ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.302 by root, Thu Jul 16 15:08:08 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
240#ifndef EV_USE_4HEAP 281#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 282# define EV_USE_4HEAP !EV_MINIMAL
242#endif 283#endif
243 284
244#ifndef EV_HEAP_CACHE_AT 285#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
246#endif 301#endif
247 302
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 304
250#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 322# include <sys/select.h>
268# endif 323# endif
269#endif 324#endif
270 325
271#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
272# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
273#endif 335#endif
274 336
275#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 338# include <winsock.h>
277#endif 339#endif
287} 349}
288# endif 350# endif
289#endif 351#endif
290 352
291/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
292 360
293/* 361/*
294 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
323# define inline_speed static noinline 391# define inline_speed static noinline
324#else 392#else
325# define inline_speed static inline 393# define inline_speed static inline
326#endif 394#endif
327 395
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
330 403
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
333 406
334typedef ev_watcher *W; 407typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
337 410
338#define ev_active(w) ((W)(w))->active 411#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 412#define ev_at(w) ((WT)(w))->at
340 413
341#if EV_USE_MONOTONIC 414#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif 422#endif
346 423
347#ifdef _WIN32 424#ifdef _WIN32
348# include "ev_win32.c" 425# include "ev_win32.c"
357{ 434{
358 syserr_cb = cb; 435 syserr_cb = cb;
359} 436}
360 437
361static void noinline 438static void noinline
362syserr (const char *msg) 439ev_syserr (const char *msg)
363{ 440{
364 if (!msg) 441 if (!msg)
365 msg = "(libev) system error"; 442 msg = "(libev) system error";
366 443
367 if (syserr_cb) 444 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
415 492
416/*****************************************************************************/ 493/*****************************************************************************/
417 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
418typedef struct 499typedef struct
419{ 500{
420 WL head; 501 WL head;
421 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
423#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 510 SOCKET handle;
425#endif 511#endif
426} ANFD; 512} ANFD;
427 513
514/* stores the pending event set for a given watcher */
428typedef struct 515typedef struct
429{ 516{
430 W w; 517 W w;
431 int events; 518 int events; /* the pending event set for the given watcher */
432} ANPENDING; 519} ANPENDING;
433 520
434#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 522/* hash table entry per inotify-id */
436typedef struct 523typedef struct
439} ANFS; 526} ANFS;
440#endif 527#endif
441 528
442/* Heap Entry */ 529/* Heap Entry */
443#if EV_HEAP_CACHE_AT 530#if EV_HEAP_CACHE_AT
531 /* a heap element */
444 typedef struct { 532 typedef struct {
445 ev_tstamp at; 533 ev_tstamp at;
446 WT w; 534 WT w;
447 } ANHE; 535 } ANHE;
448 536
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 537 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 538 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 540#else
541 /* a heap element */
453 typedef WT ANHE; 542 typedef WT ANHE;
454 543
455 #define ANHE_w(he) (he) 544 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 545 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 546 #define ANHE_at_cache(he)
458#endif 547#endif
459 548
460#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
461 550
462 struct ev_loop 551 struct ev_loop
481 570
482 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
483 572
484#endif 573#endif
485 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
486/*****************************************************************************/ 587/*****************************************************************************/
487 588
589#ifndef EV_HAVE_EV_TIME
488ev_tstamp 590ev_tstamp
489ev_time (void) 591ev_time (void)
490{ 592{
491#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
492 struct timespec ts; 596 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 599 }
600#endif
601
496 struct timeval tv; 602 struct timeval tv;
497 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 605}
606#endif
501 607
502ev_tstamp inline_size 608inline_size ev_tstamp
503get_clock (void) 609get_clock (void)
504{ 610{
505#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
507 { 613 {
540 struct timeval tv; 646 struct timeval tv;
541 647
542 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* something not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
545 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
546#endif 655#endif
547 } 656 }
548} 657}
549 658
550/*****************************************************************************/ 659/*****************************************************************************/
551 660
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 662
554int inline_size 663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
555array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
556{ 667{
557 int ncur = cur + 1; 668 int ncur = cur + 1;
558 669
559 do 670 do
576array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
577{ 688{
578 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
580} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 695
582#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
584 { \ 698 { \
585 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 712 }
599#endif 713#endif
600 714
601#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 717
604/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
605 725
606void noinline 726void noinline
607ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
608{ 728{
609 W w_ = (W)w; 729 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
620 } 740 }
621} 741}
622 742
623void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 760{
626 int i; 761 int i;
627 762
628 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
630} 765}
631 766
632/*****************************************************************************/ 767/*****************************************************************************/
633 768
634void inline_size 769inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
649{ 771{
650 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
651 ev_io *w; 773 ev_io *w;
652 774
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 779 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
659 } 781 }
660} 782}
661 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
662void 795void
663ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 797{
665 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
667} 800}
668 801
669void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
670fd_reify (EV_P) 805fd_reify (EV_P)
671{ 806{
672 int i; 807 int i;
673 808
674 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 818 events |= (unsigned char)w->events;
684 819
685#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
686 if (events) 821 if (events)
687 { 822 {
688 unsigned long argp; 823 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else 826 #else
692 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
693 #endif 828 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 830 }
696#endif 831#endif
697 832
698 { 833 {
699 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
701 836
702 anfd->reify = 0; 837 anfd->reify = 0;
703 anfd->events = events; 838 anfd->events = events;
704 839
705 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
707 } 842 }
708 } 843 }
709 844
710 fdchangecnt = 0; 845 fdchangecnt = 0;
711} 846}
712 847
713void inline_size 848/* something about the given fd changed */
849inline_size void
714fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
715{ 851{
716 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
718 854
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
724 } 860 }
725} 861}
726 862
727void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
728fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
729{ 866{
730 ev_io *w; 867 ev_io *w;
731 868
732 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 873 }
737} 874}
738 875
739int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
740fd_valid (int fd) 878fd_valid (int fd)
741{ 879{
742#ifdef _WIN32 880#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
744#else 882#else
752{ 890{
753 int fd; 891 int fd;
754 892
755 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 894 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
759} 897}
760 898
761/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 900static void noinline
780 918
781 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 920 if (anfds [fd].events)
783 { 921 {
784 anfds [fd].events = 0; 922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 925 }
787} 926}
788 927
789/*****************************************************************************/ 928/*****************************************************************************/
790 929
803#if EV_USE_4HEAP 942#if EV_USE_4HEAP
804 943
805#define DHEAP 4 944#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 947#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 948
831/* away from the root */ 949/* away from the root */
832void inline_speed 950inline_speed void
833downheap (ANHE *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
834{ 952{
835 ANHE he = heap [k]; 953 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 954 ANHE *E = heap + N + HEAP0;
837 955
838 for (;;) 956 for (;;)
839 { 957 {
840 ev_tstamp minat; 958 ev_tstamp minat;
841 ANHE *minpos; 959 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 961
844 // find minimum child 962 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 963 if (expect_true (pos + DHEAP - 1 < E))
846 { 964 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 988
871 heap [k] = he; 989 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 990 ev_active (ANHE_w (he)) = k;
873} 991}
874 992
875#else // 4HEAP 993#else /* 4HEAP */
876 994
877#define HEAP0 1 995#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
879 998
880/* towards the root */ 999/* away from the root */
881void inline_speed 1000inline_speed void
882upheap (ANHE *heap, int k) 1001downheap (ANHE *heap, int N, int k)
883{ 1002{
884 ANHE he = heap [k]; 1003 ANHE he = heap [k];
885 1004
886 for (;;) 1005 for (;;)
887 { 1006 {
888 int p = HPARENT (k); 1007 int c = k << 1;
889 1008
890 /* maybe we could use a dummy element at heap [0]? */ 1009 if (c > N + HEAP0 - 1)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1010 break;
893 1011
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1013 ? 1 : 0;
918 1014
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1016 break;
921 1017
928 heap [k] = he; 1024 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1025 ev_active (ANHE_w (he)) = k;
930} 1026}
931#endif 1027#endif
932 1028
933void inline_size 1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
1052inline_size void
934adjustheap (ANHE *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
935{ 1054{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
937 upheap (heap, k); 1056 upheap (heap, k);
938 else 1057 else
939 downheap (heap, N, k); 1058 downheap (heap, N, k);
940} 1059}
941 1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
1071}
1072
942/*****************************************************************************/ 1073/*****************************************************************************/
943 1074
1075/* associate signal watchers to a signal signal */
944typedef struct 1076typedef struct
945{ 1077{
946 WL head; 1078 WL head;
947 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
948} ANSIG; 1080} ANSIG;
950static ANSIG *signals; 1082static ANSIG *signals;
951static int signalmax; 1083static int signalmax;
952 1084
953static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
954 1086
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966
967/*****************************************************************************/ 1087/*****************************************************************************/
968 1088
969void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
970fd_intern (int fd) 1092fd_intern (int fd)
971{ 1093{
972#ifdef _WIN32 1094#ifdef _WIN32
973 int arg = 1; 1095 unsigned long arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else 1097#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif 1100#endif
979} 1101}
980 1102
981static void noinline 1103static void noinline
982evpipe_init (EV_P) 1104evpipe_init (EV_P)
983{ 1105{
984 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
985 { 1107 {
986#if EV_USE_EVENTFD 1108#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0) 1109 if ((evfd = eventfd (0, 0)) >= 0)
988 { 1110 {
989 evpipe [0] = -1; 1111 evpipe [0] = -1;
990 fd_intern (evfd); 1112 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ); 1113 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1114 }
993 else 1115 else
994#endif 1116#endif
995 { 1117 {
996 while (pipe (evpipe)) 1118 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
998 1120
999 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1124 }
1003 1125
1004 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1128 }
1007} 1129}
1008 1130
1009void inline_size 1131inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1133{
1012 if (!*flag) 1134 if (!*flag)
1013 { 1135 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1136 int old_errno = errno; /* save errno because write might clobber it */
1027 1149
1028 errno = old_errno; 1150 errno = old_errno;
1029 } 1151 }
1030} 1152}
1031 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
1032static void 1156static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1158{
1035#if EV_USE_EVENTFD 1159#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1160 if (evfd >= 0)
1092ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
1093{ 1217{
1094 WL w; 1218 WL w;
1095 1219
1096#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif 1222#endif
1099 1223
1100 --signum; 1224 --signum;
1101 1225
1102 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
1118 1242
1119#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
1121#endif 1245#endif
1122 1246
1123void inline_speed 1247/* handle a single child status event */
1248inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
1125{ 1250{
1126 ev_child *w; 1251 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1253
1141 1266
1142#ifndef WCONTINUED 1267#ifndef WCONTINUED
1143# define WCONTINUED 0 1268# define WCONTINUED 0
1144#endif 1269#endif
1145 1270
1271/* called on sigchld etc., calls waitpid */
1146static void 1272static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1274{
1149 int pid, status; 1275 int pid, status;
1150 1276
1231 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1360#endif
1235#ifdef __APPLE__ 1361#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1238#endif 1365#endif
1239 1366
1240 return flags; 1367 return flags;
1241} 1368}
1242 1369
1256ev_backend (EV_P) 1383ev_backend (EV_P)
1257{ 1384{
1258 return backend; 1385 return backend;
1259} 1386}
1260 1387
1388#if EV_MINIMAL < 2
1261unsigned int 1389unsigned int
1262ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1263{ 1391{
1264 return loop_count; 1392 return loop_count;
1265} 1393}
1266 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1267void 1401void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1403{
1270 io_blocktime = interval; 1404 io_blocktime = interval;
1271} 1405}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1409{
1276 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1277} 1411}
1278 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1438static void noinline
1280loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1281{ 1440{
1282 if (!backend) 1441 if (!backend)
1283 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1284#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1285 { 1455 {
1286 struct timespec ts; 1456 struct timespec ts;
1457
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1459 have_monotonic = 1;
1289 } 1460 }
1290#endif 1461#endif
1291 1462
1292 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1464 mn_now = get_clock ();
1294 now_floor = mn_now; 1465 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1296 1470
1297 io_blocktime = 0.; 1471 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1299 backend = 0; 1473 backend = 0;
1300 backend_fd = -1; 1474 backend_fd = -1;
1331#endif 1505#endif
1332#if EV_USE_SELECT 1506#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1508#endif
1335 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1336 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1338 } 1514 }
1339} 1515}
1340 1516
1517/* free up a loop structure */
1341static void noinline 1518static void noinline
1342loop_destroy (EV_P) 1519loop_destroy (EV_P)
1343{ 1520{
1344 int i; 1521 int i;
1345 1522
1346 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1347 { 1524 {
1348 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1350 1527
1351#if EV_USE_EVENTFD 1528#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1529 if (evfd >= 0)
1353 close (evfd); 1530 close (evfd);
1354#endif 1531#endif
1393 } 1570 }
1394 1571
1395 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1396 1573
1397 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1402#endif 1580#endif
1411 1589
1412 backend = 0; 1590 backend = 0;
1413} 1591}
1414 1592
1415#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1417#endif 1595#endif
1418 1596
1419void inline_size 1597inline_size void
1420loop_fork (EV_P) 1598loop_fork (EV_P)
1421{ 1599{
1422#if EV_USE_PORT 1600#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1602#endif
1430#endif 1608#endif
1431#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1610 infy_fork (EV_A);
1433#endif 1611#endif
1434 1612
1435 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1436 { 1614 {
1437 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1616 /* while we modify the fd vars */
1439 gotsig = 1; 1617 gotsig = 1;
1440#if EV_ASYNC_ENABLE 1618#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1619 gotasync = 1;
1442#endif 1620#endif
1443 1621
1444 ev_ref (EV_A); 1622 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1446 1624
1447#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1626 if (evfd >= 0)
1449 close (evfd); 1627 close (evfd);
1450#endif 1628#endif
1455 close (evpipe [1]); 1633 close (evpipe [1]);
1456 } 1634 }
1457 1635
1458 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1461 } 1639 }
1462 1640
1463 postfork = 0; 1641 postfork = 0;
1464} 1642}
1465 1643
1466#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1467struct ev_loop * 1646struct ev_loop *
1468ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1469{ 1648{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 1650
1488 1667
1489void 1668void
1490ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1491{ 1670{
1492 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1672}
1673#endif /* multiplicity */
1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1493} 1773}
1494#endif 1774#endif
1495 1775
1496#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1497struct ev_loop * 1777struct ev_loop *
1532{ 1812{
1533#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1535#endif 1815#endif
1536 1816
1817 ev_default_loop_ptr = 0;
1818
1537#ifndef _WIN32 1819#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1540#endif 1822#endif
1541 1823
1547{ 1829{
1548#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1550#endif 1832#endif
1551 1833
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 1834 postfork = 1; /* must be in line with ev_loop_fork */
1554} 1835}
1555 1836
1556/*****************************************************************************/ 1837/*****************************************************************************/
1557 1838
1558void 1839void
1559ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1560{ 1841{
1561 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1562} 1843}
1563 1844
1564void inline_speed 1845unsigned int
1565call_pending (EV_P) 1846ev_pending_count (EV_P)
1847{
1848 int pri;
1849 unsigned int count = 0;
1850
1851 for (pri = NUMPRI; pri--; )
1852 count += pendingcnt [pri];
1853
1854 return count;
1855}
1856
1857void noinline
1858ev_invoke_pending (EV_P)
1566{ 1859{
1567 int pri; 1860 int pri;
1568 1861
1569 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
1571 { 1864 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 1866
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868 /* ^ this is no longer true, as pending_w could be here */
1577 1869
1578 p->w->pending = 0; 1870 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
1580 } 1872 EV_FREQUENT_CHECK;
1581 } 1873 }
1582} 1874}
1583 1875
1584#if EV_IDLE_ENABLE 1876#if EV_IDLE_ENABLE
1585void inline_size 1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1586idle_reify (EV_P) 1880idle_reify (EV_P)
1587{ 1881{
1588 if (expect_false (idleall)) 1882 if (expect_false (idleall))
1589 { 1883 {
1590 int pri; 1884 int pri;
1602 } 1896 }
1603 } 1897 }
1604} 1898}
1605#endif 1899#endif
1606 1900
1607void inline_size 1901/* make timers pending */
1902inline_size void
1608timers_reify (EV_P) 1903timers_reify (EV_P)
1609{ 1904{
1905 EV_FREQUENT_CHECK;
1906
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 1908 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1909 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1619 ev_at (w) += w->repeat; 1918 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 1919 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 1920 ev_at (w) = mn_now;
1622 1921
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 1923
1625 ANHE_at_set (timers [HEAP0]); 1924 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1627 } 1932 }
1628 else 1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 1934
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1632 } 1936 }
1633} 1937}
1634 1938
1635#if EV_PERIODIC_ENABLE 1939#if EV_PERIODIC_ENABLE
1636void inline_size 1940/* make periodics pending */
1941inline_size void
1637periodics_reify (EV_P) 1942periodics_reify (EV_P)
1638{ 1943{
1944 EV_FREQUENT_CHECK;
1945
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 1947 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 1948 int feed_count = 0;
1642 1949
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1950 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 1960
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 1962
1652 ANHE_at_set (periodics [HEAP0]); 1963 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1654 } 1990 }
1655 else if (w->interval) 1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 1992
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 1994 }
1679} 1995}
1680 1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1681static void noinline 1999static void noinline
1682periodics_reschedule (EV_P) 2000periodics_reschedule (EV_P)
1683{ 2001{
1684 int i; 2002 int i;
1685 2003
1691 if (w->reschedule_cb) 2009 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2011 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 2013
1696 ANHE_at_set (periodics [i]); 2014 ANHE_at_cache (periodics [i]);
1697 } 2015 }
1698 2016
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2017 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
1701 for (i = 0; i < periodiccnt; ++i) 2027 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
1703} 2033}
1704#endif
1705 2034
1706void inline_speed 2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2038time_update (EV_P_ ev_tstamp max_block)
1708{ 2039{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2040#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2041 if (expect_true (have_monotonic))
1713 { 2042 {
2043 int i;
1714 ev_tstamp odiff = rtmn_diff; 2044 ev_tstamp odiff = rtmn_diff;
1715 2045
1716 mn_now = get_clock (); 2046 mn_now = get_clock ();
1717 2047
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2075 mn_now = get_clock ();
1746 now_floor = mn_now; 2076 now_floor = mn_now;
1747 } 2077 }
1748 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2081# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2082 periodics_reschedule (EV_A);
1751# endif 2083# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2084 }
1755 else 2085 else
1756#endif 2086#endif
1757 { 2087 {
1758 ev_rt_now = ev_time (); 2088 ev_rt_now = ev_time ();
1759 2089
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1764#endif 2096#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2097 }
1773 2098
1774 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1775 } 2100 }
1776} 2101}
1777 2102
1778void 2103void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1794{ 2105{
2106#if EV_MINIMAL < 2
2107 ++loop_depth;
2108#endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
1795 loop_done = EVUNLOOP_CANCEL; 2112 loop_done = EVUNLOOP_CANCEL;
1796 2113
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2115
1799 do 2116 do
1800 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
1801#ifndef _WIN32 2122#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2123 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2124 if (expect_false (getpid () != curpid))
1804 { 2125 {
1805 curpid = getpid (); 2126 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2132 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2133 if (expect_false (postfork))
1813 if (forkcnt) 2134 if (forkcnt)
1814 { 2135 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2137 EV_INVOKE_PENDING;
1817 } 2138 }
1818#endif 2139#endif
1819 2140
1820 /* queue prepare watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1822 { 2143 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1825 } 2146 }
1826 2147
1827 if (expect_false (!activecnt)) 2148 if (expect_false (loop_done))
1828 break; 2149 break;
1829 2150
1830 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1832 loop_fork (EV_A); 2153 loop_fork (EV_A);
1839 ev_tstamp waittime = 0.; 2160 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2161 ev_tstamp sleeptime = 0.;
1841 2162
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 { 2164 {
2165 /* remember old timestamp for io_blocktime calculation */
2166 ev_tstamp prev_mn_now = mn_now;
2167
1844 /* update time to cancel out callback processing overhead */ 2168 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100); 2169 time_update (EV_A_ 1e100);
1846 2170
1847 waittime = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1848 2172
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2183 if (waittime > to) waittime = to;
1860 } 2184 }
1861#endif 2185#endif
1862 2186
2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2188 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2189 waittime = timeout_blocktime;
1865 2190
1866 sleeptime = waittime - backend_fudge; 2191 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2192 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
1873 ev_sleep (sleeptime); 2201 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2202 waittime -= sleeptime;
2203 }
1875 } 2204 }
1876 } 2205 }
1877 2206
2207#if EV_MINIMAL < 2
1878 ++loop_count; 2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1880 2213
1881 /* update ev_rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2215 time_update (EV_A_ waittime + sleeptime);
1883 } 2216 }
1884 2217
1895 2228
1896 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2230 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1899 2232
1900 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1901 } 2234 }
1902 while (expect_true ( 2235 while (expect_true (
1903 activecnt 2236 activecnt
1904 && !loop_done 2237 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 )); 2239 ));
1907 2240
1908 if (loop_done == EVUNLOOP_ONE) 2241 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
1910} 2247}
1911 2248
1912void 2249void
1913ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
1914{ 2251{
1915 loop_done = how; 2252 loop_done = how;
1916} 2253}
1917 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
1918/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
1919 2294
1920void inline_size 2295inline_size void
1921wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
1922{ 2297{
1923 elem->next = *head; 2298 elem->next = *head;
1924 *head = elem; 2299 *head = elem;
1925} 2300}
1926 2301
1927void inline_size 2302inline_size void
1928wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
1929{ 2304{
1930 while (*head) 2305 while (*head)
1931 { 2306 {
1932 if (*head == elem) 2307 if (*head == elem)
1937 2312
1938 head = &(*head)->next; 2313 head = &(*head)->next;
1939 } 2314 }
1940} 2315}
1941 2316
1942void inline_speed 2317/* internal, faster, version of ev_clear_pending */
2318inline_speed void
1943clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
1944{ 2320{
1945 if (w->pending) 2321 if (w->pending)
1946 { 2322 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2324 w->pending = 0;
1949 } 2325 }
1950} 2326}
1951 2327
1952int 2328int
1956 int pending = w_->pending; 2332 int pending = w_->pending;
1957 2333
1958 if (expect_true (pending)) 2334 if (expect_true (pending))
1959 { 2335 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
1961 w_->pending = 0; 2338 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2339 return p->events;
1964 } 2340 }
1965 else 2341 else
1966 return 0; 2342 return 0;
1967} 2343}
1968 2344
1969void inline_size 2345inline_size void
1970pri_adjust (EV_P_ W w) 2346pri_adjust (EV_P_ W w)
1971{ 2347{
1972 int pri = w->priority; 2348 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2351 ev_set_priority (w, pri);
1976} 2352}
1977 2353
1978void inline_speed 2354inline_speed void
1979ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
1980{ 2356{
1981 pri_adjust (EV_A_ w); 2357 pri_adjust (EV_A_ w);
1982 w->active = active; 2358 w->active = active;
1983 ev_ref (EV_A); 2359 ev_ref (EV_A);
1984} 2360}
1985 2361
1986void inline_size 2362inline_size void
1987ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
1988{ 2364{
1989 ev_unref (EV_A); 2365 ev_unref (EV_A);
1990 w->active = 0; 2366 w->active = 0;
1991} 2367}
1998 int fd = w->fd; 2374 int fd = w->fd;
1999 2375
2000 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
2001 return; 2377 return;
2002 2378
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
2004 2383
2005 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
2008 2387
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2389 w->events &= ~EV__IOFDSET;
2390
2391 EV_FREQUENT_CHECK;
2011} 2392}
2012 2393
2013void noinline 2394void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
2015{ 2396{
2016 clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
2018 return; 2399 return;
2019 2400
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2402
2403 EV_FREQUENT_CHECK;
2021 2404
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2024 2407
2025 fd_change (EV_A_ w->fd, 1); 2408 fd_change (EV_A_ w->fd, 1);
2409
2410 EV_FREQUENT_CHECK;
2026} 2411}
2027 2412
2028void noinline 2413void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
2030{ 2415{
2031 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
2032 return; 2417 return;
2033 2418
2034 ev_at (w) += mn_now; 2419 ev_at (w) += mn_now;
2035 2420
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2429 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2430 upheap (timers, ev_active (w));
2043 2431
2432 EV_FREQUENT_CHECK;
2433
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2435}
2046 2436
2047void noinline 2437void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2439{
2050 clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2441 if (expect_false (!ev_is_active (w)))
2052 return; 2442 return;
2053 2443
2444 EV_FREQUENT_CHECK;
2445
2054 { 2446 {
2055 int active = ev_active (w); 2447 int active = ev_active (w);
2056 2448
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2450
2451 --timercnt;
2452
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2453 if (expect_true (active < timercnt + HEAP0))
2060 { 2454 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2455 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2456 adjustheap (timers, timercnt, active);
2063 } 2457 }
2064
2065 --timercnt;
2066 } 2458 }
2459
2460 EV_FREQUENT_CHECK;
2067 2461
2068 ev_at (w) -= mn_now; 2462 ev_at (w) -= mn_now;
2069 2463
2070 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
2071} 2465}
2072 2466
2073void noinline 2467void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
2075{ 2469{
2470 EV_FREQUENT_CHECK;
2471
2076 if (ev_is_active (w)) 2472 if (ev_is_active (w))
2077 { 2473 {
2078 if (w->repeat) 2474 if (w->repeat)
2079 { 2475 {
2080 ev_at (w) = mn_now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2477 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2478 adjustheap (timers, timercnt, ev_active (w));
2083 } 2479 }
2084 else 2480 else
2085 ev_timer_stop (EV_A_ w); 2481 ev_timer_stop (EV_A_ w);
2086 } 2482 }
2087 else if (w->repeat) 2483 else if (w->repeat)
2088 { 2484 {
2089 ev_at (w) = w->repeat; 2485 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2486 ev_timer_start (EV_A_ w);
2091 } 2487 }
2488
2489 EV_FREQUENT_CHECK;
2490}
2491
2492ev_tstamp
2493ev_timer_remaining (EV_P_ ev_timer *w)
2494{
2495 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2496}
2093 2497
2094#if EV_PERIODIC_ENABLE 2498#if EV_PERIODIC_ENABLE
2095void noinline 2499void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2500ev_periodic_start (EV_P_ ev_periodic *w)
2100 2504
2101 if (w->reschedule_cb) 2505 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2506 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2507 else if (w->interval)
2104 { 2508 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2509 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2510 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2511 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2512 }
2109 else 2513 else
2110 ev_at (w) = w->offset; 2514 ev_at (w) = w->offset;
2111 2515
2516 EV_FREQUENT_CHECK;
2517
2518 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2519 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2520 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2521 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2522 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2523 upheap (periodics, ev_active (w));
2117 2524
2525 EV_FREQUENT_CHECK;
2526
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2527 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2528}
2120 2529
2121void noinline 2530void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2531ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2532{
2124 clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2534 if (expect_false (!ev_is_active (w)))
2126 return; 2535 return;
2127 2536
2537 EV_FREQUENT_CHECK;
2538
2128 { 2539 {
2129 int active = ev_active (w); 2540 int active = ev_active (w);
2130 2541
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2542 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2543
2544 --periodiccnt;
2545
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2546 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2547 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2548 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2549 adjustheap (periodics, periodiccnt, active);
2137 } 2550 }
2138
2139 --periodiccnt;
2140 } 2551 }
2552
2553 EV_FREQUENT_CHECK;
2141 2554
2142 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
2143} 2556}
2144 2557
2145void noinline 2558void noinline
2157 2570
2158void noinline 2571void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2572ev_signal_start (EV_P_ ev_signal *w)
2160{ 2573{
2161#if EV_MULTIPLICITY 2574#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2575 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif 2576#endif
2164 if (expect_false (ev_is_active (w))) 2577 if (expect_false (ev_is_active (w)))
2165 return; 2578 return;
2166 2579
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2580 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2168 2581
2169 evpipe_init (EV_A); 2582 evpipe_init (EV_A);
2583
2584 EV_FREQUENT_CHECK;
2170 2585
2171 { 2586 {
2172#ifndef _WIN32 2587#ifndef _WIN32
2173 sigset_t full, prev; 2588 sigset_t full, prev;
2174 sigfillset (&full); 2589 sigfillset (&full);
2175 sigprocmask (SIG_SETMASK, &full, &prev); 2590 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif 2591#endif
2177 2592
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2593 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2179 2594
2180#ifndef _WIN32 2595#ifndef _WIN32
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2596 sigprocmask (SIG_SETMASK, &prev, 0);
2182#endif 2597#endif
2183 } 2598 }
2188 if (!((WL)w)->next) 2603 if (!((WL)w)->next)
2189 { 2604 {
2190#if _WIN32 2605#if _WIN32
2191 signal (w->signum, ev_sighandler); 2606 signal (w->signum, ev_sighandler);
2192#else 2607#else
2193 struct sigaction sa; 2608 struct sigaction sa = { };
2194 sa.sa_handler = ev_sighandler; 2609 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 2610 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2611 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2612 sigaction (w->signum, &sa, 0);
2198#endif 2613#endif
2199 } 2614 }
2615
2616 EV_FREQUENT_CHECK;
2200} 2617}
2201 2618
2202void noinline 2619void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2620ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2621{
2205 clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
2207 return; 2624 return;
2208 2625
2626 EV_FREQUENT_CHECK;
2627
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2628 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2629 ev_stop (EV_A_ (W)w);
2211 2630
2212 if (!signals [w->signum - 1].head) 2631 if (!signals [w->signum - 1].head)
2213 signal (w->signum, SIG_DFL); 2632 signal (w->signum, SIG_DFL);
2633
2634 EV_FREQUENT_CHECK;
2214} 2635}
2215 2636
2216void 2637void
2217ev_child_start (EV_P_ ev_child *w) 2638ev_child_start (EV_P_ ev_child *w)
2218{ 2639{
2219#if EV_MULTIPLICITY 2640#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2642#endif
2222 if (expect_false (ev_is_active (w))) 2643 if (expect_false (ev_is_active (w)))
2223 return; 2644 return;
2224 2645
2646 EV_FREQUENT_CHECK;
2647
2225 ev_start (EV_A_ (W)w, 1); 2648 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2649 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2650
2651 EV_FREQUENT_CHECK;
2227} 2652}
2228 2653
2229void 2654void
2230ev_child_stop (EV_P_ ev_child *w) 2655ev_child_stop (EV_P_ ev_child *w)
2231{ 2656{
2232 clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2658 if (expect_false (!ev_is_active (w)))
2234 return; 2659 return;
2235 2660
2661 EV_FREQUENT_CHECK;
2662
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2663 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2665
2666 EV_FREQUENT_CHECK;
2238} 2667}
2239 2668
2240#if EV_STAT_ENABLE 2669#if EV_STAT_ENABLE
2241 2670
2242# ifdef _WIN32 2671# ifdef _WIN32
2243# undef lstat 2672# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2673# define lstat(a,b) _stati64 (a,b)
2245# endif 2674# endif
2246 2675
2247#define DEF_STAT_INTERVAL 5.0074891 2676#define DEF_STAT_INTERVAL 5.0074891
2677#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2678#define MIN_STAT_INTERVAL 0.1074891
2249 2679
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2680static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2681
2252#if EV_USE_INOTIFY 2682#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2683# define EV_INOTIFY_BUFSIZE 8192
2257{ 2687{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2688 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2689
2260 if (w->wd < 0) 2690 if (w->wd < 0)
2261 { 2691 {
2692 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2693 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2263 2694
2264 /* monitor some parent directory for speedup hints */ 2695 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2696 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 2697 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2698 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 2699 {
2269 char path [4096]; 2700 char path [4096];
2270 strcpy (path, w->path); 2701 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2705 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2706 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 2707
2277 char *pend = strrchr (path, '/'); 2708 char *pend = strrchr (path, '/');
2278 2709
2279 if (!pend) 2710 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 2711 break;
2281 2712
2282 *pend = 0; 2713 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 2714 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 2715 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2716 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 2717 }
2287 } 2718 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 2719
2291 if (w->wd >= 0) 2720 if (w->wd >= 0)
2721 {
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2722 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2723
2724 /* now local changes will be tracked by inotify, but remote changes won't */
2725 /* unless the filesystem it known to be local, we therefore still poll */
2726 /* also do poll on <2.6.25, but with normal frequency */
2727 struct statfs sfs;
2728
2729 if (fs_2625 && !statfs (w->path, &sfs))
2730 if (sfs.f_type == 0x1373 /* devfs */
2731 || sfs.f_type == 0xEF53 /* ext2/3 */
2732 || sfs.f_type == 0x3153464a /* jfs */
2733 || sfs.f_type == 0x52654973 /* reiser3 */
2734 || sfs.f_type == 0x01021994 /* tempfs */
2735 || sfs.f_type == 0x58465342 /* xfs */)
2736 return;
2737
2738 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2739 ev_timer_again (EV_A_ &w->timer);
2740 }
2293} 2741}
2294 2742
2295static void noinline 2743static void noinline
2296infy_del (EV_P_ ev_stat *w) 2744infy_del (EV_P_ ev_stat *w)
2297{ 2745{
2311 2759
2312static void noinline 2760static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2761infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 2762{
2315 if (slot < 0) 2763 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 2764 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2765 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 2766 infy_wd (EV_A_ slot, wd, ev);
2319 else 2767 else
2320 { 2768 {
2321 WL w_; 2769 WL w_;
2327 2775
2328 if (w->wd == wd || wd == -1) 2776 if (w->wd == wd || wd == -1)
2329 { 2777 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2778 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 2779 {
2780 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2332 w->wd = -1; 2781 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 2782 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 2783 }
2335 2784
2336 stat_timer_cb (EV_A_ &w->timer, 0); 2785 stat_timer_cb (EV_A_ &w->timer, 0);
2349 2798
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2799 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2800 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2352} 2801}
2353 2802
2354void inline_size 2803inline_size void
2804check_2625 (EV_P)
2805{
2806 /* kernels < 2.6.25 are borked
2807 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2808 */
2809 struct utsname buf;
2810 int major, minor, micro;
2811
2812 if (uname (&buf))
2813 return;
2814
2815 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2816 return;
2817
2818 if (major < 2
2819 || (major == 2 && minor < 6)
2820 || (major == 2 && minor == 6 && micro < 25))
2821 return;
2822
2823 fs_2625 = 1;
2824}
2825
2826inline_size void
2355infy_init (EV_P) 2827infy_init (EV_P)
2356{ 2828{
2357 if (fs_fd != -2) 2829 if (fs_fd != -2)
2358 return; 2830 return;
2831
2832 fs_fd = -1;
2833
2834 check_2625 (EV_A);
2359 2835
2360 fs_fd = inotify_init (); 2836 fs_fd = inotify_init ();
2361 2837
2362 if (fs_fd >= 0) 2838 if (fs_fd >= 0)
2363 { 2839 {
2365 ev_set_priority (&fs_w, EV_MAXPRI); 2841 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 2842 ev_io_start (EV_A_ &fs_w);
2367 } 2843 }
2368} 2844}
2369 2845
2370void inline_size 2846inline_size void
2371infy_fork (EV_P) 2847infy_fork (EV_P)
2372{ 2848{
2373 int slot; 2849 int slot;
2374 2850
2375 if (fs_fd < 0) 2851 if (fs_fd < 0)
2391 w->wd = -1; 2867 w->wd = -1;
2392 2868
2393 if (fs_fd >= 0) 2869 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 2870 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 2871 else
2396 ev_timer_start (EV_A_ &w->timer); 2872 ev_timer_again (EV_A_ &w->timer);
2397 } 2873 }
2398
2399 } 2874 }
2400} 2875}
2401 2876
2877#endif
2878
2879#ifdef _WIN32
2880# define EV_LSTAT(p,b) _stati64 (p, b)
2881#else
2882# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 2883#endif
2403 2884
2404void 2885void
2405ev_stat_stat (EV_P_ ev_stat *w) 2886ev_stat_stat (EV_P_ ev_stat *w)
2406{ 2887{
2433 || w->prev.st_atime != w->attr.st_atime 2914 || w->prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 2915 || w->prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 2916 || w->prev.st_ctime != w->attr.st_ctime
2436 ) { 2917 ) {
2437 #if EV_USE_INOTIFY 2918 #if EV_USE_INOTIFY
2919 if (fs_fd >= 0)
2920 {
2438 infy_del (EV_A_ w); 2921 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 2922 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 2923 ev_stat_stat (EV_A_ w); /* avoid race... */
2924 }
2441 #endif 2925 #endif
2442 2926
2443 ev_feed_event (EV_A_ w, EV_STAT); 2927 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 2928 }
2445} 2929}
2448ev_stat_start (EV_P_ ev_stat *w) 2932ev_stat_start (EV_P_ ev_stat *w)
2449{ 2933{
2450 if (expect_false (ev_is_active (w))) 2934 if (expect_false (ev_is_active (w)))
2451 return; 2935 return;
2452 2936
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 2937 ev_stat_stat (EV_A_ w);
2458 2938
2939 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 2940 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 2941
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2942 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 2943 ev_set_priority (&w->timer, ev_priority (w));
2464 2944
2465#if EV_USE_INOTIFY 2945#if EV_USE_INOTIFY
2466 infy_init (EV_A); 2946 infy_init (EV_A);
2467 2947
2468 if (fs_fd >= 0) 2948 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 2949 infy_add (EV_A_ w);
2470 else 2950 else
2471#endif 2951#endif
2472 ev_timer_start (EV_A_ &w->timer); 2952 ev_timer_again (EV_A_ &w->timer);
2473 2953
2474 ev_start (EV_A_ (W)w, 1); 2954 ev_start (EV_A_ (W)w, 1);
2955
2956 EV_FREQUENT_CHECK;
2475} 2957}
2476 2958
2477void 2959void
2478ev_stat_stop (EV_P_ ev_stat *w) 2960ev_stat_stop (EV_P_ ev_stat *w)
2479{ 2961{
2480 clear_pending (EV_A_ (W)w); 2962 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 2963 if (expect_false (!ev_is_active (w)))
2482 return; 2964 return;
2483 2965
2966 EV_FREQUENT_CHECK;
2967
2484#if EV_USE_INOTIFY 2968#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 2969 infy_del (EV_A_ w);
2486#endif 2970#endif
2487 ev_timer_stop (EV_A_ &w->timer); 2971 ev_timer_stop (EV_A_ &w->timer);
2488 2972
2489 ev_stop (EV_A_ (W)w); 2973 ev_stop (EV_A_ (W)w);
2974
2975 EV_FREQUENT_CHECK;
2490} 2976}
2491#endif 2977#endif
2492 2978
2493#if EV_IDLE_ENABLE 2979#if EV_IDLE_ENABLE
2494void 2980void
2496{ 2982{
2497 if (expect_false (ev_is_active (w))) 2983 if (expect_false (ev_is_active (w)))
2498 return; 2984 return;
2499 2985
2500 pri_adjust (EV_A_ (W)w); 2986 pri_adjust (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2501 2989
2502 { 2990 {
2503 int active = ++idlecnt [ABSPRI (w)]; 2991 int active = ++idlecnt [ABSPRI (w)];
2504 2992
2505 ++idleall; 2993 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 2994 ev_start (EV_A_ (W)w, active);
2507 2995
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2996 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 2997 idles [ABSPRI (w)][active - 1] = w;
2510 } 2998 }
2999
3000 EV_FREQUENT_CHECK;
2511} 3001}
2512 3002
2513void 3003void
2514ev_idle_stop (EV_P_ ev_idle *w) 3004ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3005{
2516 clear_pending (EV_A_ (W)w); 3006 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3007 if (expect_false (!ev_is_active (w)))
2518 return; 3008 return;
2519 3009
3010 EV_FREQUENT_CHECK;
3011
2520 { 3012 {
2521 int active = ev_active (w); 3013 int active = ev_active (w);
2522 3014
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3015 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3016 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3017
2526 ev_stop (EV_A_ (W)w); 3018 ev_stop (EV_A_ (W)w);
2527 --idleall; 3019 --idleall;
2528 } 3020 }
3021
3022 EV_FREQUENT_CHECK;
2529} 3023}
2530#endif 3024#endif
2531 3025
2532void 3026void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3027ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3028{
2535 if (expect_false (ev_is_active (w))) 3029 if (expect_false (ev_is_active (w)))
2536 return; 3030 return;
3031
3032 EV_FREQUENT_CHECK;
2537 3033
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3034 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3035 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3036 prepares [preparecnt - 1] = w;
3037
3038 EV_FREQUENT_CHECK;
2541} 3039}
2542 3040
2543void 3041void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3042ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3043{
2546 clear_pending (EV_A_ (W)w); 3044 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3045 if (expect_false (!ev_is_active (w)))
2548 return; 3046 return;
2549 3047
3048 EV_FREQUENT_CHECK;
3049
2550 { 3050 {
2551 int active = ev_active (w); 3051 int active = ev_active (w);
2552 3052
2553 prepares [active - 1] = prepares [--preparecnt]; 3053 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3054 ev_active (prepares [active - 1]) = active;
2555 } 3055 }
2556 3056
2557 ev_stop (EV_A_ (W)w); 3057 ev_stop (EV_A_ (W)w);
3058
3059 EV_FREQUENT_CHECK;
2558} 3060}
2559 3061
2560void 3062void
2561ev_check_start (EV_P_ ev_check *w) 3063ev_check_start (EV_P_ ev_check *w)
2562{ 3064{
2563 if (expect_false (ev_is_active (w))) 3065 if (expect_false (ev_is_active (w)))
2564 return; 3066 return;
3067
3068 EV_FREQUENT_CHECK;
2565 3069
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3070 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3071 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3072 checks [checkcnt - 1] = w;
3073
3074 EV_FREQUENT_CHECK;
2569} 3075}
2570 3076
2571void 3077void
2572ev_check_stop (EV_P_ ev_check *w) 3078ev_check_stop (EV_P_ ev_check *w)
2573{ 3079{
2574 clear_pending (EV_A_ (W)w); 3080 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3081 if (expect_false (!ev_is_active (w)))
2576 return; 3082 return;
2577 3083
3084 EV_FREQUENT_CHECK;
3085
2578 { 3086 {
2579 int active = ev_active (w); 3087 int active = ev_active (w);
2580 3088
2581 checks [active - 1] = checks [--checkcnt]; 3089 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3090 ev_active (checks [active - 1]) = active;
2583 } 3091 }
2584 3092
2585 ev_stop (EV_A_ (W)w); 3093 ev_stop (EV_A_ (W)w);
3094
3095 EV_FREQUENT_CHECK;
2586} 3096}
2587 3097
2588#if EV_EMBED_ENABLE 3098#if EV_EMBED_ENABLE
2589void noinline 3099void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3100ev_embed_sweep (EV_P_ ev_embed *w)
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3127 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 } 3128 }
2619 } 3129 }
2620} 3130}
2621 3131
3132static void
3133embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3134{
3135 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3136
3137 ev_embed_stop (EV_A_ w);
3138
3139 {
3140 struct ev_loop *loop = w->other;
3141
3142 ev_loop_fork (EV_A);
3143 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3144 }
3145
3146 ev_embed_start (EV_A_ w);
3147}
3148
2622#if 0 3149#if 0
2623static void 3150static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3151embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{ 3152{
2626 ev_idle_stop (EV_A_ idle); 3153 ev_idle_stop (EV_A_ idle);
2633 if (expect_false (ev_is_active (w))) 3160 if (expect_false (ev_is_active (w)))
2634 return; 3161 return;
2635 3162
2636 { 3163 {
2637 struct ev_loop *loop = w->other; 3164 struct ev_loop *loop = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3165 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3166 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3167 }
3168
3169 EV_FREQUENT_CHECK;
2641 3170
2642 ev_set_priority (&w->io, ev_priority (w)); 3171 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3172 ev_io_start (EV_A_ &w->io);
2644 3173
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3174 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3175 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3176 ev_prepare_start (EV_A_ &w->prepare);
2648 3177
3178 ev_fork_init (&w->fork, embed_fork_cb);
3179 ev_fork_start (EV_A_ &w->fork);
3180
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3181 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3182
2651 ev_start (EV_A_ (W)w, 1); 3183 ev_start (EV_A_ (W)w, 1);
3184
3185 EV_FREQUENT_CHECK;
2652} 3186}
2653 3187
2654void 3188void
2655ev_embed_stop (EV_P_ ev_embed *w) 3189ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3190{
2657 clear_pending (EV_A_ (W)w); 3191 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3192 if (expect_false (!ev_is_active (w)))
2659 return; 3193 return;
2660 3194
3195 EV_FREQUENT_CHECK;
3196
2661 ev_io_stop (EV_A_ &w->io); 3197 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3198 ev_prepare_stop (EV_A_ &w->prepare);
3199 ev_fork_stop (EV_A_ &w->fork);
2663 3200
2664 ev_stop (EV_A_ (W)w); 3201 EV_FREQUENT_CHECK;
2665} 3202}
2666#endif 3203#endif
2667 3204
2668#if EV_FORK_ENABLE 3205#if EV_FORK_ENABLE
2669void 3206void
2670ev_fork_start (EV_P_ ev_fork *w) 3207ev_fork_start (EV_P_ ev_fork *w)
2671{ 3208{
2672 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
2673 return; 3210 return;
3211
3212 EV_FREQUENT_CHECK;
2674 3213
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3214 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3215 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3216 forks [forkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
2678} 3219}
2679 3220
2680void 3221void
2681ev_fork_stop (EV_P_ ev_fork *w) 3222ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3223{
2683 clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
2685 return; 3226 return;
2686 3227
3228 EV_FREQUENT_CHECK;
3229
2687 { 3230 {
2688 int active = ev_active (w); 3231 int active = ev_active (w);
2689 3232
2690 forks [active - 1] = forks [--forkcnt]; 3233 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3234 ev_active (forks [active - 1]) = active;
2692 } 3235 }
2693 3236
2694 ev_stop (EV_A_ (W)w); 3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
2695} 3240}
2696#endif 3241#endif
2697 3242
2698#if EV_ASYNC_ENABLE 3243#if EV_ASYNC_ENABLE
2699void 3244void
2701{ 3246{
2702 if (expect_false (ev_is_active (w))) 3247 if (expect_false (ev_is_active (w)))
2703 return; 3248 return;
2704 3249
2705 evpipe_init (EV_A); 3250 evpipe_init (EV_A);
3251
3252 EV_FREQUENT_CHECK;
2706 3253
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3254 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3256 asyncs [asynccnt - 1] = w;
3257
3258 EV_FREQUENT_CHECK;
2710} 3259}
2711 3260
2712void 3261void
2713ev_async_stop (EV_P_ ev_async *w) 3262ev_async_stop (EV_P_ ev_async *w)
2714{ 3263{
2715 clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3265 if (expect_false (!ev_is_active (w)))
2717 return; 3266 return;
2718 3267
3268 EV_FREQUENT_CHECK;
3269
2719 { 3270 {
2720 int active = ev_active (w); 3271 int active = ev_active (w);
2721 3272
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3273 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3274 ev_active (asyncs [active - 1]) = active;
2724 } 3275 }
2725 3276
2726 ev_stop (EV_A_ (W)w); 3277 ev_stop (EV_A_ (W)w);
3278
3279 EV_FREQUENT_CHECK;
2727} 3280}
2728 3281
2729void 3282void
2730ev_async_send (EV_P_ ev_async *w) 3283ev_async_send (EV_P_ ev_async *w)
2731{ 3284{
2748once_cb (EV_P_ struct ev_once *once, int revents) 3301once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3302{
2750 void (*cb)(int revents, void *arg) = once->cb; 3303 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3304 void *arg = once->arg;
2752 3305
2753 ev_io_stop (EV_A_ &once->io); 3306 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3307 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3308 ev_free (once);
2756 3309
2757 cb (revents, arg); 3310 cb (revents, arg);
2758} 3311}
2759 3312
2760static void 3313static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3314once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3315{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3317
3318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3319}
2765 3320
2766static void 3321static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3322once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3323{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3325
3326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3327}
2771 3328
2772void 3329void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3330ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3331{
2796 ev_timer_set (&once->to, timeout, 0.); 3353 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3354 ev_timer_start (EV_A_ &once->to);
2798 } 3355 }
2799} 3356}
2800 3357
3358/*****************************************************************************/
3359
3360#if EV_WALK_ENABLE
3361void
3362ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3363{
3364 int i, j;
3365 ev_watcher_list *wl, *wn;
3366
3367 if (types & (EV_IO | EV_EMBED))
3368 for (i = 0; i < anfdmax; ++i)
3369 for (wl = anfds [i].head; wl; )
3370 {
3371 wn = wl->next;
3372
3373#if EV_EMBED_ENABLE
3374 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3375 {
3376 if (types & EV_EMBED)
3377 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3378 }
3379 else
3380#endif
3381#if EV_USE_INOTIFY
3382 if (ev_cb ((ev_io *)wl) == infy_cb)
3383 ;
3384 else
3385#endif
3386 if ((ev_io *)wl != &pipe_w)
3387 if (types & EV_IO)
3388 cb (EV_A_ EV_IO, wl);
3389
3390 wl = wn;
3391 }
3392
3393 if (types & (EV_TIMER | EV_STAT))
3394 for (i = timercnt + HEAP0; i-- > HEAP0; )
3395#if EV_STAT_ENABLE
3396 /*TODO: timer is not always active*/
3397 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3398 {
3399 if (types & EV_STAT)
3400 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3401 }
3402 else
3403#endif
3404 if (types & EV_TIMER)
3405 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3406
3407#if EV_PERIODIC_ENABLE
3408 if (types & EV_PERIODIC)
3409 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3410 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3411#endif
3412
3413#if EV_IDLE_ENABLE
3414 if (types & EV_IDLE)
3415 for (j = NUMPRI; i--; )
3416 for (i = idlecnt [j]; i--; )
3417 cb (EV_A_ EV_IDLE, idles [j][i]);
3418#endif
3419
3420#if EV_FORK_ENABLE
3421 if (types & EV_FORK)
3422 for (i = forkcnt; i--; )
3423 if (ev_cb (forks [i]) != embed_fork_cb)
3424 cb (EV_A_ EV_FORK, forks [i]);
3425#endif
3426
3427#if EV_ASYNC_ENABLE
3428 if (types & EV_ASYNC)
3429 for (i = asynccnt; i--; )
3430 cb (EV_A_ EV_ASYNC, asyncs [i]);
3431#endif
3432
3433 if (types & EV_PREPARE)
3434 for (i = preparecnt; i--; )
3435#if EV_EMBED_ENABLE
3436 if (ev_cb (prepares [i]) != embed_prepare_cb)
3437#endif
3438 cb (EV_A_ EV_PREPARE, prepares [i]);
3439
3440 if (types & EV_CHECK)
3441 for (i = checkcnt; i--; )
3442 cb (EV_A_ EV_CHECK, checks [i]);
3443
3444 if (types & EV_SIGNAL)
3445 for (i = 0; i < signalmax; ++i)
3446 for (wl = signals [i].head; wl; )
3447 {
3448 wn = wl->next;
3449 cb (EV_A_ EV_SIGNAL, wl);
3450 wl = wn;
3451 }
3452
3453 if (types & EV_CHILD)
3454 for (i = EV_PID_HASHSIZE; i--; )
3455 for (wl = childs [i]; wl; )
3456 {
3457 wn = wl->next;
3458 cb (EV_A_ EV_CHILD, wl);
3459 wl = wn;
3460 }
3461/* EV_STAT 0x00001000 /* stat data changed */
3462/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3463}
3464#endif
3465
2801#if EV_MULTIPLICITY 3466#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3467 #include "ev_wrap.h"
2803#endif 3468#endif
2804 3469
2805#ifdef __cplusplus 3470#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines