ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.283 by root, Wed Apr 15 09:51:19 2009 UTC vs.
Revision 1.303 by root, Sun Jul 19 01:36:34 2009 UTC

57# endif 57# endif
58# ifndef EV_USE_MONOTONIC 58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 59# define EV_USE_MONOTONIC 1
60# endif 60# endif
61# endif 61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
62# endif 64# endif
63 65
64# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
66# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
131# else 133# else
132# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
133# endif 135# endif
134# endif 136# endif
135 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
136# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD 147# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
139# else 149# else
140# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
264# else 274# else
265# define EV_USE_EVENTFD 0 275# define EV_USE_EVENTFD 0
266# endif 276# endif
267#endif 277#endif
268 278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
269#if 0 /* debugging */ 287#if 0 /* debugging */
270# define EV_VERIFY 3 288# define EV_VERIFY 3
271# define EV_USE_4HEAP 1 289# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1 290# define EV_HEAP_CACHE_AT 1
273#endif 291#endif
280# define EV_USE_4HEAP !EV_MINIMAL 298# define EV_USE_4HEAP !EV_MINIMAL
281#endif 299#endif
282 300
283#ifndef EV_HEAP_CACHE_AT 301#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL 302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
285#endif 317#endif
286 318
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288 320
289#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
320 352
321#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h> 354# include <winsock.h>
323#endif 355#endif
324 356
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD 357#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h> 359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
337# ifdef __cplusplus 366# ifdef __cplusplus
338extern "C" { 367extern "C" {
339# endif 368# endif
340int eventfd (unsigned int initval, int flags); 369int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus 370# ifdef __cplusplus
342} 371}
343# endif 372# endif
373#endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
344#endif 377#endif
345 378
346/**/ 379/**/
347 380
348#if EV_VERIFY >= 3 381#if EV_VERIFY >= 3
384# define inline_speed static noinline 417# define inline_speed static noinline
385#else 418#else
386# define inline_speed static inline 419# define inline_speed static inline
387#endif 420#endif
388 421
389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
391 429
392#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
394 432
395typedef ev_watcher *W; 433typedef ev_watcher *W;
478#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
479#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
480 518
481/*****************************************************************************/ 519/*****************************************************************************/
482 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
483typedef struct 525typedef struct
484{ 526{
485 WL head; 527 WL head;
486 unsigned char events; 528 unsigned char events; /* the events watched for */
487 unsigned char reify; 529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused; 531 unsigned char unused;
490#if EV_USE_EPOLL 532#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */ 533 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif 534#endif
493#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle; 536 SOCKET handle;
495#endif 537#endif
496} ANFD; 538} ANFD;
497 539
540/* stores the pending event set for a given watcher */
498typedef struct 541typedef struct
499{ 542{
500 W w; 543 W w;
501 int events; 544 int events; /* the pending event set for the given watcher */
502} ANPENDING; 545} ANPENDING;
503 546
504#if EV_USE_INOTIFY 547#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */ 548/* hash table entry per inotify-id */
506typedef struct 549typedef struct
509} ANFS; 552} ANFS;
510#endif 553#endif
511 554
512/* Heap Entry */ 555/* Heap Entry */
513#if EV_HEAP_CACHE_AT 556#if EV_HEAP_CACHE_AT
557 /* a heap element */
514 typedef struct { 558 typedef struct {
515 ev_tstamp at; 559 ev_tstamp at;
516 WT w; 560 WT w;
517 } ANHE; 561 } ANHE;
518 562
519 #define ANHE_w(he) (he).w /* access watcher, read-write */ 563 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */ 564 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */ 565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else 566#else
567 /* a heap element */
523 typedef WT ANHE; 568 typedef WT ANHE;
524 569
525 #define ANHE_w(he) (he) 570 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at 571 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he) 572 #define ANHE_at_cache(he)
551 596
552 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
553 598
554#endif 599#endif
555 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
556/*****************************************************************************/ 613/*****************************************************************************/
557 614
615#ifndef EV_HAVE_EV_TIME
558ev_tstamp 616ev_tstamp
559ev_time (void) 617ev_time (void)
560{ 618{
561#if EV_USE_REALTIME 619#if EV_USE_REALTIME
562 if (expect_true (have_realtime)) 620 if (expect_true (have_realtime))
569 627
570 struct timeval tv; 628 struct timeval tv;
571 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
572 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
573} 631}
632#endif
574 633
575ev_tstamp inline_size 634inline_size ev_tstamp
576get_clock (void) 635get_clock (void)
577{ 636{
578#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
579 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
580 { 639 {
614 673
615 tv.tv_sec = (time_t)delay; 674 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617 676
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */ 678 /* something not guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */ 679 /* by older ones */
621 select (0, 0, 0, 0, &tv); 680 select (0, 0, 0, 0, &tv);
622#endif 681#endif
623 } 682 }
624} 683}
625 684
626/*****************************************************************************/ 685/*****************************************************************************/
627 686
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629 688
630int inline_size 689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
631array_nextsize (int elem, int cur, int cnt) 692array_nextsize (int elem, int cur, int cnt)
632{ 693{
633 int ncur = cur + 1; 694 int ncur = cur + 1;
634 695
635 do 696 do
680#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
682 743
683/*****************************************************************************/ 744/*****************************************************************************/
684 745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
751
685void noinline 752void noinline
686ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
687{ 754{
688 W w_ = (W)w; 755 W w_ = (W)w;
689 int pri = ABSPRI (w_); 756 int pri = ABSPRI (w_);
697 pendings [pri][w_->pending - 1].w = w_; 764 pendings [pri][w_->pending - 1].w = w_;
698 pendings [pri][w_->pending - 1].events = revents; 765 pendings [pri][w_->pending - 1].events = revents;
699 } 766 }
700} 767}
701 768
702void inline_speed 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
703queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
704{ 786{
705 int i; 787 int i;
706 788
707 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
708 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
709} 791}
710 792
711/*****************************************************************************/ 793/*****************************************************************************/
712 794
713void inline_speed 795inline_speed void
714fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
715{ 797{
716 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
717 ev_io *w; 799 ev_io *w;
718 800
719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
723 if (ev) 805 if (ev)
724 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
725 } 807 }
726} 808}
727 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
728void 821void
729ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
730{ 823{
731 if (fd >= 0 && fd < anfdmax) 824 if (fd >= 0 && fd < anfdmax)
732 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
733} 826}
734 827
735void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
736fd_reify (EV_P) 831fd_reify (EV_P)
737{ 832{
738 int i; 833 int i;
739 834
740 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
774 } 869 }
775 870
776 fdchangecnt = 0; 871 fdchangecnt = 0;
777} 872}
778 873
779void inline_size 874/* something about the given fd changed */
875inline_size void
780fd_change (EV_P_ int fd, int flags) 876fd_change (EV_P_ int fd, int flags)
781{ 877{
782 unsigned char reify = anfds [fd].reify; 878 unsigned char reify = anfds [fd].reify;
783 anfds [fd].reify |= flags; 879 anfds [fd].reify |= flags;
784 880
788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
789 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
790 } 886 }
791} 887}
792 888
793void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
794fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
795{ 892{
796 ev_io *w; 893 ev_io *w;
797 894
798 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
800 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
802 } 899 }
803} 900}
804 901
805int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
806fd_valid (int fd) 904fd_valid (int fd)
807{ 905{
808#ifdef _WIN32 906#ifdef _WIN32
809 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
810#else 908#else
847 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
848 if (anfds [fd].events) 946 if (anfds [fd].events)
849 { 947 {
850 anfds [fd].events = 0; 948 anfds [fd].events = 0;
851 anfds [fd].emask = 0; 949 anfds [fd].emask = 0;
852 fd_change (EV_A_ fd, EV__IOFDSET | 1); 950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
853 } 951 }
854} 952}
855 953
856/*****************************************************************************/ 954/*****************************************************************************/
857 955
873#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k)) 973#define UPHEAP_DONE(p,k) ((p) == (k))
876 974
877/* away from the root */ 975/* away from the root */
878void inline_speed 976inline_speed void
879downheap (ANHE *heap, int N, int k) 977downheap (ANHE *heap, int N, int k)
880{ 978{
881 ANHE he = heap [k]; 979 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0; 980 ANHE *E = heap + N + HEAP0;
883 981
923#define HEAP0 1 1021#define HEAP0 1
924#define HPARENT(k) ((k) >> 1) 1022#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p)) 1023#define UPHEAP_DONE(p,k) (!(p))
926 1024
927/* away from the root */ 1025/* away from the root */
928void inline_speed 1026inline_speed void
929downheap (ANHE *heap, int N, int k) 1027downheap (ANHE *heap, int N, int k)
930{ 1028{
931 ANHE he = heap [k]; 1029 ANHE he = heap [k];
932 1030
933 for (;;) 1031 for (;;)
953 ev_active (ANHE_w (he)) = k; 1051 ev_active (ANHE_w (he)) = k;
954} 1052}
955#endif 1053#endif
956 1054
957/* towards the root */ 1055/* towards the root */
958void inline_speed 1056inline_speed void
959upheap (ANHE *heap, int k) 1057upheap (ANHE *heap, int k)
960{ 1058{
961 ANHE he = heap [k]; 1059 ANHE he = heap [k];
962 1060
963 for (;;) 1061 for (;;)
974 1072
975 heap [k] = he; 1073 heap [k] = he;
976 ev_active (ANHE_w (he)) = k; 1074 ev_active (ANHE_w (he)) = k;
977} 1075}
978 1076
979void inline_size 1077/* move an element suitably so it is in a correct place */
1078inline_size void
980adjustheap (ANHE *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
981{ 1080{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k); 1082 upheap (heap, k);
984 else 1083 else
985 downheap (heap, N, k); 1084 downheap (heap, N, k);
986} 1085}
987 1086
988/* rebuild the heap: this function is used only once and executed rarely */ 1087/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size 1088inline_size void
990reheap (ANHE *heap, int N) 1089reheap (ANHE *heap, int N)
991{ 1090{
992 int i; 1091 int i;
993 1092
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */ 1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
997 upheap (heap, i + HEAP0); 1096 upheap (heap, i + HEAP0);
998} 1097}
999 1098
1000/*****************************************************************************/ 1099/*****************************************************************************/
1001 1100
1101/* associate signal watchers to a signal signal */
1002typedef struct 1102typedef struct
1003{ 1103{
1004 WL head; 1104 WL head;
1005 EV_ATOMIC_T gotsig; 1105 EV_ATOMIC_T gotsig;
1006} ANSIG; 1106} ANSIG;
1010 1110
1011static EV_ATOMIC_T gotsig; 1111static EV_ATOMIC_T gotsig;
1012 1112
1013/*****************************************************************************/ 1113/*****************************************************************************/
1014 1114
1015void inline_speed 1115/* used to prepare libev internal fd's */
1116/* this is not fork-safe */
1117inline_speed void
1016fd_intern (int fd) 1118fd_intern (int fd)
1017{ 1119{
1018#ifdef _WIN32 1120#ifdef _WIN32
1019 unsigned long arg = 1; 1121 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1025} 1127}
1026 1128
1027static void noinline 1129static void noinline
1028evpipe_init (EV_P) 1130evpipe_init (EV_P)
1029{ 1131{
1030 if (!ev_is_active (&pipeev)) 1132 if (!ev_is_active (&pipe_w))
1031 { 1133 {
1032#if EV_USE_EVENTFD 1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1033 if ((evfd = eventfd (0, 0)) >= 0) 1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1034 { 1140 {
1035 evpipe [0] = -1; 1141 evpipe [0] = -1;
1036 fd_intern (evfd); 1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1037 ev_io_set (&pipeev, evfd, EV_READ); 1143 ev_io_set (&pipe_w, evfd, EV_READ);
1038 } 1144 }
1039 else 1145 else
1040#endif 1146#endif
1041 { 1147 {
1042 while (pipe (evpipe)) 1148 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe"); 1149 ev_syserr ("(libev) error creating signal/async pipe");
1044 1150
1045 fd_intern (evpipe [0]); 1151 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]); 1152 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ); 1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1048 } 1154 }
1049 1155
1050 ev_io_start (EV_A_ &pipeev); 1156 ev_io_start (EV_A_ &pipe_w);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 } 1158 }
1053} 1159}
1054 1160
1055void inline_size 1161inline_size void
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{ 1163{
1058 if (!*flag) 1164 if (!*flag)
1059 { 1165 {
1060 int old_errno = errno; /* save errno because write might clobber it */ 1166 int old_errno = errno; /* save errno because write might clobber it */
1073 1179
1074 errno = old_errno; 1180 errno = old_errno;
1075 } 1181 }
1076} 1182}
1077 1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
1078static void 1186static void
1079pipecb (EV_P_ ev_io *iow, int revents) 1187pipecb (EV_P_ ev_io *iow, int revents)
1080{ 1188{
1081#if EV_USE_EVENTFD 1189#if EV_USE_EVENTFD
1082 if (evfd >= 0) 1190 if (evfd >= 0)
1152 1260
1153 for (w = signals [signum].head; w; w = w->next) 1261 for (w = signals [signum].head; w; w = w->next)
1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1155} 1263}
1156 1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
1157/*****************************************************************************/ 1285/*****************************************************************************/
1158 1286
1159static WL childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
1160 1288
1161#ifndef _WIN32 1289#ifndef _WIN32
1164 1292
1165#ifndef WIFCONTINUED 1293#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0 1294# define WIFCONTINUED(status) 0
1167#endif 1295#endif
1168 1296
1169void inline_speed 1297/* handle a single child status event */
1298inline_speed void
1170child_reap (EV_P_ int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
1171{ 1300{
1172 ev_child *w; 1301 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174 1303
1187 1316
1188#ifndef WCONTINUED 1317#ifndef WCONTINUED
1189# define WCONTINUED 0 1318# define WCONTINUED 0
1190#endif 1319#endif
1191 1320
1321/* called on sigchld etc., calls waitpid */
1192static void 1322static void
1193childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
1194{ 1324{
1195 int pid, status; 1325 int pid, status;
1196 1326
1303ev_backend (EV_P) 1433ev_backend (EV_P)
1304{ 1434{
1305 return backend; 1435 return backend;
1306} 1436}
1307 1437
1438#if EV_MINIMAL < 2
1308unsigned int 1439unsigned int
1309ev_loop_count (EV_P) 1440ev_loop_count (EV_P)
1310{ 1441{
1311 return loop_count; 1442 return loop_count;
1312} 1443}
1313 1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1314void 1451void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{ 1453{
1317 io_blocktime = interval; 1454 io_blocktime = interval;
1318} 1455}
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{ 1459{
1323 timeout_blocktime = interval; 1460 timeout_blocktime = interval;
1324} 1461}
1325 1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1326static void noinline 1488static void noinline
1327loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
1328{ 1490{
1329 if (!backend) 1491 if (!backend)
1330 { 1492 {
1350 1512
1351 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
1352 mn_now = get_clock (); 1514 mn_now = get_clock ();
1353 now_floor = mn_now; 1515 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1355 1520
1356 io_blocktime = 0.; 1521 io_blocktime = 0.;
1357 timeout_blocktime = 0.; 1522 timeout_blocktime = 0.;
1358 backend = 0; 1523 backend = 0;
1359 backend_fd = -1; 1524 backend_fd = -1;
1360 gotasync = 0; 1525 gotasync = 0;
1361#if EV_USE_INOTIFY 1526#if EV_USE_INOTIFY
1362 fs_fd = -2; 1527 fs_fd = -2;
1363#endif 1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1364 1532
1365 /* pid check not overridable via env */ 1533 /* pid check not overridable via env */
1366#ifndef _WIN32 1534#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK) 1535 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid (); 1536 curpid = getpid ();
1390#endif 1558#endif
1391#if EV_USE_SELECT 1559#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif 1561#endif
1394 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1395 ev_init (&pipeev, pipecb); 1565 ev_init (&pipe_w, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1397 } 1567 }
1398} 1568}
1399 1569
1570/* free up a loop structure */
1400static void noinline 1571static void noinline
1401loop_destroy (EV_P) 1572loop_destroy (EV_P)
1402{ 1573{
1403 int i; 1574 int i;
1404 1575
1405 if (ev_is_active (&pipeev)) 1576 if (ev_is_active (&pipe_w))
1406 { 1577 {
1407 ev_ref (EV_A); /* signal watcher */ 1578 /*ev_ref (EV_A);*/
1408 ev_io_stop (EV_A_ &pipeev); 1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1409 1580
1410#if EV_USE_EVENTFD 1581#if EV_USE_EVENTFD
1411 if (evfd >= 0) 1582 if (evfd >= 0)
1412 close (evfd); 1583 close (evfd);
1413#endif 1584#endif
1417 close (evpipe [0]); 1588 close (evpipe [0]);
1418 close (evpipe [1]); 1589 close (evpipe [1]);
1419 } 1590 }
1420 } 1591 }
1421 1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1422#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
1423 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
1424 close (fs_fd); 1605 close (fs_fd);
1425#endif 1606#endif
1426 1607
1452 } 1633 }
1453 1634
1454 ev_free (anfds); anfdmax = 0; 1635 ev_free (anfds); anfdmax = 0;
1455 1636
1456 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1457 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
1461#endif 1643#endif
1470 1652
1471 backend = 0; 1653 backend = 0;
1472} 1654}
1473 1655
1474#if EV_USE_INOTIFY 1656#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1476#endif 1658#endif
1477 1659
1478void inline_size 1660inline_size void
1479loop_fork (EV_P) 1661loop_fork (EV_P)
1480{ 1662{
1481#if EV_USE_PORT 1663#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif 1665#endif
1489#endif 1671#endif
1490#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1491 infy_fork (EV_A); 1673 infy_fork (EV_A);
1492#endif 1674#endif
1493 1675
1494 if (ev_is_active (&pipeev)) 1676 if (ev_is_active (&pipe_w))
1495 { 1677 {
1496 /* this "locks" the handlers against writing to the pipe */ 1678 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */ 1679 /* while we modify the fd vars */
1498 gotsig = 1; 1680 gotsig = 1;
1499#if EV_ASYNC_ENABLE 1681#if EV_ASYNC_ENABLE
1500 gotasync = 1; 1682 gotasync = 1;
1501#endif 1683#endif
1502 1684
1503 ev_ref (EV_A); 1685 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev); 1686 ev_io_stop (EV_A_ &pipe_w);
1505 1687
1506#if EV_USE_EVENTFD 1688#if EV_USE_EVENTFD
1507 if (evfd >= 0) 1689 if (evfd >= 0)
1508 close (evfd); 1690 close (evfd);
1509#endif 1691#endif
1514 close (evpipe [1]); 1696 close (evpipe [1]);
1515 } 1697 }
1516 1698
1517 evpipe_init (EV_A); 1699 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */ 1700 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ); 1701 pipecb (EV_A_ &pipe_w, EV_READ);
1520 } 1702 }
1521 1703
1522 postfork = 0; 1704 postfork = 0;
1523} 1705}
1524 1706
1528ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1529{ 1711{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531 1713
1532 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1535 1716
1536 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1537 return loop; 1718 return loop;
1538 1719
1549void 1730void
1550ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1551{ 1732{
1552 postfork = 1; /* must be in line with ev_default_fork */ 1733 postfork = 1; /* must be in line with ev_default_fork */
1553} 1734}
1735#endif /* multiplicity */
1554 1736
1555#if EV_VERIFY 1737#if EV_VERIFY
1556static void noinline 1738static void noinline
1557verify_watcher (EV_P_ W w) 1739verify_watcher (EV_P_ W w)
1558{ 1740{
1586 verify_watcher (EV_A_ ws [cnt]); 1768 verify_watcher (EV_A_ ws [cnt]);
1587 } 1769 }
1588} 1770}
1589#endif 1771#endif
1590 1772
1773#if EV_MINIMAL < 2
1591void 1774void
1592ev_loop_verify (EV_P) 1775ev_loop_verify (EV_P)
1593{ 1776{
1594#if EV_VERIFY 1777#if EV_VERIFY
1595 int i; 1778 int i;
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig) 1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1650# endif 1833# endif
1651#endif 1834#endif
1652} 1835}
1653 1836#endif
1654#endif /* multiplicity */
1655 1837
1656#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1657struct ev_loop * 1839struct ev_loop *
1658ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
1659#else 1841#else
1720ev_invoke (EV_P_ void *w, int revents) 1902ev_invoke (EV_P_ void *w, int revents)
1721{ 1903{
1722 EV_CB_INVOKE ((W)w, revents); 1904 EV_CB_INVOKE ((W)w, revents);
1723} 1905}
1724 1906
1725void inline_speed 1907unsigned int
1726call_pending (EV_P) 1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
1727{ 1921{
1728 int pri; 1922 int pri;
1729 1923
1730 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1731 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1732 { 1926 {
1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1734 1928
1735 if (expect_true (p->w))
1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1738 1931
1739 p->w->pending = 0; 1932 p->w->pending = 0;
1740 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK; 1934 EV_FREQUENT_CHECK;
1742 }
1743 } 1935 }
1744} 1936}
1745 1937
1746#if EV_IDLE_ENABLE 1938#if EV_IDLE_ENABLE
1747void inline_size 1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1748idle_reify (EV_P) 1942idle_reify (EV_P)
1749{ 1943{
1750 if (expect_false (idleall)) 1944 if (expect_false (idleall))
1751 { 1945 {
1752 int pri; 1946 int pri;
1764 } 1958 }
1765 } 1959 }
1766} 1960}
1767#endif 1961#endif
1768 1962
1769void inline_size 1963/* make timers pending */
1964inline_size void
1770timers_reify (EV_P) 1965timers_reify (EV_P)
1771{ 1966{
1772 EV_FREQUENT_CHECK; 1967 EV_FREQUENT_CHECK;
1773 1968
1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1775 { 1970 {
1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 1971 do
1777
1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1779
1780 /* first reschedule or stop timer */
1781 if (w->repeat)
1782 { 1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1783 ev_at (w) += w->repeat; 1980 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now) 1981 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now; 1982 ev_at (w) = mn_now;
1786 1983
1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1788 1985
1789 ANHE_at_cache (timers [HEAP0]); 1986 ANHE_at_cache (timers [HEAP0]);
1790 downheap (timers, timercnt, HEAP0); 1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1791 } 1994 }
1792 else 1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1794 1996
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1797 } 1998 }
1798} 1999}
1799 2000
1800#if EV_PERIODIC_ENABLE 2001#if EV_PERIODIC_ENABLE
1801void inline_size 2002/* make periodics pending */
2003inline_size void
1802periodics_reify (EV_P) 2004periodics_reify (EV_P)
1803{ 2005{
1804 EV_FREQUENT_CHECK; 2006 EV_FREQUENT_CHECK;
1805 2007
1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1807 { 2009 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2010 int feed_count = 0;
1809 2011
1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 2012 do
1811
1812 /* first reschedule or stop timer */
1813 if (w->reschedule_cb)
1814 { 2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 2022
1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818 2024
1819 ANHE_at_cache (periodics [HEAP0]); 2025 ANHE_at_cache (periodics [HEAP0]);
1820 downheap (periodics, periodiccnt, HEAP0); 2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
1821 } 2052 }
1822 else if (w->interval) 2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1823 {
1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830 2054
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1839 downheap (periodics, periodiccnt, HEAP0);
1840 }
1841 else
1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1843
1844 EV_FREQUENT_CHECK;
1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2055 feed_reverse_done (EV_A_ EV_PERIODIC);
1846 } 2056 }
1847} 2057}
1848 2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1849static void noinline 2061static void noinline
1850periodics_reschedule (EV_P) 2062periodics_reschedule (EV_P)
1851{ 2063{
1852 int i; 2064 int i;
1853 2065
1866 2078
1867 reheap (periodics, periodiccnt); 2079 reheap (periodics, periodiccnt);
1868} 2080}
1869#endif 2081#endif
1870 2082
1871void inline_speed 2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
1872time_update (EV_P_ ev_tstamp max_block) 2100time_update (EV_P_ ev_tstamp max_block)
1873{ 2101{
1874 int i;
1875
1876#if EV_USE_MONOTONIC 2102#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic)) 2103 if (expect_true (have_monotonic))
1878 { 2104 {
2105 int i;
1879 ev_tstamp odiff = rtmn_diff; 2106 ev_tstamp odiff = rtmn_diff;
1880 2107
1881 mn_now = get_clock (); 2108 mn_now = get_clock ();
1882 2109
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1909 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1910 mn_now = get_clock (); 2137 mn_now = get_clock ();
1911 now_floor = mn_now; 2138 now_floor = mn_now;
1912 } 2139 }
1913 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1914# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1916# endif 2145# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 } 2146 }
1920 else 2147 else
1921#endif 2148#endif
1922 { 2149 {
1923 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1924 2151
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1927#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1929#endif 2158#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1932 {
1933 ANHE *he = timers + i + HEAP0;
1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1935 ANHE_at_cache (*he);
1936 }
1937 } 2159 }
1938 2160
1939 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1940 } 2162 }
1941} 2163}
1942 2164
1943void 2165void
1944ev_ref (EV_P)
1945{
1946 ++activecnt;
1947}
1948
1949void
1950ev_unref (EV_P)
1951{
1952 --activecnt;
1953}
1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1961static int loop_done;
1962
1963void
1964ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1965{ 2167{
2168#if EV_MINIMAL < 2
2169 ++loop_depth;
2170#endif
2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
1966 loop_done = EVUNLOOP_CANCEL; 2174 loop_done = EVUNLOOP_CANCEL;
1967 2175
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1969 2177
1970 do 2178 do
1971 { 2179 {
1972#if EV_VERIFY >= 2 2180#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A); 2181 ev_loop_verify (EV_A);
1986 /* we might have forked, so queue fork handlers */ 2194 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1988 if (forkcnt) 2196 if (forkcnt)
1989 { 2197 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1992 } 2200 }
1993#endif 2201#endif
1994 2202
1995 /* queue prepare watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1996 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1997 { 2205 {
1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1999 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
2000 } 2208 }
2209
2210 if (expect_false (loop_done))
2211 break;
2001 2212
2002 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
2003 if (expect_false (postfork)) 2214 if (expect_false (postfork))
2004 loop_fork (EV_A); 2215 loop_fork (EV_A);
2005 2216
2011 ev_tstamp waittime = 0.; 2222 ev_tstamp waittime = 0.;
2012 ev_tstamp sleeptime = 0.; 2223 ev_tstamp sleeptime = 0.;
2013 2224
2014 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2015 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
2016 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
2017 time_update (EV_A_ 1e100); 2231 time_update (EV_A_ 1e100);
2018 2232
2019 waittime = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
2020 2234
2030 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2031 if (waittime > to) waittime = to; 2245 if (waittime > to) waittime = to;
2032 } 2246 }
2033#endif 2247#endif
2034 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
2035 if (expect_false (waittime < timeout_blocktime)) 2250 if (expect_false (waittime < timeout_blocktime))
2036 waittime = timeout_blocktime; 2251 waittime = timeout_blocktime;
2037 2252
2038 sleeptime = waittime - backend_fudge; 2253 /* extra check because io_blocktime is commonly 0 */
2039
2040 if (expect_true (sleeptime > io_blocktime)) 2254 if (expect_false (io_blocktime))
2041 sleeptime = io_blocktime;
2042
2043 if (sleeptime)
2044 { 2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
2045 ev_sleep (sleeptime); 2263 ev_sleep (sleeptime);
2046 waittime -= sleeptime; 2264 waittime -= sleeptime;
2265 }
2047 } 2266 }
2048 } 2267 }
2049 2268
2269#if EV_MINIMAL < 2
2050 ++loop_count; 2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2051 backend_poll (EV_A_ waittime); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2052 2275
2053 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
2054 time_update (EV_A_ waittime + sleeptime); 2277 time_update (EV_A_ waittime + sleeptime);
2055 } 2278 }
2056 2279
2067 2290
2068 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
2069 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
2070 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2071 2294
2072 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
2073 } 2296 }
2074 while (expect_true ( 2297 while (expect_true (
2075 activecnt 2298 activecnt
2076 && !loop_done 2299 && !loop_done
2077 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2078 )); 2301 ));
2079 2302
2080 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
2081 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
2082} 2309}
2083 2310
2084void 2311void
2085ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
2086{ 2313{
2087 loop_done = how; 2314 loop_done = how;
2088} 2315}
2089 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
2090/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
2091 2356
2092void inline_size 2357inline_size void
2093wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
2094{ 2359{
2095 elem->next = *head; 2360 elem->next = *head;
2096 *head = elem; 2361 *head = elem;
2097} 2362}
2098 2363
2099void inline_size 2364inline_size void
2100wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
2101{ 2366{
2102 while (*head) 2367 while (*head)
2103 { 2368 {
2104 if (*head == elem) 2369 if (*head == elem)
2109 2374
2110 head = &(*head)->next; 2375 head = &(*head)->next;
2111 } 2376 }
2112} 2377}
2113 2378
2114void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
2115clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
2116{ 2382{
2117 if (w->pending) 2383 if (w->pending)
2118 { 2384 {
2119 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2120 w->pending = 0; 2386 w->pending = 0;
2121 } 2387 }
2122} 2388}
2123 2389
2124int 2390int
2128 int pending = w_->pending; 2394 int pending = w_->pending;
2129 2395
2130 if (expect_true (pending)) 2396 if (expect_true (pending))
2131 { 2397 {
2132 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
2133 w_->pending = 0; 2400 w_->pending = 0;
2134 p->w = 0;
2135 return p->events; 2401 return p->events;
2136 } 2402 }
2137 else 2403 else
2138 return 0; 2404 return 0;
2139} 2405}
2140 2406
2141void inline_size 2407inline_size void
2142pri_adjust (EV_P_ W w) 2408pri_adjust (EV_P_ W w)
2143{ 2409{
2144 int pri = w->priority; 2410 int pri = ev_priority (w);
2145 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2146 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2147 w->priority = pri; 2413 ev_set_priority (w, pri);
2148} 2414}
2149 2415
2150void inline_speed 2416inline_speed void
2151ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
2152{ 2418{
2153 pri_adjust (EV_A_ w); 2419 pri_adjust (EV_A_ w);
2154 w->active = active; 2420 w->active = active;
2155 ev_ref (EV_A); 2421 ev_ref (EV_A);
2156} 2422}
2157 2423
2158void inline_size 2424inline_size void
2159ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
2160{ 2426{
2161 ev_unref (EV_A); 2427 ev_unref (EV_A);
2162 w->active = 0; 2428 w->active = 0;
2163} 2429}
2179 2445
2180 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
2181 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2182 wlist_add (&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
2183 2449
2184 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2185 w->events &= ~EV__IOFDSET; 2451 w->events &= ~EV__IOFDSET;
2186 2452
2187 EV_FREQUENT_CHECK; 2453 EV_FREQUENT_CHECK;
2188} 2454}
2189 2455
2283 } 2549 }
2284 2550
2285 EV_FREQUENT_CHECK; 2551 EV_FREQUENT_CHECK;
2286} 2552}
2287 2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2558}
2559
2288#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
2289void noinline 2561void noinline
2290ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
2291{ 2563{
2292 if (expect_false (ev_is_active (w))) 2564 if (expect_false (ev_is_active (w)))
2367 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
2368 return; 2640 return;
2369 2641
2370 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2371 2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2372 evpipe_init (EV_A); 2676 evpipe_init (EV_A);
2373
2374 EV_FREQUENT_CHECK;
2375 2677
2376 { 2678 {
2377#ifndef _WIN32 2679#ifndef _WIN32
2378 sigset_t full, prev; 2680 sigset_t full, prev;
2379 sigfillset (&full); 2681 sigfillset (&full);
2381#endif 2683#endif
2382 2684
2383 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero); 2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2384 2686
2385#ifndef _WIN32 2687#ifndef _WIN32
2688 if (sigfd < 0)/*TODO*/
2689 sigdelset (&prev, w->signum);
2386 sigprocmask (SIG_SETMASK, &prev, 0); 2690 sigprocmask (SIG_SETMASK, &prev, 0);
2387#endif 2691#endif
2388 } 2692 }
2389 2693
2390 ev_start (EV_A_ (W)w, 1); 2694 ev_start (EV_A_ (W)w, 1);
2393 if (!((WL)w)->next) 2697 if (!((WL)w)->next)
2394 { 2698 {
2395#if _WIN32 2699#if _WIN32
2396 signal (w->signum, ev_sighandler); 2700 signal (w->signum, ev_sighandler);
2397#else 2701#else
2702 if (sigfd < 0) /*TODO*/
2703 {
2398 struct sigaction sa; 2704 struct sigaction sa = { };
2399 sa.sa_handler = ev_sighandler; 2705 sa.sa_handler = ev_sighandler;
2400 sigfillset (&sa.sa_mask); 2706 sigfillset (&sa.sa_mask);
2401 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2707 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2402 sigaction (w->signum, &sa, 0); 2708 sigaction (w->signum, &sa, 0);
2709 }
2403#endif 2710#endif
2404 } 2711 }
2405 2712
2406 EV_FREQUENT_CHECK; 2713 EV_FREQUENT_CHECK;
2407} 2714}
2417 2724
2418 wlist_del (&signals [w->signum - 1].head, (WL)w); 2725 wlist_del (&signals [w->signum - 1].head, (WL)w);
2419 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2420 2727
2421 if (!signals [w->signum - 1].head) 2728 if (!signals [w->signum - 1].head)
2729#if EV_USE_SIGNALFD
2730 if (sigfd >= 0)
2731 {
2732 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2733 sigdelset (&sigfd_set, w->signum);
2734 signalfd (sigfd, &sigfd_set, 0);
2735 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2736 /*TODO: maybe unblock signal? */
2737 }
2738 else
2739#endif
2422 signal (w->signum, SIG_DFL); 2740 signal (w->signum, SIG_DFL);
2423 2741
2424 EV_FREQUENT_CHECK; 2742 EV_FREQUENT_CHECK;
2425} 2743}
2426 2744
2427void 2745void
2588 2906
2589 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2907 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2590 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2908 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2591} 2909}
2592 2910
2593void inline_size 2911inline_size void
2594check_2625 (EV_P) 2912check_2625 (EV_P)
2595{ 2913{
2596 /* kernels < 2.6.25 are borked 2914 /* kernels < 2.6.25 are borked
2597 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 2915 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2598 */ 2916 */
2611 return; 2929 return;
2612 2930
2613 fs_2625 = 1; 2931 fs_2625 = 1;
2614} 2932}
2615 2933
2616void inline_size 2934inline_size void
2617infy_init (EV_P) 2935infy_init (EV_P)
2618{ 2936{
2619 if (fs_fd != -2) 2937 if (fs_fd != -2)
2620 return; 2938 return;
2621 2939
2631 ev_set_priority (&fs_w, EV_MAXPRI); 2949 ev_set_priority (&fs_w, EV_MAXPRI);
2632 ev_io_start (EV_A_ &fs_w); 2950 ev_io_start (EV_A_ &fs_w);
2633 } 2951 }
2634} 2952}
2635 2953
2636void inline_size 2954inline_size void
2637infy_fork (EV_P) 2955infy_fork (EV_P)
2638{ 2956{
2639 int slot; 2957 int slot;
2640 2958
2641 if (fs_fd < 0) 2959 if (fs_fd < 0)
3145 } 3463 }
3146} 3464}
3147 3465
3148/*****************************************************************************/ 3466/*****************************************************************************/
3149 3467
3150#if 0 3468#if EV_WALK_ENABLE
3151void 3469void
3152ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 3470ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3153{ 3471{
3154 int i, j; 3472 int i, j;
3155 ev_watcher_list *wl, *wn; 3473 ev_watcher_list *wl, *wn;
3171#if EV_USE_INOTIFY 3489#if EV_USE_INOTIFY
3172 if (ev_cb ((ev_io *)wl) == infy_cb) 3490 if (ev_cb ((ev_io *)wl) == infy_cb)
3173 ; 3491 ;
3174 else 3492 else
3175#endif 3493#endif
3176 if ((ev_io *)wl != &pipeev) 3494 if ((ev_io *)wl != &pipe_w)
3177 if (types & EV_IO) 3495 if (types & EV_IO)
3178 cb (EV_A_ EV_IO, wl); 3496 cb (EV_A_ EV_IO, wl);
3179 3497
3180 wl = wn; 3498 wl = wn;
3181 } 3499 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines