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
149 { 613 {
154#endif 618#endif
155 619
156 return ev_time (); 620 return ev_time ();
157} 621}
158 622
159#define array_roundsize(base,n) ((n) | 4 & ~3) 623#if EV_MULTIPLICITY
624ev_tstamp
625ev_now (EV_P)
626{
627 return ev_rt_now;
628}
629#endif
160 630
161#define array_needsize(base,cur,cnt,init) \ 631void
162 if (expect_false ((cnt) > cur)) \ 632ev_sleep (ev_tstamp delay)
163 { \ 633{
164 int newcnt = cur; \ 634 if (delay > 0.)
165 do \
166 { \
167 newcnt = array_roundsize (base, newcnt << 1); \
168 } \
169 while ((cnt) > newcnt); \
170 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \
172 init (base + cur, newcnt - cur); \
173 cur = newcnt; \
174 } 635 {
636#if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643#elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645#else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655#endif
656 }
657}
175 658
176/*****************************************************************************/ 659/*****************************************************************************/
177 660
178typedef struct 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184 662
185static ANFD *anfds; 663/* find a suitable new size for the given array, */
186static int anfdmax; 664/* hopefully by rounding to a ncie-to-malloc size */
187 665inline_size int
188static void 666array_nextsize (int elem, int cur, int cnt)
189anfds_init (ANFD *base, int count)
190{ 667{
191 while (count--) 668 int ncur = cur + 1;
192 {
193 base->head = 0;
194 base->events = EV_NONE;
195 base->reify = 0;
196 669
197 ++base; 670 do
671 ncur <<= 1;
672 while (cnt > ncur);
673
674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
198 } 676 {
199} 677 ncur *= elem;
200 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
201typedef struct 679 ncur = ncur - sizeof (void *) * 4;
202{ 680 ncur /= elem;
203 W w;
204 int events;
205} ANPENDING;
206
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void
211event (W w, int events)
212{
213 if (w->pending)
214 { 681 }
682
683 return ncur;
684}
685
686static noinline void *
687array_realloc (int elem, void *base, int *cur, int cnt)
688{
689 *cur = array_nextsize (elem, *cur, cnt);
690 return ev_realloc (base, elem * *cur);
691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
695
696#define array_needsize(type,base,cur,cnt,init) \
697 if (expect_false ((cnt) > (cur))) \
698 { \
699 int ocur_ = (cur); \
700 (base) = (type *)array_realloc \
701 (sizeof (type), (base), &(cur), (cnt)); \
702 init ((base) + (ocur_), (cur) - ocur_); \
703 }
704
705#if 0
706#define array_slim(type,stem) \
707 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
708 { \
709 stem ## max = array_roundsize (stem ## cnt >> 1); \
710 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
712 }
713#endif
714
715#define array_free(stem, idx) \
716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
717
718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
725
726void noinline
727ev_feed_event (EV_P_ void *w, int revents)
728{
729 W w_ = (W)w;
730 int pri = ABSPRI (w_);
731
732 if (expect_false (w_->pending))
733 pendings [pri][w_->pending - 1].events |= revents;
734 else
735 {
736 w_->pending = ++pendingcnt [pri];
737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738 pendings [pri][w_->pending - 1].w = w_;
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 739 pendings [pri][w_->pending - 1].events = revents;
216 return;
217 } 740 }
218
219 w->pending = ++pendingcnt [ABSPRI (w)];
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
221 pendings [ABSPRI (w)][w->pending - 1].w = w;
222 pendings [ABSPRI (w)][w->pending - 1].events = events;
223} 741}
224 742
225static void 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
226queue_events (W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 760{
228 int i; 761 int i;
229 762
230 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
232} 765}
233 766
234static void 767/*****************************************************************************/
768
769inline_speed void
235fd_event (int fd, int events) 770fd_event_nc (EV_P_ int fd, int revents)
236{ 771{
237 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 773 ev_io *w;
239 774
240 for (w = anfd->head; w; w = w->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
241 { 776 {
242 int ev = w->events & events; 777 int ev = w->events & revents;
243 778
244 if (ev) 779 if (ev)
245 event ((W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
246 } 781 }
247} 782}
248 783
249/*****************************************************************************/ 784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
250 790
251static int *fdchanges; 791 if (expect_true (!anfd->reify))
252static int fdchangemax, fdchangecnt; 792 fd_event_nc (EV_A_ fd, revents);
793}
253 794
254static void 795void
255fd_reify (void) 796ev_feed_fd_event (EV_P_ int fd, int revents)
797{
798 if (fd >= 0 && fd < anfdmax)
799 fd_event_nc (EV_A_ fd, revents);
800}
801
802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
805fd_reify (EV_P)
256{ 806{
257 int i; 807 int i;
258 808
259 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
260 { 810 {
261 int fd = fdchanges [i]; 811 int fd = fdchanges [i];
262 ANFD *anfd = anfds + fd; 812 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 813 ev_io *w;
264 814
265 int events = 0; 815 unsigned char events = 0;
266 816
267 for (w = anfd->head; w; w = w->next) 817 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
268 events |= w->events; 818 events |= (unsigned char)w->events;
269 819
270 anfd->reify = 0; 820#if EV_SELECT_IS_WINSOCKET
271 821 if (events)
272 if (anfd->events != events)
273 { 822 {
274 method_modify (fd, anfd->events, events); 823 unsigned long arg;
275 anfd->events = events; 824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
827 anfd->handle = _get_osfhandle (fd);
828 #endif
829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
276 } 830 }
831#endif
832
833 {
834 unsigned char o_events = anfd->events;
835 unsigned char o_reify = anfd->reify;
836
837 anfd->reify = 0;
838 anfd->events = events;
839
840 if (o_events != events || o_reify & EV__IOFDSET)
841 backend_modify (EV_A_ fd, o_events, events);
842 }
277 } 843 }
278 844
279 fdchangecnt = 0; 845 fdchangecnt = 0;
280} 846}
281 847
282static void 848/* something about the given fd changed */
283fd_change (int fd) 849inline_size void
850fd_change (EV_P_ int fd, int flags)
284{ 851{
285 if (anfds [fd].reify || fdchangecnt < 0) 852 unsigned char reify = anfds [fd].reify;
286 return;
287
288 anfds [fd].reify = 1; 853 anfds [fd].reify |= flags;
289 854
855 if (expect_true (!reify))
856 {
290 ++fdchangecnt; 857 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
292 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
860 }
293} 861}
294 862
295static void 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
296fd_kill (int fd) 865fd_kill (EV_P_ int fd)
297{ 866{
298 struct ev_io *w; 867 ev_io *w;
299 868
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
302 { 870 {
303 ev_io_stop (w); 871 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 873 }
874}
875
876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
878fd_valid (int fd)
879{
880#ifdef _WIN32
881 return _get_osfhandle (fd) != -1;
882#else
883 return fcntl (fd, F_GETFD) != -1;
884#endif
306} 885}
307 886
308/* called on EBADF to verify fds */ 887/* called on EBADF to verify fds */
309static void 888static void noinline
310fd_ebadf (void) 889fd_ebadf (EV_P)
311{ 890{
312 int fd; 891 int fd;
313 892
314 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 894 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
317 fd_kill (fd); 896 fd_kill (EV_A_ fd);
318} 897}
319 898
320/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 900static void noinline
322fd_enomem (void) 901fd_enomem (EV_P)
323{ 902{
324 int fd = anfdmax; 903 int fd;
325 904
326 while (fd--) 905 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 906 if (anfds [fd].events)
328 { 907 {
329 close (fd);
330 fd_kill (fd); 908 fd_kill (EV_A_ fd);
331 return; 909 return;
332 } 910 }
333} 911}
334 912
913/* usually called after fork if backend needs to re-arm all fds from scratch */
914static void noinline
915fd_rearm_all (EV_P)
916{
917 int fd;
918
919 for (fd = 0; fd < anfdmax; ++fd)
920 if (anfds [fd].events)
921 {
922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
925 }
926}
927
335/*****************************************************************************/ 928/*****************************************************************************/
336 929
337static struct ev_timer **timers; 930/*
338static int timermax, timercnt; 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933 * the branching factor of the d-tree.
934 */
339 935
340static struct ev_periodic **periodics; 936/*
341static int periodicmax, periodiccnt; 937 * at the moment we allow libev the luxury of two heaps,
938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942#if EV_USE_4HEAP
342 943
343static void 944#define DHEAP 4
344upheap (WT *timers, int k) 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
345{ 946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
346 WT w = timers [k]; 947#define UPHEAP_DONE(p,k) ((p) == (k))
347 948
348 while (k && timers [k >> 1]->at > w->at) 949/* away from the root */
349 { 950inline_speed void
350 timers [k] = timers [k >> 1];
351 timers [k]->active = k + 1;
352 k >>= 1;
353 }
354
355 timers [k] = w;
356 timers [k]->active = k + 1;
357
358}
359
360static void
361downheap (WT *timers, int N, int k) 951downheap (ANHE *heap, int N, int k)
362{ 952{
363 WT w = timers [k]; 953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
364 955
365 while (k < (N >> 1)) 956 for (;;)
366 { 957 {
367 int j = k << 1; 958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
368 961
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
370 ++j; 964 {
371 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
372 if (w->at <= timers [j]->at) 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
373 break; 978 break;
374 979
375 timers [k] = timers [j]; 980 if (ANHE_at (he) <= minat)
376 timers [k]->active = k + 1; 981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
377 k = j; 1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
378 } 1036 {
1037 int p = HPARENT (k);
379 1038
380 timers [k] = w; 1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
381 timers [k]->active = k + 1; 1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
1052inline_size void
1053adjustheap (ANHE *heap, int N, int k)
1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1056 upheap (heap, k);
1057 else
1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
382} 1071}
383 1072
384/*****************************************************************************/ 1073/*****************************************************************************/
385 1074
1075/* associate signal watchers to a signal signal */
386typedef struct 1076typedef struct
387{ 1077{
388 struct ev_signal *head; 1078 WL head;
389 sig_atomic_t volatile gotsig; 1079 EV_ATOMIC_T gotsig;
390} ANSIG; 1080} ANSIG;
391 1081
392static ANSIG *signals; 1082static ANSIG *signals;
393static int signalmax; 1083static int signalmax;
394 1084
395static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
396static sig_atomic_t volatile gotsig;
397static struct ev_io sigev;
398 1086
1087/*****************************************************************************/
1088
1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
1092fd_intern (int fd)
1093{
1094#ifdef _WIN32
1095 unsigned long arg = 1;
1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1097#else
1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
1099 fcntl (fd, F_SETFL, O_NONBLOCK);
1100#endif
1101}
1102
1103static void noinline
1104evpipe_init (EV_P)
1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
1121 fd_intern (evpipe [0]);
1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
1125
1126 ev_io_start (EV_A_ &pipe_w);
1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
399static void 1156static void
400signals_init (ANSIG *base, int count) 1157pipecb (EV_P_ ev_io *iow, int revents)
401{ 1158{
402 while (count--) 1159#if EV_USE_EVENTFD
1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
403 { 1164 }
404 base->head = 0; 1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
1171
1172 if (gotsig && ev_is_default_loop (EV_A))
1173 {
1174 int signum;
405 base->gotsig = 0; 1175 gotsig = 0;
406 1176
407 ++base; 1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
408 } 1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
409} 1196}
1197
1198/*****************************************************************************/
410 1199
411static void 1200static void
412sighandler (int signum) 1201ev_sighandler (int signum)
413{ 1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
1207#if _WIN32
1208 signal (signum, ev_sighandler);
1209#endif
1210
414 signals [signum - 1].gotsig = 1; 1211 signals [signum - 1].gotsig = 1;
415 1212 evpipe_write (EV_A_ &gotsig);
416 if (!gotsig)
417 {
418 int old_errno = errno;
419 gotsig = 1;
420 write (sigpipe [1], &signum, 1);
421 errno = old_errno;
422 }
423} 1213}
424 1214
425static void 1215void noinline
426sigcb (struct ev_io *iow, int revents) 1216ev_feed_signal_event (EV_P_ int signum)
427{ 1217{
428 struct ev_signal *w; 1218 WL w;
1219
1220#if EV_MULTIPLICITY
1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222#endif
1223
429 int signum; 1224 --signum;
430 1225
431 read (sigpipe [0], &revents, 1); 1226 if (signum < 0 || signum >= signalmax)
432 gotsig = 0; 1227 return;
433 1228
434 for (signum = signalmax; signum--; )
435 if (signals [signum].gotsig)
436 {
437 signals [signum].gotsig = 0; 1229 signals [signum].gotsig = 0;
438 1230
439 for (w = signals [signum].head; w; w = w->next) 1231 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL); 1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
441 }
442}
443
444static void
445siginit (void)
446{
447#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450
451 /* rather than sort out wether we really need nb, set it */
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif
455
456 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev);
458} 1233}
459 1234
460/*****************************************************************************/ 1235/*****************************************************************************/
461 1236
462static struct ev_idle **idles; 1237static WL childs [EV_PID_HASHSIZE];
463static int idlemax, idlecnt;
464 1238
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472
473static struct ev_child *childs [PID_HASHSIZE];
474static struct ev_signal childev;
475
476#ifndef WIN32 1239#ifndef _WIN32
1240
1241static ev_signal childev;
1242
1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
1249child_reap (EV_P_ int chain, int pid, int status)
1250{
1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1253
1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
1258 {
1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1260 w->rpid = pid;
1261 w->rstatus = status;
1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1263 }
1264 }
1265}
477 1266
478#ifndef WCONTINUED 1267#ifndef WCONTINUED
479# define WCONTINUED 0 1268# define WCONTINUED 0
480#endif 1269#endif
481 1270
1271/* called on sigchld etc., calls waitpid */
482static void 1272static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status)
484{
485 struct ev_child *w;
486
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next)
488 if (w->pid == pid || !w->pid)
489 {
490 w->priority = sw->priority; /* need to do it *now* */
491 w->rpid = pid;
492 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD);
495 }
496}
497
498static void
499childcb (struct ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
500{ 1274{
501 int pid, status; 1275 int pid, status;
502 1276
503 printf ("chld %x\n", revents);//D 1277 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1278 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 1279 if (!WCONTINUED
1280 || errno != EINVAL
1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1282 return;
1283
506 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
1285 /* we need to do it this way so that the callback gets called before we continue */
507 event ((W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
508 1287
509 child_reap (sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
1289 if (EV_PID_HASHSIZE > 1)
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
511 }
512} 1291}
513 1292
514#endif 1293#endif
515 1294
516/*****************************************************************************/ 1295/*****************************************************************************/
517 1296
1297#if EV_USE_PORT
1298# include "ev_port.c"
1299#endif
518#if EV_USE_KQUEUE 1300#if EV_USE_KQUEUE
519# include "ev_kqueue.c" 1301# include "ev_kqueue.c"
520#endif 1302#endif
521#if EV_USE_EPOLL 1303#if EV_USE_EPOLL
522# include "ev_epoll.c" 1304# include "ev_epoll.c"
539{ 1321{
540 return EV_VERSION_MINOR; 1322 return EV_VERSION_MINOR;
541} 1323}
542 1324
543/* return true if we are running with elevated privileges and should ignore env variables */ 1325/* return true if we are running with elevated privileges and should ignore env variables */
544static int 1326int inline_size
545enable_secure () 1327enable_secure (void)
546{ 1328{
547#ifdef WIN32 1329#ifdef _WIN32
548 return 0; 1330 return 0;
549#else 1331#else
550 return getuid () != geteuid () 1332 return getuid () != geteuid ()
551 || getgid () != getegid (); 1333 || getgid () != getegid ();
552#endif 1334#endif
553} 1335}
554 1336
555int ev_init (int methods) 1337unsigned int
1338ev_supported_backends (void)
556{ 1339{
557 if (!ev_method) 1340 unsigned int flags = 0;
1341
1342 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1343 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1344 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1345 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1346 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1347
1348 return flags;
1349}
1350
1351unsigned int
1352ev_recommended_backends (void)
1353{
1354 unsigned int flags = ev_supported_backends ();
1355
1356#ifndef __NetBSD__
1357 /* kqueue is borked on everything but netbsd apparently */
1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1359 flags &= ~EVBACKEND_KQUEUE;
1360#endif
1361#ifdef __APPLE__
1362 /* only select works correctly on that "unix-certified" platform */
1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1365#endif
1366
1367 return flags;
1368}
1369
1370unsigned int
1371ev_embeddable_backends (void)
1372{
1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1374
1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
1380}
1381
1382unsigned int
1383ev_backend (EV_P)
1384{
1385 return backend;
1386}
1387
1388#if EV_MINIMAL < 2
1389unsigned int
1390ev_loop_count (EV_P)
1391{
1392 return loop_count;
1393}
1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1401void
1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403{
1404 io_blocktime = interval;
1405}
1406
1407void
1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409{
1410 timeout_blocktime = interval;
1411}
1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1438static void noinline
1439loop_init (EV_P_ unsigned int flags)
1440{
1441 if (!backend)
558 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
559#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1455 {
1456 struct timespec ts;
1457
1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1459 have_monotonic = 1;
1460 }
1461#endif
1462
1463 ev_rt_now = ev_time ();
1464 mn_now = get_clock ();
1465 now_floor = mn_now;
1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1470
1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
1479
1480 /* pid check not overridable via env */
1481#ifndef _WIN32
1482 if (flags & EVFLAG_FORKCHECK)
1483 curpid = getpid ();
1484#endif
1485
1486 if (!(flags & EVFLAG_NOENV)
1487 && !enable_secure ()
1488 && getenv ("LIBEV_FLAGS"))
1489 flags = atoi (getenv ("LIBEV_FLAGS"));
1490
1491 if (!(flags & 0x0000ffffU))
1492 flags |= ev_recommended_backends ();
1493
1494#if EV_USE_PORT
1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1496#endif
1497#if EV_USE_KQUEUE
1498 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1499#endif
1500#if EV_USE_EPOLL
1501 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1502#endif
1503#if EV_USE_POLL
1504 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1505#endif
1506#if EV_USE_SELECT
1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1508#endif
1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1512 ev_init (&pipe_w, pipecb);
1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1514 }
1515}
1516
1517/* free up a loop structure */
1518static void noinline
1519loop_destroy (EV_P)
1520{
1521 int i;
1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
1539
1540#if EV_USE_INOTIFY
1541 if (fs_fd >= 0)
1542 close (fs_fd);
1543#endif
1544
1545 if (backend_fd >= 0)
1546 close (backend_fd);
1547
1548#if EV_USE_PORT
1549 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1550#endif
1551#if EV_USE_KQUEUE
1552 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1553#endif
1554#if EV_USE_EPOLL
1555 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1556#endif
1557#if EV_USE_POLL
1558 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1559#endif
1560#if EV_USE_SELECT
1561 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1562#endif
1563
1564 for (i = NUMPRI; i--; )
1565 {
1566 array_free (pending, [i]);
1567#if EV_IDLE_ENABLE
1568 array_free (idle, [i]);
1569#endif
1570 }
1571
1572 ev_free (anfds); anfdmax = 0;
1573
1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1576 array_free (fdchange, EMPTY);
1577 array_free (timer, EMPTY);
1578#if EV_PERIODIC_ENABLE
1579 array_free (periodic, EMPTY);
1580#endif
1581#if EV_FORK_ENABLE
1582 array_free (fork, EMPTY);
1583#endif
1584 array_free (prepare, EMPTY);
1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
1589
1590 backend = 0;
1591}
1592
1593#if EV_USE_INOTIFY
1594inline_size void infy_fork (EV_P);
1595#endif
1596
1597inline_size void
1598loop_fork (EV_P)
1599{
1600#if EV_USE_PORT
1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1602#endif
1603#if EV_USE_KQUEUE
1604 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1605#endif
1606#if EV_USE_EPOLL
1607 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1608#endif
1609#if EV_USE_INOTIFY
1610 infy_fork (EV_A);
1611#endif
1612
1613 if (ev_is_active (&pipe_w))
1614 {
1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
1621
1622 ev_ref (EV_A);
1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 close (evpipe [0]);
1633 close (evpipe [1]);
1634 }
1635
1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
1639 }
1640
1641 postfork = 0;
1642}
1643
1644#if EV_MULTIPLICITY
1645
1646struct ev_loop *
1647ev_loop_new (unsigned int flags)
1648{
1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1650
1651 memset (loop, 0, sizeof (struct ev_loop));
1652
1653 loop_init (EV_A_ flags);
1654
1655 if (ev_backend (EV_A))
1656 return loop;
1657
1658 return 0;
1659}
1660
1661void
1662ev_loop_destroy (EV_P)
1663{
1664 loop_destroy (EV_A);
1665 ev_free (loop);
1666}
1667
1668void
1669ev_loop_fork (EV_P)
1670{
1671 postfork = 1; /* must be in line with ev_default_fork */
1672}
1673#endif /* multiplicity */
1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
560 { 1728 {
561 struct timespec ts; 1729 verify_watcher (EV_A_ (W)w);
562 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
563 have_monotonic = 1; 1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
564 } 1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
565#endif 1771# endif
566
567 ev_now = ev_time ();
568 now = get_clock ();
569 now_floor = now;
570 diff = ev_now - now;
571
572 if (pipe (sigpipe))
573 return 0;
574
575 if (methods == EVMETHOD_AUTO)
576 if (!enable_secure () && getenv ("LIBEV_METHODS"))
577 methods = atoi (getenv ("LIBEV_METHODS"));
578 else
579 methods = EVMETHOD_ANY;
580
581 ev_method = 0;
582#if EV_USE_KQUEUE
583 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods);
584#endif 1772#endif
585#if EV_USE_EPOLL 1773}
586 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods);
587#endif 1774#endif
588#if EV_USE_POLL
589 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods);
590#endif
591#if EV_USE_SELECT
592 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods);
593#endif
594 1775
595 if (ev_method) 1776#if EV_MULTIPLICITY
1777struct ev_loop *
1778ev_default_loop_init (unsigned int flags)
1779#else
1780int
1781ev_default_loop (unsigned int flags)
1782#endif
1783{
1784 if (!ev_default_loop_ptr)
1785 {
1786#if EV_MULTIPLICITY
1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1788#else
1789 ev_default_loop_ptr = 1;
1790#endif
1791
1792 loop_init (EV_A_ flags);
1793
1794 if (ev_backend (EV_A))
596 { 1795 {
597 ev_watcher_init (&sigev, sigcb);
598 ev_set_priority (&sigev, EV_MAXPRI);
599 siginit ();
600
601#ifndef WIN32 1796#ifndef _WIN32
602 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
603 ev_set_priority (&childev, EV_MAXPRI); 1798 ev_set_priority (&childev, EV_MAXPRI);
604 ev_signal_start (&childev); 1799 ev_signal_start (EV_A_ &childev);
1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
605#endif 1801#endif
606 } 1802 }
1803 else
1804 ev_default_loop_ptr = 0;
607 } 1805 }
608 1806
609 return ev_method; 1807 return ev_default_loop_ptr;
1808}
1809
1810void
1811ev_default_destroy (void)
1812{
1813#if EV_MULTIPLICITY
1814 struct ev_loop *loop = ev_default_loop_ptr;
1815#endif
1816
1817 ev_default_loop_ptr = 0;
1818
1819#ifndef _WIN32
1820 ev_ref (EV_A); /* child watcher */
1821 ev_signal_stop (EV_A_ &childev);
1822#endif
1823
1824 loop_destroy (EV_A);
1825}
1826
1827void
1828ev_default_fork (void)
1829{
1830#if EV_MULTIPLICITY
1831 struct ev_loop *loop = ev_default_loop_ptr;
1832#endif
1833
1834 postfork = 1; /* must be in line with ev_loop_fork */
610} 1835}
611 1836
612/*****************************************************************************/ 1837/*****************************************************************************/
613 1838
614void 1839void
615ev_fork_prepare (void) 1840ev_invoke (EV_P_ void *w, int revents)
616{ 1841{
617 /* nop */ 1842 EV_CB_INVOKE ((W)w, revents);
618} 1843}
619 1844
620void 1845unsigned int
621ev_fork_parent (void) 1846ev_pending_count (EV_P)
622{ 1847{
623 /* nop */ 1848 int pri;
624} 1849 unsigned int count = 0;
625 1850
626void 1851 for (pri = NUMPRI; pri--; )
627ev_fork_child (void) 1852 count += pendingcnt [pri];
628{
629#if EV_USE_EPOLL
630 if (ev_method == EVMETHOD_EPOLL)
631 epoll_postfork_child ();
632#endif
633 1853
634 ev_io_stop (&sigev); 1854 return count;
635 close (sigpipe [0]);
636 close (sigpipe [1]);
637 pipe (sigpipe);
638 siginit ();
639} 1855}
640 1856
641/*****************************************************************************/ 1857void noinline
642 1858ev_invoke_pending (EV_P)
643static void
644call_pending (void)
645{ 1859{
646 int pri; 1860 int pri;
647 1861
648 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
649 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
650 { 1864 {
651 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
652 1866
653 if (p->w) 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
654 { 1868 /* ^ this is no longer true, as pending_w could be here */
1869
655 p->w->pending = 0; 1870 p->w->pending = 0;
656 p->w->cb (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
657 } 1872 EV_FREQUENT_CHECK;
658 } 1873 }
659} 1874}
660 1875
661static void 1876#if EV_IDLE_ENABLE
662timers_reify (void) 1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1880idle_reify (EV_P)
663{ 1881{
664 while (timercnt && timers [0]->at <= now) 1882 if (expect_false (idleall))
665 { 1883 {
666 struct ev_timer *w = timers [0]; 1884 int pri;
667 1885
668 /* first reschedule or stop timer */ 1886 for (pri = NUMPRI; pri--; )
669 if (w->repeat)
670 { 1887 {
671 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1888 if (pendingcnt [pri])
672 w->at = now + w->repeat; 1889 break;
673 downheap ((WT *)timers, timercnt, 0);
674 }
675 else
676 ev_timer_stop (w); /* nonrepeating: stop timer */
677 1890
678 event ((W)w, EV_TIMEOUT); 1891 if (idlecnt [pri])
679 }
680}
681
682static void
683periodics_reify (void)
684{
685 while (periodiccnt && periodics [0]->at <= ev_now)
686 {
687 struct ev_periodic *w = periodics [0];
688
689 /* first reschedule or stop timer */
690 if (w->interval)
691 {
692 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval;
693 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now));
694 downheap ((WT *)periodics, periodiccnt, 0);
695 }
696 else
697 ev_periodic_stop (w); /* nonrepeating: stop timer */
698
699 event ((W)w, EV_PERIODIC);
700 }
701}
702
703static void
704periodics_reschedule (ev_tstamp diff)
705{
706 int i;
707
708 /* adjust periodics after time jump */
709 for (i = 0; i < periodiccnt; ++i)
710 {
711 struct ev_periodic *w = periodics [i];
712
713 if (w->interval)
714 {
715 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
716
717 if (fabs (diff) >= 1e-4)
718 { 1892 {
719 ev_periodic_stop (w); 1893 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
720 ev_periodic_start (w); 1894 break;
721
722 i = 0; /* restart loop, inefficient, but time jumps should be rare */
723 } 1895 }
724 } 1896 }
725 } 1897 }
726} 1898}
1899#endif
727 1900
728static int 1901/* make timers pending */
729time_update_monotonic (void) 1902inline_size void
1903timers_reify (EV_P)
730{ 1904{
731 now = get_clock (); 1905 EV_FREQUENT_CHECK;
732 1906
733 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
734 {
735 ev_now = now + diff;
736 return 0;
737 } 1908 {
738 else 1909 do
1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1923
1924 ANHE_at_cache (timers [HEAP0]);
1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1932 }
1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1934
1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
739 { 1936 }
740 now_floor = now; 1937}
741 ev_now = ev_time (); 1938
742 return 1; 1939#if EV_PERIODIC_ENABLE
1940/* make periodics pending */
1941inline_size void
1942periodics_reify (EV_P)
1943{
1944 EV_FREQUENT_CHECK;
1945
1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
743 } 1947 {
744} 1948 int feed_count = 0;
745 1949
746static void 1950 do
747time_update (void) 1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1990 }
1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992
1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 }
1995}
1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999static void noinline
2000periodics_reschedule (EV_P)
748{ 2001{
749 int i; 2002 int i;
750 2003
2004 /* adjust periodics after time jump */
2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 {
2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008
2009 if (w->reschedule_cb)
2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2011 else if (w->interval)
2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013
2014 ANHE_at_cache (periodics [i]);
2015 }
2016
2017 reheap (periodics, periodiccnt);
2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033}
2034
2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
2038time_update (EV_P_ ev_tstamp max_block)
2039{
751#if EV_USE_MONOTONIC 2040#if EV_USE_MONOTONIC
752 if (expect_true (have_monotonic)) 2041 if (expect_true (have_monotonic))
753 { 2042 {
754 if (time_update_monotonic ()) 2043 int i;
2044 ev_tstamp odiff = rtmn_diff;
2045
2046 mn_now = get_clock ();
2047
2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2049 /* interpolate in the meantime */
2050 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
755 { 2051 {
756 ev_tstamp odiff = diff; 2052 ev_rt_now = rtmn_diff + mn_now;
757 2053 return;
758 for (i = 4; --i; ) /* loop a few times, before making important decisions */
759 {
760 diff = ev_now - now;
761
762 if (fabs (odiff - diff) < MIN_TIMEJUMP)
763 return; /* all is well */
764
765 ev_now = ev_time ();
766 now = get_clock ();
767 now_floor = now;
768 }
769
770 periodics_reschedule (diff - odiff);
771 /* no timer adjustment, as the monotonic clock doesn't jump */
772 } 2054 }
2055
2056 now_floor = mn_now;
2057 ev_rt_now = ev_time ();
2058
2059 /* loop a few times, before making important decisions.
2060 * on the choice of "4": one iteration isn't enough,
2061 * in case we get preempted during the calls to
2062 * ev_time and get_clock. a second call is almost guaranteed
2063 * to succeed in that case, though. and looping a few more times
2064 * doesn't hurt either as we only do this on time-jumps or
2065 * in the unlikely event of having been preempted here.
2066 */
2067 for (i = 4; --i; )
2068 {
2069 rtmn_diff = ev_rt_now - mn_now;
2070
2071 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2072 return; /* all is well */
2073
2074 ev_rt_now = ev_time ();
2075 mn_now = get_clock ();
2076 now_floor = mn_now;
2077 }
2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2081# if EV_PERIODIC_ENABLE
2082 periodics_reschedule (EV_A);
2083# endif
773 } 2084 }
774 else 2085 else
775#endif 2086#endif
776 { 2087 {
777 ev_now = ev_time (); 2088 ev_rt_now = ev_time ();
778 2089
779 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
780 { 2091 {
781 periodics_reschedule (ev_now - now);
782
783 /* adjust timers. this is easy, as the offset is the same for all */ 2092 /* adjust timers. this is easy, as the offset is the same for all of them */
784 for (i = 0; i < timercnt; ++i) 2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
785 timers [i]->at += diff; 2094#if EV_PERIODIC_ENABLE
2095 periodics_reschedule (EV_A);
2096#endif
786 } 2097 }
787 2098
788 now = ev_now; 2099 mn_now = ev_rt_now;
789 } 2100 }
790} 2101}
791 2102
792int ev_loop_done; 2103void
793
794void ev_loop (int flags) 2104ev_loop (EV_P_ int flags)
795{ 2105{
796 double block; 2106#if EV_MINIMAL < 2
797 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2107 ++loop_depth;
2108#endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
2112 loop_done = EVUNLOOP_CANCEL;
2113
2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
798 2115
799 do 2116 do
800 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
2122#ifndef _WIN32
2123 if (expect_false (curpid)) /* penalise the forking check even more */
2124 if (expect_false (getpid () != curpid))
2125 {
2126 curpid = getpid ();
2127 postfork = 1;
2128 }
2129#endif
2130
2131#if EV_FORK_ENABLE
2132 /* we might have forked, so queue fork handlers */
2133 if (expect_false (postfork))
2134 if (forkcnt)
2135 {
2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2137 EV_INVOKE_PENDING;
2138 }
2139#endif
2140
801 /* queue check watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
802 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
803 { 2143 {
804 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
805 call_pending (); 2145 EV_INVOKE_PENDING;
806 } 2146 }
807 2147
2148 if (expect_false (loop_done))
2149 break;
2150
2151 /* we might have forked, so reify kernel state if necessary */
2152 if (expect_false (postfork))
2153 loop_fork (EV_A);
2154
808 /* update fd-related kernel structures */ 2155 /* update fd-related kernel structures */
809 fd_reify (); 2156 fd_reify (EV_A);
810 2157
811 /* calculate blocking time */ 2158 /* calculate blocking time */
2159 {
2160 ev_tstamp waittime = 0.;
2161 ev_tstamp sleeptime = 0.;
812 2162
813 /* we only need this for !monotonic clockor timers, but as we basically 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
814 always have timers, we just calculate it always */
815#if EV_USE_MONOTONIC
816 if (expect_true (have_monotonic))
817 time_update_monotonic ();
818 else
819#endif
820 { 2164 {
821 ev_now = ev_time (); 2165 /* remember old timestamp for io_blocktime calculation */
822 now = ev_now; 2166 ev_tstamp prev_mn_now = mn_now;
823 }
824 2167
825 if (flags & EVLOOP_NONBLOCK || idlecnt) 2168 /* update time to cancel out callback processing overhead */
826 block = 0.; 2169 time_update (EV_A_ 1e100);
827 else 2170
828 {
829 block = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
830 2172
831 if (timercnt) 2173 if (timercnt)
832 { 2174 {
833 ev_tstamp to = timers [0]->at - now + method_fudge; 2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
834 if (block > to) block = to; 2176 if (waittime > to) waittime = to;
835 } 2177 }
836 2178
2179#if EV_PERIODIC_ENABLE
837 if (periodiccnt) 2180 if (periodiccnt)
838 { 2181 {
839 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
840 if (block > to) block = to; 2183 if (waittime > to) waittime = to;
841 } 2184 }
2185#endif
842 2186
843 if (block < 0.) block = 0.; 2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
2188 if (expect_false (waittime < timeout_blocktime))
2189 waittime = timeout_blocktime;
2190
2191 /* extra check because io_blocktime is commonly 0 */
2192 if (expect_false (io_blocktime))
2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
2201 ev_sleep (sleeptime);
2202 waittime -= sleeptime;
2203 }
2204 }
844 } 2205 }
845 2206
846 method_poll (block); 2207#if EV_MINIMAL < 2
2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
847 2213
848 /* update ev_now, do magic */ 2214 /* update ev_rt_now, do magic */
849 time_update (); 2215 time_update (EV_A_ waittime + sleeptime);
2216 }
850 2217
851 /* queue pending timers and reschedule them */ 2218 /* queue pending timers and reschedule them */
852 timers_reify (); /* relative timers called last */ 2219 timers_reify (EV_A); /* relative timers called last */
2220#if EV_PERIODIC_ENABLE
853 periodics_reify (); /* absolute timers called first */ 2221 periodics_reify (EV_A); /* absolute timers called first */
2222#endif
854 2223
2224#if EV_IDLE_ENABLE
855 /* queue idle watchers unless io or timers are pending */ 2225 /* queue idle watchers unless other events are pending */
856 if (!pendingcnt) 2226 idle_reify (EV_A);
857 queue_events ((W *)idles, idlecnt, EV_IDLE); 2227#endif
858 2228
859 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
860 if (checkcnt) 2230 if (expect_false (checkcnt))
861 queue_events ((W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
862 2232
863 call_pending (); 2233 EV_INVOKE_PENDING;
864 } 2234 }
865 while (!ev_loop_done); 2235 while (expect_true (
2236 activecnt
2237 && !loop_done
2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2239 ));
866 2240
867 if (ev_loop_done != 2) 2241 if (loop_done == EVUNLOOP_ONE)
2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
2247}
2248
2249void
2250ev_unloop (EV_P_ int how)
2251{
868 ev_loop_done = 0; 2252 loop_done = how;
2253}
2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
869} 2290}
870 2291
871/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
872 2294
873static void 2295inline_size void
874wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
875{ 2297{
876 elem->next = *head; 2298 elem->next = *head;
877 *head = elem; 2299 *head = elem;
878} 2300}
879 2301
880static void 2302inline_size void
881wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
882{ 2304{
883 while (*head) 2305 while (*head)
884 { 2306 {
885 if (*head == elem) 2307 if (*head == elem)
890 2312
891 head = &(*head)->next; 2313 head = &(*head)->next;
892 } 2314 }
893} 2315}
894 2316
895static void 2317/* internal, faster, version of ev_clear_pending */
2318inline_speed void
896ev_clear_pending (W w) 2319clear_pending (EV_P_ W w)
897{ 2320{
898 if (w->pending) 2321 if (w->pending)
899 { 2322 {
900 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
901 w->pending = 0; 2324 w->pending = 0;
902 } 2325 }
903} 2326}
904 2327
905static void 2328int
2329ev_clear_pending (EV_P_ void *w)
2330{
2331 W w_ = (W)w;
2332 int pending = w_->pending;
2333
2334 if (expect_true (pending))
2335 {
2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
2338 w_->pending = 0;
2339 return p->events;
2340 }
2341 else
2342 return 0;
2343}
2344
2345inline_size void
2346pri_adjust (EV_P_ W w)
2347{
2348 int pri = ev_priority (w);
2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2351 ev_set_priority (w, pri);
2352}
2353
2354inline_speed void
906ev_start (W w, int active) 2355ev_start (EV_P_ W w, int active)
907{ 2356{
908 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2357 pri_adjust (EV_A_ w);
909 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
910
911 w->active = active; 2358 w->active = active;
2359 ev_ref (EV_A);
912} 2360}
913 2361
914static void 2362inline_size void
915ev_stop (W w) 2363ev_stop (EV_P_ W w)
916{ 2364{
2365 ev_unref (EV_A);
917 w->active = 0; 2366 w->active = 0;
918} 2367}
919 2368
920/*****************************************************************************/ 2369/*****************************************************************************/
921 2370
922void 2371void noinline
923ev_io_start (struct ev_io *w) 2372ev_io_start (EV_P_ ev_io *w)
924{ 2373{
925 int fd = w->fd; 2374 int fd = w->fd;
926 2375
927 if (ev_is_active (w)) 2376 if (expect_false (ev_is_active (w)))
928 return; 2377 return;
929 2378
930 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
931 2381
2382 EV_FREQUENT_CHECK;
2383
932 ev_start ((W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
933 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
934 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
935 2387
936 fd_change (fd); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
937} 2389 w->events &= ~EV__IOFDSET;
938 2390
939void 2391 EV_FREQUENT_CHECK;
2392}
2393
2394void noinline
940ev_io_stop (struct ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
941{ 2396{
942 ev_clear_pending ((W)w); 2397 clear_pending (EV_A_ (W)w);
943 if (!ev_is_active (w)) 2398 if (expect_false (!ev_is_active (w)))
944 return; 2399 return;
945 2400
2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2402
2403 EV_FREQUENT_CHECK;
2404
946 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
947 ev_stop ((W)w); 2406 ev_stop (EV_A_ (W)w);
948 2407
949 fd_change (w->fd); 2408 fd_change (EV_A_ w->fd, 1);
950}
951 2409
952void 2410 EV_FREQUENT_CHECK;
2411}
2412
2413void noinline
953ev_timer_start (struct ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
954{ 2415{
955 if (ev_is_active (w)) 2416 if (expect_false (ev_is_active (w)))
956 return; 2417 return;
957 2418
958 w->at += now; 2419 ev_at (w) += mn_now;
959 2420
960 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
961 2422
962 ev_start ((W)w, ++timercnt); 2423 EV_FREQUENT_CHECK;
963 array_needsize (timers, timermax, timercnt, );
964 timers [timercnt - 1] = w;
965 upheap ((WT *)timers, timercnt - 1);
966}
967 2424
968void 2425 ++timercnt;
2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
2429 ANHE_at_cache (timers [ev_active (w)]);
2430 upheap (timers, ev_active (w));
2431
2432 EV_FREQUENT_CHECK;
2433
2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2435}
2436
2437void noinline
969ev_timer_stop (struct ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
970{ 2439{
971 ev_clear_pending ((W)w); 2440 clear_pending (EV_A_ (W)w);
972 if (!ev_is_active (w)) 2441 if (expect_false (!ev_is_active (w)))
973 return; 2442 return;
974 2443
975 if (w->active < timercnt--) 2444 EV_FREQUENT_CHECK;
2445
2446 {
2447 int active = ev_active (w);
2448
2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2450
2451 --timercnt;
2452
2453 if (expect_true (active < timercnt + HEAP0))
976 { 2454 {
977 timers [w->active - 1] = timers [timercnt]; 2455 timers [active] = timers [timercnt + HEAP0];
978 downheap ((WT *)timers, timercnt, w->active - 1); 2456 adjustheap (timers, timercnt, active);
979 } 2457 }
2458 }
980 2459
981 w->at = w->repeat; 2460 EV_FREQUENT_CHECK;
982 2461
2462 ev_at (w) -= mn_now;
2463
983 ev_stop ((W)w); 2464 ev_stop (EV_A_ (W)w);
984} 2465}
985 2466
986void 2467void noinline
987ev_timer_again (struct ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
988{ 2469{
2470 EV_FREQUENT_CHECK;
2471
989 if (ev_is_active (w)) 2472 if (ev_is_active (w))
990 { 2473 {
991 if (w->repeat) 2474 if (w->repeat)
992 { 2475 {
993 w->at = now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
2477 ANHE_at_cache (timers [ev_active (w)]);
994 downheap ((WT *)timers, timercnt, w->active - 1); 2478 adjustheap (timers, timercnt, ev_active (w));
995 } 2479 }
996 else 2480 else
997 ev_timer_stop (w); 2481 ev_timer_stop (EV_A_ w);
998 } 2482 }
999 else if (w->repeat) 2483 else if (w->repeat)
2484 {
2485 ev_at (w) = w->repeat;
1000 ev_timer_start (w); 2486 ev_timer_start (EV_A_ w);
1001} 2487 }
1002 2488
1003void 2489 EV_FREQUENT_CHECK;
2490}
2491
2492ev_tstamp
2493ev_timer_remaining (EV_P_ ev_timer *w)
2494{
2495 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2496}
2497
2498#if EV_PERIODIC_ENABLE
2499void noinline
1004ev_periodic_start (struct ev_periodic *w) 2500ev_periodic_start (EV_P_ ev_periodic *w)
1005{ 2501{
1006 if (ev_is_active (w)) 2502 if (expect_false (ev_is_active (w)))
1007 return; 2503 return;
1008 2504
2505 if (w->reschedule_cb)
2506 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2507 else if (w->interval)
2508 {
1009 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2509 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1010
1011 /* this formula differs from the one in periodic_reify because we do not always round up */ 2510 /* this formula differs from the one in periodic_reify because we do not always round up */
1012 if (w->interval)
1013 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2511 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2512 }
2513 else
2514 ev_at (w) = w->offset;
1014 2515
2516 EV_FREQUENT_CHECK;
2517
2518 ++periodiccnt;
1015 ev_start ((W)w, ++periodiccnt); 2519 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1016 array_needsize (periodics, periodicmax, periodiccnt, ); 2520 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1017 periodics [periodiccnt - 1] = w; 2521 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1018 upheap ((WT *)periodics, periodiccnt - 1); 2522 ANHE_at_cache (periodics [ev_active (w)]);
1019} 2523 upheap (periodics, ev_active (w));
1020 2524
1021void 2525 EV_FREQUENT_CHECK;
2526
2527 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2528}
2529
2530void noinline
1022ev_periodic_stop (struct ev_periodic *w) 2531ev_periodic_stop (EV_P_ ev_periodic *w)
1023{ 2532{
1024 ev_clear_pending ((W)w); 2533 clear_pending (EV_A_ (W)w);
1025 if (!ev_is_active (w)) 2534 if (expect_false (!ev_is_active (w)))
1026 return; 2535 return;
1027 2536
1028 if (w->active < periodiccnt--) 2537 EV_FREQUENT_CHECK;
2538
2539 {
2540 int active = ev_active (w);
2541
2542 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2543
2544 --periodiccnt;
2545
2546 if (expect_true (active < periodiccnt + HEAP0))
1029 { 2547 {
1030 periodics [w->active - 1] = periodics [periodiccnt]; 2548 periodics [active] = periodics [periodiccnt + HEAP0];
1031 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2549 adjustheap (periodics, periodiccnt, active);
1032 } 2550 }
2551 }
1033 2552
2553 EV_FREQUENT_CHECK;
2554
1034 ev_stop ((W)w); 2555 ev_stop (EV_A_ (W)w);
1035} 2556}
2557
2558void noinline
2559ev_periodic_again (EV_P_ ev_periodic *w)
2560{
2561 /* TODO: use adjustheap and recalculation */
2562 ev_periodic_stop (EV_A_ w);
2563 ev_periodic_start (EV_A_ w);
2564}
2565#endif
1036 2566
1037#ifndef SA_RESTART 2567#ifndef SA_RESTART
1038# define SA_RESTART 0 2568# define SA_RESTART 0
1039#endif 2569#endif
1040 2570
1041void 2571void noinline
1042ev_signal_start (struct ev_signal *w) 2572ev_signal_start (EV_P_ ev_signal *w)
1043{ 2573{
2574#if EV_MULTIPLICITY
2575 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2576#endif
1044 if (ev_is_active (w)) 2577 if (expect_false (ev_is_active (w)))
1045 return; 2578 return;
1046 2579
1047 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2580 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1048 2581
2582 evpipe_init (EV_A);
2583
2584 EV_FREQUENT_CHECK;
2585
2586 {
2587#ifndef _WIN32
2588 sigset_t full, prev;
2589 sigfillset (&full);
2590 sigprocmask (SIG_SETMASK, &full, &prev);
2591#endif
2592
2593 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2594
2595#ifndef _WIN32
2596 sigprocmask (SIG_SETMASK, &prev, 0);
2597#endif
2598 }
2599
1049 ev_start ((W)w, 1); 2600 ev_start (EV_A_ (W)w, 1);
1050 array_needsize (signals, signalmax, w->signum, signals_init);
1051 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2601 wlist_add (&signals [w->signum - 1].head, (WL)w);
1052 2602
1053 if (!w->next) 2603 if (!((WL)w)->next)
1054 { 2604 {
2605#if _WIN32
2606 signal (w->signum, ev_sighandler);
2607#else
1055 struct sigaction sa; 2608 struct sigaction sa = { };
1056 sa.sa_handler = sighandler; 2609 sa.sa_handler = ev_sighandler;
1057 sigfillset (&sa.sa_mask); 2610 sigfillset (&sa.sa_mask);
1058 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2611 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1059 sigaction (w->signum, &sa, 0); 2612 sigaction (w->signum, &sa, 0);
2613#endif
1060 } 2614 }
1061}
1062 2615
1063void 2616 EV_FREQUENT_CHECK;
2617}
2618
2619void noinline
1064ev_signal_stop (struct ev_signal *w) 2620ev_signal_stop (EV_P_ ev_signal *w)
1065{ 2621{
1066 ev_clear_pending ((W)w); 2622 clear_pending (EV_A_ (W)w);
1067 if (!ev_is_active (w)) 2623 if (expect_false (!ev_is_active (w)))
1068 return; 2624 return;
1069 2625
2626 EV_FREQUENT_CHECK;
2627
1070 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2628 wlist_del (&signals [w->signum - 1].head, (WL)w);
1071 ev_stop ((W)w); 2629 ev_stop (EV_A_ (W)w);
1072 2630
1073 if (!signals [w->signum - 1].head) 2631 if (!signals [w->signum - 1].head)
1074 signal (w->signum, SIG_DFL); 2632 signal (w->signum, SIG_DFL);
1075}
1076 2633
2634 EV_FREQUENT_CHECK;
2635}
2636
1077void 2637void
1078ev_idle_start (struct ev_idle *w) 2638ev_child_start (EV_P_ ev_child *w)
1079{ 2639{
2640#if EV_MULTIPLICITY
2641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2642#endif
1080 if (ev_is_active (w)) 2643 if (expect_false (ev_is_active (w)))
1081 return; 2644 return;
1082 2645
1083 ev_start ((W)w, ++idlecnt); 2646 EV_FREQUENT_CHECK;
1084 array_needsize (idles, idlemax, idlecnt, );
1085 idles [idlecnt - 1] = w;
1086}
1087 2647
2648 ev_start (EV_A_ (W)w, 1);
2649 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2650
2651 EV_FREQUENT_CHECK;
2652}
2653
1088void 2654void
1089ev_idle_stop (struct ev_idle *w) 2655ev_child_stop (EV_P_ ev_child *w)
1090{ 2656{
1091 ev_clear_pending ((W)w); 2657 clear_pending (EV_A_ (W)w);
1092 if (ev_is_active (w)) 2658 if (expect_false (!ev_is_active (w)))
1093 return; 2659 return;
1094 2660
1095 idles [w->active - 1] = idles [--idlecnt]; 2661 EV_FREQUENT_CHECK;
2662
2663 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1096 ev_stop ((W)w); 2664 ev_stop (EV_A_ (W)w);
1097}
1098 2665
1099void 2666 EV_FREQUENT_CHECK;
1100ev_prepare_start (struct ev_prepare *w) 2667}
2668
2669#if EV_STAT_ENABLE
2670
2671# ifdef _WIN32
2672# undef lstat
2673# define lstat(a,b) _stati64 (a,b)
2674# endif
2675
2676#define DEF_STAT_INTERVAL 5.0074891
2677#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2678#define MIN_STAT_INTERVAL 0.1074891
2679
2680static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2681
2682#if EV_USE_INOTIFY
2683# define EV_INOTIFY_BUFSIZE 8192
2684
2685static void noinline
2686infy_add (EV_P_ ev_stat *w)
1101{ 2687{
1102 if (ev_is_active (w)) 2688 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2689
2690 if (w->wd < 0)
2691 {
2692 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2693 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2694
2695 /* monitor some parent directory for speedup hints */
2696 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2697 /* but an efficiency issue only */
2698 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2699 {
2700 char path [4096];
2701 strcpy (path, w->path);
2702
2703 do
2704 {
2705 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2706 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2707
2708 char *pend = strrchr (path, '/');
2709
2710 if (!pend || pend == path)
2711 break;
2712
2713 *pend = 0;
2714 w->wd = inotify_add_watch (fs_fd, path, mask);
2715 }
2716 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2717 }
2718 }
2719
2720 if (w->wd >= 0)
2721 {
2722 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2723
2724 /* now local changes will be tracked by inotify, but remote changes won't */
2725 /* unless the filesystem it known to be local, we therefore still poll */
2726 /* also do poll on <2.6.25, but with normal frequency */
2727 struct statfs sfs;
2728
2729 if (fs_2625 && !statfs (w->path, &sfs))
2730 if (sfs.f_type == 0x1373 /* devfs */
2731 || sfs.f_type == 0xEF53 /* ext2/3 */
2732 || sfs.f_type == 0x3153464a /* jfs */
2733 || sfs.f_type == 0x52654973 /* reiser3 */
2734 || sfs.f_type == 0x01021994 /* tempfs */
2735 || sfs.f_type == 0x58465342 /* xfs */)
2736 return;
2737
2738 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2739 ev_timer_again (EV_A_ &w->timer);
2740 }
2741}
2742
2743static void noinline
2744infy_del (EV_P_ ev_stat *w)
2745{
2746 int slot;
2747 int wd = w->wd;
2748
2749 if (wd < 0)
1103 return; 2750 return;
1104 2751
2752 w->wd = -2;
2753 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2754 wlist_del (&fs_hash [slot].head, (WL)w);
2755
2756 /* remove this watcher, if others are watching it, they will rearm */
2757 inotify_rm_watch (fs_fd, wd);
2758}
2759
2760static void noinline
2761infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2762{
2763 if (slot < 0)
2764 /* overflow, need to check for all hash slots */
2765 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2766 infy_wd (EV_A_ slot, wd, ev);
2767 else
2768 {
2769 WL w_;
2770
2771 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2772 {
2773 ev_stat *w = (ev_stat *)w_;
2774 w_ = w_->next; /* lets us remove this watcher and all before it */
2775
2776 if (w->wd == wd || wd == -1)
2777 {
2778 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2779 {
2780 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2781 w->wd = -1;
2782 infy_add (EV_A_ w); /* re-add, no matter what */
2783 }
2784
2785 stat_timer_cb (EV_A_ &w->timer, 0);
2786 }
2787 }
2788 }
2789}
2790
2791static void
2792infy_cb (EV_P_ ev_io *w, int revents)
2793{
2794 char buf [EV_INOTIFY_BUFSIZE];
2795 struct inotify_event *ev = (struct inotify_event *)buf;
2796 int ofs;
2797 int len = read (fs_fd, buf, sizeof (buf));
2798
2799 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2800 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2801}
2802
2803inline_size void
2804check_2625 (EV_P)
2805{
2806 /* kernels < 2.6.25 are borked
2807 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2808 */
2809 struct utsname buf;
2810 int major, minor, micro;
2811
2812 if (uname (&buf))
2813 return;
2814
2815 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2816 return;
2817
2818 if (major < 2
2819 || (major == 2 && minor < 6)
2820 || (major == 2 && minor == 6 && micro < 25))
2821 return;
2822
2823 fs_2625 = 1;
2824}
2825
2826inline_size void
2827infy_init (EV_P)
2828{
2829 if (fs_fd != -2)
2830 return;
2831
2832 fs_fd = -1;
2833
2834 check_2625 (EV_A);
2835
2836 fs_fd = inotify_init ();
2837
2838 if (fs_fd >= 0)
2839 {
2840 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2841 ev_set_priority (&fs_w, EV_MAXPRI);
2842 ev_io_start (EV_A_ &fs_w);
2843 }
2844}
2845
2846inline_size void
2847infy_fork (EV_P)
2848{
2849 int slot;
2850
2851 if (fs_fd < 0)
2852 return;
2853
2854 close (fs_fd);
2855 fs_fd = inotify_init ();
2856
2857 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2858 {
2859 WL w_ = fs_hash [slot].head;
2860 fs_hash [slot].head = 0;
2861
2862 while (w_)
2863 {
2864 ev_stat *w = (ev_stat *)w_;
2865 w_ = w_->next; /* lets us add this watcher */
2866
2867 w->wd = -1;
2868
2869 if (fs_fd >= 0)
2870 infy_add (EV_A_ w); /* re-add, no matter what */
2871 else
2872 ev_timer_again (EV_A_ &w->timer);
2873 }
2874 }
2875}
2876
2877#endif
2878
2879#ifdef _WIN32
2880# define EV_LSTAT(p,b) _stati64 (p, b)
2881#else
2882# define EV_LSTAT(p,b) lstat (p, b)
2883#endif
2884
2885void
2886ev_stat_stat (EV_P_ ev_stat *w)
2887{
2888 if (lstat (w->path, &w->attr) < 0)
2889 w->attr.st_nlink = 0;
2890 else if (!w->attr.st_nlink)
2891 w->attr.st_nlink = 1;
2892}
2893
2894static void noinline
2895stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2896{
2897 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2898
2899 /* we copy this here each the time so that */
2900 /* prev has the old value when the callback gets invoked */
2901 w->prev = w->attr;
2902 ev_stat_stat (EV_A_ w);
2903
2904 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2905 if (
2906 w->prev.st_dev != w->attr.st_dev
2907 || w->prev.st_ino != w->attr.st_ino
2908 || w->prev.st_mode != w->attr.st_mode
2909 || w->prev.st_nlink != w->attr.st_nlink
2910 || w->prev.st_uid != w->attr.st_uid
2911 || w->prev.st_gid != w->attr.st_gid
2912 || w->prev.st_rdev != w->attr.st_rdev
2913 || w->prev.st_size != w->attr.st_size
2914 || w->prev.st_atime != w->attr.st_atime
2915 || w->prev.st_mtime != w->attr.st_mtime
2916 || w->prev.st_ctime != w->attr.st_ctime
2917 ) {
2918 #if EV_USE_INOTIFY
2919 if (fs_fd >= 0)
2920 {
2921 infy_del (EV_A_ w);
2922 infy_add (EV_A_ w);
2923 ev_stat_stat (EV_A_ w); /* avoid race... */
2924 }
2925 #endif
2926
2927 ev_feed_event (EV_A_ w, EV_STAT);
2928 }
2929}
2930
2931void
2932ev_stat_start (EV_P_ ev_stat *w)
2933{
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 ev_stat_stat (EV_A_ w);
2938
2939 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2940 w->interval = MIN_STAT_INTERVAL;
2941
2942 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2943 ev_set_priority (&w->timer, ev_priority (w));
2944
2945#if EV_USE_INOTIFY
2946 infy_init (EV_A);
2947
2948 if (fs_fd >= 0)
2949 infy_add (EV_A_ w);
2950 else
2951#endif
2952 ev_timer_again (EV_A_ &w->timer);
2953
2954 ev_start (EV_A_ (W)w, 1);
2955
2956 EV_FREQUENT_CHECK;
2957}
2958
2959void
2960ev_stat_stop (EV_P_ ev_stat *w)
2961{
2962 clear_pending (EV_A_ (W)w);
2963 if (expect_false (!ev_is_active (w)))
2964 return;
2965
2966 EV_FREQUENT_CHECK;
2967
2968#if EV_USE_INOTIFY
2969 infy_del (EV_A_ w);
2970#endif
2971 ev_timer_stop (EV_A_ &w->timer);
2972
2973 ev_stop (EV_A_ (W)w);
2974
2975 EV_FREQUENT_CHECK;
2976}
2977#endif
2978
2979#if EV_IDLE_ENABLE
2980void
2981ev_idle_start (EV_P_ ev_idle *w)
2982{
2983 if (expect_false (ev_is_active (w)))
2984 return;
2985
2986 pri_adjust (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2989
2990 {
2991 int active = ++idlecnt [ABSPRI (w)];
2992
2993 ++idleall;
2994 ev_start (EV_A_ (W)w, active);
2995
2996 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2997 idles [ABSPRI (w)][active - 1] = w;
2998 }
2999
3000 EV_FREQUENT_CHECK;
3001}
3002
3003void
3004ev_idle_stop (EV_P_ ev_idle *w)
3005{
3006 clear_pending (EV_A_ (W)w);
3007 if (expect_false (!ev_is_active (w)))
3008 return;
3009
3010 EV_FREQUENT_CHECK;
3011
3012 {
3013 int active = ev_active (w);
3014
3015 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3016 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3017
3018 ev_stop (EV_A_ (W)w);
3019 --idleall;
3020 }
3021
3022 EV_FREQUENT_CHECK;
3023}
3024#endif
3025
3026void
3027ev_prepare_start (EV_P_ ev_prepare *w)
3028{
3029 if (expect_false (ev_is_active (w)))
3030 return;
3031
3032 EV_FREQUENT_CHECK;
3033
1105 ev_start ((W)w, ++preparecnt); 3034 ev_start (EV_A_ (W)w, ++preparecnt);
1106 array_needsize (prepares, preparemax, preparecnt, ); 3035 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1107 prepares [preparecnt - 1] = w; 3036 prepares [preparecnt - 1] = w;
1108}
1109 3037
3038 EV_FREQUENT_CHECK;
3039}
3040
1110void 3041void
1111ev_prepare_stop (struct ev_prepare *w) 3042ev_prepare_stop (EV_P_ ev_prepare *w)
1112{ 3043{
1113 ev_clear_pending ((W)w); 3044 clear_pending (EV_A_ (W)w);
1114 if (ev_is_active (w)) 3045 if (expect_false (!ev_is_active (w)))
1115 return; 3046 return;
1116 3047
3048 EV_FREQUENT_CHECK;
3049
3050 {
3051 int active = ev_active (w);
3052
1117 prepares [w->active - 1] = prepares [--preparecnt]; 3053 prepares [active - 1] = prepares [--preparecnt];
3054 ev_active (prepares [active - 1]) = active;
3055 }
3056
1118 ev_stop ((W)w); 3057 ev_stop (EV_A_ (W)w);
1119}
1120 3058
3059 EV_FREQUENT_CHECK;
3060}
3061
1121void 3062void
1122ev_check_start (struct ev_check *w) 3063ev_check_start (EV_P_ ev_check *w)
1123{ 3064{
1124 if (ev_is_active (w)) 3065 if (expect_false (ev_is_active (w)))
1125 return; 3066 return;
1126 3067
3068 EV_FREQUENT_CHECK;
3069
1127 ev_start ((W)w, ++checkcnt); 3070 ev_start (EV_A_ (W)w, ++checkcnt);
1128 array_needsize (checks, checkmax, checkcnt, ); 3071 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1129 checks [checkcnt - 1] = w; 3072 checks [checkcnt - 1] = w;
1130}
1131 3073
3074 EV_FREQUENT_CHECK;
3075}
3076
1132void 3077void
1133ev_check_stop (struct ev_check *w) 3078ev_check_stop (EV_P_ ev_check *w)
1134{ 3079{
1135 ev_clear_pending ((W)w); 3080 clear_pending (EV_A_ (W)w);
1136 if (ev_is_active (w)) 3081 if (expect_false (!ev_is_active (w)))
1137 return; 3082 return;
1138 3083
3084 EV_FREQUENT_CHECK;
3085
3086 {
3087 int active = ev_active (w);
3088
1139 checks [w->active - 1] = checks [--checkcnt]; 3089 checks [active - 1] = checks [--checkcnt];
3090 ev_active (checks [active - 1]) = active;
3091 }
3092
1140 ev_stop ((W)w); 3093 ev_stop (EV_A_ (W)w);
1141}
1142 3094
1143void 3095 EV_FREQUENT_CHECK;
1144ev_child_start (struct ev_child *w) 3096}
3097
3098#if EV_EMBED_ENABLE
3099void noinline
3100ev_embed_sweep (EV_P_ ev_embed *w)
1145{ 3101{
3102 ev_loop (w->other, EVLOOP_NONBLOCK);
3103}
3104
3105static void
3106embed_io_cb (EV_P_ ev_io *io, int revents)
3107{
3108 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3109
1146 if (ev_is_active (w)) 3110 if (ev_cb (w))
3111 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3112 else
3113 ev_loop (w->other, EVLOOP_NONBLOCK);
3114}
3115
3116static void
3117embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3118{
3119 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 while (fdchangecnt)
3125 {
3126 fd_reify (EV_A);
3127 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3128 }
3129 }
3130}
3131
3132static void
3133embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3134{
3135 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3136
3137 ev_embed_stop (EV_A_ w);
3138
3139 {
3140 struct ev_loop *loop = w->other;
3141
3142 ev_loop_fork (EV_A);
3143 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3144 }
3145
3146 ev_embed_start (EV_A_ w);
3147}
3148
3149#if 0
3150static void
3151embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3152{
3153 ev_idle_stop (EV_A_ idle);
3154}
3155#endif
3156
3157void
3158ev_embed_start (EV_P_ ev_embed *w)
3159{
3160 if (expect_false (ev_is_active (w)))
1147 return; 3161 return;
1148 3162
3163 {
3164 struct ev_loop *loop = w->other;
3165 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3166 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3167 }
3168
3169 EV_FREQUENT_CHECK;
3170
3171 ev_set_priority (&w->io, ev_priority (w));
3172 ev_io_start (EV_A_ &w->io);
3173
3174 ev_prepare_init (&w->prepare, embed_prepare_cb);
3175 ev_set_priority (&w->prepare, EV_MINPRI);
3176 ev_prepare_start (EV_A_ &w->prepare);
3177
3178 ev_fork_init (&w->fork, embed_fork_cb);
3179 ev_fork_start (EV_A_ &w->fork);
3180
3181 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3182
1149 ev_start ((W)w, 1); 3183 ev_start (EV_A_ (W)w, 1);
1150 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1151}
1152 3184
3185 EV_FREQUENT_CHECK;
3186}
3187
1153void 3188void
1154ev_child_stop (struct ev_child *w) 3189ev_embed_stop (EV_P_ ev_embed *w)
1155{ 3190{
1156 ev_clear_pending ((W)w); 3191 clear_pending (EV_A_ (W)w);
1157 if (ev_is_active (w)) 3192 if (expect_false (!ev_is_active (w)))
1158 return; 3193 return;
1159 3194
1160 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3195 EV_FREQUENT_CHECK;
3196
3197 ev_io_stop (EV_A_ &w->io);
3198 ev_prepare_stop (EV_A_ &w->prepare);
3199 ev_fork_stop (EV_A_ &w->fork);
3200
3201 EV_FREQUENT_CHECK;
3202}
3203#endif
3204
3205#if EV_FORK_ENABLE
3206void
3207ev_fork_start (EV_P_ ev_fork *w)
3208{
3209 if (expect_false (ev_is_active (w)))
3210 return;
3211
3212 EV_FREQUENT_CHECK;
3213
3214 ev_start (EV_A_ (W)w, ++forkcnt);
3215 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3216 forks [forkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
3219}
3220
3221void
3222ev_fork_stop (EV_P_ ev_fork *w)
3223{
3224 clear_pending (EV_A_ (W)w);
3225 if (expect_false (!ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230 {
3231 int active = ev_active (w);
3232
3233 forks [active - 1] = forks [--forkcnt];
3234 ev_active (forks [active - 1]) = active;
3235 }
3236
1161 ev_stop ((W)w); 3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
1162} 3240}
3241#endif
3242
3243#if EV_ASYNC_ENABLE
3244void
3245ev_async_start (EV_P_ ev_async *w)
3246{
3247 if (expect_false (ev_is_active (w)))
3248 return;
3249
3250 evpipe_init (EV_A);
3251
3252 EV_FREQUENT_CHECK;
3253
3254 ev_start (EV_A_ (W)w, ++asynccnt);
3255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3256 asyncs [asynccnt - 1] = w;
3257
3258 EV_FREQUENT_CHECK;
3259}
3260
3261void
3262ev_async_stop (EV_P_ ev_async *w)
3263{
3264 clear_pending (EV_A_ (W)w);
3265 if (expect_false (!ev_is_active (w)))
3266 return;
3267
3268 EV_FREQUENT_CHECK;
3269
3270 {
3271 int active = ev_active (w);
3272
3273 asyncs [active - 1] = asyncs [--asynccnt];
3274 ev_active (asyncs [active - 1]) = active;
3275 }
3276
3277 ev_stop (EV_A_ (W)w);
3278
3279 EV_FREQUENT_CHECK;
3280}
3281
3282void
3283ev_async_send (EV_P_ ev_async *w)
3284{
3285 w->sent = 1;
3286 evpipe_write (EV_A_ &gotasync);
3287}
3288#endif
1163 3289
1164/*****************************************************************************/ 3290/*****************************************************************************/
1165 3291
1166struct ev_once 3292struct ev_once
1167{ 3293{
1168 struct ev_io io; 3294 ev_io io;
1169 struct ev_timer to; 3295 ev_timer to;
1170 void (*cb)(int revents, void *arg); 3296 void (*cb)(int revents, void *arg);
1171 void *arg; 3297 void *arg;
1172}; 3298};
1173 3299
1174static void 3300static void
1175once_cb (struct ev_once *once, int revents) 3301once_cb (EV_P_ struct ev_once *once, int revents)
1176{ 3302{
1177 void (*cb)(int revents, void *arg) = once->cb; 3303 void (*cb)(int revents, void *arg) = once->cb;
1178 void *arg = once->arg; 3304 void *arg = once->arg;
1179 3305
1180 ev_io_stop (&once->io); 3306 ev_io_stop (EV_A_ &once->io);
1181 ev_timer_stop (&once->to); 3307 ev_timer_stop (EV_A_ &once->to);
1182 free (once); 3308 ev_free (once);
1183 3309
1184 cb (revents, arg); 3310 cb (revents, arg);
1185} 3311}
1186 3312
1187static void 3313static void
1188once_cb_io (struct ev_io *w, int revents) 3314once_cb_io (EV_P_ ev_io *w, int revents)
1189{ 3315{
1190 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3317
3318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1191} 3319}
1192 3320
1193static void 3321static void
1194once_cb_to (struct ev_timer *w, int revents) 3322once_cb_to (EV_P_ ev_timer *w, int revents)
1195{ 3323{
1196 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1197}
1198 3325
3326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3327}
3328
1199void 3329void
1200ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3330ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1201{ 3331{
1202 struct ev_once *once = malloc (sizeof (struct ev_once)); 3332 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1203 3333
1204 if (!once) 3334 if (expect_false (!once))
3335 {
1205 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1206 else 3337 return;
1207 { 3338 }
3339
1208 once->cb = cb; 3340 once->cb = cb;
1209 once->arg = arg; 3341 once->arg = arg;
1210 3342
1211 ev_watcher_init (&once->io, once_cb_io); 3343 ev_init (&once->io, once_cb_io);
1212 if (fd >= 0) 3344 if (fd >= 0)
3345 {
3346 ev_io_set (&once->io, fd, events);
3347 ev_io_start (EV_A_ &once->io);
3348 }
3349
3350 ev_init (&once->to, once_cb_to);
3351 if (timeout >= 0.)
3352 {
3353 ev_timer_set (&once->to, timeout, 0.);
3354 ev_timer_start (EV_A_ &once->to);
3355 }
3356}
3357
3358/*****************************************************************************/
3359
3360#if EV_WALK_ENABLE
3361void
3362ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3363{
3364 int i, j;
3365 ev_watcher_list *wl, *wn;
3366
3367 if (types & (EV_IO | EV_EMBED))
3368 for (i = 0; i < anfdmax; ++i)
3369 for (wl = anfds [i].head; wl; )
1213 { 3370 {
1214 ev_io_set (&once->io, fd, events); 3371 wn = wl->next;
1215 ev_io_start (&once->io); 3372
3373#if EV_EMBED_ENABLE
3374 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3375 {
3376 if (types & EV_EMBED)
3377 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3378 }
3379 else
3380#endif
3381#if EV_USE_INOTIFY
3382 if (ev_cb ((ev_io *)wl) == infy_cb)
3383 ;
3384 else
3385#endif
3386 if ((ev_io *)wl != &pipe_w)
3387 if (types & EV_IO)
3388 cb (EV_A_ EV_IO, wl);
3389
3390 wl = wn;
1216 } 3391 }
1217 3392
1218 ev_watcher_init (&once->to, once_cb_to); 3393 if (types & (EV_TIMER | EV_STAT))
1219 if (timeout >= 0.) 3394 for (i = timercnt + HEAP0; i-- > HEAP0; )
3395#if EV_STAT_ENABLE
3396 /*TODO: timer is not always active*/
3397 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1220 { 3398 {
1221 ev_timer_set (&once->to, timeout, 0.); 3399 if (types & EV_STAT)
1222 ev_timer_start (&once->to); 3400 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1223 } 3401 }
1224 } 3402 else
1225} 3403#endif
3404 if (types & EV_TIMER)
3405 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1226 3406
1227/*****************************************************************************/ 3407#if EV_PERIODIC_ENABLE
3408 if (types & EV_PERIODIC)
3409 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3410 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3411#endif
1228 3412
1229#if 0 3413#if EV_IDLE_ENABLE
3414 if (types & EV_IDLE)
3415 for (j = NUMPRI; i--; )
3416 for (i = idlecnt [j]; i--; )
3417 cb (EV_A_ EV_IDLE, idles [j][i]);
3418#endif
1230 3419
1231struct ev_io wio; 3420#if EV_FORK_ENABLE
3421 if (types & EV_FORK)
3422 for (i = forkcnt; i--; )
3423 if (ev_cb (forks [i]) != embed_fork_cb)
3424 cb (EV_A_ EV_FORK, forks [i]);
3425#endif
1232 3426
1233static void 3427#if EV_ASYNC_ENABLE
1234sin_cb (struct ev_io *w, int revents) 3428 if (types & EV_ASYNC)
1235{ 3429 for (i = asynccnt; i--; )
1236 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3430 cb (EV_A_ EV_ASYNC, asyncs [i]);
1237} 3431#endif
1238 3432
1239static void 3433 if (types & EV_PREPARE)
1240ocb (struct ev_timer *w, int revents) 3434 for (i = preparecnt; i--; )
1241{ 3435#if EV_EMBED_ENABLE
1242 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3436 if (ev_cb (prepares [i]) != embed_prepare_cb)
1243 ev_timer_stop (w); 3437#endif
1244 ev_timer_start (w); 3438 cb (EV_A_ EV_PREPARE, prepares [i]);
1245}
1246 3439
1247static void 3440 if (types & EV_CHECK)
1248scb (struct ev_signal *w, int revents) 3441 for (i = checkcnt; i--; )
1249{ 3442 cb (EV_A_ EV_CHECK, checks [i]);
1250 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1251 ev_io_stop (&wio);
1252 ev_io_start (&wio);
1253}
1254 3443
1255static void 3444 if (types & EV_SIGNAL)
1256gcb (struct ev_signal *w, int revents)
1257{
1258 fprintf (stderr, "generic %x\n", revents);
1259
1260}
1261
1262int main (void)
1263{
1264 ev_init (0);
1265
1266 ev_io_init (&wio, sin_cb, 0, EV_READ);
1267 ev_io_start (&wio);
1268
1269 struct ev_timer t[10000];
1270
1271#if 0
1272 int i;
1273 for (i = 0; i < 10000; ++i) 3445 for (i = 0; i < signalmax; ++i)
1274 { 3446 for (wl = signals [i].head; wl; )
1275 struct ev_timer *w = t + i; 3447 {
1276 ev_watcher_init (w, ocb, i); 3448 wn = wl->next;
1277 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3449 cb (EV_A_ EV_SIGNAL, wl);
1278 ev_timer_start (w); 3450 wl = wn;
1279 if (drand48 () < 0.5) 3451 }
1280 ev_timer_stop (w);
1281 }
1282#endif
1283 3452
1284 struct ev_timer t1; 3453 if (types & EV_CHILD)
1285 ev_timer_init (&t1, ocb, 5, 10); 3454 for (i = EV_PID_HASHSIZE; i--; )
1286 ev_timer_start (&t1); 3455 for (wl = childs [i]; wl; )
1287 3456 {
1288 struct ev_signal sig; 3457 wn = wl->next;
1289 ev_signal_init (&sig, scb, SIGQUIT); 3458 cb (EV_A_ EV_CHILD, wl);
1290 ev_signal_start (&sig); 3459 wl = wn;
1291 3460 }
1292 struct ev_check cw; 3461/* EV_STAT 0x00001000 /* stat data changed */
1293 ev_check_init (&cw, gcb); 3462/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1294 ev_check_start (&cw);
1295
1296 struct ev_idle iw;
1297 ev_idle_init (&iw, gcb);
1298 ev_idle_start (&iw);
1299
1300 ev_loop (0);
1301
1302 return 0;
1303} 3463}
1304
1305#endif 3464#endif
1306 3465
3466#if EV_MULTIPLICITY
3467 #include "ev_wrap.h"
3468#endif
1307 3469
3470#ifdef __cplusplus
3471}
3472#endif
1308 3473
1309

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines