ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.79 by root, Fri Nov 9 15:15:20 2007 UTC vs.
Revision 1.302 by root, Thu Jul 16 15:08:08 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
33 65
34# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
37# endif 80# endif
38 81
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
41# endif 88# endif
42 89
43# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
45# endif 96# endif
46 97
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
49# endif 104# endif
50 105
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
53# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
54 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
55#endif 146#endif
56 147
57#include <math.h> 148#include <math.h>
58#include <stdlib.h> 149#include <stdlib.h>
59#include <fcntl.h> 150#include <fcntl.h>
66#include <sys/types.h> 157#include <sys/types.h>
67#include <time.h> 158#include <time.h>
68 159
69#include <signal.h> 160#include <signal.h>
70 161
162#ifdef EV_H
163# include EV_H
164#else
165# include "ev.h"
166#endif
167
71#ifndef WIN32 168#ifndef _WIN32
72# include <unistd.h>
73# include <sys/time.h> 169# include <sys/time.h>
74# include <sys/wait.h> 170# include <sys/wait.h>
171# include <unistd.h>
172#else
173# include <io.h>
174# define WIN32_LEAN_AND_MEAN
175# include <windows.h>
176# ifndef EV_SELECT_IS_WINSOCKET
177# define EV_SELECT_IS_WINSOCKET 1
75#endif 178# endif
76/**/ 179#endif
180
181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
77 190
78#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
79# define EV_USE_MONOTONIC 1 193# define EV_USE_MONOTONIC 1
194# else
195# define EV_USE_MONOTONIC 0
196# endif
197#endif
198
199#ifndef EV_USE_REALTIME
200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
80#endif 209#endif
81 210
82#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
84#endif 213#endif
85 214
86#ifndef EV_USE_POLL 215#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 216# ifdef _WIN32
217# define EV_USE_POLL 0
218# else
219# define EV_USE_POLL 1
220# endif
88#endif 221#endif
89 222
90#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
91# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
92#endif 229#endif
93 230
94#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
96#endif 233#endif
97 234
235#ifndef EV_USE_PORT
236# define EV_USE_PORT 0
237#endif
238
98#ifndef EV_USE_WIN32 239#ifndef EV_USE_INOTIFY
99# ifdef WIN32 240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1 241# define EV_USE_INOTIFY 1
103# else 242# else
104# define EV_USE_WIN32 0 243# define EV_USE_INOTIFY 0
105# endif 244# endif
106#endif 245#endif
107 246
108#ifndef EV_USE_REALTIME 247#ifndef EV_PID_HASHSIZE
109# define EV_USE_REALTIME 1 248# if EV_MINIMAL
249# define EV_PID_HASHSIZE 1
250# else
251# define EV_PID_HASHSIZE 16
110#endif 252# endif
253#endif
111 254
112/**/ 255#ifndef EV_INOTIFY_HASHSIZE
256# if EV_MINIMAL
257# define EV_INOTIFY_HASHSIZE 1
258# else
259# define EV_INOTIFY_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
113 304
114#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
117#endif 308#endif
119#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
122#endif 313#endif
123 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
337#if EV_SELECT_IS_WINSOCKET
338# include <winsock.h>
339#endif
340
341#if EV_USE_EVENTFD
342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
346# endif
347int eventfd (unsigned int initval, int flags);
348# ifdef __cplusplus
349}
350# endif
351#endif
352
124/**/ 353/**/
125 354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
360
361/*
362 * This is used to avoid floating point rounding problems.
363 * It is added to ev_rt_now when scheduling periodics
364 * to ensure progress, time-wise, even when rounding
365 * errors are against us.
366 * This value is good at least till the year 4000.
367 * Better solutions welcome.
368 */
369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
370
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
130 374
131#include "ev.h"
132
133#if __GNUC__ >= 3 375#if __GNUC__ >= 4
134# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 377# define noinline __attribute__ ((noinline))
136#else 378#else
137# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
138# define inline static 380# define noinline
381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
382# define inline
383# endif
139#endif 384#endif
140 385
141#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1) 387#define expect_true(expr) expect ((expr) != 0, 1)
388#define inline_size static inline
143 389
390#if EV_MINIMAL
391# define inline_speed static noinline
392#else
393# define inline_speed static inline
394#endif
395
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
145#define ABSPRI(w) ((w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
146 403
404#define EMPTY /* required for microsofts broken pseudo-c compiler */
405#define EMPTY2(a,b) /* used to suppress some warnings */
406
147typedef struct ev_watcher *W; 407typedef ev_watcher *W;
148typedef struct ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
150 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
152 423
424#ifdef _WIN32
153#include "ev_win32.c" 425# include "ev_win32.c"
426#endif
154 427
155/*****************************************************************************/ 428/*****************************************************************************/
156 429
157static void (*syserr_cb)(const char *msg); 430static void (*syserr_cb)(const char *msg);
158 431
432void
159void ev_set_syserr_cb (void (*cb)(const char *msg)) 433ev_set_syserr_cb (void (*cb)(const char *msg))
160{ 434{
161 syserr_cb = cb; 435 syserr_cb = cb;
162} 436}
163 437
164static void 438static void noinline
165syserr (const char *msg) 439ev_syserr (const char *msg)
166{ 440{
167 if (!msg) 441 if (!msg)
168 msg = "(libev) system error"; 442 msg = "(libev) system error";
169 443
170 if (syserr_cb) 444 if (syserr_cb)
174 perror (msg); 448 perror (msg);
175 abort (); 449 abort ();
176 } 450 }
177} 451}
178 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
179static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
180 469
470void
181void ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
182{ 472{
183 alloc = cb; 473 alloc = cb;
184} 474}
185 475
186static void * 476inline_speed void *
187ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
188{ 478{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
190 480
191 if (!ptr && size) 481 if (!ptr && size)
192 { 482 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort (); 484 abort ();
200#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
202 492
203/*****************************************************************************/ 493/*****************************************************************************/
204 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
205typedef struct 499typedef struct
206{ 500{
207 WL head; 501 WL head;
208 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
209 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
509#if EV_SELECT_IS_WINSOCKET
510 SOCKET handle;
511#endif
210} ANFD; 512} ANFD;
211 513
514/* stores the pending event set for a given watcher */
212typedef struct 515typedef struct
213{ 516{
214 W w; 517 W w;
215 int events; 518 int events; /* the pending event set for the given watcher */
216} ANPENDING; 519} ANPENDING;
217 520
521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
523typedef struct
524{
525 WL head;
526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
547#endif
548
218#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
219 550
220struct ev_loop 551 struct ev_loop
221{ 552 {
553 ev_tstamp ev_rt_now;
554 #define ev_rt_now ((loop)->ev_rt_now)
222# define VAR(name,decl) decl; 555 #define VAR(name,decl) decl;
223# include "ev_vars.h" 556 #include "ev_vars.h"
224};
225# undef VAR 557 #undef VAR
558 };
226# include "ev_wrap.h" 559 #include "ev_wrap.h"
560
561 static struct ev_loop default_loop_struct;
562 struct ev_loop *ev_default_loop_ptr;
227 563
228#else 564#else
229 565
566 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 567 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 568 #include "ev_vars.h"
232# undef VAR 569 #undef VAR
233 570
571 static int ev_default_loop_ptr;
572
234#endif 573#endif
574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
235 586
236/*****************************************************************************/ 587/*****************************************************************************/
237 588
238inline ev_tstamp 589#ifndef EV_HAVE_EV_TIME
590ev_tstamp
239ev_time (void) 591ev_time (void)
240{ 592{
241#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
242 struct timespec ts; 596 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
244 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
245#else 599 }
600#endif
601
246 struct timeval tv; 602 struct timeval tv;
247 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
248 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
249#endif
250} 605}
606#endif
251 607
252inline ev_tstamp 608inline_size ev_tstamp
253get_clock (void) 609get_clock (void)
254{ 610{
255#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
256 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
257 { 613 {
262#endif 618#endif
263 619
264 return ev_time (); 620 return ev_time ();
265} 621}
266 622
623#if EV_MULTIPLICITY
267ev_tstamp 624ev_tstamp
268ev_now (EV_P) 625ev_now (EV_P)
269{ 626{
270 return rt_now; 627 return ev_rt_now;
271} 628}
629#endif
272 630
273#define array_roundsize(type,n) ((n) | 4 & ~3) 631void
632ev_sleep (ev_tstamp delay)
633{
634 if (delay > 0.)
635 {
636#if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643#elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645#else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* something not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655#endif
656 }
657}
658
659/*****************************************************************************/
660
661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
666array_nextsize (int elem, int cur, int cnt)
667{
668 int ncur = cur + 1;
669
670 do
671 ncur <<= 1;
672 while (cnt > ncur);
673
674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
676 {
677 ncur *= elem;
678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
679 ncur = ncur - sizeof (void *) * 4;
680 ncur /= elem;
681 }
682
683 return ncur;
684}
685
686static noinline void *
687array_realloc (int elem, void *base, int *cur, int cnt)
688{
689 *cur = array_nextsize (elem, *cur, cnt);
690 return ev_realloc (base, elem * *cur);
691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
274 695
275#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 697 if (expect_false ((cnt) > (cur))) \
277 { \ 698 { \
278 int newcnt = cur; \ 699 int ocur_ = (cur); \
279 do \ 700 (base) = (type *)array_realloc \
280 { \ 701 (sizeof (type), (base), &(cur), (cnt)); \
281 newcnt = array_roundsize (type, newcnt << 1); \ 702 init ((base) + (ocur_), (cur) - ocur_); \
282 } \
283 while ((cnt) > newcnt); \
284 \
285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
286 init (base + cur, newcnt - cur); \
287 cur = newcnt; \
288 } 703 }
289 704
705#if 0
290#define array_slim(type,stem) \ 706#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 707 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \ 708 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \ 709 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 710 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 } 712 }
297 713#endif
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302 714
303#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
305 717
306/*****************************************************************************/ 718/*****************************************************************************/
307 719
308static void 720/* dummy callback for pending events */
309anfds_init (ANFD *base, int count) 721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
310{ 723{
311 while (count--)
312 {
313 base->head = 0;
314 base->events = EV_NONE;
315 base->reify = 0;
316
317 ++base;
318 }
319} 724}
320 725
321void 726void noinline
322ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
323{ 728{
324 W w_ = (W)w; 729 W w_ = (W)w;
730 int pri = ABSPRI (w_);
325 731
326 if (w_->pending) 732 if (expect_false (w_->pending))
733 pendings [pri][w_->pending - 1].events |= revents;
734 else
327 { 735 {
736 w_->pending = ++pendingcnt [pri];
737 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
738 pendings [pri][w_->pending - 1].w = w_;
328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 739 pendings [pri][w_->pending - 1].events = revents;
329 return;
330 } 740 }
331
332 w_->pending = ++pendingcnt [ABSPRI (w_)];
333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336} 741}
337 742
338static void 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
339queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
340{ 760{
341 int i; 761 int i;
342 762
343 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
344 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
345} 765}
346 766
767/*****************************************************************************/
768
347inline void 769inline_speed void
348fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
349{ 771{
350 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
351 struct ev_io *w; 773 ev_io *w;
352 774
353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
354 { 776 {
355 int ev = w->events & revents; 777 int ev = w->events & revents;
356 778
357 if (ev) 779 if (ev)
358 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
359 } 781 }
360} 782}
361 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
362void 795void
363ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
364{ 797{
798 if (fd >= 0 && fd < anfdmax)
365 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
366} 800}
367 801
368/*****************************************************************************/ 802/* make sure the external fd watch events are in-sync */
369 803/* with the kernel/libev internal state */
370static void 804inline_size void
371fd_reify (EV_P) 805fd_reify (EV_P)
372{ 806{
373 int i; 807 int i;
374 808
375 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
376 { 810 {
377 int fd = fdchanges [i]; 811 int fd = fdchanges [i];
378 ANFD *anfd = anfds + fd; 812 ANFD *anfd = anfds + fd;
379 struct ev_io *w; 813 ev_io *w;
380 814
381 int events = 0; 815 unsigned char events = 0;
382 816
383 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 817 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
384 events |= w->events; 818 events |= (unsigned char)w->events;
385 819
820#if EV_SELECT_IS_WINSOCKET
821 if (events)
822 {
823 unsigned long arg;
824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
827 anfd->handle = _get_osfhandle (fd);
828 #endif
829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
830 }
831#endif
832
833 {
834 unsigned char o_events = anfd->events;
835 unsigned char o_reify = anfd->reify;
836
386 anfd->reify = 0; 837 anfd->reify = 0;
387
388 method_modify (EV_A_ fd, anfd->events, events);
389 anfd->events = events; 838 anfd->events = events;
839
840 if (o_events != events || o_reify & EV__IOFDSET)
841 backend_modify (EV_A_ fd, o_events, events);
842 }
390 } 843 }
391 844
392 fdchangecnt = 0; 845 fdchangecnt = 0;
393} 846}
394 847
395static void 848/* something about the given fd changed */
849inline_size void
396fd_change (EV_P_ int fd) 850fd_change (EV_P_ int fd, int flags)
397{ 851{
398 if (anfds [fd].reify) 852 unsigned char reify = anfds [fd].reify;
399 return;
400
401 anfds [fd].reify = 1; 853 anfds [fd].reify |= flags;
402 854
855 if (expect_true (!reify))
856 {
403 ++fdchangecnt; 857 ++fdchangecnt;
404 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
405 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
860 }
406} 861}
407 862
408static void 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
409fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
410{ 866{
411 struct ev_io *w; 867 ev_io *w;
412 868
413 while ((w = (struct ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
414 { 870 {
415 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
416 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
417 } 873 }
418} 874}
419 875
420static int 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
421fd_valid (int fd) 878fd_valid (int fd)
422{ 879{
423#ifdef WIN32 880#ifdef _WIN32
424 return !!win32_get_osfhandle (fd); 881 return _get_osfhandle (fd) != -1;
425#else 882#else
426 return fcntl (fd, F_GETFD) != -1; 883 return fcntl (fd, F_GETFD) != -1;
427#endif 884#endif
428} 885}
429 886
430/* called on EBADF to verify fds */ 887/* called on EBADF to verify fds */
431static void 888static void noinline
432fd_ebadf (EV_P) 889fd_ebadf (EV_P)
433{ 890{
434 int fd; 891 int fd;
435 892
436 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
437 if (anfds [fd].events) 894 if (anfds [fd].events)
438 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
439 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
440} 897}
441 898
442/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
443static void 900static void noinline
444fd_enomem (EV_P) 901fd_enomem (EV_P)
445{ 902{
446 int fd; 903 int fd;
447 904
448 for (fd = anfdmax; fd--; ) 905 for (fd = anfdmax; fd--; )
451 fd_kill (EV_A_ fd); 908 fd_kill (EV_A_ fd);
452 return; 909 return;
453 } 910 }
454} 911}
455 912
456/* usually called after fork if method needs to re-arm all fds from scratch */ 913/* usually called after fork if backend needs to re-arm all fds from scratch */
457static void 914static void noinline
458fd_rearm_all (EV_P) 915fd_rearm_all (EV_P)
459{ 916{
460 int fd; 917 int fd;
461 918
462 /* this should be highly optimised to not do anything but set a flag */
463 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
464 if (anfds [fd].events) 920 if (anfds [fd].events)
465 { 921 {
466 anfds [fd].events = 0; 922 anfds [fd].events = 0;
467 fd_change (EV_A_ fd); 923 anfds [fd].emask = 0;
924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
468 } 925 }
469} 926}
470 927
471/*****************************************************************************/ 928/*****************************************************************************/
472 929
473static void 930/*
474upheap (WT *heap, int k) 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
475{ 932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
476 WT w = heap [k]; 933 * the branching factor of the d-tree.
934 */
477 935
478 while (k && heap [k >> 1]->at > w->at) 936/*
479 { 937 * at the moment we allow libev the luxury of two heaps,
480 heap [k] = heap [k >> 1]; 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
481 ((W)heap [k])->active = k + 1; 939 * which is more cache-efficient.
482 k >>= 1; 940 * the difference is about 5% with 50000+ watchers.
483 } 941 */
942#if EV_USE_4HEAP
484 943
485 heap [k] = w; 944#define DHEAP 4
486 ((W)heap [k])->active = k + 1; 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
487 948
488} 949/* away from the root */
489 950inline_speed void
490static void
491downheap (WT *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
492{ 952{
493 WT w = heap [k]; 953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
494 955
495 while (k < (N >> 1)) 956 for (;;)
496 { 957 {
497 int j = k << 1; 958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
498 961
499 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
500 ++j; 964 {
501 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
502 if (w->at <= heap [j]->at) 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
503 break; 978 break;
504 979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
505 heap [k] = heap [j]; 1018 heap [k] = heap [c];
506 ((W)heap [k])->active = k + 1; 1019 ev_active (ANHE_w (heap [k])) = k;
1020
507 k = j; 1021 k = c;
508 } 1022 }
509 1023
510 heap [k] = w; 1024 heap [k] = he;
511 ((W)heap [k])->active = k + 1; 1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
1052inline_size void
1053adjustheap (ANHE *heap, int N, int k)
1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1056 upheap (heap, k);
1057 else
1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
512} 1071}
513 1072
514/*****************************************************************************/ 1073/*****************************************************************************/
515 1074
1075/* associate signal watchers to a signal signal */
516typedef struct 1076typedef struct
517{ 1077{
518 WL head; 1078 WL head;
519 sig_atomic_t volatile gotsig; 1079 EV_ATOMIC_T gotsig;
520} ANSIG; 1080} ANSIG;
521 1081
522static ANSIG *signals; 1082static ANSIG *signals;
523static int signalmax; 1083static int signalmax;
524 1084
525static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
526static sig_atomic_t volatile gotsig;
527static struct ev_io sigev;
528 1086
1087/*****************************************************************************/
1088
1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
1092fd_intern (int fd)
1093{
1094#ifdef _WIN32
1095 unsigned long arg = 1;
1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1097#else
1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
1099 fcntl (fd, F_SETFL, O_NONBLOCK);
1100#endif
1101}
1102
1103static void noinline
1104evpipe_init (EV_P)
1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
1121 fd_intern (evpipe [0]);
1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
1125
1126 ev_io_start (EV_A_ &pipe_w);
1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
529static void 1156static void
530signals_init (ANSIG *base, int count) 1157pipecb (EV_P_ ev_io *iow, int revents)
531{ 1158{
532 while (count--) 1159#if EV_USE_EVENTFD
1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
533 { 1164 }
534 base->head = 0; 1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
1171
1172 if (gotsig && ev_is_default_loop (EV_A))
1173 {
1174 int signum;
535 base->gotsig = 0; 1175 gotsig = 0;
536 1176
537 ++base; 1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
538 } 1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
539} 1196}
1197
1198/*****************************************************************************/
540 1199
541static void 1200static void
542sighandler (int signum) 1201ev_sighandler (int signum)
543{ 1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
544#if WIN32 1207#if _WIN32
545 signal (signum, sighandler); 1208 signal (signum, ev_sighandler);
546#endif 1209#endif
547 1210
548 signals [signum - 1].gotsig = 1; 1211 signals [signum - 1].gotsig = 1;
549 1212 evpipe_write (EV_A_ &gotsig);
550 if (!gotsig)
551 {
552 int old_errno = errno;
553 gotsig = 1;
554#ifdef WIN32
555 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
556#else
557 write (sigpipe [1], &signum, 1);
558#endif
559 errno = old_errno;
560 }
561} 1213}
562 1214
563void 1215void noinline
564ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
565{ 1217{
1218 WL w;
1219
566#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
567 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
568#endif 1222#endif
569 1223
570 --signum; 1224 --signum;
571 1225
572 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
576 1230
577 for (w = signals [signum].head; w; w = w->next) 1231 for (w = signals [signum].head; w; w = w->next)
578 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
579} 1233}
580 1234
581static void
582sigcb (EV_P_ struct ev_io *iow, int revents)
583{
584 WL w;
585 int signum;
586
587#ifdef WIN32
588 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
589#else
590 read (sigpipe [0], &revents, 1);
591#endif
592 gotsig = 0;
593
594 for (signum = signalmax; signum--; )
595 if (signals [signum].gotsig)
596 sigevent (EV_A_ signum + 1);
597}
598
599static void
600siginit (EV_P)
601{
602#ifndef WIN32
603 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
604 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
605
606 /* rather than sort out wether we really need nb, set it */
607 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
608 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
609#endif
610
611 ev_io_set (&sigev, sigpipe [0], EV_READ);
612 ev_io_start (EV_A_ &sigev);
613 ev_unref (EV_A); /* child watcher should not keep loop alive */
614}
615
616/*****************************************************************************/ 1235/*****************************************************************************/
617 1236
618static struct ev_child *childs [PID_HASHSIZE]; 1237static WL childs [EV_PID_HASHSIZE];
619 1238
620#ifndef WIN32 1239#ifndef _WIN32
621 1240
622static struct ev_signal childev; 1241static ev_signal childev;
1242
1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
1249child_reap (EV_P_ int chain, int pid, int status)
1250{
1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1253
1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
1258 {
1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1260 w->rpid = pid;
1261 w->rstatus = status;
1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1263 }
1264 }
1265}
623 1266
624#ifndef WCONTINUED 1267#ifndef WCONTINUED
625# define WCONTINUED 0 1268# define WCONTINUED 0
626#endif 1269#endif
627 1270
1271/* called on sigchld etc., calls waitpid */
628static void 1272static void
629child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
630{
631 struct ev_child *w;
632
633 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
634 if (w->pid == pid || !w->pid)
635 {
636 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
637 w->rpid = pid;
638 w->rstatus = status;
639 ev_feed_event (EV_A_ (W)w, EV_CHILD);
640 }
641}
642
643static void
644childcb (EV_P_ struct ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
645{ 1274{
646 int pid, status; 1275 int pid, status;
647 1276
1277 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
648 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1278 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
649 { 1279 if (!WCONTINUED
1280 || errno != EINVAL
1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1282 return;
1283
650 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
1285 /* we need to do it this way so that the callback gets called before we continue */
651 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
652 1287
653 child_reap (EV_A_ sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
1289 if (EV_PID_HASHSIZE > 1)
654 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
655 }
656} 1291}
657 1292
658#endif 1293#endif
659 1294
660/*****************************************************************************/ 1295/*****************************************************************************/
661 1296
1297#if EV_USE_PORT
1298# include "ev_port.c"
1299#endif
662#if EV_USE_KQUEUE 1300#if EV_USE_KQUEUE
663# include "ev_kqueue.c" 1301# include "ev_kqueue.c"
664#endif 1302#endif
665#if EV_USE_EPOLL 1303#if EV_USE_EPOLL
666# include "ev_epoll.c" 1304# include "ev_epoll.c"
683{ 1321{
684 return EV_VERSION_MINOR; 1322 return EV_VERSION_MINOR;
685} 1323}
686 1324
687/* return true if we are running with elevated privileges and should ignore env variables */ 1325/* return true if we are running with elevated privileges and should ignore env variables */
688static int 1326int inline_size
689enable_secure (void) 1327enable_secure (void)
690{ 1328{
691#ifdef WIN32 1329#ifdef _WIN32
692 return 0; 1330 return 0;
693#else 1331#else
694 return getuid () != geteuid () 1332 return getuid () != geteuid ()
695 || getgid () != getegid (); 1333 || getgid () != getegid ();
696#endif 1334#endif
697} 1335}
698 1336
699int 1337unsigned int
700ev_method (EV_P) 1338ev_supported_backends (void)
701{ 1339{
702 return method; 1340 unsigned int flags = 0;
703}
704 1341
705static void 1342 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
706loop_init (EV_P_ int methods) 1343 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1344 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1345 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1346 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1347
1348 return flags;
1349}
1350
1351unsigned int
1352ev_recommended_backends (void)
707{ 1353{
708 if (!method) 1354 unsigned int flags = ev_supported_backends ();
1355
1356#ifndef __NetBSD__
1357 /* kqueue is borked on everything but netbsd apparently */
1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1359 flags &= ~EVBACKEND_KQUEUE;
1360#endif
1361#ifdef __APPLE__
1362 /* only select works correctly on that "unix-certified" platform */
1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1365#endif
1366
1367 return flags;
1368}
1369
1370unsigned int
1371ev_embeddable_backends (void)
1372{
1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1374
1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
1380}
1381
1382unsigned int
1383ev_backend (EV_P)
1384{
1385 return backend;
1386}
1387
1388#if EV_MINIMAL < 2
1389unsigned int
1390ev_loop_count (EV_P)
1391{
1392 return loop_count;
1393}
1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1401void
1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403{
1404 io_blocktime = interval;
1405}
1406
1407void
1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409{
1410 timeout_blocktime = interval;
1411}
1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1438static void noinline
1439loop_init (EV_P_ unsigned int flags)
1440{
1441 if (!backend)
709 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
710#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1455 {
1456 struct timespec ts;
1457
1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1459 have_monotonic = 1;
1460 }
1461#endif
1462
1463 ev_rt_now = ev_time ();
1464 mn_now = get_clock ();
1465 now_floor = mn_now;
1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1470
1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
1479
1480 /* pid check not overridable via env */
1481#ifndef _WIN32
1482 if (flags & EVFLAG_FORKCHECK)
1483 curpid = getpid ();
1484#endif
1485
1486 if (!(flags & EVFLAG_NOENV)
1487 && !enable_secure ()
1488 && getenv ("LIBEV_FLAGS"))
1489 flags = atoi (getenv ("LIBEV_FLAGS"));
1490
1491 if (!(flags & 0x0000ffffU))
1492 flags |= ev_recommended_backends ();
1493
1494#if EV_USE_PORT
1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1496#endif
1497#if EV_USE_KQUEUE
1498 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1499#endif
1500#if EV_USE_EPOLL
1501 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1502#endif
1503#if EV_USE_POLL
1504 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1505#endif
1506#if EV_USE_SELECT
1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1508#endif
1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1512 ev_init (&pipe_w, pipecb);
1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1514 }
1515}
1516
1517/* free up a loop structure */
1518static void noinline
1519loop_destroy (EV_P)
1520{
1521 int i;
1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
1539
1540#if EV_USE_INOTIFY
1541 if (fs_fd >= 0)
1542 close (fs_fd);
1543#endif
1544
1545 if (backend_fd >= 0)
1546 close (backend_fd);
1547
1548#if EV_USE_PORT
1549 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1550#endif
1551#if EV_USE_KQUEUE
1552 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1553#endif
1554#if EV_USE_EPOLL
1555 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1556#endif
1557#if EV_USE_POLL
1558 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1559#endif
1560#if EV_USE_SELECT
1561 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1562#endif
1563
1564 for (i = NUMPRI; i--; )
1565 {
1566 array_free (pending, [i]);
1567#if EV_IDLE_ENABLE
1568 array_free (idle, [i]);
1569#endif
1570 }
1571
1572 ev_free (anfds); anfdmax = 0;
1573
1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1576 array_free (fdchange, EMPTY);
1577 array_free (timer, EMPTY);
1578#if EV_PERIODIC_ENABLE
1579 array_free (periodic, EMPTY);
1580#endif
1581#if EV_FORK_ENABLE
1582 array_free (fork, EMPTY);
1583#endif
1584 array_free (prepare, EMPTY);
1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
1589
1590 backend = 0;
1591}
1592
1593#if EV_USE_INOTIFY
1594inline_size void infy_fork (EV_P);
1595#endif
1596
1597inline_size void
1598loop_fork (EV_P)
1599{
1600#if EV_USE_PORT
1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1602#endif
1603#if EV_USE_KQUEUE
1604 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1605#endif
1606#if EV_USE_EPOLL
1607 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1608#endif
1609#if EV_USE_INOTIFY
1610 infy_fork (EV_A);
1611#endif
1612
1613 if (ev_is_active (&pipe_w))
1614 {
1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
1621
1622 ev_ref (EV_A);
1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 close (evpipe [0]);
1633 close (evpipe [1]);
1634 }
1635
1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
1639 }
1640
1641 postfork = 0;
1642}
1643
1644#if EV_MULTIPLICITY
1645
1646struct ev_loop *
1647ev_loop_new (unsigned int flags)
1648{
1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1650
1651 memset (loop, 0, sizeof (struct ev_loop));
1652
1653 loop_init (EV_A_ flags);
1654
1655 if (ev_backend (EV_A))
1656 return loop;
1657
1658 return 0;
1659}
1660
1661void
1662ev_loop_destroy (EV_P)
1663{
1664 loop_destroy (EV_A);
1665 ev_free (loop);
1666}
1667
1668void
1669ev_loop_fork (EV_P)
1670{
1671 postfork = 1; /* must be in line with ev_default_fork */
1672}
1673#endif /* multiplicity */
1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
711 { 1728 {
712 struct timespec ts; 1729 verify_watcher (EV_A_ (W)w);
713 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
714 have_monotonic = 1; 1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
715 } 1732 }
716#endif
717 1733
718 rt_now = ev_time (); 1734 assert (timermax >= timercnt);
719 mn_now = get_clock (); 1735 verify_heap (EV_A_ timers, timercnt);
720 now_floor = mn_now;
721 rtmn_diff = rt_now - mn_now;
722 1736
723 if (methods == EVMETHOD_AUTO) 1737#if EV_PERIODIC_ENABLE
724 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1738 assert (periodicmax >= periodiccnt);
725 methods = atoi (getenv ("LIBEV_METHODS")); 1739 verify_heap (EV_A_ periodics, periodiccnt);
726 else
727 methods = EVMETHOD_ANY;
728
729 method = 0;
730#if EV_USE_WIN32
731 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
732#endif
733#if EV_USE_KQUEUE
734 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
735#endif
736#if EV_USE_EPOLL
737 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
738#endif
739#if EV_USE_POLL
740 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
741#endif
742#if EV_USE_SELECT
743 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
744#endif
745
746 ev_watcher_init (&sigev, sigcb);
747 ev_set_priority (&sigev, EV_MAXPRI);
748 }
749}
750
751void
752loop_destroy (EV_P)
753{
754 int i;
755
756#if EV_USE_WIN32
757 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
758#endif
759#if EV_USE_KQUEUE
760 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
761#endif
762#if EV_USE_EPOLL
763 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
764#endif
765#if EV_USE_POLL
766 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
767#endif
768#if EV_USE_SELECT
769 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
770#endif 1740#endif
771 1741
772 for (i = NUMPRI; i--; ) 1742 for (i = NUMPRI; i--; )
773 array_free (pending, [i]); 1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
774 1751
775 /* have to use the microsoft-never-gets-it-right macro */ 1752#if EV_FORK_ENABLE
776 array_free_microshit (fdchange); 1753 assert (forkmax >= forkcnt);
777 array_free_microshit (timer); 1754 array_verify (EV_A_ (W *)forks, forkcnt);
778 array_free_microshit (periodic); 1755#endif
779 array_free_microshit (idle);
780 array_free_microshit (prepare);
781 array_free_microshit (check);
782 1756
783 method = 0; 1757#if EV_ASYNC_ENABLE
784} 1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
785 1761
786static void 1762 assert (preparemax >= preparecnt);
787loop_fork (EV_P) 1763 array_verify (EV_A_ (W *)prepares, preparecnt);
788{ 1764
789#if EV_USE_EPOLL 1765 assert (checkmax >= checkcnt);
790 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
791#endif 1771# endif
792#if EV_USE_KQUEUE
793 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
794#endif 1772#endif
795
796 if (ev_is_active (&sigev))
797 {
798 /* default loop */
799
800 ev_ref (EV_A);
801 ev_io_stop (EV_A_ &sigev);
802 close (sigpipe [0]);
803 close (sigpipe [1]);
804
805 while (pipe (sigpipe))
806 syserr ("(libev) error creating pipe");
807
808 siginit (EV_A);
809 }
810
811 postfork = 0;
812} 1773}
1774#endif
813 1775
814#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
815struct ev_loop * 1777struct ev_loop *
816ev_loop_new (int methods) 1778ev_default_loop_init (unsigned int flags)
817{ 1779#else
818 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1780int
819 1781ev_default_loop (unsigned int flags)
820 memset (loop, 0, sizeof (struct ev_loop));
821
822 loop_init (EV_A_ methods);
823
824 if (ev_method (EV_A))
825 return loop;
826
827 return 0;
828}
829
830void
831ev_loop_destroy (EV_P)
832{
833 loop_destroy (EV_A);
834 ev_free (loop);
835}
836
837void
838ev_loop_fork (EV_P)
839{
840 postfork = 1;
841}
842
843#endif 1782#endif
844 1783{
1784 if (!ev_default_loop_ptr)
1785 {
845#if EV_MULTIPLICITY 1786#if EV_MULTIPLICITY
846struct ev_loop default_loop_struct; 1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
847static struct ev_loop *default_loop;
848
849struct ev_loop *
850#else 1788#else
851static int default_loop;
852
853int
854#endif
855ev_default_loop (int methods)
856{
857 if (sigpipe [0] == sigpipe [1])
858 if (pipe (sigpipe))
859 return 0;
860
861 if (!default_loop)
862 {
863#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop = &default_loop_struct;
865#else
866 default_loop = 1; 1789 ev_default_loop_ptr = 1;
867#endif 1790#endif
868 1791
869 loop_init (EV_A_ methods); 1792 loop_init (EV_A_ flags);
870 1793
871 if (ev_method (EV_A)) 1794 if (ev_backend (EV_A))
872 { 1795 {
873 siginit (EV_A);
874
875#ifndef WIN32 1796#ifndef _WIN32
876 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
877 ev_set_priority (&childev, EV_MAXPRI); 1798 ev_set_priority (&childev, EV_MAXPRI);
878 ev_signal_start (EV_A_ &childev); 1799 ev_signal_start (EV_A_ &childev);
879 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
880#endif 1801#endif
881 } 1802 }
882 else 1803 else
883 default_loop = 0; 1804 ev_default_loop_ptr = 0;
884 } 1805 }
885 1806
886 return default_loop; 1807 return ev_default_loop_ptr;
887} 1808}
888 1809
889void 1810void
890ev_default_destroy (void) 1811ev_default_destroy (void)
891{ 1812{
892#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop; 1814 struct ev_loop *loop = ev_default_loop_ptr;
894#endif 1815#endif
895 1816
1817 ev_default_loop_ptr = 0;
1818
896#ifndef WIN32 1819#ifndef _WIN32
897 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
898 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
899#endif 1822#endif
900 1823
901 ev_ref (EV_A); /* signal watcher */
902 ev_io_stop (EV_A_ &sigev);
903
904 close (sigpipe [0]); sigpipe [0] = 0;
905 close (sigpipe [1]); sigpipe [1] = 0;
906
907 loop_destroy (EV_A); 1824 loop_destroy (EV_A);
908} 1825}
909 1826
910void 1827void
911ev_default_fork (void) 1828ev_default_fork (void)
912{ 1829{
913#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
914 struct ev_loop *loop = default_loop; 1831 struct ev_loop *loop = ev_default_loop_ptr;
915#endif 1832#endif
916 1833
917 if (method) 1834 postfork = 1; /* must be in line with ev_loop_fork */
918 postfork = 1;
919} 1835}
920 1836
921/*****************************************************************************/ 1837/*****************************************************************************/
922 1838
923static int 1839void
924any_pending (EV_P) 1840ev_invoke (EV_P_ void *w, int revents)
1841{
1842 EV_CB_INVOKE ((W)w, revents);
1843}
1844
1845unsigned int
1846ev_pending_count (EV_P)
925{ 1847{
926 int pri; 1848 int pri;
1849 unsigned int count = 0;
927 1850
928 for (pri = NUMPRI; pri--; ) 1851 for (pri = NUMPRI; pri--; )
929 if (pendingcnt [pri]) 1852 count += pendingcnt [pri];
930 return 1;
931 1853
932 return 0; 1854 return count;
933} 1855}
934 1856
935static void 1857void noinline
936call_pending (EV_P) 1858ev_invoke_pending (EV_P)
937{ 1859{
938 int pri; 1860 int pri;
939 1861
940 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
941 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
942 { 1864 {
943 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
944 1866
945 if (p->w) 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
946 { 1868 /* ^ this is no longer true, as pending_w could be here */
1869
947 p->w->pending = 0; 1870 p->w->pending = 0;
948 p->w->cb (EV_A_ p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
949 } 1872 EV_FREQUENT_CHECK;
950 } 1873 }
951} 1874}
952 1875
953static void 1876#if EV_IDLE_ENABLE
1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1880idle_reify (EV_P)
1881{
1882 if (expect_false (idleall))
1883 {
1884 int pri;
1885
1886 for (pri = NUMPRI; pri--; )
1887 {
1888 if (pendingcnt [pri])
1889 break;
1890
1891 if (idlecnt [pri])
1892 {
1893 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1894 break;
1895 }
1896 }
1897 }
1898}
1899#endif
1900
1901/* make timers pending */
1902inline_size void
954timers_reify (EV_P) 1903timers_reify (EV_P)
955{ 1904{
1905 EV_FREQUENT_CHECK;
1906
956 while (timercnt && ((WT)timers [0])->at <= mn_now) 1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
957 { 1908 {
958 struct ev_timer *w = timers [0]; 1909 do
959
960 assert (("inactive timer on timer heap detected", ev_is_active (w)));
961
962 /* first reschedule or stop timer */
963 if (w->repeat)
964 { 1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
965 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
966 ((WT)w)->at = mn_now + w->repeat; 1923
1924 ANHE_at_cache (timers [HEAP0]);
967 downheap ((WT *)timers, timercnt, 0); 1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
968 } 1932 }
969 else 1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
970 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
971 1934
972 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
973 } 1936 }
974} 1937}
975 1938
976static void 1939#if EV_PERIODIC_ENABLE
1940/* make periodics pending */
1941inline_size void
977periodics_reify (EV_P) 1942periodics_reify (EV_P)
978{ 1943{
1944 EV_FREQUENT_CHECK;
1945
979 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
980 { 1947 {
981 struct ev_periodic *w = periodics [0]; 1948 int feed_count = 0;
982 1949
1950 do
1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
983 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
984 1955
985 /* first reschedule or stop timer */ 1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1990 }
1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992
1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 }
1995}
1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999static void noinline
2000periodics_reschedule (EV_P)
2001{
2002 int i;
2003
2004 /* adjust periodics after time jump */
2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 {
2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008
986 if (w->reschedule_cb) 2009 if (w->reschedule_cb)
987 {
988 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
989
990 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
991 downheap ((WT *)periodics, periodiccnt, 0);
992 }
993 else if (w->interval) 2011 else if (w->interval)
994 { 2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
995 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
996 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
997 downheap ((WT *)periodics, periodiccnt, 0);
998 }
999 else
1000 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1001 2013
1002 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2014 ANHE_at_cache (periodics [i]);
1003 } 2015 }
1004}
1005 2016
1006static void 2017 reheap (periodics, periodiccnt);
1007periodics_reschedule (EV_P) 2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
1008{ 2024{
1009 int i; 2025 int i;
1010 2026
1011 /* adjust periodics after time jump */
1012 for (i = 0; i < periodiccnt; ++i) 2027 for (i = 0; i < timercnt; ++i)
1013 {
1014 struct ev_periodic *w = periodics [i];
1015
1016 if (w->reschedule_cb)
1017 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1018 else if (w->interval)
1019 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1020 } 2028 {
1021 2029 ANHE *he = timers + i + HEAP0;
1022 /* now rebuild the heap */ 2030 ANHE_w (*he)->at += adjust;
1023 for (i = periodiccnt >> 1; i--; ) 2031 ANHE_at_cache (*he);
1024 downheap ((WT *)periodics, periodiccnt, i);
1025}
1026
1027inline int
1028time_update_monotonic (EV_P)
1029{
1030 mn_now = get_clock ();
1031
1032 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 { 2032 }
1034 rt_now = rtmn_diff + mn_now;
1035 return 0;
1036 }
1037 else
1038 {
1039 now_floor = mn_now;
1040 rt_now = ev_time ();
1041 return 1;
1042 }
1043} 2033}
1044 2034
1045static void 2035/* fetch new monotonic and realtime times from the kernel */
1046time_update (EV_P) 2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
2038time_update (EV_P_ ev_tstamp max_block)
1047{ 2039{
1048 int i;
1049
1050#if EV_USE_MONOTONIC 2040#if EV_USE_MONOTONIC
1051 if (expect_true (have_monotonic)) 2041 if (expect_true (have_monotonic))
1052 { 2042 {
1053 if (time_update_monotonic (EV_A)) 2043 int i;
2044 ev_tstamp odiff = rtmn_diff;
2045
2046 mn_now = get_clock ();
2047
2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2049 /* interpolate in the meantime */
2050 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1054 { 2051 {
1055 ev_tstamp odiff = rtmn_diff; 2052 ev_rt_now = rtmn_diff + mn_now;
2053 return;
2054 }
1056 2055
2056 now_floor = mn_now;
2057 ev_rt_now = ev_time ();
2058
1057 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2059 /* loop a few times, before making important decisions.
2060 * on the choice of "4": one iteration isn't enough,
2061 * in case we get preempted during the calls to
2062 * ev_time and get_clock. a second call is almost guaranteed
2063 * to succeed in that case, though. and looping a few more times
2064 * doesn't hurt either as we only do this on time-jumps or
2065 * in the unlikely event of having been preempted here.
2066 */
2067 for (i = 4; --i; )
1058 { 2068 {
1059 rtmn_diff = rt_now - mn_now; 2069 rtmn_diff = ev_rt_now - mn_now;
1060 2070
1061 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2071 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1062 return; /* all is well */ 2072 return; /* all is well */
1063 2073
1064 rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1065 mn_now = get_clock (); 2075 mn_now = get_clock ();
1066 now_floor = mn_now; 2076 now_floor = mn_now;
1067 } 2077 }
1068 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2081# if EV_PERIODIC_ENABLE
2082 periodics_reschedule (EV_A);
2083# endif
2084 }
2085 else
2086#endif
2087 {
2088 ev_rt_now = ev_time ();
2089
2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2094#if EV_PERIODIC_ENABLE
1069 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1070 /* no timer adjustment, as the monotonic clock doesn't jump */ 2096#endif
1071 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1072 } 2097 }
1073 }
1074 else
1075#endif
1076 {
1077 rt_now = ev_time ();
1078 2098
1079 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1080 {
1081 periodics_reschedule (EV_A);
1082
1083 /* adjust timers. this is easy, as the offset is the same for all */
1084 for (i = 0; i < timercnt; ++i)
1085 ((WT)timers [i])->at += rt_now - mn_now;
1086 }
1087
1088 mn_now = rt_now; 2099 mn_now = ev_rt_now;
1089 } 2100 }
1090} 2101}
1091
1092void
1093ev_ref (EV_P)
1094{
1095 ++activecnt;
1096}
1097
1098void
1099ev_unref (EV_P)
1100{
1101 --activecnt;
1102}
1103
1104static int loop_done;
1105 2102
1106void 2103void
1107ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1108{ 2105{
1109 double block; 2106#if EV_MINIMAL < 2
1110 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2107 ++loop_depth;
2108#endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
2112 loop_done = EVUNLOOP_CANCEL;
2113
2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1111 2115
1112 do 2116 do
1113 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
2122#ifndef _WIN32
2123 if (expect_false (curpid)) /* penalise the forking check even more */
2124 if (expect_false (getpid () != curpid))
2125 {
2126 curpid = getpid ();
2127 postfork = 1;
2128 }
2129#endif
2130
2131#if EV_FORK_ENABLE
2132 /* we might have forked, so queue fork handlers */
2133 if (expect_false (postfork))
2134 if (forkcnt)
2135 {
2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2137 EV_INVOKE_PENDING;
2138 }
2139#endif
2140
1114 /* queue check watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1115 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1116 { 2143 {
1117 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1118 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1119 } 2146 }
2147
2148 if (expect_false (loop_done))
2149 break;
1120 2150
1121 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1122 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1123 loop_fork (EV_A); 2153 loop_fork (EV_A);
1124 2154
1125 /* update fd-related kernel structures */ 2155 /* update fd-related kernel structures */
1126 fd_reify (EV_A); 2156 fd_reify (EV_A);
1127 2157
1128 /* calculate blocking time */ 2158 /* calculate blocking time */
2159 {
2160 ev_tstamp waittime = 0.;
2161 ev_tstamp sleeptime = 0.;
1129 2162
1130 /* we only need this for !monotonic clock or timers, but as we basically 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1131 always have timers, we just calculate it always */
1132#if EV_USE_MONOTONIC
1133 if (expect_true (have_monotonic))
1134 time_update_monotonic (EV_A);
1135 else
1136#endif
1137 { 2164 {
1138 rt_now = ev_time (); 2165 /* remember old timestamp for io_blocktime calculation */
1139 mn_now = rt_now; 2166 ev_tstamp prev_mn_now = mn_now;
1140 }
1141 2167
1142 if (flags & EVLOOP_NONBLOCK || idlecnt) 2168 /* update time to cancel out callback processing overhead */
1143 block = 0.; 2169 time_update (EV_A_ 1e100);
1144 else 2170
1145 {
1146 block = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1147 2172
1148 if (timercnt) 2173 if (timercnt)
1149 { 2174 {
1150 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1151 if (block > to) block = to; 2176 if (waittime > to) waittime = to;
1152 } 2177 }
1153 2178
2179#if EV_PERIODIC_ENABLE
1154 if (periodiccnt) 2180 if (periodiccnt)
1155 { 2181 {
1156 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1157 if (block > to) block = to; 2183 if (waittime > to) waittime = to;
1158 } 2184 }
2185#endif
1159 2186
1160 if (block < 0.) block = 0.; 2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
2188 if (expect_false (waittime < timeout_blocktime))
2189 waittime = timeout_blocktime;
2190
2191 /* extra check because io_blocktime is commonly 0 */
2192 if (expect_false (io_blocktime))
2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
2201 ev_sleep (sleeptime);
2202 waittime -= sleeptime;
2203 }
2204 }
1161 } 2205 }
1162 2206
1163 method_poll (EV_A_ block); 2207#if EV_MINIMAL < 2
2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1164 2213
1165 /* update rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
1166 time_update (EV_A); 2215 time_update (EV_A_ waittime + sleeptime);
2216 }
1167 2217
1168 /* queue pending timers and reschedule them */ 2218 /* queue pending timers and reschedule them */
1169 timers_reify (EV_A); /* relative timers called last */ 2219 timers_reify (EV_A); /* relative timers called last */
2220#if EV_PERIODIC_ENABLE
1170 periodics_reify (EV_A); /* absolute timers called first */ 2221 periodics_reify (EV_A); /* absolute timers called first */
2222#endif
1171 2223
2224#if EV_IDLE_ENABLE
1172 /* queue idle watchers unless io or timers are pending */ 2225 /* queue idle watchers unless other events are pending */
1173 if (idlecnt && !any_pending (EV_A)) 2226 idle_reify (EV_A);
1174 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2227#endif
1175 2228
1176 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
1177 if (checkcnt) 2230 if (expect_false (checkcnt))
1178 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1179 2232
1180 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1181 } 2234 }
1182 while (activecnt && !loop_done); 2235 while (expect_true (
2236 activecnt
2237 && !loop_done
2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2239 ));
1183 2240
1184 if (loop_done != 2) 2241 if (loop_done == EVUNLOOP_ONE)
1185 loop_done = 0; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
1186} 2247}
1187 2248
1188void 2249void
1189ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
1190{ 2251{
1191 loop_done = how; 2252 loop_done = how;
1192} 2253}
1193 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
1194/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
1195 2294
1196inline void 2295inline_size void
1197wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
1198{ 2297{
1199 elem->next = *head; 2298 elem->next = *head;
1200 *head = elem; 2299 *head = elem;
1201} 2300}
1202 2301
1203inline void 2302inline_size void
1204wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
1205{ 2304{
1206 while (*head) 2305 while (*head)
1207 { 2306 {
1208 if (*head == elem) 2307 if (*head == elem)
1213 2312
1214 head = &(*head)->next; 2313 head = &(*head)->next;
1215 } 2314 }
1216} 2315}
1217 2316
2317/* internal, faster, version of ev_clear_pending */
1218inline void 2318inline_speed void
1219ev_clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
1220{ 2320{
1221 if (w->pending) 2321 if (w->pending)
1222 { 2322 {
1223 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1224 w->pending = 0; 2324 w->pending = 0;
1225 } 2325 }
1226} 2326}
1227 2327
2328int
2329ev_clear_pending (EV_P_ void *w)
2330{
2331 W w_ = (W)w;
2332 int pending = w_->pending;
2333
2334 if (expect_true (pending))
2335 {
2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
2338 w_->pending = 0;
2339 return p->events;
2340 }
2341 else
2342 return 0;
2343}
2344
1228inline void 2345inline_size void
2346pri_adjust (EV_P_ W w)
2347{
2348 int pri = ev_priority (w);
2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2351 ev_set_priority (w, pri);
2352}
2353
2354inline_speed void
1229ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
1230{ 2356{
1231 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2357 pri_adjust (EV_A_ w);
1232 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1233
1234 w->active = active; 2358 w->active = active;
1235 ev_ref (EV_A); 2359 ev_ref (EV_A);
1236} 2360}
1237 2361
1238inline void 2362inline_size void
1239ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
1240{ 2364{
1241 ev_unref (EV_A); 2365 ev_unref (EV_A);
1242 w->active = 0; 2366 w->active = 0;
1243} 2367}
1244 2368
1245/*****************************************************************************/ 2369/*****************************************************************************/
1246 2370
1247void 2371void noinline
1248ev_io_start (EV_P_ struct ev_io *w) 2372ev_io_start (EV_P_ ev_io *w)
1249{ 2373{
1250 int fd = w->fd; 2374 int fd = w->fd;
1251 2375
1252 if (ev_is_active (w)) 2376 if (expect_false (ev_is_active (w)))
1253 return; 2377 return;
1254 2378
1255 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
1256 2383
1257 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
1258 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1259 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
1260 2387
1261 fd_change (EV_A_ fd); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1262} 2389 w->events &= ~EV__IOFDSET;
1263 2390
1264void 2391 EV_FREQUENT_CHECK;
2392}
2393
2394void noinline
1265ev_io_stop (EV_P_ struct ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
1266{ 2396{
1267 ev_clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1268 if (!ev_is_active (w)) 2398 if (expect_false (!ev_is_active (w)))
1269 return; 2399 return;
1270 2400
2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2402
2403 EV_FREQUENT_CHECK;
2404
1271 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
1272 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
1273 2407
1274 fd_change (EV_A_ w->fd); 2408 fd_change (EV_A_ w->fd, 1);
1275}
1276 2409
1277void 2410 EV_FREQUENT_CHECK;
2411}
2412
2413void noinline
1278ev_timer_start (EV_P_ struct ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
1279{ 2415{
1280 if (ev_is_active (w)) 2416 if (expect_false (ev_is_active (w)))
1281 return; 2417 return;
1282 2418
1283 ((WT)w)->at += mn_now; 2419 ev_at (w) += mn_now;
1284 2420
1285 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1286 2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
1287 ev_start (EV_A_ (W)w, ++timercnt); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1288 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1289 timers [timercnt - 1] = w; 2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
1290 upheap ((WT *)timers, timercnt - 1); 2429 ANHE_at_cache (timers [ev_active (w)]);
2430 upheap (timers, ev_active (w));
1291 2431
2432 EV_FREQUENT_CHECK;
2433
1292 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1293} 2435}
1294 2436
1295void 2437void noinline
1296ev_timer_stop (EV_P_ struct ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
1297{ 2439{
1298 ev_clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1299 if (!ev_is_active (w)) 2441 if (expect_false (!ev_is_active (w)))
1300 return; 2442 return;
1301 2443
2444 EV_FREQUENT_CHECK;
2445
2446 {
2447 int active = ev_active (w);
2448
1302 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1303 2450
1304 if (((W)w)->active < timercnt--) 2451 --timercnt;
2452
2453 if (expect_true (active < timercnt + HEAP0))
1305 { 2454 {
1306 timers [((W)w)->active - 1] = timers [timercnt]; 2455 timers [active] = timers [timercnt + HEAP0];
1307 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2456 adjustheap (timers, timercnt, active);
1308 } 2457 }
2458 }
1309 2459
1310 ((WT)w)->at = w->repeat; 2460 EV_FREQUENT_CHECK;
2461
2462 ev_at (w) -= mn_now;
1311 2463
1312 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1313} 2465}
1314 2466
1315void 2467void noinline
1316ev_timer_again (EV_P_ struct ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
1317{ 2469{
2470 EV_FREQUENT_CHECK;
2471
1318 if (ev_is_active (w)) 2472 if (ev_is_active (w))
1319 { 2473 {
1320 if (w->repeat) 2474 if (w->repeat)
1321 { 2475 {
1322 ((WT)w)->at = mn_now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
1323 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2477 ANHE_at_cache (timers [ev_active (w)]);
2478 adjustheap (timers, timercnt, ev_active (w));
1324 } 2479 }
1325 else 2480 else
1326 ev_timer_stop (EV_A_ w); 2481 ev_timer_stop (EV_A_ w);
1327 } 2482 }
1328 else if (w->repeat) 2483 else if (w->repeat)
2484 {
2485 ev_at (w) = w->repeat;
1329 ev_timer_start (EV_A_ w); 2486 ev_timer_start (EV_A_ w);
1330} 2487 }
1331 2488
1332void 2489 EV_FREQUENT_CHECK;
2490}
2491
2492ev_tstamp
2493ev_timer_remaining (EV_P_ ev_timer *w)
2494{
2495 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2496}
2497
2498#if EV_PERIODIC_ENABLE
2499void noinline
1333ev_periodic_start (EV_P_ struct ev_periodic *w) 2500ev_periodic_start (EV_P_ ev_periodic *w)
1334{ 2501{
1335 if (ev_is_active (w)) 2502 if (expect_false (ev_is_active (w)))
1336 return; 2503 return;
1337 2504
1338 if (w->reschedule_cb) 2505 if (w->reschedule_cb)
1339 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2506 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1340 else if (w->interval) 2507 else if (w->interval)
1341 { 2508 {
1342 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2509 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1343 /* this formula differs from the one in periodic_reify because we do not always round up */ 2510 /* this formula differs from the one in periodic_reify because we do not always round up */
1344 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2511 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1345 } 2512 }
2513 else
2514 ev_at (w) = w->offset;
1346 2515
2516 EV_FREQUENT_CHECK;
2517
2518 ++periodiccnt;
1347 ev_start (EV_A_ (W)w, ++periodiccnt); 2519 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1348 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2520 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1349 periodics [periodiccnt - 1] = w; 2521 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1350 upheap ((WT *)periodics, periodiccnt - 1); 2522 ANHE_at_cache (periodics [ev_active (w)]);
2523 upheap (periodics, ev_active (w));
1351 2524
2525 EV_FREQUENT_CHECK;
2526
1352 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2527 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1353} 2528}
1354 2529
1355void 2530void noinline
1356ev_periodic_stop (EV_P_ struct ev_periodic *w) 2531ev_periodic_stop (EV_P_ ev_periodic *w)
1357{ 2532{
1358 ev_clear_pending (EV_A_ (W)w); 2533 clear_pending (EV_A_ (W)w);
1359 if (!ev_is_active (w)) 2534 if (expect_false (!ev_is_active (w)))
1360 return; 2535 return;
1361 2536
2537 EV_FREQUENT_CHECK;
2538
2539 {
2540 int active = ev_active (w);
2541
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2542 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1363 2543
1364 if (((W)w)->active < periodiccnt--) 2544 --periodiccnt;
2545
2546 if (expect_true (active < periodiccnt + HEAP0))
1365 { 2547 {
1366 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2548 periodics [active] = periodics [periodiccnt + HEAP0];
1367 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2549 adjustheap (periodics, periodiccnt, active);
1368 } 2550 }
2551 }
2552
2553 EV_FREQUENT_CHECK;
1369 2554
1370 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1371} 2556}
1372 2557
1373void 2558void noinline
1374ev_periodic_again (EV_P_ struct ev_periodic *w) 2559ev_periodic_again (EV_P_ ev_periodic *w)
1375{ 2560{
2561 /* TODO: use adjustheap and recalculation */
1376 ev_periodic_stop (EV_A_ w); 2562 ev_periodic_stop (EV_A_ w);
1377 ev_periodic_start (EV_A_ w); 2563 ev_periodic_start (EV_A_ w);
1378} 2564}
1379 2565#endif
1380void
1381ev_idle_start (EV_P_ struct ev_idle *w)
1382{
1383 if (ev_is_active (w))
1384 return;
1385
1386 ev_start (EV_A_ (W)w, ++idlecnt);
1387 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1388 idles [idlecnt - 1] = w;
1389}
1390
1391void
1392ev_idle_stop (EV_P_ struct ev_idle *w)
1393{
1394 ev_clear_pending (EV_A_ (W)w);
1395 if (ev_is_active (w))
1396 return;
1397
1398 idles [((W)w)->active - 1] = idles [--idlecnt];
1399 ev_stop (EV_A_ (W)w);
1400}
1401
1402void
1403ev_prepare_start (EV_P_ struct ev_prepare *w)
1404{
1405 if (ev_is_active (w))
1406 return;
1407
1408 ev_start (EV_A_ (W)w, ++preparecnt);
1409 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1410 prepares [preparecnt - 1] = w;
1411}
1412
1413void
1414ev_prepare_stop (EV_P_ struct ev_prepare *w)
1415{
1416 ev_clear_pending (EV_A_ (W)w);
1417 if (ev_is_active (w))
1418 return;
1419
1420 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1421 ev_stop (EV_A_ (W)w);
1422}
1423
1424void
1425ev_check_start (EV_P_ struct ev_check *w)
1426{
1427 if (ev_is_active (w))
1428 return;
1429
1430 ev_start (EV_A_ (W)w, ++checkcnt);
1431 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1432 checks [checkcnt - 1] = w;
1433}
1434
1435void
1436ev_check_stop (EV_P_ struct ev_check *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 checks [((W)w)->active - 1] = checks [--checkcnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445 2566
1446#ifndef SA_RESTART 2567#ifndef SA_RESTART
1447# define SA_RESTART 0 2568# define SA_RESTART 0
1448#endif 2569#endif
1449 2570
1450void 2571void noinline
1451ev_signal_start (EV_P_ struct ev_signal *w) 2572ev_signal_start (EV_P_ ev_signal *w)
1452{ 2573{
1453#if EV_MULTIPLICITY 2574#if EV_MULTIPLICITY
1454 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2575 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1455#endif 2576#endif
1456 if (ev_is_active (w)) 2577 if (expect_false (ev_is_active (w)))
1457 return; 2578 return;
1458 2579
1459 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2580 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2581
2582 evpipe_init (EV_A);
2583
2584 EV_FREQUENT_CHECK;
2585
2586 {
2587#ifndef _WIN32
2588 sigset_t full, prev;
2589 sigfillset (&full);
2590 sigprocmask (SIG_SETMASK, &full, &prev);
2591#endif
2592
2593 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2594
2595#ifndef _WIN32
2596 sigprocmask (SIG_SETMASK, &prev, 0);
2597#endif
2598 }
1460 2599
1461 ev_start (EV_A_ (W)w, 1); 2600 ev_start (EV_A_ (W)w, 1);
1462 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1463 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2601 wlist_add (&signals [w->signum - 1].head, (WL)w);
1464 2602
1465 if (!((WL)w)->next) 2603 if (!((WL)w)->next)
1466 { 2604 {
1467#if WIN32 2605#if _WIN32
1468 signal (w->signum, sighandler); 2606 signal (w->signum, ev_sighandler);
1469#else 2607#else
1470 struct sigaction sa; 2608 struct sigaction sa = { };
1471 sa.sa_handler = sighandler; 2609 sa.sa_handler = ev_sighandler;
1472 sigfillset (&sa.sa_mask); 2610 sigfillset (&sa.sa_mask);
1473 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2611 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1474 sigaction (w->signum, &sa, 0); 2612 sigaction (w->signum, &sa, 0);
1475#endif 2613#endif
1476 } 2614 }
1477}
1478 2615
1479void 2616 EV_FREQUENT_CHECK;
2617}
2618
2619void noinline
1480ev_signal_stop (EV_P_ struct ev_signal *w) 2620ev_signal_stop (EV_P_ ev_signal *w)
1481{ 2621{
1482 ev_clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w)) 2623 if (expect_false (!ev_is_active (w)))
1484 return; 2624 return;
1485 2625
2626 EV_FREQUENT_CHECK;
2627
1486 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2628 wlist_del (&signals [w->signum - 1].head, (WL)w);
1487 ev_stop (EV_A_ (W)w); 2629 ev_stop (EV_A_ (W)w);
1488 2630
1489 if (!signals [w->signum - 1].head) 2631 if (!signals [w->signum - 1].head)
1490 signal (w->signum, SIG_DFL); 2632 signal (w->signum, SIG_DFL);
1491}
1492 2633
2634 EV_FREQUENT_CHECK;
2635}
2636
1493void 2637void
1494ev_child_start (EV_P_ struct ev_child *w) 2638ev_child_start (EV_P_ ev_child *w)
1495{ 2639{
1496#if EV_MULTIPLICITY 2640#if EV_MULTIPLICITY
1497 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2641 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1498#endif 2642#endif
1499 if (ev_is_active (w)) 2643 if (expect_false (ev_is_active (w)))
1500 return; 2644 return;
1501 2645
2646 EV_FREQUENT_CHECK;
2647
1502 ev_start (EV_A_ (W)w, 1); 2648 ev_start (EV_A_ (W)w, 1);
1503 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2649 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1504}
1505 2650
2651 EV_FREQUENT_CHECK;
2652}
2653
1506void 2654void
1507ev_child_stop (EV_P_ struct ev_child *w) 2655ev_child_stop (EV_P_ ev_child *w)
1508{ 2656{
1509 ev_clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
1510 if (ev_is_active (w)) 2658 if (expect_false (!ev_is_active (w)))
1511 return; 2659 return;
1512 2660
2661 EV_FREQUENT_CHECK;
2662
1513 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2663 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1514 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2665
2666 EV_FREQUENT_CHECK;
1515} 2667}
2668
2669#if EV_STAT_ENABLE
2670
2671# ifdef _WIN32
2672# undef lstat
2673# define lstat(a,b) _stati64 (a,b)
2674# endif
2675
2676#define DEF_STAT_INTERVAL 5.0074891
2677#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2678#define MIN_STAT_INTERVAL 0.1074891
2679
2680static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2681
2682#if EV_USE_INOTIFY
2683# define EV_INOTIFY_BUFSIZE 8192
2684
2685static void noinline
2686infy_add (EV_P_ ev_stat *w)
2687{
2688 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2689
2690 if (w->wd < 0)
2691 {
2692 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2693 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2694
2695 /* monitor some parent directory for speedup hints */
2696 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2697 /* but an efficiency issue only */
2698 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2699 {
2700 char path [4096];
2701 strcpy (path, w->path);
2702
2703 do
2704 {
2705 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2706 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2707
2708 char *pend = strrchr (path, '/');
2709
2710 if (!pend || pend == path)
2711 break;
2712
2713 *pend = 0;
2714 w->wd = inotify_add_watch (fs_fd, path, mask);
2715 }
2716 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2717 }
2718 }
2719
2720 if (w->wd >= 0)
2721 {
2722 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2723
2724 /* now local changes will be tracked by inotify, but remote changes won't */
2725 /* unless the filesystem it known to be local, we therefore still poll */
2726 /* also do poll on <2.6.25, but with normal frequency */
2727 struct statfs sfs;
2728
2729 if (fs_2625 && !statfs (w->path, &sfs))
2730 if (sfs.f_type == 0x1373 /* devfs */
2731 || sfs.f_type == 0xEF53 /* ext2/3 */
2732 || sfs.f_type == 0x3153464a /* jfs */
2733 || sfs.f_type == 0x52654973 /* reiser3 */
2734 || sfs.f_type == 0x01021994 /* tempfs */
2735 || sfs.f_type == 0x58465342 /* xfs */)
2736 return;
2737
2738 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2739 ev_timer_again (EV_A_ &w->timer);
2740 }
2741}
2742
2743static void noinline
2744infy_del (EV_P_ ev_stat *w)
2745{
2746 int slot;
2747 int wd = w->wd;
2748
2749 if (wd < 0)
2750 return;
2751
2752 w->wd = -2;
2753 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2754 wlist_del (&fs_hash [slot].head, (WL)w);
2755
2756 /* remove this watcher, if others are watching it, they will rearm */
2757 inotify_rm_watch (fs_fd, wd);
2758}
2759
2760static void noinline
2761infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2762{
2763 if (slot < 0)
2764 /* overflow, need to check for all hash slots */
2765 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2766 infy_wd (EV_A_ slot, wd, ev);
2767 else
2768 {
2769 WL w_;
2770
2771 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2772 {
2773 ev_stat *w = (ev_stat *)w_;
2774 w_ = w_->next; /* lets us remove this watcher and all before it */
2775
2776 if (w->wd == wd || wd == -1)
2777 {
2778 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2779 {
2780 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2781 w->wd = -1;
2782 infy_add (EV_A_ w); /* re-add, no matter what */
2783 }
2784
2785 stat_timer_cb (EV_A_ &w->timer, 0);
2786 }
2787 }
2788 }
2789}
2790
2791static void
2792infy_cb (EV_P_ ev_io *w, int revents)
2793{
2794 char buf [EV_INOTIFY_BUFSIZE];
2795 struct inotify_event *ev = (struct inotify_event *)buf;
2796 int ofs;
2797 int len = read (fs_fd, buf, sizeof (buf));
2798
2799 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2800 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2801}
2802
2803inline_size void
2804check_2625 (EV_P)
2805{
2806 /* kernels < 2.6.25 are borked
2807 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2808 */
2809 struct utsname buf;
2810 int major, minor, micro;
2811
2812 if (uname (&buf))
2813 return;
2814
2815 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2816 return;
2817
2818 if (major < 2
2819 || (major == 2 && minor < 6)
2820 || (major == 2 && minor == 6 && micro < 25))
2821 return;
2822
2823 fs_2625 = 1;
2824}
2825
2826inline_size void
2827infy_init (EV_P)
2828{
2829 if (fs_fd != -2)
2830 return;
2831
2832 fs_fd = -1;
2833
2834 check_2625 (EV_A);
2835
2836 fs_fd = inotify_init ();
2837
2838 if (fs_fd >= 0)
2839 {
2840 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2841 ev_set_priority (&fs_w, EV_MAXPRI);
2842 ev_io_start (EV_A_ &fs_w);
2843 }
2844}
2845
2846inline_size void
2847infy_fork (EV_P)
2848{
2849 int slot;
2850
2851 if (fs_fd < 0)
2852 return;
2853
2854 close (fs_fd);
2855 fs_fd = inotify_init ();
2856
2857 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2858 {
2859 WL w_ = fs_hash [slot].head;
2860 fs_hash [slot].head = 0;
2861
2862 while (w_)
2863 {
2864 ev_stat *w = (ev_stat *)w_;
2865 w_ = w_->next; /* lets us add this watcher */
2866
2867 w->wd = -1;
2868
2869 if (fs_fd >= 0)
2870 infy_add (EV_A_ w); /* re-add, no matter what */
2871 else
2872 ev_timer_again (EV_A_ &w->timer);
2873 }
2874 }
2875}
2876
2877#endif
2878
2879#ifdef _WIN32
2880# define EV_LSTAT(p,b) _stati64 (p, b)
2881#else
2882# define EV_LSTAT(p,b) lstat (p, b)
2883#endif
2884
2885void
2886ev_stat_stat (EV_P_ ev_stat *w)
2887{
2888 if (lstat (w->path, &w->attr) < 0)
2889 w->attr.st_nlink = 0;
2890 else if (!w->attr.st_nlink)
2891 w->attr.st_nlink = 1;
2892}
2893
2894static void noinline
2895stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2896{
2897 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2898
2899 /* we copy this here each the time so that */
2900 /* prev has the old value when the callback gets invoked */
2901 w->prev = w->attr;
2902 ev_stat_stat (EV_A_ w);
2903
2904 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2905 if (
2906 w->prev.st_dev != w->attr.st_dev
2907 || w->prev.st_ino != w->attr.st_ino
2908 || w->prev.st_mode != w->attr.st_mode
2909 || w->prev.st_nlink != w->attr.st_nlink
2910 || w->prev.st_uid != w->attr.st_uid
2911 || w->prev.st_gid != w->attr.st_gid
2912 || w->prev.st_rdev != w->attr.st_rdev
2913 || w->prev.st_size != w->attr.st_size
2914 || w->prev.st_atime != w->attr.st_atime
2915 || w->prev.st_mtime != w->attr.st_mtime
2916 || w->prev.st_ctime != w->attr.st_ctime
2917 ) {
2918 #if EV_USE_INOTIFY
2919 if (fs_fd >= 0)
2920 {
2921 infy_del (EV_A_ w);
2922 infy_add (EV_A_ w);
2923 ev_stat_stat (EV_A_ w); /* avoid race... */
2924 }
2925 #endif
2926
2927 ev_feed_event (EV_A_ w, EV_STAT);
2928 }
2929}
2930
2931void
2932ev_stat_start (EV_P_ ev_stat *w)
2933{
2934 if (expect_false (ev_is_active (w)))
2935 return;
2936
2937 ev_stat_stat (EV_A_ w);
2938
2939 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2940 w->interval = MIN_STAT_INTERVAL;
2941
2942 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2943 ev_set_priority (&w->timer, ev_priority (w));
2944
2945#if EV_USE_INOTIFY
2946 infy_init (EV_A);
2947
2948 if (fs_fd >= 0)
2949 infy_add (EV_A_ w);
2950 else
2951#endif
2952 ev_timer_again (EV_A_ &w->timer);
2953
2954 ev_start (EV_A_ (W)w, 1);
2955
2956 EV_FREQUENT_CHECK;
2957}
2958
2959void
2960ev_stat_stop (EV_P_ ev_stat *w)
2961{
2962 clear_pending (EV_A_ (W)w);
2963 if (expect_false (!ev_is_active (w)))
2964 return;
2965
2966 EV_FREQUENT_CHECK;
2967
2968#if EV_USE_INOTIFY
2969 infy_del (EV_A_ w);
2970#endif
2971 ev_timer_stop (EV_A_ &w->timer);
2972
2973 ev_stop (EV_A_ (W)w);
2974
2975 EV_FREQUENT_CHECK;
2976}
2977#endif
2978
2979#if EV_IDLE_ENABLE
2980void
2981ev_idle_start (EV_P_ ev_idle *w)
2982{
2983 if (expect_false (ev_is_active (w)))
2984 return;
2985
2986 pri_adjust (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2989
2990 {
2991 int active = ++idlecnt [ABSPRI (w)];
2992
2993 ++idleall;
2994 ev_start (EV_A_ (W)w, active);
2995
2996 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2997 idles [ABSPRI (w)][active - 1] = w;
2998 }
2999
3000 EV_FREQUENT_CHECK;
3001}
3002
3003void
3004ev_idle_stop (EV_P_ ev_idle *w)
3005{
3006 clear_pending (EV_A_ (W)w);
3007 if (expect_false (!ev_is_active (w)))
3008 return;
3009
3010 EV_FREQUENT_CHECK;
3011
3012 {
3013 int active = ev_active (w);
3014
3015 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3016 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3017
3018 ev_stop (EV_A_ (W)w);
3019 --idleall;
3020 }
3021
3022 EV_FREQUENT_CHECK;
3023}
3024#endif
3025
3026void
3027ev_prepare_start (EV_P_ ev_prepare *w)
3028{
3029 if (expect_false (ev_is_active (w)))
3030 return;
3031
3032 EV_FREQUENT_CHECK;
3033
3034 ev_start (EV_A_ (W)w, ++preparecnt);
3035 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3036 prepares [preparecnt - 1] = w;
3037
3038 EV_FREQUENT_CHECK;
3039}
3040
3041void
3042ev_prepare_stop (EV_P_ ev_prepare *w)
3043{
3044 clear_pending (EV_A_ (W)w);
3045 if (expect_false (!ev_is_active (w)))
3046 return;
3047
3048 EV_FREQUENT_CHECK;
3049
3050 {
3051 int active = ev_active (w);
3052
3053 prepares [active - 1] = prepares [--preparecnt];
3054 ev_active (prepares [active - 1]) = active;
3055 }
3056
3057 ev_stop (EV_A_ (W)w);
3058
3059 EV_FREQUENT_CHECK;
3060}
3061
3062void
3063ev_check_start (EV_P_ ev_check *w)
3064{
3065 if (expect_false (ev_is_active (w)))
3066 return;
3067
3068 EV_FREQUENT_CHECK;
3069
3070 ev_start (EV_A_ (W)w, ++checkcnt);
3071 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3072 checks [checkcnt - 1] = w;
3073
3074 EV_FREQUENT_CHECK;
3075}
3076
3077void
3078ev_check_stop (EV_P_ ev_check *w)
3079{
3080 clear_pending (EV_A_ (W)w);
3081 if (expect_false (!ev_is_active (w)))
3082 return;
3083
3084 EV_FREQUENT_CHECK;
3085
3086 {
3087 int active = ev_active (w);
3088
3089 checks [active - 1] = checks [--checkcnt];
3090 ev_active (checks [active - 1]) = active;
3091 }
3092
3093 ev_stop (EV_A_ (W)w);
3094
3095 EV_FREQUENT_CHECK;
3096}
3097
3098#if EV_EMBED_ENABLE
3099void noinline
3100ev_embed_sweep (EV_P_ ev_embed *w)
3101{
3102 ev_loop (w->other, EVLOOP_NONBLOCK);
3103}
3104
3105static void
3106embed_io_cb (EV_P_ ev_io *io, int revents)
3107{
3108 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3109
3110 if (ev_cb (w))
3111 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3112 else
3113 ev_loop (w->other, EVLOOP_NONBLOCK);
3114}
3115
3116static void
3117embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3118{
3119 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 while (fdchangecnt)
3125 {
3126 fd_reify (EV_A);
3127 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3128 }
3129 }
3130}
3131
3132static void
3133embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3134{
3135 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3136
3137 ev_embed_stop (EV_A_ w);
3138
3139 {
3140 struct ev_loop *loop = w->other;
3141
3142 ev_loop_fork (EV_A);
3143 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3144 }
3145
3146 ev_embed_start (EV_A_ w);
3147}
3148
3149#if 0
3150static void
3151embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3152{
3153 ev_idle_stop (EV_A_ idle);
3154}
3155#endif
3156
3157void
3158ev_embed_start (EV_P_ ev_embed *w)
3159{
3160 if (expect_false (ev_is_active (w)))
3161 return;
3162
3163 {
3164 struct ev_loop *loop = w->other;
3165 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3166 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3167 }
3168
3169 EV_FREQUENT_CHECK;
3170
3171 ev_set_priority (&w->io, ev_priority (w));
3172 ev_io_start (EV_A_ &w->io);
3173
3174 ev_prepare_init (&w->prepare, embed_prepare_cb);
3175 ev_set_priority (&w->prepare, EV_MINPRI);
3176 ev_prepare_start (EV_A_ &w->prepare);
3177
3178 ev_fork_init (&w->fork, embed_fork_cb);
3179 ev_fork_start (EV_A_ &w->fork);
3180
3181 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3182
3183 ev_start (EV_A_ (W)w, 1);
3184
3185 EV_FREQUENT_CHECK;
3186}
3187
3188void
3189ev_embed_stop (EV_P_ ev_embed *w)
3190{
3191 clear_pending (EV_A_ (W)w);
3192 if (expect_false (!ev_is_active (w)))
3193 return;
3194
3195 EV_FREQUENT_CHECK;
3196
3197 ev_io_stop (EV_A_ &w->io);
3198 ev_prepare_stop (EV_A_ &w->prepare);
3199 ev_fork_stop (EV_A_ &w->fork);
3200
3201 EV_FREQUENT_CHECK;
3202}
3203#endif
3204
3205#if EV_FORK_ENABLE
3206void
3207ev_fork_start (EV_P_ ev_fork *w)
3208{
3209 if (expect_false (ev_is_active (w)))
3210 return;
3211
3212 EV_FREQUENT_CHECK;
3213
3214 ev_start (EV_A_ (W)w, ++forkcnt);
3215 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3216 forks [forkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
3219}
3220
3221void
3222ev_fork_stop (EV_P_ ev_fork *w)
3223{
3224 clear_pending (EV_A_ (W)w);
3225 if (expect_false (!ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230 {
3231 int active = ev_active (w);
3232
3233 forks [active - 1] = forks [--forkcnt];
3234 ev_active (forks [active - 1]) = active;
3235 }
3236
3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
3240}
3241#endif
3242
3243#if EV_ASYNC_ENABLE
3244void
3245ev_async_start (EV_P_ ev_async *w)
3246{
3247 if (expect_false (ev_is_active (w)))
3248 return;
3249
3250 evpipe_init (EV_A);
3251
3252 EV_FREQUENT_CHECK;
3253
3254 ev_start (EV_A_ (W)w, ++asynccnt);
3255 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3256 asyncs [asynccnt - 1] = w;
3257
3258 EV_FREQUENT_CHECK;
3259}
3260
3261void
3262ev_async_stop (EV_P_ ev_async *w)
3263{
3264 clear_pending (EV_A_ (W)w);
3265 if (expect_false (!ev_is_active (w)))
3266 return;
3267
3268 EV_FREQUENT_CHECK;
3269
3270 {
3271 int active = ev_active (w);
3272
3273 asyncs [active - 1] = asyncs [--asynccnt];
3274 ev_active (asyncs [active - 1]) = active;
3275 }
3276
3277 ev_stop (EV_A_ (W)w);
3278
3279 EV_FREQUENT_CHECK;
3280}
3281
3282void
3283ev_async_send (EV_P_ ev_async *w)
3284{
3285 w->sent = 1;
3286 evpipe_write (EV_A_ &gotasync);
3287}
3288#endif
1516 3289
1517/*****************************************************************************/ 3290/*****************************************************************************/
1518 3291
1519struct ev_once 3292struct ev_once
1520{ 3293{
1521 struct ev_io io; 3294 ev_io io;
1522 struct ev_timer to; 3295 ev_timer to;
1523 void (*cb)(int revents, void *arg); 3296 void (*cb)(int revents, void *arg);
1524 void *arg; 3297 void *arg;
1525}; 3298};
1526 3299
1527static void 3300static void
1528once_cb (EV_P_ struct ev_once *once, int revents) 3301once_cb (EV_P_ struct ev_once *once, int revents)
1529{ 3302{
1530 void (*cb)(int revents, void *arg) = once->cb; 3303 void (*cb)(int revents, void *arg) = once->cb;
1531 void *arg = once->arg; 3304 void *arg = once->arg;
1532 3305
1533 ev_io_stop (EV_A_ &once->io); 3306 ev_io_stop (EV_A_ &once->io);
1534 ev_timer_stop (EV_A_ &once->to); 3307 ev_timer_stop (EV_A_ &once->to);
1535 ev_free (once); 3308 ev_free (once);
1536 3309
1537 cb (revents, arg); 3310 cb (revents, arg);
1538} 3311}
1539 3312
1540static void 3313static void
1541once_cb_io (EV_P_ struct ev_io *w, int revents) 3314once_cb_io (EV_P_ ev_io *w, int revents)
1542{ 3315{
1543 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3316 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3317
3318 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1544} 3319}
1545 3320
1546static void 3321static void
1547once_cb_to (EV_P_ struct ev_timer *w, int revents) 3322once_cb_to (EV_P_ ev_timer *w, int revents)
1548{ 3323{
1549 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3324 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3325
3326 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1550} 3327}
1551 3328
1552void 3329void
1553ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3330ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1554{ 3331{
1555 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3332 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1556 3333
1557 if (!once) 3334 if (expect_false (!once))
3335 {
1558 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1559 else 3337 return;
1560 { 3338 }
3339
1561 once->cb = cb; 3340 once->cb = cb;
1562 once->arg = arg; 3341 once->arg = arg;
1563 3342
1564 ev_watcher_init (&once->io, once_cb_io); 3343 ev_init (&once->io, once_cb_io);
1565 if (fd >= 0) 3344 if (fd >= 0)
3345 {
3346 ev_io_set (&once->io, fd, events);
3347 ev_io_start (EV_A_ &once->io);
3348 }
3349
3350 ev_init (&once->to, once_cb_to);
3351 if (timeout >= 0.)
3352 {
3353 ev_timer_set (&once->to, timeout, 0.);
3354 ev_timer_start (EV_A_ &once->to);
3355 }
3356}
3357
3358/*****************************************************************************/
3359
3360#if EV_WALK_ENABLE
3361void
3362ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3363{
3364 int i, j;
3365 ev_watcher_list *wl, *wn;
3366
3367 if (types & (EV_IO | EV_EMBED))
3368 for (i = 0; i < anfdmax; ++i)
3369 for (wl = anfds [i].head; wl; )
1566 { 3370 {
1567 ev_io_set (&once->io, fd, events); 3371 wn = wl->next;
1568 ev_io_start (EV_A_ &once->io); 3372
3373#if EV_EMBED_ENABLE
3374 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3375 {
3376 if (types & EV_EMBED)
3377 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3378 }
3379 else
3380#endif
3381#if EV_USE_INOTIFY
3382 if (ev_cb ((ev_io *)wl) == infy_cb)
3383 ;
3384 else
3385#endif
3386 if ((ev_io *)wl != &pipe_w)
3387 if (types & EV_IO)
3388 cb (EV_A_ EV_IO, wl);
3389
3390 wl = wn;
1569 } 3391 }
1570 3392
1571 ev_watcher_init (&once->to, once_cb_to); 3393 if (types & (EV_TIMER | EV_STAT))
1572 if (timeout >= 0.) 3394 for (i = timercnt + HEAP0; i-- > HEAP0; )
3395#if EV_STAT_ENABLE
3396 /*TODO: timer is not always active*/
3397 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1573 { 3398 {
1574 ev_timer_set (&once->to, timeout, 0.); 3399 if (types & EV_STAT)
1575 ev_timer_start (EV_A_ &once->to); 3400 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1576 } 3401 }
1577 } 3402 else
1578} 3403#endif
3404 if (types & EV_TIMER)
3405 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1579 3406
3407#if EV_PERIODIC_ENABLE
3408 if (types & EV_PERIODIC)
3409 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3410 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3411#endif
3412
3413#if EV_IDLE_ENABLE
3414 if (types & EV_IDLE)
3415 for (j = NUMPRI; i--; )
3416 for (i = idlecnt [j]; i--; )
3417 cb (EV_A_ EV_IDLE, idles [j][i]);
3418#endif
3419
3420#if EV_FORK_ENABLE
3421 if (types & EV_FORK)
3422 for (i = forkcnt; i--; )
3423 if (ev_cb (forks [i]) != embed_fork_cb)
3424 cb (EV_A_ EV_FORK, forks [i]);
3425#endif
3426
3427#if EV_ASYNC_ENABLE
3428 if (types & EV_ASYNC)
3429 for (i = asynccnt; i--; )
3430 cb (EV_A_ EV_ASYNC, asyncs [i]);
3431#endif
3432
3433 if (types & EV_PREPARE)
3434 for (i = preparecnt; i--; )
3435#if EV_EMBED_ENABLE
3436 if (ev_cb (prepares [i]) != embed_prepare_cb)
3437#endif
3438 cb (EV_A_ EV_PREPARE, prepares [i]);
3439
3440 if (types & EV_CHECK)
3441 for (i = checkcnt; i--; )
3442 cb (EV_A_ EV_CHECK, checks [i]);
3443
3444 if (types & EV_SIGNAL)
3445 for (i = 0; i < signalmax; ++i)
3446 for (wl = signals [i].head; wl; )
3447 {
3448 wn = wl->next;
3449 cb (EV_A_ EV_SIGNAL, wl);
3450 wl = wn;
3451 }
3452
3453 if (types & EV_CHILD)
3454 for (i = EV_PID_HASHSIZE; i--; )
3455 for (wl = childs [i]; wl; )
3456 {
3457 wn = wl->next;
3458 cb (EV_A_ EV_CHILD, wl);
3459 wl = wn;
3460 }
3461/* EV_STAT 0x00001000 /* stat data changed */
3462/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3463}
3464#endif
3465
3466#if EV_MULTIPLICITY
3467 #include "ev_wrap.h"
3468#endif
3469
3470#ifdef __cplusplus
3471}
3472#endif
3473

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines