ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.167 by root, Sat Dec 8 04:02:31 2007 UTC vs.
Revision 1.303 by root, Sun Jul 19 01:36:34 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
142 198
143#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
144# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
204# endif
145#endif 205#endif
146 206
147#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
209#endif
210
211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
215# define EV_USE_NANOSLEEP 0
216# endif
149#endif 217#endif
150 218
151#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
153#endif 221#endif
159# define EV_USE_POLL 1 227# define EV_USE_POLL 1
160# endif 228# endif
161#endif 229#endif
162 230
163#ifndef EV_USE_EPOLL 231#ifndef EV_USE_EPOLL
232# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233# define EV_USE_EPOLL 1
234# else
164# define EV_USE_EPOLL 0 235# define EV_USE_EPOLL 0
236# endif
165#endif 237#endif
166 238
167#ifndef EV_USE_KQUEUE 239#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 240# define EV_USE_KQUEUE 0
169#endif 241#endif
171#ifndef EV_USE_PORT 243#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 244# define EV_USE_PORT 0
173#endif 245#endif
174 246
175#ifndef EV_USE_INOTIFY 247#ifndef EV_USE_INOTIFY
248# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
249# define EV_USE_INOTIFY 1
250# else
176# define EV_USE_INOTIFY 0 251# define EV_USE_INOTIFY 0
252# endif
177#endif 253#endif
178 254
179#ifndef EV_PID_HASHSIZE 255#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 256# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 257# define EV_PID_HASHSIZE 1
190# else 266# else
191# define EV_INOTIFY_HASHSIZE 16 267# define EV_INOTIFY_HASHSIZE 16
192# endif 268# endif
193#endif 269#endif
194 270
195/**/ 271#ifndef EV_USE_EVENTFD
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273# define EV_USE_EVENTFD 1
274# else
275# define EV_USE_EVENTFD 0
276# endif
277#endif
278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 320
197#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
200#endif 324#endif
202#ifndef CLOCK_REALTIME 326#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 327# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 328# define EV_USE_REALTIME 0
205#endif 329#endif
206 330
331#if !EV_STAT_ENABLE
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334#endif
335
336#if !EV_USE_NANOSLEEP
337# ifndef _WIN32
338# include <sys/select.h>
339# endif
340#endif
341
342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
207#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 354# include <winsock.h>
209#endif 355#endif
210 356
211#if !EV_STAT_ENABLE 357#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
213#endif 362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
366# ifdef __cplusplus
367extern "C" {
368# endif
369int eventfd (unsigned int initval, int flags);
370# ifdef __cplusplus
371}
372# endif
373#endif
214 374
215#if EV_USE_INOTIFY 375#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 376# include <sys/signalfd.h>
217#endif 377#endif
218 378
219/**/ 379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
386
387/*
388 * This is used to avoid floating point rounding problems.
389 * It is added to ev_rt_now when scheduling periodics
390 * to ensure progress, time-wise, even when rounding
391 * errors are against us.
392 * This value is good at least till the year 4000.
393 * Better solutions welcome.
394 */
395#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 396
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 397#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 398#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 399/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 400
225#if __GNUC__ >= 3 401#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 402# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 403# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 404#else
236# define expect(expr,value) (expr) 405# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 406# define noinline
407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
408# define inline
409# endif
240#endif 410#endif
241 411
242#define expect_false(expr) expect ((expr) != 0, 0) 412#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 413#define expect_true(expr) expect ((expr) != 0, 1)
414#define inline_size static inline
244 415
416#if EV_MINIMAL
417# define inline_speed static noinline
418#else
419# define inline_speed static inline
420#endif
421
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
247 429
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
250 432
251typedef ev_watcher *W; 433typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
254 436
437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
448#endif
256 449
257#ifdef _WIN32 450#ifdef _WIN32
258# include "ev_win32.c" 451# include "ev_win32.c"
259#endif 452#endif
260 453
267{ 460{
268 syserr_cb = cb; 461 syserr_cb = cb;
269} 462}
270 463
271static void noinline 464static void noinline
272syserr (const char *msg) 465ev_syserr (const char *msg)
273{ 466{
274 if (!msg) 467 if (!msg)
275 msg = "(libev) system error"; 468 msg = "(libev) system error";
276 469
277 if (syserr_cb) 470 if (syserr_cb)
281 perror (msg); 474 perror (msg);
282 abort (); 475 abort ();
283 } 476 }
284} 477}
285 478
479static void *
480ev_realloc_emul (void *ptr, long size)
481{
482 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and
484 * the single unix specification, so work around them here.
485 */
486
487 if (size)
488 return realloc (ptr, size);
489
490 free (ptr);
491 return 0;
492}
493
286static void *(*alloc)(void *ptr, long size); 494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 495
288void 496void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 497ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 498{
291 alloc = cb; 499 alloc = cb;
292} 500}
293 501
294inline_speed void * 502inline_speed void *
295ev_realloc (void *ptr, long size) 503ev_realloc (void *ptr, long size)
296{ 504{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 505 ptr = alloc (ptr, size);
298 506
299 if (!ptr && size) 507 if (!ptr && size)
300 { 508 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 510 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
310 518
311/*****************************************************************************/ 519/*****************************************************************************/
312 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
313typedef struct 525typedef struct
314{ 526{
315 WL head; 527 WL head;
316 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
318#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 536 SOCKET handle;
320#endif 537#endif
321} ANFD; 538} ANFD;
322 539
540/* stores the pending event set for a given watcher */
323typedef struct 541typedef struct
324{ 542{
325 W w; 543 W w;
326 int events; 544 int events; /* the pending event set for the given watcher */
327} ANPENDING; 545} ANPENDING;
328 546
329#if EV_USE_INOTIFY 547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
330typedef struct 549typedef struct
331{ 550{
332 WL head; 551 WL head;
333} ANFS; 552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
334#endif 573#endif
335 574
336#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
337 576
338 struct ev_loop 577 struct ev_loop
357 596
358 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
359 598
360#endif 599#endif
361 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
362/*****************************************************************************/ 613/*****************************************************************************/
363 614
615#ifndef EV_HAVE_EV_TIME
364ev_tstamp 616ev_tstamp
365ev_time (void) 617ev_time (void)
366{ 618{
367#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
368 struct timespec ts; 622 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 625 }
626#endif
627
372 struct timeval tv; 628 struct timeval tv;
373 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 631}
632#endif
377 633
378ev_tstamp inline_size 634inline_size ev_tstamp
379get_clock (void) 635get_clock (void)
380{ 636{
381#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
383 { 639 {
396{ 652{
397 return ev_rt_now; 653 return ev_rt_now;
398} 654}
399#endif 655#endif
400 656
401int inline_size 657void
658ev_sleep (ev_tstamp delay)
659{
660 if (delay > 0.)
661 {
662#if EV_USE_NANOSLEEP
663 struct timespec ts;
664
665 ts.tv_sec = (time_t)delay;
666 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
667
668 nanosleep (&ts, 0);
669#elif defined(_WIN32)
670 Sleep ((unsigned long)(delay * 1e3));
671#else
672 struct timeval tv;
673
674 tv.tv_sec = (time_t)delay;
675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
680 select (0, 0, 0, 0, &tv);
681#endif
682 }
683}
684
685/*****************************************************************************/
686
687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
402array_nextsize (int elem, int cur, int cnt) 692array_nextsize (int elem, int cur, int cnt)
403{ 693{
404 int ncur = cur + 1; 694 int ncur = cur + 1;
405 695
406 do 696 do
407 ncur <<= 1; 697 ncur <<= 1;
408 while (cnt > ncur); 698 while (cnt > ncur);
409 699
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 702 {
413 ncur *= elem; 703 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 705 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 706 ncur /= elem;
417 } 707 }
418 708
419 return ncur; 709 return ncur;
420} 710}
421 711
422inline_speed void * 712static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 713array_realloc (int elem, void *base, int *cur, int cnt)
424{ 714{
425 *cur = array_nextsize (elem, *cur, cnt); 715 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 716 return ev_realloc (base, elem * *cur);
427} 717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 721
429#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 723 if (expect_false ((cnt) > (cur))) \
431 { \ 724 { \
432 int ocur_ = (cur); \ 725 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 738 }
446#endif 739#endif
447 740
448#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 743
451/*****************************************************************************/ 744/*****************************************************************************/
745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
452 751
453void noinline 752void noinline
454ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
455{ 754{
456 W w_ = (W)w; 755 W w_ = (W)w;
756 int pri = ABSPRI (w_);
457 757
458 if (expect_false (w_->pending)) 758 if (expect_false (w_->pending))
759 pendings [pri][w_->pending - 1].events |= revents;
760 else
459 { 761 {
762 w_->pending = ++pendingcnt [pri];
763 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
764 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 765 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 766 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 767}
469 768
470void inline_size 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 786{
473 int i; 787 int i;
474 788
475 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
477} 791}
478 792
479/*****************************************************************************/ 793/*****************************************************************************/
480 794
481void inline_size 795inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
496{ 797{
497 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
498 ev_io *w; 799 ev_io *w;
499 800
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 805 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
506 } 807 }
507} 808}
508 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
509void 821void
510ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 823{
824 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
513} 826}
514 827
515void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
516fd_reify (EV_P) 831fd_reify (EV_P)
517{ 832{
518 int i; 833 int i;
519 834
520 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
521 { 836 {
522 int fd = fdchanges [i]; 837 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 838 ANFD *anfd = anfds + fd;
524 ev_io *w; 839 ev_io *w;
525 840
526 int events = 0; 841 unsigned char events = 0;
527 842
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 843 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 844 events |= (unsigned char)w->events;
530 845
531#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
532 if (events) 847 if (events)
533 { 848 {
534 unsigned long argp; 849 unsigned long arg;
850 #ifdef EV_FD_TO_WIN32_HANDLE
851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
852 #else
535 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
854 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 856 }
538#endif 857#endif
539 858
859 {
860 unsigned char o_events = anfd->events;
861 unsigned char o_reify = anfd->reify;
862
540 anfd->reify = 0; 863 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 864 anfd->events = events;
865
866 if (o_events != events || o_reify & EV__IOFDSET)
867 backend_modify (EV_A_ fd, o_events, events);
868 }
544 } 869 }
545 870
546 fdchangecnt = 0; 871 fdchangecnt = 0;
547} 872}
548 873
549void inline_size 874/* something about the given fd changed */
875inline_size void
550fd_change (EV_P_ int fd) 876fd_change (EV_P_ int fd, int flags)
551{ 877{
552 if (expect_false (anfds [fd].reify)) 878 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 879 anfds [fd].reify |= flags;
556 880
881 if (expect_true (!reify))
882 {
557 ++fdchangecnt; 883 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
886 }
560} 887}
561 888
562void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
563fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
564{ 892{
565 ev_io *w; 893 ev_io *w;
566 894
567 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 899 }
572} 900}
573 901
574int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
575fd_valid (int fd) 904fd_valid (int fd)
576{ 905{
577#ifdef _WIN32 906#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
579#else 908#else
587{ 916{
588 int fd; 917 int fd;
589 918
590 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 920 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
594} 923}
595 924
596/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 926static void noinline
615 944
616 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 946 if (anfds [fd].events)
618 { 947 {
619 anfds [fd].events = 0; 948 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 949 anfds [fd].emask = 0;
950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 951 }
622} 952}
623 953
624/*****************************************************************************/ 954/*****************************************************************************/
625 955
626void inline_speed 956/*
627upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
630 961
631 while (k && heap [k >> 1]->at > w->at) 962/*
632 { 963 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 965 * which is more cache-efficient.
635 k >>= 1; 966 * the difference is about 5% with 50000+ watchers.
636 } 967 */
968#if EV_USE_4HEAP
637 969
638 heap [k] = w; 970#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
640 974
641} 975/* away from the root */
642 976inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 977downheap (ANHE *heap, int N, int k)
645{ 978{
646 WT w = heap [k]; 979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
647 981
648 while (k < (N >> 1)) 982 for (;;)
649 { 983 {
650 int j = k << 1; 984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 987
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 990 {
654 991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
656 break; 1004 break;
657 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
658 heap [k] = heap [j]; 1044 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 1045 ev_active (ANHE_w (heap [k])) = k;
1046
660 k = j; 1047 k = c;
661 } 1048 }
662 1049
663 heap [k] = w; 1050 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1051 ev_active (ANHE_w (he)) = k;
665} 1052}
1053#endif
666 1054
667void inline_size 1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
1068 heap [k] = heap [p];
1069 ev_active (ANHE_w (heap [k])) = k;
1070 k = p;
1071 }
1072
1073 heap [k] = he;
1074 ev_active (ANHE_w (he)) = k;
1075}
1076
1077/* move an element suitably so it is in a correct place */
1078inline_size void
668adjustheap (WT *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
669{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 1082 upheap (heap, k);
1083 else
671 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
672} 1097}
673 1098
674/*****************************************************************************/ 1099/*****************************************************************************/
675 1100
1101/* associate signal watchers to a signal signal */
676typedef struct 1102typedef struct
677{ 1103{
678 WL head; 1104 WL head;
679 sig_atomic_t volatile gotsig; 1105 EV_ATOMIC_T gotsig;
680} ANSIG; 1106} ANSIG;
681 1107
682static ANSIG *signals; 1108static ANSIG *signals;
683static int signalmax; 1109static int signalmax;
684 1110
685static int sigpipe [2]; 1111static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1112
689void inline_size 1113/*****************************************************************************/
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696 1114
697 ++base; 1115/* used to prepare libev internal fd's */
698 } 1116/* this is not fork-safe */
699} 1117inline_speed void
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1118fd_intern (int fd)
754{ 1119{
755#ifdef _WIN32 1120#ifdef _WIN32
756 int arg = 1; 1121 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1123#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1126#endif
762} 1127}
763 1128
764static void noinline 1129static void noinline
765siginit (EV_P) 1130evpipe_init (EV_P)
766{ 1131{
1132 if (!ev_is_active (&pipe_w))
1133 {
1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1140 {
1141 evpipe [0] = -1;
1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1143 ev_io_set (&pipe_w, evfd, EV_READ);
1144 }
1145 else
1146#endif
1147 {
1148 while (pipe (evpipe))
1149 ev_syserr ("(libev) error creating signal/async pipe");
1150
767 fd_intern (sigpipe [0]); 1151 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1152 fd_intern (evpipe [1]);
1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1154 }
769 1155
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1156 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1158 }
1159}
1160
1161inline_size void
1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163{
1164 if (!*flag)
1165 {
1166 int old_errno = errno; /* save errno because write might clobber it */
1167
1168 *flag = 1;
1169
1170#if EV_USE_EVENTFD
1171 if (evfd >= 0)
1172 {
1173 uint64_t counter = 1;
1174 write (evfd, &counter, sizeof (uint64_t));
1175 }
1176 else
1177#endif
1178 write (evpipe [1], &old_errno, 1);
1179
1180 errno = old_errno;
1181 }
1182}
1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
1186static void
1187pipecb (EV_P_ ev_io *iow, int revents)
1188{
1189#if EV_USE_EVENTFD
1190 if (evfd >= 0)
1191 {
1192 uint64_t counter;
1193 read (evfd, &counter, sizeof (uint64_t));
1194 }
1195 else
1196#endif
1197 {
1198 char dummy;
1199 read (evpipe [0], &dummy, 1);
1200 }
1201
1202 if (gotsig && ev_is_default_loop (EV_A))
1203 {
1204 int signum;
1205 gotsig = 0;
1206
1207 for (signum = signalmax; signum--; )
1208 if (signals [signum].gotsig)
1209 ev_feed_signal_event (EV_A_ signum + 1);
1210 }
1211
1212#if EV_ASYNC_ENABLE
1213 if (gotasync)
1214 {
1215 int i;
1216 gotasync = 0;
1217
1218 for (i = asynccnt; i--; )
1219 if (asyncs [i]->sent)
1220 {
1221 asyncs [i]->sent = 0;
1222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1223 }
1224 }
1225#endif
773} 1226}
774 1227
775/*****************************************************************************/ 1228/*****************************************************************************/
776 1229
1230static void
1231ev_sighandler (int signum)
1232{
1233#if EV_MULTIPLICITY
1234 struct ev_loop *loop = &default_loop_struct;
1235#endif
1236
1237#if _WIN32
1238 signal (signum, ev_sighandler);
1239#endif
1240
1241 signals [signum - 1].gotsig = 1;
1242 evpipe_write (EV_A_ &gotsig);
1243}
1244
1245void noinline
1246ev_feed_signal_event (EV_P_ int signum)
1247{
1248 WL w;
1249
1250#if EV_MULTIPLICITY
1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1252#endif
1253
1254 --signum;
1255
1256 if (signum < 0 || signum >= signalmax)
1257 return;
1258
1259 signals [signum].gotsig = 0;
1260
1261 for (w = signals [signum].head; w; w = w->next)
1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1263}
1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
1285/*****************************************************************************/
1286
777static ev_child *childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
778 1288
779#ifndef _WIN32 1289#ifndef _WIN32
780 1290
781static ev_signal childev; 1291static ev_signal childev;
782 1292
783void inline_speed 1293#ifndef WIFCONTINUED
1294# define WIFCONTINUED(status) 0
1295#endif
1296
1297/* handle a single child status event */
1298inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
785{ 1300{
786 ev_child *w; 1301 ev_child *w;
1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1303
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1304 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1305 {
789 if (w->pid == pid || !w->pid) 1306 if ((w->pid == pid || !w->pid)
1307 && (!traced || (w->flags & 1)))
790 { 1308 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1309 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1310 w->rpid = pid;
793 w->rstatus = status; 1311 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1312 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1313 }
1314 }
796} 1315}
797 1316
798#ifndef WCONTINUED 1317#ifndef WCONTINUED
799# define WCONTINUED 0 1318# define WCONTINUED 0
800#endif 1319#endif
801 1320
1321/* called on sigchld etc., calls waitpid */
802static void 1322static void
803childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
804{ 1324{
805 int pid, status; 1325 int pid, status;
806 1326
809 if (!WCONTINUED 1329 if (!WCONTINUED
810 || errno != EINVAL 1330 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1331 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1332 return;
813 1333
814 /* make sure we are called again until all childs have been reaped */ 1334 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1335 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1336 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1337
818 child_reap (EV_A_ sw, pid, pid, status); 1338 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1339 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1340 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1341}
822 1342
823#endif 1343#endif
824 1344
825/*****************************************************************************/ 1345/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1407 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1408 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1409 flags &= ~EVBACKEND_KQUEUE;
890#endif 1410#endif
891#ifdef __APPLE__ 1411#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1412 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1415#endif
895 1416
896 return flags; 1417 return flags;
897} 1418}
898 1419
899unsigned int 1420unsigned int
900ev_embeddable_backends (void) 1421ev_embeddable_backends (void)
901{ 1422{
902 return EVBACKEND_EPOLL 1423 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1424
904 | EVBACKEND_PORT; 1425 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1426 /* please fix it and tell me how to detect the fix */
1427 flags &= ~EVBACKEND_EPOLL;
1428
1429 return flags;
905} 1430}
906 1431
907unsigned int 1432unsigned int
908ev_backend (EV_P) 1433ev_backend (EV_P)
909{ 1434{
910 return backend; 1435 return backend;
911} 1436}
912 1437
1438#if EV_MINIMAL < 2
913unsigned int 1439unsigned int
914ev_loop_count (EV_P) 1440ev_loop_count (EV_P)
915{ 1441{
916 return loop_count; 1442 return loop_count;
917} 1443}
918 1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1451void
1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1453{
1454 io_blocktime = interval;
1455}
1456
1457void
1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1459{
1460 timeout_blocktime = interval;
1461}
1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
919static void noinline 1488static void noinline
920loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
921{ 1490{
922 if (!backend) 1491 if (!backend)
923 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
924#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
925 { 1505 {
926 struct timespec ts; 1506 struct timespec ts;
1507
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1509 have_monotonic = 1;
929 } 1510 }
930#endif 1511#endif
931 1512
932 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1514 mn_now = get_clock ();
934 now_floor = mn_now; 1515 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1520
1521 io_blocktime = 0.;
1522 timeout_blocktime = 0.;
1523 backend = 0;
1524 backend_fd = -1;
1525 gotasync = 0;
1526#if EV_USE_INOTIFY
1527 fs_fd = -2;
1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
936 1532
937 /* pid check not overridable via env */ 1533 /* pid check not overridable via env */
938#ifndef _WIN32 1534#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1535 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1536 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1539 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1540 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1541 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1542 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1543
948 if (!(flags & 0x0000ffffUL)) 1544 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1545 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1546
957#if EV_USE_PORT 1547#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1549#endif
960#if EV_USE_KQUEUE 1550#if EV_USE_KQUEUE
968#endif 1558#endif
969#if EV_USE_SELECT 1559#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1561#endif
972 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
973 ev_init (&sigev, sigcb); 1565 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1567 }
976} 1568}
977 1569
1570/* free up a loop structure */
978static void noinline 1571static void noinline
979loop_destroy (EV_P) 1572loop_destroy (EV_P)
980{ 1573{
981 int i; 1574 int i;
1575
1576 if (ev_is_active (&pipe_w))
1577 {
1578 /*ev_ref (EV_A);*/
1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1580
1581#if EV_USE_EVENTFD
1582 if (evfd >= 0)
1583 close (evfd);
1584#endif
1585
1586 if (evpipe [0] >= 0)
1587 {
1588 close (evpipe [0]);
1589 close (evpipe [1]);
1590 }
1591 }
1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
982 1602
983#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
985 close (fs_fd); 1605 close (fs_fd);
986#endif 1606#endif
1010#if EV_IDLE_ENABLE 1630#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1631 array_free (idle, [i]);
1012#endif 1632#endif
1013 } 1633 }
1014 1634
1635 ev_free (anfds); anfdmax = 0;
1636
1015 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
1020#endif 1643#endif
1644#if EV_FORK_ENABLE
1645 array_free (fork, EMPTY);
1646#endif
1021 array_free (prepare, EMPTY); 1647 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1648 array_free (check, EMPTY);
1649#if EV_ASYNC_ENABLE
1650 array_free (async, EMPTY);
1651#endif
1023 1652
1024 backend = 0; 1653 backend = 0;
1025} 1654}
1026 1655
1656#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1658#endif
1028 1659
1029void inline_size 1660inline_size void
1030loop_fork (EV_P) 1661loop_fork (EV_P)
1031{ 1662{
1032#if EV_USE_PORT 1663#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1665#endif
1040#endif 1671#endif
1041#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1673 infy_fork (EV_A);
1043#endif 1674#endif
1044 1675
1045 if (ev_is_active (&sigev)) 1676 if (ev_is_active (&pipe_w))
1046 { 1677 {
1047 /* default loop */ 1678 /* this "locks" the handlers against writing to the pipe */
1679 /* while we modify the fd vars */
1680 gotsig = 1;
1681#if EV_ASYNC_ENABLE
1682 gotasync = 1;
1683#endif
1048 1684
1049 ev_ref (EV_A); 1685 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1686 ev_io_stop (EV_A_ &pipe_w);
1687
1688#if EV_USE_EVENTFD
1689 if (evfd >= 0)
1690 close (evfd);
1691#endif
1692
1693 if (evpipe [0] >= 0)
1694 {
1051 close (sigpipe [0]); 1695 close (evpipe [0]);
1052 close (sigpipe [1]); 1696 close (evpipe [1]);
1697 }
1053 1698
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1699 evpipe_init (EV_A);
1700 /* now iterate over everything, in case we missed something */
1701 pipecb (EV_A_ &pipe_w, EV_READ);
1058 } 1702 }
1059 1703
1060 postfork = 0; 1704 postfork = 0;
1061} 1705}
1062 1706
1063#if EV_MULTIPLICITY 1707#if EV_MULTIPLICITY
1708
1064struct ev_loop * 1709struct ev_loop *
1065ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1066{ 1711{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1713
1069 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1070
1071 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1072 1716
1073 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1074 return loop; 1718 return loop;
1075 1719
1084} 1728}
1085 1729
1086void 1730void
1087ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1088{ 1732{
1089 postfork = 1; 1733 postfork = 1; /* must be in line with ev_default_fork */
1090} 1734}
1735#endif /* multiplicity */
1091 1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1835}
1092#endif 1836#endif
1093 1837
1094#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1095struct ev_loop * 1839struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
1097#else 1841#else
1098int 1842int
1099ev_default_loop (unsigned int flags) 1843ev_default_loop (unsigned int flags)
1100#endif 1844#endif
1101{ 1845{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1846 if (!ev_default_loop_ptr)
1107 { 1847 {
1108#if EV_MULTIPLICITY 1848#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1849 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1850#else
1113 1853
1114 loop_init (EV_A_ flags); 1854 loop_init (EV_A_ flags);
1115 1855
1116 if (ev_backend (EV_A)) 1856 if (ev_backend (EV_A))
1117 { 1857 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1858#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1859 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1860 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1861 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1862 ev_unref (EV_A); /* child watcher should not keep loop alive */
1136{ 1874{
1137#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
1138 struct ev_loop *loop = ev_default_loop_ptr; 1876 struct ev_loop *loop = ev_default_loop_ptr;
1139#endif 1877#endif
1140 1878
1879 ev_default_loop_ptr = 0;
1880
1141#ifndef _WIN32 1881#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
1144#endif 1884#endif
1145 1885
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1886 loop_destroy (EV_A);
1153} 1887}
1154 1888
1155void 1889void
1156ev_default_fork (void) 1890ev_default_fork (void)
1157{ 1891{
1158#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1893 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1894#endif
1161 1895
1162 if (backend) 1896 postfork = 1; /* must be in line with ev_loop_fork */
1163 postfork = 1;
1164} 1897}
1165 1898
1166/*****************************************************************************/ 1899/*****************************************************************************/
1167 1900
1168void inline_speed 1901void
1169call_pending (EV_P) 1902ev_invoke (EV_P_ void *w, int revents)
1903{
1904 EV_CB_INVOKE ((W)w, revents);
1905}
1906
1907unsigned int
1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
1170{ 1921{
1171 int pri; 1922 int pri;
1172 1923
1173 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1175 { 1926 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 1928
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1181 1931
1182 p->w->pending = 0; 1932 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1184 } 1934 EV_FREQUENT_CHECK;
1185 } 1935 }
1186} 1936}
1187 1937
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 1938#if EV_IDLE_ENABLE
1268void inline_size 1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1269idle_reify (EV_P) 1942idle_reify (EV_P)
1270{ 1943{
1271 if (expect_false (idleall)) 1944 if (expect_false (idleall))
1272 { 1945 {
1273 int pri; 1946 int pri;
1285 } 1958 }
1286 } 1959 }
1287} 1960}
1288#endif 1961#endif
1289 1962
1290int inline_size 1963/* make timers pending */
1291time_update_monotonic (EV_P) 1964inline_size void
1965timers_reify (EV_P)
1292{ 1966{
1967 EV_FREQUENT_CHECK;
1968
1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1970 {
1971 do
1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1985
1986 ANHE_at_cache (timers [HEAP0]);
1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1994 }
1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1996
1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1998 }
1999}
2000
2001#if EV_PERIODIC_ENABLE
2002/* make periodics pending */
2003inline_size void
2004periodics_reify (EV_P)
2005{
2006 EV_FREQUENT_CHECK;
2007
2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2009 {
2010 int feed_count = 0;
2011
2012 do
2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
2063{
2064 int i;
2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
2100time_update (EV_P_ ev_tstamp max_block)
2101{
2102#if EV_USE_MONOTONIC
2103 if (expect_true (have_monotonic))
2104 {
2105 int i;
2106 ev_tstamp odiff = rtmn_diff;
2107
1293 mn_now = get_clock (); 2108 mn_now = get_clock ();
1294 2109
2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2111 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2112 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 2113 {
1297 ev_rt_now = rtmn_diff + mn_now; 2114 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 2115 return;
1299 } 2116 }
1300 else 2117
1301 {
1302 now_floor = mn_now; 2118 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 2119 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 2120
1308void inline_size 2121 /* loop a few times, before making important decisions.
1309time_update (EV_P) 2122 * on the choice of "4": one iteration isn't enough,
1310{ 2123 * in case we get preempted during the calls to
1311 int i; 2124 * ev_time and get_clock. a second call is almost guaranteed
1312 2125 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 2126 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 2127 * in the unlikely event of having been preempted here.
1315 { 2128 */
1316 if (time_update_monotonic (EV_A)) 2129 for (i = 4; --i; )
1317 { 2130 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1331 2132
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2134 return; /* all is well */
1334 2135
1335 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2137 mn_now = get_clock ();
1337 now_floor = mn_now; 2138 now_floor = mn_now;
1338 } 2139 }
1339 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1342# endif 2145# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2146 }
1347 else 2147 else
1348#endif 2148#endif
1349 { 2149 {
1350 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1351 2151
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1356#endif 2158#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2159 }
1362 2160
1363 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1364 } 2162 }
1365} 2163}
1366 2164
1367void 2165void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1383{ 2167{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2168#if EV_MINIMAL < 2
1385 ? EVUNLOOP_ONE 2169 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 2170#endif
1387 2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
2174 loop_done = EVUNLOOP_CANCEL;
2175
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 2177
1390 do 2178 do
1391 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
1392#ifndef _WIN32 2184#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2185 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2186 if (expect_false (getpid () != curpid))
1395 { 2187 {
1396 curpid = getpid (); 2188 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 2194 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1404 if (forkcnt) 2196 if (forkcnt)
1405 { 2197 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1408 } 2200 }
1409#endif 2201#endif
1410 2202
1411 /* queue check watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1413 { 2205 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1416 } 2208 }
1417 2209
1418 if (expect_false (!activecnt)) 2210 if (expect_false (loop_done))
1419 break; 2211 break;
1420 2212
1421 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1423 loop_fork (EV_A); 2215 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 2217 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2218 fd_reify (EV_A);
1427 2219
1428 /* calculate blocking time */ 2220 /* calculate blocking time */
1429 { 2221 {
1430 ev_tstamp block; 2222 ev_tstamp waittime = 0.;
2223 ev_tstamp sleeptime = 0.;
1431 2224
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
1436 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 2231 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 2232
1447 block = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1448 2234
1449 if (timercnt) 2235 if (timercnt)
1450 { 2236 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2238 if (waittime > to) waittime = to;
1453 } 2239 }
1454 2240
1455#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2242 if (periodiccnt)
1457 { 2243 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2245 if (waittime > to) waittime = to;
1460 } 2246 }
1461#endif 2247#endif
1462 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
2250 if (expect_false (waittime < timeout_blocktime))
2251 waittime = timeout_blocktime;
2252
2253 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2254 if (expect_false (io_blocktime))
2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
2263 ev_sleep (sleeptime);
2264 waittime -= sleeptime;
2265 }
2266 }
1464 } 2267 }
1465 2268
2269#if EV_MINIMAL < 2
1466 ++loop_count; 2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2275
2276 /* update ev_rt_now, do magic */
2277 time_update (EV_A_ waittime + sleeptime);
1468 } 2278 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2279
1473 /* queue pending timers and reschedule them */ 2280 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2281 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2282#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2283 periodics_reify (EV_A); /* absolute timers called first */
1483 2290
1484 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2294
1488 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1489
1490 } 2296 }
1491 while (expect_true (activecnt && !loop_done)); 2297 while (expect_true (
2298 activecnt
2299 && !loop_done
2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2301 ));
1492 2302
1493 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1495} 2309}
1496 2310
1497void 2311void
1498ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1499{ 2313{
1500 loop_done = how; 2314 loop_done = how;
1501} 2315}
1502 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1503/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1504 2356
1505void inline_size 2357inline_size void
1506wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1507{ 2359{
1508 elem->next = *head; 2360 elem->next = *head;
1509 *head = elem; 2361 *head = elem;
1510} 2362}
1511 2363
1512void inline_size 2364inline_size void
1513wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1514{ 2366{
1515 while (*head) 2367 while (*head)
1516 { 2368 {
1517 if (*head == elem) 2369 if (*head == elem)
1522 2374
1523 head = &(*head)->next; 2375 head = &(*head)->next;
1524 } 2376 }
1525} 2377}
1526 2378
1527void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
1528clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1529{ 2382{
1530 if (w->pending) 2383 if (w->pending)
1531 { 2384 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2386 w->pending = 0;
1534 } 2387 }
1535} 2388}
1536 2389
1537int 2390int
1538ev_clear_pending (EV_P_ void *w) 2391ev_clear_pending (EV_P_ void *w)
1539{ 2392{
1540 W w_ = (W)w; 2393 W w_ = (W)w;
1541 int pending = w_->pending; 2394 int pending = w_->pending;
1542 2395
1543 if (!pending) 2396 if (expect_true (pending))
2397 {
2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
2400 w_->pending = 0;
2401 return p->events;
2402 }
2403 else
1544 return 0; 2404 return 0;
1545
1546 w_->pending = 0;
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 p->w = 0;
1549
1550 return p->events;
1551} 2405}
1552 2406
1553void inline_size 2407inline_size void
1554pri_adjust (EV_P_ W w) 2408pri_adjust (EV_P_ W w)
1555{ 2409{
1556 int pri = w->priority; 2410 int pri = ev_priority (w);
1557 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1558 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1559 w->priority = pri; 2413 ev_set_priority (w, pri);
1560} 2414}
1561 2415
1562void inline_speed 2416inline_speed void
1563ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1564{ 2418{
1565 pri_adjust (EV_A_ w); 2419 pri_adjust (EV_A_ w);
1566 w->active = active; 2420 w->active = active;
1567 ev_ref (EV_A); 2421 ev_ref (EV_A);
1568} 2422}
1569 2423
1570void inline_size 2424inline_size void
1571ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1572{ 2426{
1573 ev_unref (EV_A); 2427 ev_unref (EV_A);
1574 w->active = 0; 2428 w->active = 0;
1575} 2429}
1576 2430
1577/*****************************************************************************/ 2431/*****************************************************************************/
1578 2432
1579void 2433void noinline
1580ev_io_start (EV_P_ ev_io *w) 2434ev_io_start (EV_P_ ev_io *w)
1581{ 2435{
1582 int fd = w->fd; 2436 int fd = w->fd;
1583 2437
1584 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1585 return; 2439 return;
1586 2440
1587 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1588 2445
1589 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1590 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1591 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1592 2449
1593 fd_change (EV_A_ fd); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1594} 2451 w->events &= ~EV__IOFDSET;
1595 2452
1596void 2453 EV_FREQUENT_CHECK;
2454}
2455
2456void noinline
1597ev_io_stop (EV_P_ ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1598{ 2458{
1599 clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2460 if (expect_false (!ev_is_active (w)))
1601 return; 2461 return;
1602 2462
1603 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1604 2464
2465 EV_FREQUENT_CHECK;
2466
1605 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1606 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1607 2469
1608 fd_change (EV_A_ w->fd); 2470 fd_change (EV_A_ w->fd, 1);
1609}
1610 2471
1611void 2472 EV_FREQUENT_CHECK;
2473}
2474
2475void noinline
1612ev_timer_start (EV_P_ ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1613{ 2477{
1614 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1615 return; 2479 return;
1616 2480
1617 ((WT)w)->at += mn_now; 2481 ev_at (w) += mn_now;
1618 2482
1619 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1620 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1621 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1622 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1623 timers [timercnt - 1] = w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
1624 upheap ((WT *)timers, timercnt - 1); 2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
1625 2493
2494 EV_FREQUENT_CHECK;
2495
1626 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1627} 2497}
1628 2498
1629void 2499void noinline
1630ev_timer_stop (EV_P_ ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1631{ 2501{
1632 clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2503 if (expect_false (!ev_is_active (w)))
1634 return; 2504 return;
1635 2505
1636 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2506 EV_FREQUENT_CHECK;
1637 2507
1638 { 2508 {
1639 int active = ((W)w)->active; 2509 int active = ev_active (w);
1640 2510
2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2512
2513 --timercnt;
2514
1641 if (expect_true (--active < --timercnt)) 2515 if (expect_true (active < timercnt + HEAP0))
1642 { 2516 {
1643 timers [active] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1644 adjustheap ((WT *)timers, timercnt, active); 2518 adjustheap (timers, timercnt, active);
1645 } 2519 }
1646 } 2520 }
1647 2521
1648 ((WT)w)->at -= mn_now; 2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
1649 2525
1650 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1651} 2527}
1652 2528
1653void 2529void noinline
1654ev_timer_again (EV_P_ ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1655{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1656 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1657 { 2535 {
1658 if (w->repeat) 2536 if (w->repeat)
1659 { 2537 {
1660 ((WT)w)->at = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
1661 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2540 adjustheap (timers, timercnt, ev_active (w));
1662 } 2541 }
1663 else 2542 else
1664 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1665 } 2544 }
1666 else if (w->repeat) 2545 else if (w->repeat)
1667 { 2546 {
1668 w->at = w->repeat; 2547 ev_at (w) = w->repeat;
1669 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1670 } 2549 }
2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1671} 2558}
1672 2559
1673#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
1674void 2561void noinline
1675ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1676{ 2563{
1677 if (expect_false (ev_is_active (w))) 2564 if (expect_false (ev_is_active (w)))
1678 return; 2565 return;
1679 2566
1680 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1681 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1682 else if (w->interval) 2569 else if (w->interval)
1683 { 2570 {
1684 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1685 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1686 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1687 } 2574 }
2575 else
2576 ev_at (w) = w->offset;
1688 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1689 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1690 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1691 periodics [periodiccnt - 1] = w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1692 upheap ((WT *)periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1693 2586
2587 EV_FREQUENT_CHECK;
2588
1694 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1695} 2590}
1696 2591
1697void 2592void noinline
1698ev_periodic_stop (EV_P_ ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1699{ 2594{
1700 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1702 return; 2597 return;
1703 2598
1704 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2599 EV_FREQUENT_CHECK;
1705 2600
1706 { 2601 {
1707 int active = ((W)w)->active; 2602 int active = ev_active (w);
1708 2603
2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2605
2606 --periodiccnt;
2607
1709 if (expect_true (--active < --periodiccnt)) 2608 if (expect_true (active < periodiccnt + HEAP0))
1710 { 2609 {
1711 periodics [active] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1712 adjustheap ((WT *)periodics, periodiccnt, active); 2611 adjustheap (periodics, periodiccnt, active);
1713 } 2612 }
1714 } 2613 }
1715 2614
2615 EV_FREQUENT_CHECK;
2616
1716 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1717} 2618}
1718 2619
1719void 2620void noinline
1720ev_periodic_again (EV_P_ ev_periodic *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1721{ 2622{
1722 /* TODO: use adjustheap and recalculation */ 2623 /* TODO: use adjustheap and recalculation */
1723 ev_periodic_stop (EV_A_ w); 2624 ev_periodic_stop (EV_A_ w);
1724 ev_periodic_start (EV_A_ w); 2625 ev_periodic_start (EV_A_ w);
1727 2628
1728#ifndef SA_RESTART 2629#ifndef SA_RESTART
1729# define SA_RESTART 0 2630# define SA_RESTART 0
1730#endif 2631#endif
1731 2632
1732void 2633void noinline
1733ev_signal_start (EV_P_ ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
1734{ 2635{
1735#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
1736 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1737#endif 2638#endif
1738 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
1739 return; 2640 return;
1740 2641
1741 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2676 evpipe_init (EV_A);
2677
2678 {
2679#ifndef _WIN32
2680 sigset_t full, prev;
2681 sigfillset (&full);
2682 sigprocmask (SIG_SETMASK, &full, &prev);
2683#endif
2684
2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2686
2687#ifndef _WIN32
2688 if (sigfd < 0)/*TODO*/
2689 sigdelset (&prev, w->signum);
2690 sigprocmask (SIG_SETMASK, &prev, 0);
2691#endif
2692 }
1742 2693
1743 ev_start (EV_A_ (W)w, 1); 2694 ev_start (EV_A_ (W)w, 1);
1744 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1745 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2695 wlist_add (&signals [w->signum - 1].head, (WL)w);
1746 2696
1747 if (!((WL)w)->next) 2697 if (!((WL)w)->next)
1748 { 2698 {
1749#if _WIN32 2699#if _WIN32
1750 signal (w->signum, sighandler); 2700 signal (w->signum, ev_sighandler);
1751#else 2701#else
2702 if (sigfd < 0) /*TODO*/
2703 {
1752 struct sigaction sa; 2704 struct sigaction sa = { };
1753 sa.sa_handler = sighandler; 2705 sa.sa_handler = ev_sighandler;
1754 sigfillset (&sa.sa_mask); 2706 sigfillset (&sa.sa_mask);
1755 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2707 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1756 sigaction (w->signum, &sa, 0); 2708 sigaction (w->signum, &sa, 0);
2709 }
1757#endif 2710#endif
1758 } 2711 }
1759}
1760 2712
1761void 2713 EV_FREQUENT_CHECK;
2714}
2715
2716void noinline
1762ev_signal_stop (EV_P_ ev_signal *w) 2717ev_signal_stop (EV_P_ ev_signal *w)
1763{ 2718{
1764 clear_pending (EV_A_ (W)w); 2719 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2720 if (expect_false (!ev_is_active (w)))
1766 return; 2721 return;
1767 2722
2723 EV_FREQUENT_CHECK;
2724
1768 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2725 wlist_del (&signals [w->signum - 1].head, (WL)w);
1769 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
1770 2727
1771 if (!signals [w->signum - 1].head) 2728 if (!signals [w->signum - 1].head)
2729#if EV_USE_SIGNALFD
2730 if (sigfd >= 0)
2731 {
2732 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2733 sigdelset (&sigfd_set, w->signum);
2734 signalfd (sigfd, &sigfd_set, 0);
2735 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2736 /*TODO: maybe unblock signal? */
2737 }
2738 else
2739#endif
1772 signal (w->signum, SIG_DFL); 2740 signal (w->signum, SIG_DFL);
2741
2742 EV_FREQUENT_CHECK;
1773} 2743}
1774 2744
1775void 2745void
1776ev_child_start (EV_P_ ev_child *w) 2746ev_child_start (EV_P_ ev_child *w)
1777{ 2747{
1778#if EV_MULTIPLICITY 2748#if EV_MULTIPLICITY
1779 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2749 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1780#endif 2750#endif
1781 if (expect_false (ev_is_active (w))) 2751 if (expect_false (ev_is_active (w)))
1782 return; 2752 return;
1783 2753
2754 EV_FREQUENT_CHECK;
2755
1784 ev_start (EV_A_ (W)w, 1); 2756 ev_start (EV_A_ (W)w, 1);
1785 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2757 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2758
2759 EV_FREQUENT_CHECK;
1786} 2760}
1787 2761
1788void 2762void
1789ev_child_stop (EV_P_ ev_child *w) 2763ev_child_stop (EV_P_ ev_child *w)
1790{ 2764{
1791 clear_pending (EV_A_ (W)w); 2765 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 2766 if (expect_false (!ev_is_active (w)))
1793 return; 2767 return;
1794 2768
2769 EV_FREQUENT_CHECK;
2770
1795 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2771 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1796 ev_stop (EV_A_ (W)w); 2772 ev_stop (EV_A_ (W)w);
2773
2774 EV_FREQUENT_CHECK;
1797} 2775}
1798 2776
1799#if EV_STAT_ENABLE 2777#if EV_STAT_ENABLE
1800 2778
1801# ifdef _WIN32 2779# ifdef _WIN32
1802# undef lstat 2780# undef lstat
1803# define lstat(a,b) _stati64 (a,b) 2781# define lstat(a,b) _stati64 (a,b)
1804# endif 2782# endif
1805 2783
1806#define DEF_STAT_INTERVAL 5.0074891 2784#define DEF_STAT_INTERVAL 5.0074891
2785#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1807#define MIN_STAT_INTERVAL 0.1074891 2786#define MIN_STAT_INTERVAL 0.1074891
1808 2787
1809static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2788static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1810 2789
1811#if EV_USE_INOTIFY 2790#if EV_USE_INOTIFY
1812# define EV_INOTIFY_BUFSIZE 8192 2791# define EV_INOTIFY_BUFSIZE 8192
1816{ 2795{
1817 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2796 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1818 2797
1819 if (w->wd < 0) 2798 if (w->wd < 0)
1820 { 2799 {
2800 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1821 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2801 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1822 2802
1823 /* monitor some parent directory for speedup hints */ 2803 /* monitor some parent directory for speedup hints */
2804 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2805 /* but an efficiency issue only */
1824 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2806 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1825 { 2807 {
1826 char path [4096]; 2808 char path [4096];
1827 strcpy (path, w->path); 2809 strcpy (path, w->path);
1828 2810
1831 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2813 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1832 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2814 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1833 2815
1834 char *pend = strrchr (path, '/'); 2816 char *pend = strrchr (path, '/');
1835 2817
1836 if (!pend) 2818 if (!pend || pend == path)
1837 break; /* whoops, no '/', complain to your admin */ 2819 break;
1838 2820
1839 *pend = 0; 2821 *pend = 0;
1840 w->wd = inotify_add_watch (fs_fd, path, mask); 2822 w->wd = inotify_add_watch (fs_fd, path, mask);
1841 } 2823 }
1842 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2824 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1843 } 2825 }
1844 } 2826 }
1845 else
1846 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1847 2827
1848 if (w->wd >= 0) 2828 if (w->wd >= 0)
2829 {
1849 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2830 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2831
2832 /* now local changes will be tracked by inotify, but remote changes won't */
2833 /* unless the filesystem it known to be local, we therefore still poll */
2834 /* also do poll on <2.6.25, but with normal frequency */
2835 struct statfs sfs;
2836
2837 if (fs_2625 && !statfs (w->path, &sfs))
2838 if (sfs.f_type == 0x1373 /* devfs */
2839 || sfs.f_type == 0xEF53 /* ext2/3 */
2840 || sfs.f_type == 0x3153464a /* jfs */
2841 || sfs.f_type == 0x52654973 /* reiser3 */
2842 || sfs.f_type == 0x01021994 /* tempfs */
2843 || sfs.f_type == 0x58465342 /* xfs */)
2844 return;
2845
2846 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2847 ev_timer_again (EV_A_ &w->timer);
2848 }
1850} 2849}
1851 2850
1852static void noinline 2851static void noinline
1853infy_del (EV_P_ ev_stat *w) 2852infy_del (EV_P_ ev_stat *w)
1854{ 2853{
1868 2867
1869static void noinline 2868static void noinline
1870infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2869infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1871{ 2870{
1872 if (slot < 0) 2871 if (slot < 0)
1873 /* overflow, need to check for all hahs slots */ 2872 /* overflow, need to check for all hash slots */
1874 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2873 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1875 infy_wd (EV_A_ slot, wd, ev); 2874 infy_wd (EV_A_ slot, wd, ev);
1876 else 2875 else
1877 { 2876 {
1878 WL w_; 2877 WL w_;
1884 2883
1885 if (w->wd == wd || wd == -1) 2884 if (w->wd == wd || wd == -1)
1886 { 2885 {
1887 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2886 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1888 { 2887 {
2888 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1889 w->wd = -1; 2889 w->wd = -1;
1890 infy_add (EV_A_ w); /* re-add, no matter what */ 2890 infy_add (EV_A_ w); /* re-add, no matter what */
1891 } 2891 }
1892 2892
1893 stat_timer_cb (EV_A_ &w->timer, 0); 2893 stat_timer_cb (EV_A_ &w->timer, 0);
1906 2906
1907 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2907 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1908 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2908 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1909} 2909}
1910 2910
1911void inline_size 2911inline_size void
2912check_2625 (EV_P)
2913{
2914 /* kernels < 2.6.25 are borked
2915 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2916 */
2917 struct utsname buf;
2918 int major, minor, micro;
2919
2920 if (uname (&buf))
2921 return;
2922
2923 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2924 return;
2925
2926 if (major < 2
2927 || (major == 2 && minor < 6)
2928 || (major == 2 && minor == 6 && micro < 25))
2929 return;
2930
2931 fs_2625 = 1;
2932}
2933
2934inline_size void
1912infy_init (EV_P) 2935infy_init (EV_P)
1913{ 2936{
1914 if (fs_fd != -2) 2937 if (fs_fd != -2)
1915 return; 2938 return;
2939
2940 fs_fd = -1;
2941
2942 check_2625 (EV_A);
1916 2943
1917 fs_fd = inotify_init (); 2944 fs_fd = inotify_init ();
1918 2945
1919 if (fs_fd >= 0) 2946 if (fs_fd >= 0)
1920 { 2947 {
1922 ev_set_priority (&fs_w, EV_MAXPRI); 2949 ev_set_priority (&fs_w, EV_MAXPRI);
1923 ev_io_start (EV_A_ &fs_w); 2950 ev_io_start (EV_A_ &fs_w);
1924 } 2951 }
1925} 2952}
1926 2953
1927void inline_size 2954inline_size void
1928infy_fork (EV_P) 2955infy_fork (EV_P)
1929{ 2956{
1930 int slot; 2957 int slot;
1931 2958
1932 if (fs_fd < 0) 2959 if (fs_fd < 0)
1948 w->wd = -1; 2975 w->wd = -1;
1949 2976
1950 if (fs_fd >= 0) 2977 if (fs_fd >= 0)
1951 infy_add (EV_A_ w); /* re-add, no matter what */ 2978 infy_add (EV_A_ w); /* re-add, no matter what */
1952 else 2979 else
1953 ev_timer_start (EV_A_ &w->timer); 2980 ev_timer_again (EV_A_ &w->timer);
1954 } 2981 }
1955
1956 } 2982 }
1957} 2983}
1958 2984
2985#endif
2986
2987#ifdef _WIN32
2988# define EV_LSTAT(p,b) _stati64 (p, b)
2989#else
2990# define EV_LSTAT(p,b) lstat (p, b)
1959#endif 2991#endif
1960 2992
1961void 2993void
1962ev_stat_stat (EV_P_ ev_stat *w) 2994ev_stat_stat (EV_P_ ev_stat *w)
1963{ 2995{
1990 || w->prev.st_atime != w->attr.st_atime 3022 || w->prev.st_atime != w->attr.st_atime
1991 || w->prev.st_mtime != w->attr.st_mtime 3023 || w->prev.st_mtime != w->attr.st_mtime
1992 || w->prev.st_ctime != w->attr.st_ctime 3024 || w->prev.st_ctime != w->attr.st_ctime
1993 ) { 3025 ) {
1994 #if EV_USE_INOTIFY 3026 #if EV_USE_INOTIFY
3027 if (fs_fd >= 0)
3028 {
1995 infy_del (EV_A_ w); 3029 infy_del (EV_A_ w);
1996 infy_add (EV_A_ w); 3030 infy_add (EV_A_ w);
1997 ev_stat_stat (EV_A_ w); /* avoid race... */ 3031 ev_stat_stat (EV_A_ w); /* avoid race... */
3032 }
1998 #endif 3033 #endif
1999 3034
2000 ev_feed_event (EV_A_ w, EV_STAT); 3035 ev_feed_event (EV_A_ w, EV_STAT);
2001 } 3036 }
2002} 3037}
2005ev_stat_start (EV_P_ ev_stat *w) 3040ev_stat_start (EV_P_ ev_stat *w)
2006{ 3041{
2007 if (expect_false (ev_is_active (w))) 3042 if (expect_false (ev_is_active (w)))
2008 return; 3043 return;
2009 3044
2010 /* since we use memcmp, we need to clear any padding data etc. */
2011 memset (&w->prev, 0, sizeof (ev_statdata));
2012 memset (&w->attr, 0, sizeof (ev_statdata));
2013
2014 ev_stat_stat (EV_A_ w); 3045 ev_stat_stat (EV_A_ w);
2015 3046
3047 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2016 if (w->interval < MIN_STAT_INTERVAL) 3048 w->interval = MIN_STAT_INTERVAL;
2017 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2018 3049
2019 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3050 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2020 ev_set_priority (&w->timer, ev_priority (w)); 3051 ev_set_priority (&w->timer, ev_priority (w));
2021 3052
2022#if EV_USE_INOTIFY 3053#if EV_USE_INOTIFY
2023 infy_init (EV_A); 3054 infy_init (EV_A);
2024 3055
2025 if (fs_fd >= 0) 3056 if (fs_fd >= 0)
2026 infy_add (EV_A_ w); 3057 infy_add (EV_A_ w);
2027 else 3058 else
2028#endif 3059#endif
2029 ev_timer_start (EV_A_ &w->timer); 3060 ev_timer_again (EV_A_ &w->timer);
2030 3061
2031 ev_start (EV_A_ (W)w, 1); 3062 ev_start (EV_A_ (W)w, 1);
3063
3064 EV_FREQUENT_CHECK;
2032} 3065}
2033 3066
2034void 3067void
2035ev_stat_stop (EV_P_ ev_stat *w) 3068ev_stat_stop (EV_P_ ev_stat *w)
2036{ 3069{
2037 clear_pending (EV_A_ (W)w); 3070 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 3071 if (expect_false (!ev_is_active (w)))
2039 return; 3072 return;
2040 3073
3074 EV_FREQUENT_CHECK;
3075
2041#if EV_USE_INOTIFY 3076#if EV_USE_INOTIFY
2042 infy_del (EV_A_ w); 3077 infy_del (EV_A_ w);
2043#endif 3078#endif
2044 ev_timer_stop (EV_A_ &w->timer); 3079 ev_timer_stop (EV_A_ &w->timer);
2045 3080
2046 ev_stop (EV_A_ (W)w); 3081 ev_stop (EV_A_ (W)w);
3082
3083 EV_FREQUENT_CHECK;
2047} 3084}
2048#endif 3085#endif
2049 3086
2050#if EV_IDLE_ENABLE 3087#if EV_IDLE_ENABLE
2051void 3088void
2053{ 3090{
2054 if (expect_false (ev_is_active (w))) 3091 if (expect_false (ev_is_active (w)))
2055 return; 3092 return;
2056 3093
2057 pri_adjust (EV_A_ (W)w); 3094 pri_adjust (EV_A_ (W)w);
3095
3096 EV_FREQUENT_CHECK;
2058 3097
2059 { 3098 {
2060 int active = ++idlecnt [ABSPRI (w)]; 3099 int active = ++idlecnt [ABSPRI (w)];
2061 3100
2062 ++idleall; 3101 ++idleall;
2063 ev_start (EV_A_ (W)w, active); 3102 ev_start (EV_A_ (W)w, active);
2064 3103
2065 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3104 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2066 idles [ABSPRI (w)][active - 1] = w; 3105 idles [ABSPRI (w)][active - 1] = w;
2067 } 3106 }
3107
3108 EV_FREQUENT_CHECK;
2068} 3109}
2069 3110
2070void 3111void
2071ev_idle_stop (EV_P_ ev_idle *w) 3112ev_idle_stop (EV_P_ ev_idle *w)
2072{ 3113{
2073 clear_pending (EV_A_ (W)w); 3114 clear_pending (EV_A_ (W)w);
2074 if (expect_false (!ev_is_active (w))) 3115 if (expect_false (!ev_is_active (w)))
2075 return; 3116 return;
2076 3117
3118 EV_FREQUENT_CHECK;
3119
2077 { 3120 {
2078 int active = ((W)w)->active; 3121 int active = ev_active (w);
2079 3122
2080 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3123 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2081 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3124 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2082 3125
2083 ev_stop (EV_A_ (W)w); 3126 ev_stop (EV_A_ (W)w);
2084 --idleall; 3127 --idleall;
2085 } 3128 }
3129
3130 EV_FREQUENT_CHECK;
2086} 3131}
2087#endif 3132#endif
2088 3133
2089void 3134void
2090ev_prepare_start (EV_P_ ev_prepare *w) 3135ev_prepare_start (EV_P_ ev_prepare *w)
2091{ 3136{
2092 if (expect_false (ev_is_active (w))) 3137 if (expect_false (ev_is_active (w)))
2093 return; 3138 return;
3139
3140 EV_FREQUENT_CHECK;
2094 3141
2095 ev_start (EV_A_ (W)w, ++preparecnt); 3142 ev_start (EV_A_ (W)w, ++preparecnt);
2096 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3143 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2097 prepares [preparecnt - 1] = w; 3144 prepares [preparecnt - 1] = w;
3145
3146 EV_FREQUENT_CHECK;
2098} 3147}
2099 3148
2100void 3149void
2101ev_prepare_stop (EV_P_ ev_prepare *w) 3150ev_prepare_stop (EV_P_ ev_prepare *w)
2102{ 3151{
2103 clear_pending (EV_A_ (W)w); 3152 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 3153 if (expect_false (!ev_is_active (w)))
2105 return; 3154 return;
2106 3155
3156 EV_FREQUENT_CHECK;
3157
2107 { 3158 {
2108 int active = ((W)w)->active; 3159 int active = ev_active (w);
3160
2109 prepares [active - 1] = prepares [--preparecnt]; 3161 prepares [active - 1] = prepares [--preparecnt];
2110 ((W)prepares [active - 1])->active = active; 3162 ev_active (prepares [active - 1]) = active;
2111 } 3163 }
2112 3164
2113 ev_stop (EV_A_ (W)w); 3165 ev_stop (EV_A_ (W)w);
3166
3167 EV_FREQUENT_CHECK;
2114} 3168}
2115 3169
2116void 3170void
2117ev_check_start (EV_P_ ev_check *w) 3171ev_check_start (EV_P_ ev_check *w)
2118{ 3172{
2119 if (expect_false (ev_is_active (w))) 3173 if (expect_false (ev_is_active (w)))
2120 return; 3174 return;
3175
3176 EV_FREQUENT_CHECK;
2121 3177
2122 ev_start (EV_A_ (W)w, ++checkcnt); 3178 ev_start (EV_A_ (W)w, ++checkcnt);
2123 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3179 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2124 checks [checkcnt - 1] = w; 3180 checks [checkcnt - 1] = w;
3181
3182 EV_FREQUENT_CHECK;
2125} 3183}
2126 3184
2127void 3185void
2128ev_check_stop (EV_P_ ev_check *w) 3186ev_check_stop (EV_P_ ev_check *w)
2129{ 3187{
2130 clear_pending (EV_A_ (W)w); 3188 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w))) 3189 if (expect_false (!ev_is_active (w)))
2132 return; 3190 return;
2133 3191
3192 EV_FREQUENT_CHECK;
3193
2134 { 3194 {
2135 int active = ((W)w)->active; 3195 int active = ev_active (w);
3196
2136 checks [active - 1] = checks [--checkcnt]; 3197 checks [active - 1] = checks [--checkcnt];
2137 ((W)checks [active - 1])->active = active; 3198 ev_active (checks [active - 1]) = active;
2138 } 3199 }
2139 3200
2140 ev_stop (EV_A_ (W)w); 3201 ev_stop (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
2141} 3204}
2142 3205
2143#if EV_EMBED_ENABLE 3206#if EV_EMBED_ENABLE
2144void noinline 3207void noinline
2145ev_embed_sweep (EV_P_ ev_embed *w) 3208ev_embed_sweep (EV_P_ ev_embed *w)
2146{ 3209{
2147 ev_loop (w->loop, EVLOOP_NONBLOCK); 3210 ev_loop (w->other, EVLOOP_NONBLOCK);
2148} 3211}
2149 3212
2150static void 3213static void
2151embed_cb (EV_P_ ev_io *io, int revents) 3214embed_io_cb (EV_P_ ev_io *io, int revents)
2152{ 3215{
2153 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3216 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2154 3217
2155 if (ev_cb (w)) 3218 if (ev_cb (w))
2156 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3219 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2157 else 3220 else
2158 ev_embed_sweep (loop, w); 3221 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 3222}
3223
3224static void
3225embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3226{
3227 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3228
3229 {
3230 struct ev_loop *loop = w->other;
3231
3232 while (fdchangecnt)
3233 {
3234 fd_reify (EV_A);
3235 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3236 }
3237 }
3238}
3239
3240static void
3241embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3242{
3243 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3244
3245 ev_embed_stop (EV_A_ w);
3246
3247 {
3248 struct ev_loop *loop = w->other;
3249
3250 ev_loop_fork (EV_A);
3251 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3252 }
3253
3254 ev_embed_start (EV_A_ w);
3255}
3256
3257#if 0
3258static void
3259embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3260{
3261 ev_idle_stop (EV_A_ idle);
3262}
3263#endif
2160 3264
2161void 3265void
2162ev_embed_start (EV_P_ ev_embed *w) 3266ev_embed_start (EV_P_ ev_embed *w)
2163{ 3267{
2164 if (expect_false (ev_is_active (w))) 3268 if (expect_false (ev_is_active (w)))
2165 return; 3269 return;
2166 3270
2167 { 3271 {
2168 struct ev_loop *loop = w->loop; 3272 struct ev_loop *loop = w->other;
2169 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3273 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2170 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3274 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2171 } 3275 }
3276
3277 EV_FREQUENT_CHECK;
2172 3278
2173 ev_set_priority (&w->io, ev_priority (w)); 3279 ev_set_priority (&w->io, ev_priority (w));
2174 ev_io_start (EV_A_ &w->io); 3280 ev_io_start (EV_A_ &w->io);
2175 3281
3282 ev_prepare_init (&w->prepare, embed_prepare_cb);
3283 ev_set_priority (&w->prepare, EV_MINPRI);
3284 ev_prepare_start (EV_A_ &w->prepare);
3285
3286 ev_fork_init (&w->fork, embed_fork_cb);
3287 ev_fork_start (EV_A_ &w->fork);
3288
3289 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3290
2176 ev_start (EV_A_ (W)w, 1); 3291 ev_start (EV_A_ (W)w, 1);
3292
3293 EV_FREQUENT_CHECK;
2177} 3294}
2178 3295
2179void 3296void
2180ev_embed_stop (EV_P_ ev_embed *w) 3297ev_embed_stop (EV_P_ ev_embed *w)
2181{ 3298{
2182 clear_pending (EV_A_ (W)w); 3299 clear_pending (EV_A_ (W)w);
2183 if (expect_false (!ev_is_active (w))) 3300 if (expect_false (!ev_is_active (w)))
2184 return; 3301 return;
2185 3302
3303 EV_FREQUENT_CHECK;
3304
2186 ev_io_stop (EV_A_ &w->io); 3305 ev_io_stop (EV_A_ &w->io);
3306 ev_prepare_stop (EV_A_ &w->prepare);
3307 ev_fork_stop (EV_A_ &w->fork);
2187 3308
2188 ev_stop (EV_A_ (W)w); 3309 EV_FREQUENT_CHECK;
2189} 3310}
2190#endif 3311#endif
2191 3312
2192#if EV_FORK_ENABLE 3313#if EV_FORK_ENABLE
2193void 3314void
2194ev_fork_start (EV_P_ ev_fork *w) 3315ev_fork_start (EV_P_ ev_fork *w)
2195{ 3316{
2196 if (expect_false (ev_is_active (w))) 3317 if (expect_false (ev_is_active (w)))
2197 return; 3318 return;
3319
3320 EV_FREQUENT_CHECK;
2198 3321
2199 ev_start (EV_A_ (W)w, ++forkcnt); 3322 ev_start (EV_A_ (W)w, ++forkcnt);
2200 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3323 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2201 forks [forkcnt - 1] = w; 3324 forks [forkcnt - 1] = w;
3325
3326 EV_FREQUENT_CHECK;
2202} 3327}
2203 3328
2204void 3329void
2205ev_fork_stop (EV_P_ ev_fork *w) 3330ev_fork_stop (EV_P_ ev_fork *w)
2206{ 3331{
2207 clear_pending (EV_A_ (W)w); 3332 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 3333 if (expect_false (!ev_is_active (w)))
2209 return; 3334 return;
2210 3335
3336 EV_FREQUENT_CHECK;
3337
2211 { 3338 {
2212 int active = ((W)w)->active; 3339 int active = ev_active (w);
3340
2213 forks [active - 1] = forks [--forkcnt]; 3341 forks [active - 1] = forks [--forkcnt];
2214 ((W)forks [active - 1])->active = active; 3342 ev_active (forks [active - 1]) = active;
2215 } 3343 }
2216 3344
2217 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
3348}
3349#endif
3350
3351#if EV_ASYNC_ENABLE
3352void
3353ev_async_start (EV_P_ ev_async *w)
3354{
3355 if (expect_false (ev_is_active (w)))
3356 return;
3357
3358 evpipe_init (EV_A);
3359
3360 EV_FREQUENT_CHECK;
3361
3362 ev_start (EV_A_ (W)w, ++asynccnt);
3363 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3364 asyncs [asynccnt - 1] = w;
3365
3366 EV_FREQUENT_CHECK;
3367}
3368
3369void
3370ev_async_stop (EV_P_ ev_async *w)
3371{
3372 clear_pending (EV_A_ (W)w);
3373 if (expect_false (!ev_is_active (w)))
3374 return;
3375
3376 EV_FREQUENT_CHECK;
3377
3378 {
3379 int active = ev_active (w);
3380
3381 asyncs [active - 1] = asyncs [--asynccnt];
3382 ev_active (asyncs [active - 1]) = active;
3383 }
3384
3385 ev_stop (EV_A_ (W)w);
3386
3387 EV_FREQUENT_CHECK;
3388}
3389
3390void
3391ev_async_send (EV_P_ ev_async *w)
3392{
3393 w->sent = 1;
3394 evpipe_write (EV_A_ &gotasync);
2218} 3395}
2219#endif 3396#endif
2220 3397
2221/*****************************************************************************/ 3398/*****************************************************************************/
2222 3399
2232once_cb (EV_P_ struct ev_once *once, int revents) 3409once_cb (EV_P_ struct ev_once *once, int revents)
2233{ 3410{
2234 void (*cb)(int revents, void *arg) = once->cb; 3411 void (*cb)(int revents, void *arg) = once->cb;
2235 void *arg = once->arg; 3412 void *arg = once->arg;
2236 3413
2237 ev_io_stop (EV_A_ &once->io); 3414 ev_io_stop (EV_A_ &once->io);
2238 ev_timer_stop (EV_A_ &once->to); 3415 ev_timer_stop (EV_A_ &once->to);
2239 ev_free (once); 3416 ev_free (once);
2240 3417
2241 cb (revents, arg); 3418 cb (revents, arg);
2242} 3419}
2243 3420
2244static void 3421static void
2245once_cb_io (EV_P_ ev_io *w, int revents) 3422once_cb_io (EV_P_ ev_io *w, int revents)
2246{ 3423{
2247 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3424 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3425
3426 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2248} 3427}
2249 3428
2250static void 3429static void
2251once_cb_to (EV_P_ ev_timer *w, int revents) 3430once_cb_to (EV_P_ ev_timer *w, int revents)
2252{ 3431{
2253 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3432 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3433
3434 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2254} 3435}
2255 3436
2256void 3437void
2257ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3438ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2258{ 3439{
2280 ev_timer_set (&once->to, timeout, 0.); 3461 ev_timer_set (&once->to, timeout, 0.);
2281 ev_timer_start (EV_A_ &once->to); 3462 ev_timer_start (EV_A_ &once->to);
2282 } 3463 }
2283} 3464}
2284 3465
3466/*****************************************************************************/
3467
3468#if EV_WALK_ENABLE
3469void
3470ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3471{
3472 int i, j;
3473 ev_watcher_list *wl, *wn;
3474
3475 if (types & (EV_IO | EV_EMBED))
3476 for (i = 0; i < anfdmax; ++i)
3477 for (wl = anfds [i].head; wl; )
3478 {
3479 wn = wl->next;
3480
3481#if EV_EMBED_ENABLE
3482 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3483 {
3484 if (types & EV_EMBED)
3485 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3486 }
3487 else
3488#endif
3489#if EV_USE_INOTIFY
3490 if (ev_cb ((ev_io *)wl) == infy_cb)
3491 ;
3492 else
3493#endif
3494 if ((ev_io *)wl != &pipe_w)
3495 if (types & EV_IO)
3496 cb (EV_A_ EV_IO, wl);
3497
3498 wl = wn;
3499 }
3500
3501 if (types & (EV_TIMER | EV_STAT))
3502 for (i = timercnt + HEAP0; i-- > HEAP0; )
3503#if EV_STAT_ENABLE
3504 /*TODO: timer is not always active*/
3505 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3506 {
3507 if (types & EV_STAT)
3508 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3509 }
3510 else
3511#endif
3512 if (types & EV_TIMER)
3513 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3514
3515#if EV_PERIODIC_ENABLE
3516 if (types & EV_PERIODIC)
3517 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3518 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3519#endif
3520
3521#if EV_IDLE_ENABLE
3522 if (types & EV_IDLE)
3523 for (j = NUMPRI; i--; )
3524 for (i = idlecnt [j]; i--; )
3525 cb (EV_A_ EV_IDLE, idles [j][i]);
3526#endif
3527
3528#if EV_FORK_ENABLE
3529 if (types & EV_FORK)
3530 for (i = forkcnt; i--; )
3531 if (ev_cb (forks [i]) != embed_fork_cb)
3532 cb (EV_A_ EV_FORK, forks [i]);
3533#endif
3534
3535#if EV_ASYNC_ENABLE
3536 if (types & EV_ASYNC)
3537 for (i = asynccnt; i--; )
3538 cb (EV_A_ EV_ASYNC, asyncs [i]);
3539#endif
3540
3541 if (types & EV_PREPARE)
3542 for (i = preparecnt; i--; )
3543#if EV_EMBED_ENABLE
3544 if (ev_cb (prepares [i]) != embed_prepare_cb)
3545#endif
3546 cb (EV_A_ EV_PREPARE, prepares [i]);
3547
3548 if (types & EV_CHECK)
3549 for (i = checkcnt; i--; )
3550 cb (EV_A_ EV_CHECK, checks [i]);
3551
3552 if (types & EV_SIGNAL)
3553 for (i = 0; i < signalmax; ++i)
3554 for (wl = signals [i].head; wl; )
3555 {
3556 wn = wl->next;
3557 cb (EV_A_ EV_SIGNAL, wl);
3558 wl = wn;
3559 }
3560
3561 if (types & EV_CHILD)
3562 for (i = EV_PID_HASHSIZE; i--; )
3563 for (wl = childs [i]; wl; )
3564 {
3565 wn = wl->next;
3566 cb (EV_A_ EV_CHILD, wl);
3567 wl = wn;
3568 }
3569/* EV_STAT 0x00001000 /* stat data changed */
3570/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3571}
3572#endif
3573
3574#if EV_MULTIPLICITY
3575 #include "ev_wrap.h"
3576#endif
3577
2285#ifdef __cplusplus 3578#ifdef __cplusplus
2286} 3579}
2287#endif 3580#endif
2288 3581

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines