ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.278 by root, Tue Jan 6 19:46:56 2009 UTC vs.
Revision 1.303 by root, Sun Jul 19 01:36:34 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
67# endif 69# endif
68# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
69# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
70# endif 72# endif
71# else 73# else
72# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
74# endif 76# endif
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
133# endif 135# endif
134# endif 136# endif
135 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
139# else 149# else
140# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
193# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
194# endif 204# endif
195#endif 205#endif
196 206
197#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif 209#endif
200 210
201#ifndef EV_USE_NANOSLEEP 211#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L 212# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1 213# define EV_USE_NANOSLEEP 1
264# else 274# else
265# define EV_USE_EVENTFD 0 275# define EV_USE_EVENTFD 0
266# endif 276# endif
267#endif 277#endif
268 278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
269#if 0 /* debugging */ 287#if 0 /* debugging */
270# define EV_VERIFY 3 288# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 289# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 290# define EV_HEAP_CACHE_AT 1
273#endif 291#endif
280# define EV_USE_4HEAP !EV_MINIMAL 298# define EV_USE_4HEAP !EV_MINIMAL
281#endif 299#endif
282 300
283#ifndef EV_HEAP_CACHE_AT 301#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
285#endif 317#endif
286 318
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 320
289#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
320 352
321#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 354# include <winsock.h>
323#endif 355#endif
324 356
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 357#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
337# ifdef __cplusplus 366# ifdef __cplusplus
338extern "C" { 367extern "C" {
339# endif 368# endif
340int eventfd (unsigned int initval, int flags); 369int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus 370# ifdef __cplusplus
342} 371}
343# endif 372# endif
373#endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
344#endif 377#endif
345 378
346/**/ 379/**/
347 380
348#if EV_VERIFY >= 3 381#if EV_VERIFY >= 3
384# define inline_speed static noinline 417# define inline_speed static noinline
385#else 418#else
386# define inline_speed static inline 419# define inline_speed static inline
387#endif 420#endif
388 421
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
391 429
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
394 432
395typedef ev_watcher *W; 433typedef ev_watcher *W;
397typedef ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
398 436
399#define ev_active(w) ((W)(w))->active 437#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at 438#define ev_at(w) ((WT)(w))->at
401 439
402#if EV_USE_MONOTONIC 440#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */ 442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
405static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
406#endif 448#endif
407 449
408#ifdef _WIN32 450#ifdef _WIN32
409# include "ev_win32.c" 451# include "ev_win32.c"
474#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
475#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
476 518
477/*****************************************************************************/ 519/*****************************************************************************/
478 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
479typedef struct 525typedef struct
480{ 526{
481 WL head; 527 WL head;
482 unsigned char events; 528 unsigned char events; /* the events watched for */
483 unsigned char reify; 529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
484 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
485 unsigned char unused; 531 unsigned char unused;
486#if EV_USE_EPOLL 532#if EV_USE_EPOLL
487 unsigned int egen; /* generation counter to counter epoll bugs */ 533 unsigned int egen; /* generation counter to counter epoll bugs */
488#endif 534#endif
489#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
490 SOCKET handle; 536 SOCKET handle;
491#endif 537#endif
492} ANFD; 538} ANFD;
493 539
540/* stores the pending event set for a given watcher */
494typedef struct 541typedef struct
495{ 542{
496 W w; 543 W w;
497 int events; 544 int events; /* the pending event set for the given watcher */
498} ANPENDING; 545} ANPENDING;
499 546
500#if EV_USE_INOTIFY 547#if EV_USE_INOTIFY
501/* hash table entry per inotify-id */ 548/* hash table entry per inotify-id */
502typedef struct 549typedef struct
505} ANFS; 552} ANFS;
506#endif 553#endif
507 554
508/* Heap Entry */ 555/* Heap Entry */
509#if EV_HEAP_CACHE_AT 556#if EV_HEAP_CACHE_AT
557 /* a heap element */
510 typedef struct { 558 typedef struct {
511 ev_tstamp at; 559 ev_tstamp at;
512 WT w; 560 WT w;
513 } ANHE; 561 } ANHE;
514 562
515 #define ANHE_w(he) (he).w /* access watcher, read-write */ 563 #define ANHE_w(he) (he).w /* access watcher, read-write */
516 #define ANHE_at(he) (he).at /* access cached at, read-only */ 564 #define ANHE_at(he) (he).at /* access cached at, read-only */
517 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
518#else 566#else
567 /* a heap element */
519 typedef WT ANHE; 568 typedef WT ANHE;
520 569
521 #define ANHE_w(he) (he) 570 #define ANHE_w(he) (he)
522 #define ANHE_at(he) (he)->at 571 #define ANHE_at(he) (he)->at
523 #define ANHE_at_cache(he) 572 #define ANHE_at_cache(he)
547 596
548 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
549 598
550#endif 599#endif
551 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
552/*****************************************************************************/ 613/*****************************************************************************/
553 614
615#ifndef EV_HAVE_EV_TIME
554ev_tstamp 616ev_tstamp
555ev_time (void) 617ev_time (void)
556{ 618{
557#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
558 struct timespec ts; 622 struct timespec ts;
559 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
560 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
561#else 625 }
626#endif
627
562 struct timeval tv; 628 struct timeval tv;
563 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
564 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
565#endif
566} 631}
632#endif
567 633
568ev_tstamp inline_size 634inline_size ev_tstamp
569get_clock (void) 635get_clock (void)
570{ 636{
571#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
572 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
573 { 639 {
607 673
608 tv.tv_sec = (time_t)delay; 674 tv.tv_sec = (time_t)delay;
609 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
610 676
611 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
612 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 678 /* something not guaranteed by newer posix versions, but guaranteed */
613 /* by older ones */ 679 /* by older ones */
614 select (0, 0, 0, 0, &tv); 680 select (0, 0, 0, 0, &tv);
615#endif 681#endif
616 } 682 }
617} 683}
618 684
619/*****************************************************************************/ 685/*****************************************************************************/
620 686
621#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
622 688
623int inline_size 689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
624array_nextsize (int elem, int cur, int cnt) 692array_nextsize (int elem, int cur, int cnt)
625{ 693{
626 int ncur = cur + 1; 694 int ncur = cur + 1;
627 695
628 do 696 do
669 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
670 } 738 }
671#endif 739#endif
672 740
673#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
674 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
675 743
676/*****************************************************************************/ 744/*****************************************************************************/
745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
677 751
678void noinline 752void noinline
679ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
680{ 754{
681 W w_ = (W)w; 755 W w_ = (W)w;
690 pendings [pri][w_->pending - 1].w = w_; 764 pendings [pri][w_->pending - 1].w = w_;
691 pendings [pri][w_->pending - 1].events = revents; 765 pendings [pri][w_->pending - 1].events = revents;
692 } 766 }
693} 767}
694 768
695void inline_speed 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
696queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
697{ 786{
698 int i; 787 int i;
699 788
700 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
701 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
702} 791}
703 792
704/*****************************************************************************/ 793/*****************************************************************************/
705 794
706void inline_speed 795inline_speed void
707fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
708{ 797{
709 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
710 ev_io *w; 799 ev_io *w;
711 800
712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
716 if (ev) 805 if (ev)
717 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
718 } 807 }
719} 808}
720 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
721void 821void
722ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
723{ 823{
724 if (fd >= 0 && fd < anfdmax) 824 if (fd >= 0 && fd < anfdmax)
725 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
726} 826}
727 827
728void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
729fd_reify (EV_P) 831fd_reify (EV_P)
730{ 832{
731 int i; 833 int i;
732 834
733 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
759 unsigned char o_reify = anfd->reify; 861 unsigned char o_reify = anfd->reify;
760 862
761 anfd->reify = 0; 863 anfd->reify = 0;
762 anfd->events = events; 864 anfd->events = events;
763 865
764 if (o_events != events || o_reify & EV_IOFDSET) 866 if (o_events != events || o_reify & EV__IOFDSET)
765 backend_modify (EV_A_ fd, o_events, events); 867 backend_modify (EV_A_ fd, o_events, events);
766 } 868 }
767 } 869 }
768 870
769 fdchangecnt = 0; 871 fdchangecnt = 0;
770} 872}
771 873
772void inline_size 874/* something about the given fd changed */
875inline_size void
773fd_change (EV_P_ int fd, int flags) 876fd_change (EV_P_ int fd, int flags)
774{ 877{
775 unsigned char reify = anfds [fd].reify; 878 unsigned char reify = anfds [fd].reify;
776 anfds [fd].reify |= flags; 879 anfds [fd].reify |= flags;
777 880
781 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
782 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
783 } 886 }
784} 887}
785 888
786void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
787fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
788{ 892{
789 ev_io *w; 893 ev_io *w;
790 894
791 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
793 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
794 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
795 } 899 }
796} 900}
797 901
798int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
799fd_valid (int fd) 904fd_valid (int fd)
800{ 905{
801#ifdef _WIN32 906#ifdef _WIN32
802 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
803#else 908#else
840 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
841 if (anfds [fd].events) 946 if (anfds [fd].events)
842 { 947 {
843 anfds [fd].events = 0; 948 anfds [fd].events = 0;
844 anfds [fd].emask = 0; 949 anfds [fd].emask = 0;
845 fd_change (EV_A_ fd, EV_IOFDSET | 1); 950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
846 } 951 }
847} 952}
848 953
849/*****************************************************************************/ 954/*****************************************************************************/
850 955
866#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
867#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
868#define UPHEAP_DONE(p,k) ((p) == (k)) 973#define UPHEAP_DONE(p,k) ((p) == (k))
869 974
870/* away from the root */ 975/* away from the root */
871void inline_speed 976inline_speed void
872downheap (ANHE *heap, int N, int k) 977downheap (ANHE *heap, int N, int k)
873{ 978{
874 ANHE he = heap [k]; 979 ANHE he = heap [k];
875 ANHE *E = heap + N + HEAP0; 980 ANHE *E = heap + N + HEAP0;
876 981
916#define HEAP0 1 1021#define HEAP0 1
917#define HPARENT(k) ((k) >> 1) 1022#define HPARENT(k) ((k) >> 1)
918#define UPHEAP_DONE(p,k) (!(p)) 1023#define UPHEAP_DONE(p,k) (!(p))
919 1024
920/* away from the root */ 1025/* away from the root */
921void inline_speed 1026inline_speed void
922downheap (ANHE *heap, int N, int k) 1027downheap (ANHE *heap, int N, int k)
923{ 1028{
924 ANHE he = heap [k]; 1029 ANHE he = heap [k];
925 1030
926 for (;;) 1031 for (;;)
946 ev_active (ANHE_w (he)) = k; 1051 ev_active (ANHE_w (he)) = k;
947} 1052}
948#endif 1053#endif
949 1054
950/* towards the root */ 1055/* towards the root */
951void inline_speed 1056inline_speed void
952upheap (ANHE *heap, int k) 1057upheap (ANHE *heap, int k)
953{ 1058{
954 ANHE he = heap [k]; 1059 ANHE he = heap [k];
955 1060
956 for (;;) 1061 for (;;)
967 1072
968 heap [k] = he; 1073 heap [k] = he;
969 ev_active (ANHE_w (he)) = k; 1074 ev_active (ANHE_w (he)) = k;
970} 1075}
971 1076
972void inline_size 1077/* move an element suitably so it is in a correct place */
1078inline_size void
973adjustheap (ANHE *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
974{ 1080{
975 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
976 upheap (heap, k); 1082 upheap (heap, k);
977 else 1083 else
978 downheap (heap, N, k); 1084 downheap (heap, N, k);
979} 1085}
980 1086
981/* rebuild the heap: this function is used only once and executed rarely */ 1087/* rebuild the heap: this function is used only once and executed rarely */
982void inline_size 1088inline_size void
983reheap (ANHE *heap, int N) 1089reheap (ANHE *heap, int N)
984{ 1090{
985 int i; 1091 int i;
986 1092
987 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
990 upheap (heap, i + HEAP0); 1096 upheap (heap, i + HEAP0);
991} 1097}
992 1098
993/*****************************************************************************/ 1099/*****************************************************************************/
994 1100
1101/* associate signal watchers to a signal signal */
995typedef struct 1102typedef struct
996{ 1103{
997 WL head; 1104 WL head;
998 EV_ATOMIC_T gotsig; 1105 EV_ATOMIC_T gotsig;
999} ANSIG; 1106} ANSIG;
1003 1110
1004static EV_ATOMIC_T gotsig; 1111static EV_ATOMIC_T gotsig;
1005 1112
1006/*****************************************************************************/ 1113/*****************************************************************************/
1007 1114
1008void inline_speed 1115/* used to prepare libev internal fd's */
1116/* this is not fork-safe */
1117inline_speed void
1009fd_intern (int fd) 1118fd_intern (int fd)
1010{ 1119{
1011#ifdef _WIN32 1120#ifdef _WIN32
1012 unsigned long arg = 1; 1121 unsigned long arg = 1;
1013 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1018} 1127}
1019 1128
1020static void noinline 1129static void noinline
1021evpipe_init (EV_P) 1130evpipe_init (EV_P)
1022{ 1131{
1023 if (!ev_is_active (&pipeev)) 1132 if (!ev_is_active (&pipe_w))
1024 { 1133 {
1025#if EV_USE_EVENTFD 1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1026 if ((evfd = eventfd (0, 0)) >= 0) 1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1027 { 1140 {
1028 evpipe [0] = -1; 1141 evpipe [0] = -1;
1029 fd_intern (evfd); 1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1030 ev_io_set (&pipeev, evfd, EV_READ); 1143 ev_io_set (&pipe_w, evfd, EV_READ);
1031 } 1144 }
1032 else 1145 else
1033#endif 1146#endif
1034 { 1147 {
1035 while (pipe (evpipe)) 1148 while (pipe (evpipe))
1036 ev_syserr ("(libev) error creating signal/async pipe"); 1149 ev_syserr ("(libev) error creating signal/async pipe");
1037 1150
1038 fd_intern (evpipe [0]); 1151 fd_intern (evpipe [0]);
1039 fd_intern (evpipe [1]); 1152 fd_intern (evpipe [1]);
1040 ev_io_set (&pipeev, evpipe [0], EV_READ); 1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1041 } 1154 }
1042 1155
1043 ev_io_start (EV_A_ &pipeev); 1156 ev_io_start (EV_A_ &pipe_w);
1044 ev_unref (EV_A); /* watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1045 } 1158 }
1046} 1159}
1047 1160
1048void inline_size 1161inline_size void
1049evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1050{ 1163{
1051 if (!*flag) 1164 if (!*flag)
1052 { 1165 {
1053 int old_errno = errno; /* save errno because write might clobber it */ 1166 int old_errno = errno; /* save errno because write might clobber it */
1066 1179
1067 errno = old_errno; 1180 errno = old_errno;
1068 } 1181 }
1069} 1182}
1070 1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
1071static void 1186static void
1072pipecb (EV_P_ ev_io *iow, int revents) 1187pipecb (EV_P_ ev_io *iow, int revents)
1073{ 1188{
1074#if EV_USE_EVENTFD 1189#if EV_USE_EVENTFD
1075 if (evfd >= 0) 1190 if (evfd >= 0)
1145 1260
1146 for (w = signals [signum].head; w; w = w->next) 1261 for (w = signals [signum].head; w; w = w->next)
1147 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1148} 1263}
1149 1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
1150/*****************************************************************************/ 1285/*****************************************************************************/
1151 1286
1152static WL childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
1153 1288
1154#ifndef _WIN32 1289#ifndef _WIN32
1157 1292
1158#ifndef WIFCONTINUED 1293#ifndef WIFCONTINUED
1159# define WIFCONTINUED(status) 0 1294# define WIFCONTINUED(status) 0
1160#endif 1295#endif
1161 1296
1162void inline_speed 1297/* handle a single child status event */
1298inline_speed void
1163child_reap (EV_P_ int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
1164{ 1300{
1165 ev_child *w; 1301 ev_child *w;
1166 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1167 1303
1180 1316
1181#ifndef WCONTINUED 1317#ifndef WCONTINUED
1182# define WCONTINUED 0 1318# define WCONTINUED 0
1183#endif 1319#endif
1184 1320
1321/* called on sigchld etc., calls waitpid */
1185static void 1322static void
1186childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
1187{ 1324{
1188 int pid, status; 1325 int pid, status;
1189 1326
1296ev_backend (EV_P) 1433ev_backend (EV_P)
1297{ 1434{
1298 return backend; 1435 return backend;
1299} 1436}
1300 1437
1438#if EV_MINIMAL < 2
1301unsigned int 1439unsigned int
1302ev_loop_count (EV_P) 1440ev_loop_count (EV_P)
1303{ 1441{
1304 return loop_count; 1442 return loop_count;
1305} 1443}
1306 1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1307void 1451void
1308ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1309{ 1453{
1310 io_blocktime = interval; 1454 io_blocktime = interval;
1311} 1455}
1314ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1315{ 1459{
1316 timeout_blocktime = interval; 1460 timeout_blocktime = interval;
1317} 1461}
1318 1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1319static void noinline 1488static void noinline
1320loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
1321{ 1490{
1322 if (!backend) 1491 if (!backend)
1323 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
1324#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
1325 { 1505 {
1326 struct timespec ts; 1506 struct timespec ts;
1507
1327 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1328 have_monotonic = 1; 1509 have_monotonic = 1;
1329 } 1510 }
1330#endif 1511#endif
1331 1512
1332 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
1333 mn_now = get_clock (); 1514 mn_now = get_clock ();
1334 now_floor = mn_now; 1515 now_floor = mn_now;
1335 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1336 1520
1337 io_blocktime = 0.; 1521 io_blocktime = 0.;
1338 timeout_blocktime = 0.; 1522 timeout_blocktime = 0.;
1339 backend = 0; 1523 backend = 0;
1340 backend_fd = -1; 1524 backend_fd = -1;
1341 gotasync = 0; 1525 gotasync = 0;
1342#if EV_USE_INOTIFY 1526#if EV_USE_INOTIFY
1343 fs_fd = -2; 1527 fs_fd = -2;
1344#endif 1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1345 1532
1346 /* pid check not overridable via env */ 1533 /* pid check not overridable via env */
1347#ifndef _WIN32 1534#ifndef _WIN32
1348 if (flags & EVFLAG_FORKCHECK) 1535 if (flags & EVFLAG_FORKCHECK)
1349 curpid = getpid (); 1536 curpid = getpid ();
1371#endif 1558#endif
1372#if EV_USE_SELECT 1559#if EV_USE_SELECT
1373 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1374#endif 1561#endif
1375 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1376 ev_init (&pipeev, pipecb); 1565 ev_init (&pipe_w, pipecb);
1377 ev_set_priority (&pipeev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1378 } 1567 }
1379} 1568}
1380 1569
1570/* free up a loop structure */
1381static void noinline 1571static void noinline
1382loop_destroy (EV_P) 1572loop_destroy (EV_P)
1383{ 1573{
1384 int i; 1574 int i;
1385 1575
1386 if (ev_is_active (&pipeev)) 1576 if (ev_is_active (&pipe_w))
1387 { 1577 {
1388 ev_ref (EV_A); /* signal watcher */ 1578 /*ev_ref (EV_A);*/
1389 ev_io_stop (EV_A_ &pipeev); 1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1390 1580
1391#if EV_USE_EVENTFD 1581#if EV_USE_EVENTFD
1392 if (evfd >= 0) 1582 if (evfd >= 0)
1393 close (evfd); 1583 close (evfd);
1394#endif 1584#endif
1398 close (evpipe [0]); 1588 close (evpipe [0]);
1399 close (evpipe [1]); 1589 close (evpipe [1]);
1400 } 1590 }
1401 } 1591 }
1402 1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1403#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
1404 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
1405 close (fs_fd); 1605 close (fs_fd);
1406#endif 1606#endif
1407 1607
1433 } 1633 }
1434 1634
1435 ev_free (anfds); anfdmax = 0; 1635 ev_free (anfds); anfdmax = 0;
1436 1636
1437 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1438 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
1439 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
1440#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1441 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
1442#endif 1643#endif
1451 1652
1452 backend = 0; 1653 backend = 0;
1453} 1654}
1454 1655
1455#if EV_USE_INOTIFY 1656#if EV_USE_INOTIFY
1456void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1457#endif 1658#endif
1458 1659
1459void inline_size 1660inline_size void
1460loop_fork (EV_P) 1661loop_fork (EV_P)
1461{ 1662{
1462#if EV_USE_PORT 1663#if EV_USE_PORT
1463 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1464#endif 1665#endif
1470#endif 1671#endif
1471#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1472 infy_fork (EV_A); 1673 infy_fork (EV_A);
1473#endif 1674#endif
1474 1675
1475 if (ev_is_active (&pipeev)) 1676 if (ev_is_active (&pipe_w))
1476 { 1677 {
1477 /* this "locks" the handlers against writing to the pipe */ 1678 /* this "locks" the handlers against writing to the pipe */
1478 /* while we modify the fd vars */ 1679 /* while we modify the fd vars */
1479 gotsig = 1; 1680 gotsig = 1;
1480#if EV_ASYNC_ENABLE 1681#if EV_ASYNC_ENABLE
1481 gotasync = 1; 1682 gotasync = 1;
1482#endif 1683#endif
1483 1684
1484 ev_ref (EV_A); 1685 ev_ref (EV_A);
1485 ev_io_stop (EV_A_ &pipeev); 1686 ev_io_stop (EV_A_ &pipe_w);
1486 1687
1487#if EV_USE_EVENTFD 1688#if EV_USE_EVENTFD
1488 if (evfd >= 0) 1689 if (evfd >= 0)
1489 close (evfd); 1690 close (evfd);
1490#endif 1691#endif
1495 close (evpipe [1]); 1696 close (evpipe [1]);
1496 } 1697 }
1497 1698
1498 evpipe_init (EV_A); 1699 evpipe_init (EV_A);
1499 /* now iterate over everything, in case we missed something */ 1700 /* now iterate over everything, in case we missed something */
1500 pipecb (EV_A_ &pipeev, EV_READ); 1701 pipecb (EV_A_ &pipe_w, EV_READ);
1501 } 1702 }
1502 1703
1503 postfork = 0; 1704 postfork = 0;
1504} 1705}
1505 1706
1509ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1510{ 1711{
1511 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1512 1713
1513 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1514
1515 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1516 1716
1517 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1518 return loop; 1718 return loop;
1519 1719
1530void 1730void
1531ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1532{ 1732{
1533 postfork = 1; /* must be in line with ev_default_fork */ 1733 postfork = 1; /* must be in line with ev_default_fork */
1534} 1734}
1735#endif /* multiplicity */
1535 1736
1536#if EV_VERIFY 1737#if EV_VERIFY
1537static void noinline 1738static void noinline
1538verify_watcher (EV_P_ W w) 1739verify_watcher (EV_P_ W w)
1539{ 1740{
1567 verify_watcher (EV_A_ ws [cnt]); 1768 verify_watcher (EV_A_ ws [cnt]);
1568 } 1769 }
1569} 1770}
1570#endif 1771#endif
1571 1772
1773#if EV_MINIMAL < 2
1572void 1774void
1573ev_loop_verify (EV_P) 1775ev_loop_verify (EV_P)
1574{ 1776{
1575#if EV_VERIFY 1777#if EV_VERIFY
1576 int i; 1778 int i;
1629 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1630 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1631# endif 1833# endif
1632#endif 1834#endif
1633} 1835}
1634 1836#endif
1635#endif /* multiplicity */
1636 1837
1637#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1638struct ev_loop * 1839struct ev_loop *
1639ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
1640#else 1841#else
1701ev_invoke (EV_P_ void *w, int revents) 1902ev_invoke (EV_P_ void *w, int revents)
1702{ 1903{
1703 EV_CB_INVOKE ((W)w, revents); 1904 EV_CB_INVOKE ((W)w, revents);
1704} 1905}
1705 1906
1706void inline_speed 1907unsigned int
1707call_pending (EV_P) 1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
1708{ 1921{
1709 int pri; 1922 int pri;
1710 1923
1711 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1712 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1713 { 1926 {
1714 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1715 1928
1716 if (expect_true (p->w))
1717 {
1718 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1719 1931
1720 p->w->pending = 0; 1932 p->w->pending = 0;
1721 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1722 EV_FREQUENT_CHECK; 1934 EV_FREQUENT_CHECK;
1723 }
1724 } 1935 }
1725} 1936}
1726 1937
1727#if EV_IDLE_ENABLE 1938#if EV_IDLE_ENABLE
1728void inline_size 1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1729idle_reify (EV_P) 1942idle_reify (EV_P)
1730{ 1943{
1731 if (expect_false (idleall)) 1944 if (expect_false (idleall))
1732 { 1945 {
1733 int pri; 1946 int pri;
1745 } 1958 }
1746 } 1959 }
1747} 1960}
1748#endif 1961#endif
1749 1962
1750void inline_size 1963/* make timers pending */
1964inline_size void
1751timers_reify (EV_P) 1965timers_reify (EV_P)
1752{ 1966{
1753 EV_FREQUENT_CHECK; 1967 EV_FREQUENT_CHECK;
1754 1968
1755 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1756 { 1970 {
1757 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1971 do
1758
1759 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1760
1761 /* first reschedule or stop timer */
1762 if (w->repeat)
1763 { 1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1764 ev_at (w) += w->repeat; 1980 ev_at (w) += w->repeat;
1765 if (ev_at (w) < mn_now) 1981 if (ev_at (w) < mn_now)
1766 ev_at (w) = mn_now; 1982 ev_at (w) = mn_now;
1767 1983
1768 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1769 1985
1770 ANHE_at_cache (timers [HEAP0]); 1986 ANHE_at_cache (timers [HEAP0]);
1771 downheap (timers, timercnt, HEAP0); 1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1772 } 1994 }
1773 else 1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1774 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1775 1996
1776 EV_FREQUENT_CHECK;
1777 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1778 } 1998 }
1779} 1999}
1780 2000
1781#if EV_PERIODIC_ENABLE 2001#if EV_PERIODIC_ENABLE
1782void inline_size 2002/* make periodics pending */
2003inline_size void
1783periodics_reify (EV_P) 2004periodics_reify (EV_P)
1784{ 2005{
1785 EV_FREQUENT_CHECK; 2006 EV_FREQUENT_CHECK;
1786 2007
1787 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1788 { 2009 {
1789 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2010 int feed_count = 0;
1790 2011
1791 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2012 do
1792
1793 /* first reschedule or stop timer */
1794 if (w->reschedule_cb)
1795 { 2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
1796 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1797 2022
1798 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1799 2024
1800 ANHE_at_cache (periodics [HEAP0]); 2025 ANHE_at_cache (periodics [HEAP0]);
1801 downheap (periodics, periodiccnt, HEAP0); 2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
1802 } 2052 }
1803 else if (w->interval) 2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1804 {
1805 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1806 /* if next trigger time is not sufficiently in the future, put it there */
1807 /* this might happen because of floating point inexactness */
1808 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1809 {
1810 ev_at (w) += w->interval;
1811 2054
1812 /* if interval is unreasonably low we might still have a time in the past */
1813 /* so correct this. this will make the periodic very inexact, but the user */
1814 /* has effectively asked to get triggered more often than possible */
1815 if (ev_at (w) < ev_rt_now)
1816 ev_at (w) = ev_rt_now;
1817 }
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0);
1821 }
1822 else
1823 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1824
1825 EV_FREQUENT_CHECK;
1826 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2055 feed_reverse_done (EV_A_ EV_PERIODIC);
1827 } 2056 }
1828} 2057}
1829 2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1830static void noinline 2061static void noinline
1831periodics_reschedule (EV_P) 2062periodics_reschedule (EV_P)
1832{ 2063{
1833 int i; 2064 int i;
1834 2065
1847 2078
1848 reheap (periodics, periodiccnt); 2079 reheap (periodics, periodiccnt);
1849} 2080}
1850#endif 2081#endif
1851 2082
1852void inline_speed 2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
1853time_update (EV_P_ ev_tstamp max_block) 2100time_update (EV_P_ ev_tstamp max_block)
1854{ 2101{
1855 int i;
1856
1857#if EV_USE_MONOTONIC 2102#if EV_USE_MONOTONIC
1858 if (expect_true (have_monotonic)) 2103 if (expect_true (have_monotonic))
1859 { 2104 {
2105 int i;
1860 ev_tstamp odiff = rtmn_diff; 2106 ev_tstamp odiff = rtmn_diff;
1861 2107
1862 mn_now = get_clock (); 2108 mn_now = get_clock ();
1863 2109
1864 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1890 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1891 mn_now = get_clock (); 2137 mn_now = get_clock ();
1892 now_floor = mn_now; 2138 now_floor = mn_now;
1893 } 2139 }
1894 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1895# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1896 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1897# endif 2145# endif
1898 /* no timer adjustment, as the monotonic clock doesn't jump */
1899 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1900 } 2146 }
1901 else 2147 else
1902#endif 2148#endif
1903 { 2149 {
1904 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1905 2151
1906 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1907 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1908#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1909 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1910#endif 2158#endif
1911 /* adjust timers. this is easy, as the offset is the same for all of them */
1912 for (i = 0; i < timercnt; ++i)
1913 {
1914 ANHE *he = timers + i + HEAP0;
1915 ANHE_w (*he)->at += ev_rt_now - mn_now;
1916 ANHE_at_cache (*he);
1917 }
1918 } 2159 }
1919 2160
1920 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1921 } 2162 }
1922} 2163}
1923 2164
1924void 2165void
1925ev_ref (EV_P)
1926{
1927 ++activecnt;
1928}
1929
1930void
1931ev_unref (EV_P)
1932{
1933 --activecnt;
1934}
1935
1936void
1937ev_now_update (EV_P)
1938{
1939 time_update (EV_A_ 1e100);
1940}
1941
1942static int loop_done;
1943
1944void
1945ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1946{ 2167{
2168#if EV_MINIMAL < 2
2169 ++loop_depth;
2170#endif
2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
1947 loop_done = EVUNLOOP_CANCEL; 2174 loop_done = EVUNLOOP_CANCEL;
1948 2175
1949 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1950 2177
1951 do 2178 do
1952 { 2179 {
1953#if EV_VERIFY >= 2 2180#if EV_VERIFY >= 2
1954 ev_loop_verify (EV_A); 2181 ev_loop_verify (EV_A);
1967 /* we might have forked, so queue fork handlers */ 2194 /* we might have forked, so queue fork handlers */
1968 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1969 if (forkcnt) 2196 if (forkcnt)
1970 { 2197 {
1971 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1972 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1973 } 2200 }
1974#endif 2201#endif
1975 2202
1976 /* queue prepare watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1977 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1978 { 2205 {
1979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1980 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1981 } 2208 }
1982 2209
1983 if (expect_false (!activecnt)) 2210 if (expect_false (loop_done))
1984 break; 2211 break;
1985 2212
1986 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1987 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1988 loop_fork (EV_A); 2215 loop_fork (EV_A);
1995 ev_tstamp waittime = 0.; 2222 ev_tstamp waittime = 0.;
1996 ev_tstamp sleeptime = 0.; 2223 ev_tstamp sleeptime = 0.;
1997 2224
1998 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1999 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
2000 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
2001 time_update (EV_A_ 1e100); 2231 time_update (EV_A_ 1e100);
2002 2232
2003 waittime = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
2004 2234
2014 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2015 if (waittime > to) waittime = to; 2245 if (waittime > to) waittime = to;
2016 } 2246 }
2017#endif 2247#endif
2018 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
2019 if (expect_false (waittime < timeout_blocktime)) 2250 if (expect_false (waittime < timeout_blocktime))
2020 waittime = timeout_blocktime; 2251 waittime = timeout_blocktime;
2021 2252
2022 sleeptime = waittime - backend_fudge; 2253 /* extra check because io_blocktime is commonly 0 */
2023
2024 if (expect_true (sleeptime > io_blocktime)) 2254 if (expect_false (io_blocktime))
2025 sleeptime = io_blocktime;
2026
2027 if (sleeptime)
2028 { 2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
2029 ev_sleep (sleeptime); 2263 ev_sleep (sleeptime);
2030 waittime -= sleeptime; 2264 waittime -= sleeptime;
2265 }
2031 } 2266 }
2032 } 2267 }
2033 2268
2269#if EV_MINIMAL < 2
2034 ++loop_count; 2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2035 backend_poll (EV_A_ waittime); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2036 2275
2037 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
2038 time_update (EV_A_ waittime + sleeptime); 2277 time_update (EV_A_ waittime + sleeptime);
2039 } 2278 }
2040 2279
2051 2290
2052 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
2053 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
2054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2055 2294
2056 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
2057 } 2296 }
2058 while (expect_true ( 2297 while (expect_true (
2059 activecnt 2298 activecnt
2060 && !loop_done 2299 && !loop_done
2061 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2062 )); 2301 ));
2063 2302
2064 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
2065 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
2066} 2309}
2067 2310
2068void 2311void
2069ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
2070{ 2313{
2071 loop_done = how; 2314 loop_done = how;
2072} 2315}
2073 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
2074/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
2075 2356
2076void inline_size 2357inline_size void
2077wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
2078{ 2359{
2079 elem->next = *head; 2360 elem->next = *head;
2080 *head = elem; 2361 *head = elem;
2081} 2362}
2082 2363
2083void inline_size 2364inline_size void
2084wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
2085{ 2366{
2086 while (*head) 2367 while (*head)
2087 { 2368 {
2088 if (*head == elem) 2369 if (*head == elem)
2093 2374
2094 head = &(*head)->next; 2375 head = &(*head)->next;
2095 } 2376 }
2096} 2377}
2097 2378
2098void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
2099clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
2100{ 2382{
2101 if (w->pending) 2383 if (w->pending)
2102 { 2384 {
2103 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2104 w->pending = 0; 2386 w->pending = 0;
2105 } 2387 }
2106} 2388}
2107 2389
2108int 2390int
2112 int pending = w_->pending; 2394 int pending = w_->pending;
2113 2395
2114 if (expect_true (pending)) 2396 if (expect_true (pending))
2115 { 2397 {
2116 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
2117 w_->pending = 0; 2400 w_->pending = 0;
2118 p->w = 0;
2119 return p->events; 2401 return p->events;
2120 } 2402 }
2121 else 2403 else
2122 return 0; 2404 return 0;
2123} 2405}
2124 2406
2125void inline_size 2407inline_size void
2126pri_adjust (EV_P_ W w) 2408pri_adjust (EV_P_ W w)
2127{ 2409{
2128 int pri = w->priority; 2410 int pri = ev_priority (w);
2129 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2130 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2131 w->priority = pri; 2413 ev_set_priority (w, pri);
2132} 2414}
2133 2415
2134void inline_speed 2416inline_speed void
2135ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
2136{ 2418{
2137 pri_adjust (EV_A_ w); 2419 pri_adjust (EV_A_ w);
2138 w->active = active; 2420 w->active = active;
2139 ev_ref (EV_A); 2421 ev_ref (EV_A);
2140} 2422}
2141 2423
2142void inline_size 2424inline_size void
2143ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
2144{ 2426{
2145 ev_unref (EV_A); 2427 ev_unref (EV_A);
2146 w->active = 0; 2428 w->active = 0;
2147} 2429}
2155 2437
2156 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
2157 return; 2439 return;
2158 2440
2159 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2160 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE)))); 2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2161 2443
2162 EV_FREQUENT_CHECK; 2444 EV_FREQUENT_CHECK;
2163 2445
2164 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
2165 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2166 wlist_add (&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
2167 2449
2168 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2169 w->events &= ~EV_IOFDSET; 2451 w->events &= ~EV__IOFDSET;
2170 2452
2171 EV_FREQUENT_CHECK; 2453 EV_FREQUENT_CHECK;
2172} 2454}
2173 2455
2174void noinline 2456void noinline
2267 } 2549 }
2268 2550
2269 EV_FREQUENT_CHECK; 2551 EV_FREQUENT_CHECK;
2270} 2552}
2271 2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2558}
2559
2272#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
2273void noinline 2561void noinline
2274ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
2275{ 2563{
2276 if (expect_false (ev_is_active (w))) 2564 if (expect_false (ev_is_active (w)))
2351 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
2352 return; 2640 return;
2353 2641
2354 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2355 2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2356 evpipe_init (EV_A); 2676 evpipe_init (EV_A);
2357
2358 EV_FREQUENT_CHECK;
2359 2677
2360 { 2678 {
2361#ifndef _WIN32 2679#ifndef _WIN32
2362 sigset_t full, prev; 2680 sigset_t full, prev;
2363 sigfillset (&full); 2681 sigfillset (&full);
2365#endif 2683#endif
2366 2684
2367 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2368 2686
2369#ifndef _WIN32 2687#ifndef _WIN32
2688 if (sigfd < 0)/*TODO*/
2689 sigdelset (&prev, w->signum);
2370 sigprocmask (SIG_SETMASK, &prev, 0); 2690 sigprocmask (SIG_SETMASK, &prev, 0);
2371#endif 2691#endif
2372 } 2692 }
2373 2693
2374 ev_start (EV_A_ (W)w, 1); 2694 ev_start (EV_A_ (W)w, 1);
2377 if (!((WL)w)->next) 2697 if (!((WL)w)->next)
2378 { 2698 {
2379#if _WIN32 2699#if _WIN32
2380 signal (w->signum, ev_sighandler); 2700 signal (w->signum, ev_sighandler);
2381#else 2701#else
2702 if (sigfd < 0) /*TODO*/
2703 {
2382 struct sigaction sa; 2704 struct sigaction sa = { };
2383 sa.sa_handler = ev_sighandler; 2705 sa.sa_handler = ev_sighandler;
2384 sigfillset (&sa.sa_mask); 2706 sigfillset (&sa.sa_mask);
2385 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2707 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2386 sigaction (w->signum, &sa, 0); 2708 sigaction (w->signum, &sa, 0);
2709 }
2387#endif 2710#endif
2388 } 2711 }
2389 2712
2390 EV_FREQUENT_CHECK; 2713 EV_FREQUENT_CHECK;
2391} 2714}
2401 2724
2402 wlist_del (&signals [w->signum - 1].head, (WL)w); 2725 wlist_del (&signals [w->signum - 1].head, (WL)w);
2403 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2404 2727
2405 if (!signals [w->signum - 1].head) 2728 if (!signals [w->signum - 1].head)
2729#if EV_USE_SIGNALFD
2730 if (sigfd >= 0)
2731 {
2732 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2733 sigdelset (&sigfd_set, w->signum);
2734 signalfd (sigfd, &sigfd_set, 0);
2735 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2736 /*TODO: maybe unblock signal? */
2737 }
2738 else
2739#endif
2406 signal (w->signum, SIG_DFL); 2740 signal (w->signum, SIG_DFL);
2407 2741
2408 EV_FREQUENT_CHECK; 2742 EV_FREQUENT_CHECK;
2409} 2743}
2410 2744
2411void 2745void
2572 2906
2573 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2907 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2574 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2908 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2575} 2909}
2576 2910
2577void inline_size 2911inline_size void
2578check_2625 (EV_P) 2912check_2625 (EV_P)
2579{ 2913{
2580 /* kernels < 2.6.25 are borked 2914 /* kernels < 2.6.25 are borked
2581 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2915 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2582 */ 2916 */
2595 return; 2929 return;
2596 2930
2597 fs_2625 = 1; 2931 fs_2625 = 1;
2598} 2932}
2599 2933
2600void inline_size 2934inline_size void
2601infy_init (EV_P) 2935infy_init (EV_P)
2602{ 2936{
2603 if (fs_fd != -2) 2937 if (fs_fd != -2)
2604 return; 2938 return;
2605 2939
2615 ev_set_priority (&fs_w, EV_MAXPRI); 2949 ev_set_priority (&fs_w, EV_MAXPRI);
2616 ev_io_start (EV_A_ &fs_w); 2950 ev_io_start (EV_A_ &fs_w);
2617 } 2951 }
2618} 2952}
2619 2953
2620void inline_size 2954inline_size void
2621infy_fork (EV_P) 2955infy_fork (EV_P)
2622{ 2956{
2623 int slot; 2957 int slot;
2624 2958
2625 if (fs_fd < 0) 2959 if (fs_fd < 0)
3127 ev_timer_set (&once->to, timeout, 0.); 3461 ev_timer_set (&once->to, timeout, 0.);
3128 ev_timer_start (EV_A_ &once->to); 3462 ev_timer_start (EV_A_ &once->to);
3129 } 3463 }
3130} 3464}
3131 3465
3466/*****************************************************************************/
3467
3468#if EV_WALK_ENABLE
3469void
3470ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3471{
3472 int i, j;
3473 ev_watcher_list *wl, *wn;
3474
3475 if (types & (EV_IO | EV_EMBED))
3476 for (i = 0; i < anfdmax; ++i)
3477 for (wl = anfds [i].head; wl; )
3478 {
3479 wn = wl->next;
3480
3481#if EV_EMBED_ENABLE
3482 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3483 {
3484 if (types & EV_EMBED)
3485 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3486 }
3487 else
3488#endif
3489#if EV_USE_INOTIFY
3490 if (ev_cb ((ev_io *)wl) == infy_cb)
3491 ;
3492 else
3493#endif
3494 if ((ev_io *)wl != &pipe_w)
3495 if (types & EV_IO)
3496 cb (EV_A_ EV_IO, wl);
3497
3498 wl = wn;
3499 }
3500
3501 if (types & (EV_TIMER | EV_STAT))
3502 for (i = timercnt + HEAP0; i-- > HEAP0; )
3503#if EV_STAT_ENABLE
3504 /*TODO: timer is not always active*/
3505 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3506 {
3507 if (types & EV_STAT)
3508 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3509 }
3510 else
3511#endif
3512 if (types & EV_TIMER)
3513 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3514
3515#if EV_PERIODIC_ENABLE
3516 if (types & EV_PERIODIC)
3517 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3518 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3519#endif
3520
3521#if EV_IDLE_ENABLE
3522 if (types & EV_IDLE)
3523 for (j = NUMPRI; i--; )
3524 for (i = idlecnt [j]; i--; )
3525 cb (EV_A_ EV_IDLE, idles [j][i]);
3526#endif
3527
3528#if EV_FORK_ENABLE
3529 if (types & EV_FORK)
3530 for (i = forkcnt; i--; )
3531 if (ev_cb (forks [i]) != embed_fork_cb)
3532 cb (EV_A_ EV_FORK, forks [i]);
3533#endif
3534
3535#if EV_ASYNC_ENABLE
3536 if (types & EV_ASYNC)
3537 for (i = asynccnt; i--; )
3538 cb (EV_A_ EV_ASYNC, asyncs [i]);
3539#endif
3540
3541 if (types & EV_PREPARE)
3542 for (i = preparecnt; i--; )
3543#if EV_EMBED_ENABLE
3544 if (ev_cb (prepares [i]) != embed_prepare_cb)
3545#endif
3546 cb (EV_A_ EV_PREPARE, prepares [i]);
3547
3548 if (types & EV_CHECK)
3549 for (i = checkcnt; i--; )
3550 cb (EV_A_ EV_CHECK, checks [i]);
3551
3552 if (types & EV_SIGNAL)
3553 for (i = 0; i < signalmax; ++i)
3554 for (wl = signals [i].head; wl; )
3555 {
3556 wn = wl->next;
3557 cb (EV_A_ EV_SIGNAL, wl);
3558 wl = wn;
3559 }
3560
3561 if (types & EV_CHILD)
3562 for (i = EV_PID_HASHSIZE; i--; )
3563 for (wl = childs [i]; wl; )
3564 {
3565 wn = wl->next;
3566 cb (EV_A_ EV_CHILD, wl);
3567 wl = wn;
3568 }
3569/* EV_STAT 0x00001000 /* stat data changed */
3570/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3571}
3572#endif
3573
3132#if EV_MULTIPLICITY 3574#if EV_MULTIPLICITY
3133 #include "ev_wrap.h" 3575 #include "ev_wrap.h"
3134#endif 3576#endif
3135 3577
3136#ifdef __cplusplus 3578#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines