ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.154 by root, Wed Nov 28 11:53:37 2007 UTC vs.
Revision 1.304 by root, Sun Jul 19 03:12:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
142 198
143#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
144# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
204# endif
145#endif 205#endif
146 206
147#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
209#endif
210
211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
215# define EV_USE_NANOSLEEP 0
216# endif
149#endif 217#endif
150 218
151#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
153#endif 221#endif
159# define EV_USE_POLL 1 227# define EV_USE_POLL 1
160# endif 228# endif
161#endif 229#endif
162 230
163#ifndef EV_USE_EPOLL 231#ifndef EV_USE_EPOLL
232# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233# define EV_USE_EPOLL 1
234# else
164# define EV_USE_EPOLL 0 235# define EV_USE_EPOLL 0
236# endif
165#endif 237#endif
166 238
167#ifndef EV_USE_KQUEUE 239#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 240# define EV_USE_KQUEUE 0
169#endif 241#endif
171#ifndef EV_USE_PORT 243#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 244# define EV_USE_PORT 0
173#endif 245#endif
174 246
175#ifndef EV_USE_INOTIFY 247#ifndef EV_USE_INOTIFY
248# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
249# define EV_USE_INOTIFY 1
250# else
176# define EV_USE_INOTIFY 0 251# define EV_USE_INOTIFY 0
252# endif
177#endif 253#endif
178 254
179#ifndef EV_PID_HASHSIZE 255#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 256# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 257# define EV_PID_HASHSIZE 1
190# else 266# else
191# define EV_INOTIFY_HASHSIZE 16 267# define EV_INOTIFY_HASHSIZE 16
192# endif 268# endif
193#endif 269#endif
194 270
195/**/ 271#ifndef EV_USE_EVENTFD
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273# define EV_USE_EVENTFD 1
274# else
275# define EV_USE_EVENTFD 0
276# endif
277#endif
278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 320
197#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
200#endif 324#endif
202#ifndef CLOCK_REALTIME 326#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 327# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 328# define EV_USE_REALTIME 0
205#endif 329#endif
206 330
331#if !EV_STAT_ENABLE
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334#endif
335
336#if !EV_USE_NANOSLEEP
337# ifndef _WIN32
338# include <sys/select.h>
339# endif
340#endif
341
342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
207#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 354# include <winsock.h>
209#endif 355#endif
210 356
211#if !EV_STAT_ENABLE 357#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
213#endif 362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
366# ifdef __cplusplus
367extern "C" {
368# endif
369int eventfd (unsigned int initval, int flags);
370# ifdef __cplusplus
371}
372# endif
373#endif
214 374
215#if EV_USE_INOTIFY 375#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 376# include <sys/signalfd.h>
217#endif 377#endif
218 378
219/**/ 379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
386
387/*
388 * This is used to avoid floating point rounding problems.
389 * It is added to ev_rt_now when scheduling periodics
390 * to ensure progress, time-wise, even when rounding
391 * errors are against us.
392 * This value is good at least till the year 4000.
393 * Better solutions welcome.
394 */
395#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 396
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 397#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 398#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 399/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 400
225#if __GNUC__ >= 3 401#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 402# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 403# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 404#else
236# define expect(expr,value) (expr) 405# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 406# define noinline
407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
408# define inline
409# endif
240#endif 410#endif
241 411
242#define expect_false(expr) expect ((expr) != 0, 0) 412#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 413#define expect_true(expr) expect ((expr) != 0, 1)
414#define inline_size static inline
244 415
416#if EV_MINIMAL
417# define inline_speed static noinline
418#else
419# define inline_speed static inline
420#endif
421
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
247 429
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
250 432
251typedef ev_watcher *W; 433typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
254 436
437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
448#endif
256 449
257#ifdef _WIN32 450#ifdef _WIN32
258# include "ev_win32.c" 451# include "ev_win32.c"
259#endif 452#endif
260 453
267{ 460{
268 syserr_cb = cb; 461 syserr_cb = cb;
269} 462}
270 463
271static void noinline 464static void noinline
272syserr (const char *msg) 465ev_syserr (const char *msg)
273{ 466{
274 if (!msg) 467 if (!msg)
275 msg = "(libev) system error"; 468 msg = "(libev) system error";
276 469
277 if (syserr_cb) 470 if (syserr_cb)
281 perror (msg); 474 perror (msg);
282 abort (); 475 abort ();
283 } 476 }
284} 477}
285 478
479static void *
480ev_realloc_emul (void *ptr, long size)
481{
482 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and
484 * the single unix specification, so work around them here.
485 */
486
487 if (size)
488 return realloc (ptr, size);
489
490 free (ptr);
491 return 0;
492}
493
286static void *(*alloc)(void *ptr, size_t size) = realloc; 494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 495
288void 496void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 497ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 498{
291 alloc = cb; 499 alloc = cb;
292} 500}
293 501
294inline_speed void * 502inline_speed void *
295ev_realloc (void *ptr, size_t size) 503ev_realloc (void *ptr, long size)
296{ 504{
297 ptr = alloc (ptr, size); 505 ptr = alloc (ptr, size);
298 506
299 if (!ptr && size) 507 if (!ptr && size)
300 { 508 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 510 abort ();
303 } 511 }
304 512
305 return ptr; 513 return ptr;
306} 514}
308#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
310 518
311/*****************************************************************************/ 519/*****************************************************************************/
312 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
313typedef struct 525typedef struct
314{ 526{
315 WL head; 527 WL head;
316 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
318#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 536 SOCKET handle;
320#endif 537#endif
321} ANFD; 538} ANFD;
322 539
540/* stores the pending event set for a given watcher */
323typedef struct 541typedef struct
324{ 542{
325 W w; 543 W w;
326 int events; 544 int events; /* the pending event set for the given watcher */
327} ANPENDING; 545} ANPENDING;
328 546
547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
329typedef struct 549typedef struct
330{ 550{
331#if EV_USE_INOTIFY
332 WL head; 551 WL head;
333#endif
334} ANFS; 552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
573#endif
335 574
336#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
337 576
338 struct ev_loop 577 struct ev_loop
339 { 578 {
357 596
358 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
359 598
360#endif 599#endif
361 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
362/*****************************************************************************/ 613/*****************************************************************************/
363 614
615#ifndef EV_HAVE_EV_TIME
364ev_tstamp 616ev_tstamp
365ev_time (void) 617ev_time (void)
366{ 618{
367#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
368 struct timespec ts; 622 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 625 }
626#endif
627
372 struct timeval tv; 628 struct timeval tv;
373 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 631}
632#endif
377 633
378ev_tstamp inline_size 634inline_size ev_tstamp
379get_clock (void) 635get_clock (void)
380{ 636{
381#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
383 { 639 {
396{ 652{
397 return ev_rt_now; 653 return ev_rt_now;
398} 654}
399#endif 655#endif
400 656
401#define array_roundsize(type,n) (((n) | 4) & ~3) 657void
658ev_sleep (ev_tstamp delay)
659{
660 if (delay > 0.)
661 {
662#if EV_USE_NANOSLEEP
663 struct timespec ts;
664
665 ts.tv_sec = (time_t)delay;
666 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
667
668 nanosleep (&ts, 0);
669#elif defined(_WIN32)
670 Sleep ((unsigned long)(delay * 1e3));
671#else
672 struct timeval tv;
673
674 tv.tv_sec = (time_t)delay;
675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
680 select (0, 0, 0, 0, &tv);
681#endif
682 }
683}
684
685/*****************************************************************************/
686
687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
692array_nextsize (int elem, int cur, int cnt)
693{
694 int ncur = cur + 1;
695
696 do
697 ncur <<= 1;
698 while (cnt > ncur);
699
700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
702 {
703 ncur *= elem;
704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
705 ncur = ncur - sizeof (void *) * 4;
706 ncur /= elem;
707 }
708
709 return ncur;
710}
711
712static noinline void *
713array_realloc (int elem, void *base, int *cur, int cnt)
714{
715 *cur = array_nextsize (elem, *cur, cnt);
716 return ev_realloc (base, elem * *cur);
717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 721
403#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 723 if (expect_false ((cnt) > (cur))) \
405 { \ 724 { \
406 int newcnt = cur; \ 725 int ocur_ = (cur); \
407 do \ 726 (base) = (type *)array_realloc \
408 { \ 727 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 728 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 729 }
417 730
731#if 0
418#define array_slim(type,stem) \ 732#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 733 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 734 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 735 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 736 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 738 }
739#endif
425 740
426#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 743
429/*****************************************************************************/ 744/*****************************************************************************/
745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
430 751
431void noinline 752void noinline
432ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
433{ 754{
434 W w_ = (W)w; 755 W w_ = (W)w;
756 int pri = ABSPRI (w_);
435 757
436 if (expect_false (w_->pending)) 758 if (expect_false (w_->pending))
759 pendings [pri][w_->pending - 1].events |= revents;
760 else
437 { 761 {
762 w_->pending = ++pendingcnt [pri];
763 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
764 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 765 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 766 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 767}
447 768
448void inline_size 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 786{
451 int i; 787 int i;
452 788
453 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
455} 791}
456 792
457/*****************************************************************************/ 793/*****************************************************************************/
458 794
459void inline_size 795inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
474{ 797{
475 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
476 ev_io *w; 799 ev_io *w;
477 800
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 805 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
484 } 807 }
485} 808}
486 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
487void 821void
488ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 823{
824 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
491} 826}
492 827
493void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
494fd_reify (EV_P) 831fd_reify (EV_P)
495{ 832{
496 int i; 833 int i;
497 834
498 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
499 { 836 {
500 int fd = fdchanges [i]; 837 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 838 ANFD *anfd = anfds + fd;
502 ev_io *w; 839 ev_io *w;
503 840
504 int events = 0; 841 unsigned char events = 0;
505 842
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 843 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 844 events |= (unsigned char)w->events;
508 845
509#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
510 if (events) 847 if (events)
511 { 848 {
512 unsigned long argp; 849 unsigned long arg;
850 #ifdef EV_FD_TO_WIN32_HANDLE
851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
852 #else
513 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
854 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 856 }
516#endif 857#endif
517 858
859 {
860 unsigned char o_events = anfd->events;
861 unsigned char o_reify = anfd->reify;
862
518 anfd->reify = 0; 863 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 864 anfd->events = events;
865
866 if (o_events != events || o_reify & EV__IOFDSET)
867 backend_modify (EV_A_ fd, o_events, events);
868 }
522 } 869 }
523 870
524 fdchangecnt = 0; 871 fdchangecnt = 0;
525} 872}
526 873
527void inline_size 874/* something about the given fd changed */
875inline_size void
528fd_change (EV_P_ int fd) 876fd_change (EV_P_ int fd, int flags)
529{ 877{
530 if (expect_false (anfds [fd].reify)) 878 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 879 anfds [fd].reify |= flags;
534 880
881 if (expect_true (!reify))
882 {
535 ++fdchangecnt; 883 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
886 }
538} 887}
539 888
540void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
541fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
542{ 892{
543 ev_io *w; 893 ev_io *w;
544 894
545 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 899 }
550} 900}
551 901
552int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
553fd_valid (int fd) 904fd_valid (int fd)
554{ 905{
555#ifdef _WIN32 906#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
557#else 908#else
565{ 916{
566 int fd; 917 int fd;
567 918
568 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 920 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
572} 923}
573 924
574/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 926static void noinline
589static void noinline 940static void noinline
590fd_rearm_all (EV_P) 941fd_rearm_all (EV_P)
591{ 942{
592 int fd; 943 int fd;
593 944
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 946 if (anfds [fd].events)
597 { 947 {
598 anfds [fd].events = 0; 948 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 949 anfds [fd].emask = 0;
950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
600 } 951 }
601} 952}
602 953
603/*****************************************************************************/ 954/*****************************************************************************/
604 955
605void inline_speed 956/*
606upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
607{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
608 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
609 961
610 while (k && heap [k >> 1]->at > w->at) 962/*
611 { 963 * at the moment we allow libev the luxury of two heaps,
612 heap [k] = heap [k >> 1]; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
613 ((W)heap [k])->active = k + 1; 965 * which is more cache-efficient.
614 k >>= 1; 966 * the difference is about 5% with 50000+ watchers.
615 } 967 */
968#if EV_USE_4HEAP
616 969
617 heap [k] = w; 970#define DHEAP 4
618 ((W)heap [k])->active = k + 1; 971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
619 974
620} 975/* away from the root */
621 976inline_speed void
622void inline_speed
623downheap (WT *heap, int N, int k) 977downheap (ANHE *heap, int N, int k)
624{ 978{
625 WT w = heap [k]; 979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
626 981
627 while (k < (N >> 1)) 982 for (;;)
628 { 983 {
629 int j = k << 1; 984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
630 987
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
632 ++j; 990 {
633 991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
634 if (w->at <= heap [j]->at) 992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
635 break; 1004 break;
636 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
637 heap [k] = heap [j]; 1044 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 1045 ev_active (ANHE_w (heap [k])) = k;
1046
639 k = j; 1047 k = c;
640 } 1048 }
641 1049
642 heap [k] = w; 1050 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 1051 ev_active (ANHE_w (he)) = k;
644} 1052}
1053#endif
645 1054
646void inline_size 1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
1068 heap [k] = heap [p];
1069 ev_active (ANHE_w (heap [k])) = k;
1070 k = p;
1071 }
1072
1073 heap [k] = he;
1074 ev_active (ANHE_w (he)) = k;
1075}
1076
1077/* move an element suitably so it is in a correct place */
1078inline_size void
647adjustheap (WT *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
648{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
649 upheap (heap, k); 1082 upheap (heap, k);
1083 else
650 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
651} 1097}
652 1098
653/*****************************************************************************/ 1099/*****************************************************************************/
654 1100
1101/* associate signal watchers to a signal signal */
655typedef struct 1102typedef struct
656{ 1103{
657 WL head; 1104 WL head;
658 sig_atomic_t volatile gotsig; 1105 EV_ATOMIC_T gotsig;
659} ANSIG; 1106} ANSIG;
660 1107
661static ANSIG *signals; 1108static ANSIG *signals;
662static int signalmax; 1109static int signalmax;
663 1110
664static int sigpipe [2]; 1111static EV_ATOMIC_T gotsig;
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 1112
668void inline_size 1113/*****************************************************************************/
669signals_init (ANSIG *base, int count)
670{
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675 1114
676 ++base; 1115/* used to prepare libev internal fd's */
677 } 1116/* this is not fork-safe */
678} 1117inline_speed void
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1118fd_intern (int fd)
733{ 1119{
734#ifdef _WIN32 1120#ifdef _WIN32
735 int arg = 1; 1121 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
737#else 1123#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1126#endif
741} 1127}
742 1128
743static void noinline 1129static void noinline
744siginit (EV_P) 1130evpipe_init (EV_P)
745{ 1131{
1132 if (!ev_is_active (&pipe_w))
1133 {
1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1140 {
1141 evpipe [0] = -1;
1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1143 ev_io_set (&pipe_w, evfd, EV_READ);
1144 }
1145 else
1146#endif
1147 {
1148 while (pipe (evpipe))
1149 ev_syserr ("(libev) error creating signal/async pipe");
1150
746 fd_intern (sigpipe [0]); 1151 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1152 fd_intern (evpipe [1]);
1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1154 }
748 1155
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1156 ev_io_start (EV_A_ &pipe_w);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1158 }
1159}
1160
1161inline_size void
1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163{
1164 if (!*flag)
1165 {
1166 int old_errno = errno; /* save errno because write might clobber it */
1167
1168 *flag = 1;
1169
1170#if EV_USE_EVENTFD
1171 if (evfd >= 0)
1172 {
1173 uint64_t counter = 1;
1174 write (evfd, &counter, sizeof (uint64_t));
1175 }
1176 else
1177#endif
1178 write (evpipe [1], &old_errno, 1);
1179
1180 errno = old_errno;
1181 }
1182}
1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
1186static void
1187pipecb (EV_P_ ev_io *iow, int revents)
1188{
1189#if EV_USE_EVENTFD
1190 if (evfd >= 0)
1191 {
1192 uint64_t counter;
1193 read (evfd, &counter, sizeof (uint64_t));
1194 }
1195 else
1196#endif
1197 {
1198 char dummy;
1199 read (evpipe [0], &dummy, 1);
1200 }
1201
1202 if (gotsig && ev_is_default_loop (EV_A))
1203 {
1204 int signum;
1205 gotsig = 0;
1206
1207 for (signum = signalmax; signum--; )
1208 if (signals [signum].gotsig)
1209 ev_feed_signal_event (EV_A_ signum + 1);
1210 }
1211
1212#if EV_ASYNC_ENABLE
1213 if (gotasync)
1214 {
1215 int i;
1216 gotasync = 0;
1217
1218 for (i = asynccnt; i--; )
1219 if (asyncs [i]->sent)
1220 {
1221 asyncs [i]->sent = 0;
1222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1223 }
1224 }
1225#endif
752} 1226}
753 1227
754/*****************************************************************************/ 1228/*****************************************************************************/
755 1229
1230static void
1231ev_sighandler (int signum)
1232{
1233#if EV_MULTIPLICITY
1234 struct ev_loop *loop = &default_loop_struct;
1235#endif
1236
1237#if _WIN32
1238 signal (signum, ev_sighandler);
1239#endif
1240
1241 signals [signum - 1].gotsig = 1;
1242 evpipe_write (EV_A_ &gotsig);
1243}
1244
1245void noinline
1246ev_feed_signal_event (EV_P_ int signum)
1247{
1248 WL w;
1249
1250#if EV_MULTIPLICITY
1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1252#endif
1253
1254 --signum;
1255
1256 if (signum < 0 || signum >= signalmax)
1257 return;
1258
1259 signals [signum].gotsig = 0;
1260
1261 for (w = signals [signum].head; w; w = w->next)
1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1263}
1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
1285/*****************************************************************************/
1286
756static ev_child *childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
757 1288
758#ifndef _WIN32 1289#ifndef _WIN32
759 1290
760static ev_signal childev; 1291static ev_signal childev;
761 1292
762void inline_speed 1293#ifndef WIFCONTINUED
1294# define WIFCONTINUED(status) 0
1295#endif
1296
1297/* handle a single child status event */
1298inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
764{ 1300{
765 ev_child *w; 1301 ev_child *w;
1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1303
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1304 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1305 {
768 if (w->pid == pid || !w->pid) 1306 if ((w->pid == pid || !w->pid)
1307 && (!traced || (w->flags & 1)))
769 { 1308 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1309 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1310 w->rpid = pid;
772 w->rstatus = status; 1311 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1312 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1313 }
1314 }
775} 1315}
776 1316
777#ifndef WCONTINUED 1317#ifndef WCONTINUED
778# define WCONTINUED 0 1318# define WCONTINUED 0
779#endif 1319#endif
780 1320
1321/* called on sigchld etc., calls waitpid */
781static void 1322static void
782childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
783{ 1324{
784 int pid, status; 1325 int pid, status;
785 1326
788 if (!WCONTINUED 1329 if (!WCONTINUED
789 || errno != EINVAL 1330 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1331 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1332 return;
792 1333
793 /* make sure we are called again until all childs have been reaped */ 1334 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1335 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1336 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1337
797 child_reap (EV_A_ sw, pid, pid, status); 1338 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1339 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1340 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1341}
801 1342
802#endif 1343#endif
803 1344
804/*****************************************************************************/ 1345/*****************************************************************************/
866 /* kqueue is borked on everything but netbsd apparently */ 1407 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1408 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1409 flags &= ~EVBACKEND_KQUEUE;
869#endif 1410#endif
870#ifdef __APPLE__ 1411#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1412 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
873#endif 1415#endif
874 1416
875 return flags; 1417 return flags;
876} 1418}
877 1419
878unsigned int 1420unsigned int
879ev_embeddable_backends (void) 1421ev_embeddable_backends (void)
880{ 1422{
881 return EVBACKEND_EPOLL 1423 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1424
883 | EVBACKEND_PORT; 1425 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1426 /* please fix it and tell me how to detect the fix */
1427 flags &= ~EVBACKEND_EPOLL;
1428
1429 return flags;
884} 1430}
885 1431
886unsigned int 1432unsigned int
887ev_backend (EV_P) 1433ev_backend (EV_P)
888{ 1434{
889 return backend; 1435 return backend;
890} 1436}
891 1437
1438#if EV_MINIMAL < 2
1439unsigned int
1440ev_loop_count (EV_P)
1441{
1442 return loop_count;
1443}
1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1451void
1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1453{
1454 io_blocktime = interval;
1455}
1456
1457void
1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1459{
1460 timeout_blocktime = interval;
1461}
1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
892static void noinline 1488static void noinline
893loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
894{ 1490{
895 if (!backend) 1491 if (!backend)
896 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
897#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
898 { 1505 {
899 struct timespec ts; 1506 struct timespec ts;
1507
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1509 have_monotonic = 1;
902 } 1510 }
903#endif 1511#endif
904 1512
905 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 1514 mn_now = get_clock ();
907 now_floor = mn_now; 1515 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1520
1521 io_blocktime = 0.;
1522 timeout_blocktime = 0.;
1523 backend = 0;
1524 backend_fd = -1;
1525 gotasync = 0;
1526#if EV_USE_INOTIFY
1527 fs_fd = -2;
1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1532
1533 /* pid check not overridable via env */
1534#ifndef _WIN32
1535 if (flags & EVFLAG_FORKCHECK)
1536 curpid = getpid ();
1537#endif
909 1538
910 if (!(flags & EVFLAG_NOENV) 1539 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1540 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1541 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1542 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1543
915 if (!(flags & 0x0000ffffUL)) 1544 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1545 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1546
924#if EV_USE_PORT 1547#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1549#endif
927#if EV_USE_KQUEUE 1550#if EV_USE_KQUEUE
935#endif 1558#endif
936#if EV_USE_SELECT 1559#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1561#endif
939 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
940 ev_init (&sigev, sigcb); 1565 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
942 } 1567 }
943} 1568}
944 1569
1570/* free up a loop structure */
945static void noinline 1571static void noinline
946loop_destroy (EV_P) 1572loop_destroy (EV_P)
947{ 1573{
948 int i; 1574 int i;
1575
1576 if (ev_is_active (&pipe_w))
1577 {
1578 /*ev_ref (EV_A);*/
1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1580
1581#if EV_USE_EVENTFD
1582 if (evfd >= 0)
1583 close (evfd);
1584#endif
1585
1586 if (evpipe [0] >= 0)
1587 {
1588 close (evpipe [0]);
1589 close (evpipe [1]);
1590 }
1591 }
1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
949 1602
950#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
952 close (fs_fd); 1605 close (fs_fd);
953#endif 1606#endif
970#if EV_USE_SELECT 1623#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1624 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1625#endif
973 1626
974 for (i = NUMPRI; i--; ) 1627 for (i = NUMPRI; i--; )
1628 {
975 array_free (pending, [i]); 1629 array_free (pending, [i]);
1630#if EV_IDLE_ENABLE
1631 array_free (idle, [i]);
1632#endif
1633 }
1634
1635 ev_free (anfds); anfdmax = 0;
976 1636
977 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 1639 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1640 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1642 array_free (periodic, EMPTY);
982#endif 1643#endif
1644#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1645 array_free (fork, EMPTY);
1646#endif
984 array_free (prepare, EMPTY0); 1647 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1648 array_free (check, EMPTY);
1649#if EV_ASYNC_ENABLE
1650 array_free (async, EMPTY);
1651#endif
986 1652
987 backend = 0; 1653 backend = 0;
988} 1654}
989 1655
1656#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1658#endif
991 1659
992void inline_size 1660inline_size void
993loop_fork (EV_P) 1661loop_fork (EV_P)
994{ 1662{
995#if EV_USE_PORT 1663#if EV_USE_PORT
996 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
997#endif 1665#endif
1003#endif 1671#endif
1004#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1673 infy_fork (EV_A);
1006#endif 1674#endif
1007 1675
1008 if (ev_is_active (&sigev)) 1676 if (ev_is_active (&pipe_w))
1009 { 1677 {
1010 /* default loop */ 1678 /* this "locks" the handlers against writing to the pipe */
1679 /* while we modify the fd vars */
1680 gotsig = 1;
1681#if EV_ASYNC_ENABLE
1682 gotasync = 1;
1683#endif
1011 1684
1012 ev_ref (EV_A); 1685 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1686 ev_io_stop (EV_A_ &pipe_w);
1687
1688#if EV_USE_EVENTFD
1689 if (evfd >= 0)
1690 close (evfd);
1691#endif
1692
1693 if (evpipe [0] >= 0)
1694 {
1014 close (sigpipe [0]); 1695 close (evpipe [0]);
1015 close (sigpipe [1]); 1696 close (evpipe [1]);
1697 }
1016 1698
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1699 evpipe_init (EV_A);
1700 /* now iterate over everything, in case we missed something */
1701 pipecb (EV_A_ &pipe_w, EV_READ);
1021 } 1702 }
1022 1703
1023 postfork = 0; 1704 postfork = 0;
1024} 1705}
1025 1706
1026#if EV_MULTIPLICITY 1707#if EV_MULTIPLICITY
1708
1027struct ev_loop * 1709struct ev_loop *
1028ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1029{ 1711{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1713
1032 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1033
1034 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1035 1716
1036 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1037 return loop; 1718 return loop;
1038 1719
1047} 1728}
1048 1729
1049void 1730void
1050ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1051{ 1732{
1052 postfork = 1; 1733 postfork = 1; /* must be in line with ev_default_fork */
1053} 1734}
1735#endif /* multiplicity */
1054 1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1835}
1055#endif 1836#endif
1056 1837
1057#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1058struct ev_loop * 1839struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
1060#else 1841#else
1061int 1842int
1062ev_default_loop (unsigned int flags) 1843ev_default_loop (unsigned int flags)
1063#endif 1844#endif
1064{ 1845{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1846 if (!ev_default_loop_ptr)
1070 { 1847 {
1071#if EV_MULTIPLICITY 1848#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1849 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1073#else 1850#else
1076 1853
1077 loop_init (EV_A_ flags); 1854 loop_init (EV_A_ flags);
1078 1855
1079 if (ev_backend (EV_A)) 1856 if (ev_backend (EV_A))
1080 { 1857 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1858#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1859 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1860 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1861 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1862 ev_unref (EV_A); /* child watcher should not keep loop alive */
1099{ 1874{
1100#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
1101 struct ev_loop *loop = ev_default_loop_ptr; 1876 struct ev_loop *loop = ev_default_loop_ptr;
1102#endif 1877#endif
1103 1878
1879 ev_default_loop_ptr = 0;
1880
1104#ifndef _WIN32 1881#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
1107#endif 1884#endif
1108 1885
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1886 loop_destroy (EV_A);
1116} 1887}
1117 1888
1118void 1889void
1119ev_default_fork (void) 1890ev_default_fork (void)
1120{ 1891{
1121#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1893 struct ev_loop *loop = ev_default_loop_ptr;
1123#endif 1894#endif
1124 1895
1125 if (backend) 1896 postfork = 1; /* must be in line with ev_loop_fork */
1126 postfork = 1;
1127} 1897}
1128 1898
1129/*****************************************************************************/ 1899/*****************************************************************************/
1130 1900
1131int inline_size 1901void
1132any_pending (EV_P) 1902ev_invoke (EV_P_ void *w, int revents)
1903{
1904 EV_CB_INVOKE ((W)w, revents);
1905}
1906
1907unsigned int
1908ev_pending_count (EV_P)
1133{ 1909{
1134 int pri; 1910 int pri;
1911 unsigned int count = 0;
1135 1912
1136 for (pri = NUMPRI; pri--; ) 1913 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri]) 1914 count += pendingcnt [pri];
1138 return 1;
1139 1915
1140 return 0; 1916 return count;
1141} 1917}
1142 1918
1143void inline_speed 1919void noinline
1144call_pending (EV_P) 1920ev_invoke_pending (EV_P)
1145{ 1921{
1146 int pri; 1922 int pri;
1147 1923
1148 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1149 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1150 { 1926 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152 1928
1153 if (expect_true (p->w))
1154 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1156 1931
1157 p->w->pending = 0; 1932 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1159 } 1934 EV_FREQUENT_CHECK;
1160 } 1935 }
1161} 1936}
1162 1937
1163void inline_size 1938#if EV_IDLE_ENABLE
1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1942idle_reify (EV_P)
1943{
1944 if (expect_false (idleall))
1945 {
1946 int pri;
1947
1948 for (pri = NUMPRI; pri--; )
1949 {
1950 if (pendingcnt [pri])
1951 break;
1952
1953 if (idlecnt [pri])
1954 {
1955 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1956 break;
1957 }
1958 }
1959 }
1960}
1961#endif
1962
1963/* make timers pending */
1964inline_size void
1164timers_reify (EV_P) 1965timers_reify (EV_P)
1165{ 1966{
1967 EV_FREQUENT_CHECK;
1968
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 1970 {
1168 ev_timer *w = timers [0]; 1971 do
1169
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171
1172 /* first reschedule or stop timer */
1173 if (w->repeat)
1174 { 1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 1985
1177 ((WT)w)->at += w->repeat; 1986 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1182 } 1994 }
1183 else 1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1996
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1187 } 1998 }
1188} 1999}
1189 2000
1190#if EV_PERIODIC_ENABLE 2001#if EV_PERIODIC_ENABLE
1191void inline_size 2002/* make periodics pending */
2003inline_size void
1192periodics_reify (EV_P) 2004periodics_reify (EV_P)
1193{ 2005{
2006 EV_FREQUENT_CHECK;
2007
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 2009 {
1196 ev_periodic *w = periodics [0]; 2010 int feed_count = 0;
1197 2011
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2012 do
1199
1200 /* first reschedule or stop timer */
1201 if (w->reschedule_cb)
1202 { 2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
1206 } 2052 }
1207 else if (w->interval) 2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1208 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0);
1212 }
1213 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 2054
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2055 feed_reverse_done (EV_A_ EV_PERIODIC);
1217 } 2056 }
1218} 2057}
1219 2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1220static void noinline 2061static void noinline
1221periodics_reschedule (EV_P) 2062periodics_reschedule (EV_P)
1222{ 2063{
1223 int i; 2064 int i;
1224 2065
1225 /* adjust periodics after time jump */ 2066 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 2068 {
1228 ev_periodic *w = periodics [i]; 2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 2070
1230 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 2073 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
1234 } 2090 {
1235 2091 ANHE *he = timers + i + HEAP0;
1236 /* now rebuild the heap */ 2092 ANHE_w (*he)->at += adjust;
1237 for (i = periodiccnt >> 1; i--; ) 2093 ANHE_at_cache (*he);
1238 downheap ((WT *)periodics, periodiccnt, i); 2094 }
1239} 2095}
1240#endif
1241 2096
1242int inline_size 2097/* fetch new monotonic and realtime times from the kernel */
1243time_update_monotonic (EV_P) 2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
2100time_update (EV_P_ ev_tstamp max_block)
1244{ 2101{
2102#if EV_USE_MONOTONIC
2103 if (expect_true (have_monotonic))
2104 {
2105 int i;
2106 ev_tstamp odiff = rtmn_diff;
2107
1245 mn_now = get_clock (); 2108 mn_now = get_clock ();
1246 2109
2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2111 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2112 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 2113 {
1249 ev_rt_now = rtmn_diff + mn_now; 2114 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 2115 return;
1251 } 2116 }
1252 else 2117
1253 {
1254 now_floor = mn_now; 2118 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 2119 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 2120
1260void inline_size 2121 /* loop a few times, before making important decisions.
1261time_update (EV_P) 2122 * on the choice of "4": one iteration isn't enough,
1262{ 2123 * in case we get preempted during the calls to
1263 int i; 2124 * ev_time and get_clock. a second call is almost guaranteed
1264 2125 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 2126 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 2127 * in the unlikely event of having been preempted here.
1267 { 2128 */
1268 if (time_update_monotonic (EV_A)) 2129 for (i = 4; --i; )
1269 { 2130 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1283 2132
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 2134 return; /* all is well */
1286 2135
1287 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 2137 mn_now = get_clock ();
1289 now_floor = mn_now; 2138 now_floor = mn_now;
1290 } 2139 }
1291 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1294# endif 2145# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 2146 }
1299 else 2147 else
1300#endif 2148#endif
1301 { 2149 {
1302 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1303 2151
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1306#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1308#endif 2158#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */
1311 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 2159 }
1314 2160
1315 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1316 } 2162 }
1317} 2163}
1318 2164
1319void 2165void
1320ev_ref (EV_P)
1321{
1322 ++activecnt;
1323}
1324
1325void
1326ev_unref (EV_P)
1327{
1328 --activecnt;
1329}
1330
1331static int loop_done;
1332
1333void
1334ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1335{ 2167{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2168#if EV_MINIMAL < 2
1337 ? EVUNLOOP_ONE 2169 ++loop_depth;
1338 : EVUNLOOP_CANCEL; 2170#endif
1339 2171
1340 while (activecnt) 2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
2174 loop_done = EVUNLOOP_CANCEL;
2175
2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2177
2178 do
1341 { 2179 {
1342 /* we might have forked, so reify kernel state if necessary */ 2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
2184#ifndef _WIN32
2185 if (expect_false (curpid)) /* penalise the forking check even more */
2186 if (expect_false (getpid () != curpid))
2187 {
2188 curpid = getpid ();
2189 postfork = 1;
2190 }
2191#endif
2192
1343 #if EV_FORK_ENABLE 2193#if EV_FORK_ENABLE
2194 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1345 if (forkcnt) 2196 if (forkcnt)
1346 { 2197 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1349 } 2200 }
1350 #endif 2201#endif
1351 2202
1352 /* queue check watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1354 { 2205 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1357 } 2208 }
2209
2210 if (expect_false (loop_done))
2211 break;
1358 2212
1359 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1361 loop_fork (EV_A); 2215 loop_fork (EV_A);
1362 2216
1363 /* update fd-related kernel structures */ 2217 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 2218 fd_reify (EV_A);
1365 2219
1366 /* calculate blocking time */ 2220 /* calculate blocking time */
1367 { 2221 {
1368 double block; 2222 ev_tstamp waittime = 0.;
2223 ev_tstamp sleeptime = 0.;
1369 2224
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
1374 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 2231 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 2232
1385 block = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1386 2234
1387 if (timercnt) 2235 if (timercnt)
1388 { 2236 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 2238 if (waittime > to) waittime = to;
1391 } 2239 }
1392 2240
1393#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 2242 if (periodiccnt)
1395 { 2243 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 2245 if (waittime > to) waittime = to;
1398 } 2246 }
1399#endif 2247#endif
1400 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
2250 if (expect_false (waittime < timeout_blocktime))
2251 waittime = timeout_blocktime;
2252
2253 /* extra check because io_blocktime is commonly 0 */
1401 if (expect_false (block < 0.)) block = 0.; 2254 if (expect_false (io_blocktime))
2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
2263 ev_sleep (sleeptime);
2264 waittime -= sleeptime;
2265 }
2266 }
1402 } 2267 }
1403 2268
2269#if EV_MINIMAL < 2
2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1404 backend_poll (EV_A_ block); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2275
2276 /* update ev_rt_now, do magic */
2277 time_update (EV_A_ waittime + sleeptime);
1405 } 2278 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2279
1410 /* queue pending timers and reschedule them */ 2280 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2281 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2282#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2283 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2284#endif
1415 2285
2286#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2287 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2288 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2289#endif
1419 2290
1420 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 2294
1424 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2296 }
2297 while (expect_true (
2298 activecnt
2299 && !loop_done
2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2301 ));
1429 2302
1430 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1432} 2309}
1433 2310
1434void 2311void
1435ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1436{ 2313{
1437 loop_done = how; 2314 loop_done = how;
1438} 2315}
1439 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1440/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1441 2356
1442void inline_size 2357inline_size void
1443wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1444{ 2359{
1445 elem->next = *head; 2360 elem->next = *head;
1446 *head = elem; 2361 *head = elem;
1447} 2362}
1448 2363
1449void inline_size 2364inline_size void
1450wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1451{ 2366{
1452 while (*head) 2367 while (*head)
1453 { 2368 {
1454 if (*head == elem) 2369 if (*head == elem)
1459 2374
1460 head = &(*head)->next; 2375 head = &(*head)->next;
1461 } 2376 }
1462} 2377}
1463 2378
1464void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
1465ev_clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1466{ 2382{
1467 if (w->pending) 2383 if (w->pending)
1468 { 2384 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1470 w->pending = 0; 2386 w->pending = 0;
1471 } 2387 }
1472} 2388}
1473 2389
1474void inline_speed 2390int
2391ev_clear_pending (EV_P_ void *w)
2392{
2393 W w_ = (W)w;
2394 int pending = w_->pending;
2395
2396 if (expect_true (pending))
2397 {
2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
2400 w_->pending = 0;
2401 return p->events;
2402 }
2403 else
2404 return 0;
2405}
2406
2407inline_size void
2408pri_adjust (EV_P_ W w)
2409{
2410 int pri = ev_priority (w);
2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2413 ev_set_priority (w, pri);
2414}
2415
2416inline_speed void
1475ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1476{ 2418{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2419 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2420 w->active = active;
1481 ev_ref (EV_A); 2421 ev_ref (EV_A);
1482} 2422}
1483 2423
1484void inline_size 2424inline_size void
1485ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1486{ 2426{
1487 ev_unref (EV_A); 2427 ev_unref (EV_A);
1488 w->active = 0; 2428 w->active = 0;
1489} 2429}
1490 2430
1491/*****************************************************************************/ 2431/*****************************************************************************/
1492 2432
1493void 2433void noinline
1494ev_io_start (EV_P_ ev_io *w) 2434ev_io_start (EV_P_ ev_io *w)
1495{ 2435{
1496 int fd = w->fd; 2436 int fd = w->fd;
1497 2437
1498 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1499 return; 2439 return;
1500 2440
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1502 2445
1503 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1506 2449
1507 fd_change (EV_A_ fd); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1508} 2451 w->events &= ~EV__IOFDSET;
1509 2452
1510void 2453 EV_FREQUENT_CHECK;
2454}
2455
2456void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1512{ 2458{
1513 ev_clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2460 if (expect_false (!ev_is_active (w)))
1515 return; 2461 return;
1516 2462
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2464
2465 EV_FREQUENT_CHECK;
2466
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1521 2469
1522 fd_change (EV_A_ w->fd); 2470 fd_change (EV_A_ w->fd, 1);
1523}
1524 2471
1525void 2472 EV_FREQUENT_CHECK;
2473}
2474
2475void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1527{ 2477{
1528 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1529 return; 2479 return;
1530 2480
1531 ((WT)w)->at += mn_now; 2481 ev_at (w) += mn_now;
1532 2482
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
1539 2493
2494 EV_FREQUENT_CHECK;
2495
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2497}
1542 2498
1543void 2499void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2501{
1546 ev_clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2503 if (expect_false (!ev_is_active (w)))
1548 return; 2504 return;
1549 2505
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2506 EV_FREQUENT_CHECK;
1551 2507
1552 { 2508 {
1553 int active = ((W)w)->active; 2509 int active = ev_active (w);
1554 2510
2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2512
2513 --timercnt;
2514
1555 if (expect_true (--active < --timercnt)) 2515 if (expect_true (active < timercnt + HEAP0))
1556 { 2516 {
1557 timers [active] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2518 adjustheap (timers, timercnt, active);
1559 } 2519 }
1560 } 2520 }
1561 2521
1562 ((WT)w)->at -= mn_now; 2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
1563 2525
1564 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1565} 2527}
1566 2528
1567void 2529void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1569{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1570 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1571 { 2535 {
1572 if (w->repeat) 2536 if (w->repeat)
1573 { 2537 {
1574 ((WT)w)->at = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2540 adjustheap (timers, timercnt, ev_active (w));
1576 } 2541 }
1577 else 2542 else
1578 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1579 } 2544 }
1580 else if (w->repeat) 2545 else if (w->repeat)
1581 { 2546 {
1582 w->at = w->repeat; 2547 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1584 } 2549 }
2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1585} 2558}
1586 2559
1587#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
1588void 2561void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2563{
1591 if (expect_false (ev_is_active (w))) 2564 if (expect_false (ev_is_active (w)))
1592 return; 2565 return;
1593 2566
1594 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2569 else if (w->interval)
1597 { 2570 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2574 }
2575 else
2576 ev_at (w) = w->offset;
1602 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1607 2586
2587 EV_FREQUENT_CHECK;
2588
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2590}
1610 2591
1611void 2592void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2594{
1614 ev_clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1616 return; 2597 return;
1617 2598
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2599 EV_FREQUENT_CHECK;
1619 2600
1620 { 2601 {
1621 int active = ((W)w)->active; 2602 int active = ev_active (w);
1622 2603
2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2605
2606 --periodiccnt;
2607
1623 if (expect_true (--active < --periodiccnt)) 2608 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2609 {
1625 periodics [active] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2611 adjustheap (periodics, periodiccnt, active);
1627 } 2612 }
1628 } 2613 }
1629 2614
2615 EV_FREQUENT_CHECK;
2616
1630 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1631} 2618}
1632 2619
1633void 2620void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2622{
1636 /* TODO: use adjustheap and recalculation */ 2623 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2624 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2625 ev_periodic_start (EV_A_ w);
1641 2628
1642#ifndef SA_RESTART 2629#ifndef SA_RESTART
1643# define SA_RESTART 0 2630# define SA_RESTART 0
1644#endif 2631#endif
1645 2632
1646void 2633void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
1648{ 2635{
1649#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 2638#endif
1652 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
1653 return; 2640 return;
1654 2641
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2676 evpipe_init (EV_A);
2677
2678 {
2679#ifndef _WIN32
2680 sigset_t full, prev;
2681 sigfillset (&full);
2682 sigprocmask (SIG_SETMASK, &full, &prev);
2683#endif
2684
2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2686
2687#ifndef _WIN32
2688# if EV_USE_SIGNALFD
2689 if (sigfd < 0)/*TODO*/
2690# endif
2691 sigdelset (&prev, w->signum);
2692 sigprocmask (SIG_SETMASK, &prev, 0);
2693#endif
2694 }
1656 2695
1657 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2697 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2698
1661 if (!((WL)w)->next) 2699 if (!((WL)w)->next)
1662 { 2700 {
1663#if _WIN32 2701#if _WIN32
1664 signal (w->signum, sighandler); 2702 signal (w->signum, ev_sighandler);
1665#else 2703#else
2704# if EV_USE_SIGNALFD
2705 if (sigfd < 0) /*TODO*/
2706# endif
2707 {
1666 struct sigaction sa; 2708 struct sigaction sa = { };
1667 sa.sa_handler = sighandler; 2709 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2710 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2711 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2712 sigaction (w->signum, &sa, 0);
2713 }
1671#endif 2714#endif
1672 } 2715 }
1673}
1674 2716
1675void 2717 EV_FREQUENT_CHECK;
2718}
2719
2720void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2721ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2722{
1678 ev_clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2724 if (expect_false (!ev_is_active (w)))
1680 return; 2725 return;
1681 2726
2727 EV_FREQUENT_CHECK;
2728
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2729 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2730 ev_stop (EV_A_ (W)w);
1684 2731
1685 if (!signals [w->signum - 1].head) 2732 if (!signals [w->signum - 1].head)
2733#if EV_USE_SIGNALFD
2734 if (sigfd >= 0)
2735 {
2736 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2737 sigdelset (&sigfd_set, w->signum);
2738 signalfd (sigfd, &sigfd_set, 0);
2739 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2740 /*TODO: maybe unblock signal? */
2741 }
2742 else
2743#endif
1686 signal (w->signum, SIG_DFL); 2744 signal (w->signum, SIG_DFL);
2745
2746 EV_FREQUENT_CHECK;
1687} 2747}
1688 2748
1689void 2749void
1690ev_child_start (EV_P_ ev_child *w) 2750ev_child_start (EV_P_ ev_child *w)
1691{ 2751{
1692#if EV_MULTIPLICITY 2752#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2753 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2754#endif
1695 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
1696 return; 2756 return;
1697 2757
2758 EV_FREQUENT_CHECK;
2759
1698 ev_start (EV_A_ (W)w, 1); 2760 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2761 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2762
2763 EV_FREQUENT_CHECK;
1700} 2764}
1701 2765
1702void 2766void
1703ev_child_stop (EV_P_ ev_child *w) 2767ev_child_stop (EV_P_ ev_child *w)
1704{ 2768{
1705 ev_clear_pending (EV_A_ (W)w); 2769 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2770 if (expect_false (!ev_is_active (w)))
1707 return; 2771 return;
1708 2772
2773 EV_FREQUENT_CHECK;
2774
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2775 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
1711} 2779}
1712 2780
1713#if EV_STAT_ENABLE 2781#if EV_STAT_ENABLE
1714 2782
1715# ifdef _WIN32 2783# ifdef _WIN32
1716# undef lstat 2784# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 2785# define lstat(a,b) _stati64 (a,b)
1718# endif 2786# endif
1719 2787
1720#define DEF_STAT_INTERVAL 5.0074891 2788#define DEF_STAT_INTERVAL 5.0074891
2789#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 2790#define MIN_STAT_INTERVAL 0.1074891
1722 2791
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2792static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2793
1725#if EV_USE_INOTIFY 2794#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2795# define EV_INOTIFY_BUFSIZE 8192
1727 2796
1728static void noinline 2797static void noinline
1730{ 2799{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2800 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 2801
1733 if (w->wd < 0) 2802 if (w->wd < 0)
1734 { 2803 {
2804 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2805 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2806
1737 /* monitor some parent directory for speedup hints */ 2807 /* monitor some parent directory for speedup hints */
2808 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2809 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2810 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2811 {
1740 char path [4096]; 2812 char path [4096];
1741 strcpy (path, w->path); 2813 strcpy (path, w->path);
1742 2814
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2817 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2818 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 2819
1748 char *pend = strrchr (path, '/'); 2820 char *pend = strrchr (path, '/');
1749 2821
1750 if (!pend) 2822 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 2823 break;
1752 2824
1753 *pend = 0; 2825 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 2826 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 2827 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2828 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 2829 }
1758 } 2830 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 2831
1762 if (w->wd >= 0) 2832 if (w->wd >= 0)
2833 {
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2834 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2835
2836 /* now local changes will be tracked by inotify, but remote changes won't */
2837 /* unless the filesystem it known to be local, we therefore still poll */
2838 /* also do poll on <2.6.25, but with normal frequency */
2839 struct statfs sfs;
2840
2841 if (fs_2625 && !statfs (w->path, &sfs))
2842 if (sfs.f_type == 0x1373 /* devfs */
2843 || sfs.f_type == 0xEF53 /* ext2/3 */
2844 || sfs.f_type == 0x3153464a /* jfs */
2845 || sfs.f_type == 0x52654973 /* reiser3 */
2846 || sfs.f_type == 0x01021994 /* tempfs */
2847 || sfs.f_type == 0x58465342 /* xfs */)
2848 return;
2849
2850 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2851 ev_timer_again (EV_A_ &w->timer);
2852 }
1764} 2853}
1765 2854
1766static void noinline 2855static void noinline
1767infy_del (EV_P_ ev_stat *w) 2856infy_del (EV_P_ ev_stat *w)
1768{ 2857{
1782 2871
1783static void noinline 2872static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2873infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 2874{
1786 if (slot < 0) 2875 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 2876 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2877 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 2878 infy_wd (EV_A_ slot, wd, ev);
1790 else 2879 else
1791 { 2880 {
1792 WL w_; 2881 WL w_;
1798 2887
1799 if (w->wd == wd || wd == -1) 2888 if (w->wd == wd || wd == -1)
1800 { 2889 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2890 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 2891 {
2892 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1803 w->wd = -1; 2893 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 2894 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 2895 }
1806 2896
1807 stat_timer_cb (EV_A_ &w->timer, 0); 2897 stat_timer_cb (EV_A_ &w->timer, 0);
1820 2910
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2911 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2912 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1823} 2913}
1824 2914
1825void inline_size 2915inline_size void
2916check_2625 (EV_P)
2917{
2918 /* kernels < 2.6.25 are borked
2919 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2920 */
2921 struct utsname buf;
2922 int major, minor, micro;
2923
2924 if (uname (&buf))
2925 return;
2926
2927 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2928 return;
2929
2930 if (major < 2
2931 || (major == 2 && minor < 6)
2932 || (major == 2 && minor == 6 && micro < 25))
2933 return;
2934
2935 fs_2625 = 1;
2936}
2937
2938inline_size void
1826infy_init (EV_P) 2939infy_init (EV_P)
1827{ 2940{
1828 if (fs_fd != -2) 2941 if (fs_fd != -2)
1829 return; 2942 return;
2943
2944 fs_fd = -1;
2945
2946 check_2625 (EV_A);
1830 2947
1831 fs_fd = inotify_init (); 2948 fs_fd = inotify_init ();
1832 2949
1833 if (fs_fd >= 0) 2950 if (fs_fd >= 0)
1834 { 2951 {
1836 ev_set_priority (&fs_w, EV_MAXPRI); 2953 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w); 2954 ev_io_start (EV_A_ &fs_w);
1838 } 2955 }
1839} 2956}
1840 2957
1841void inline_size 2958inline_size void
1842infy_fork (EV_P) 2959infy_fork (EV_P)
1843{ 2960{
1844 int slot; 2961 int slot;
1845 2962
1846 if (fs_fd < 0) 2963 if (fs_fd < 0)
1862 w->wd = -1; 2979 w->wd = -1;
1863 2980
1864 if (fs_fd >= 0) 2981 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 2982 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 2983 else
1867 ev_timer_start (EV_A_ &w->timer); 2984 ev_timer_again (EV_A_ &w->timer);
1868 } 2985 }
1869
1870 } 2986 }
1871} 2987}
1872 2988
2989#endif
2990
2991#ifdef _WIN32
2992# define EV_LSTAT(p,b) _stati64 (p, b)
2993#else
2994# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 2995#endif
1874 2996
1875void 2997void
1876ev_stat_stat (EV_P_ ev_stat *w) 2998ev_stat_stat (EV_P_ ev_stat *w)
1877{ 2999{
1879 w->attr.st_nlink = 0; 3001 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 3002 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 3003 w->attr.st_nlink = 1;
1882} 3004}
1883 3005
1884void noinline 3006static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3007stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 3008{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3009 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 3010
1889 /* we copy this here each the time so that */ 3011 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 3012 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 3013 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 3014 ev_stat_stat (EV_A_ w);
1893 3015
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3016 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3017 if (
3018 w->prev.st_dev != w->attr.st_dev
3019 || w->prev.st_ino != w->attr.st_ino
3020 || w->prev.st_mode != w->attr.st_mode
3021 || w->prev.st_nlink != w->attr.st_nlink
3022 || w->prev.st_uid != w->attr.st_uid
3023 || w->prev.st_gid != w->attr.st_gid
3024 || w->prev.st_rdev != w->attr.st_rdev
3025 || w->prev.st_size != w->attr.st_size
3026 || w->prev.st_atime != w->attr.st_atime
3027 || w->prev.st_mtime != w->attr.st_mtime
3028 || w->prev.st_ctime != w->attr.st_ctime
1895 { 3029 ) {
1896 #if EV_USE_INOTIFY 3030 #if EV_USE_INOTIFY
3031 if (fs_fd >= 0)
3032 {
1897 infy_del (EV_A_ w); 3033 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 3034 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 3035 ev_stat_stat (EV_A_ w); /* avoid race... */
3036 }
1900 #endif 3037 #endif
1901 3038
1902 ev_feed_event (EV_A_ w, EV_STAT); 3039 ev_feed_event (EV_A_ w, EV_STAT);
1903 } 3040 }
1904} 3041}
1907ev_stat_start (EV_P_ ev_stat *w) 3044ev_stat_start (EV_P_ ev_stat *w)
1908{ 3045{
1909 if (expect_false (ev_is_active (w))) 3046 if (expect_false (ev_is_active (w)))
1910 return; 3047 return;
1911 3048
1912 /* since we use memcmp, we need to clear any padding data etc. */
1913 memset (&w->prev, 0, sizeof (ev_statdata));
1914 memset (&w->attr, 0, sizeof (ev_statdata));
1915
1916 ev_stat_stat (EV_A_ w); 3049 ev_stat_stat (EV_A_ w);
1917 3050
3051 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1918 if (w->interval < MIN_STAT_INTERVAL) 3052 w->interval = MIN_STAT_INTERVAL;
1919 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1920 3053
1921 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3054 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1922 ev_set_priority (&w->timer, ev_priority (w)); 3055 ev_set_priority (&w->timer, ev_priority (w));
1923 3056
1924#if EV_USE_INOTIFY 3057#if EV_USE_INOTIFY
1925 infy_init (EV_A); 3058 infy_init (EV_A);
1926 3059
1927 if (fs_fd >= 0) 3060 if (fs_fd >= 0)
1928 infy_add (EV_A_ w); 3061 infy_add (EV_A_ w);
1929 else 3062 else
1930#endif 3063#endif
1931 ev_timer_start (EV_A_ &w->timer); 3064 ev_timer_again (EV_A_ &w->timer);
1932 3065
1933 ev_start (EV_A_ (W)w, 1); 3066 ev_start (EV_A_ (W)w, 1);
3067
3068 EV_FREQUENT_CHECK;
1934} 3069}
1935 3070
1936void 3071void
1937ev_stat_stop (EV_P_ ev_stat *w) 3072ev_stat_stop (EV_P_ ev_stat *w)
1938{ 3073{
1939 ev_clear_pending (EV_A_ (W)w); 3074 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 3075 if (expect_false (!ev_is_active (w)))
1941 return; 3076 return;
1942 3077
3078 EV_FREQUENT_CHECK;
3079
1943#if EV_USE_INOTIFY 3080#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 3081 infy_del (EV_A_ w);
1945#endif 3082#endif
1946 ev_timer_stop (EV_A_ &w->timer); 3083 ev_timer_stop (EV_A_ &w->timer);
1947 3084
1948 ev_stop (EV_A_ (W)w); 3085 ev_stop (EV_A_ (W)w);
1949}
1950#endif
1951 3086
3087 EV_FREQUENT_CHECK;
3088}
3089#endif
3090
3091#if EV_IDLE_ENABLE
1952void 3092void
1953ev_idle_start (EV_P_ ev_idle *w) 3093ev_idle_start (EV_P_ ev_idle *w)
1954{ 3094{
1955 if (expect_false (ev_is_active (w))) 3095 if (expect_false (ev_is_active (w)))
1956 return; 3096 return;
1957 3097
3098 pri_adjust (EV_A_ (W)w);
3099
3100 EV_FREQUENT_CHECK;
3101
3102 {
3103 int active = ++idlecnt [ABSPRI (w)];
3104
3105 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 3106 ev_start (EV_A_ (W)w, active);
3107
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3108 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 3109 idles [ABSPRI (w)][active - 1] = w;
3110 }
3111
3112 EV_FREQUENT_CHECK;
1961} 3113}
1962 3114
1963void 3115void
1964ev_idle_stop (EV_P_ ev_idle *w) 3116ev_idle_stop (EV_P_ ev_idle *w)
1965{ 3117{
1966 ev_clear_pending (EV_A_ (W)w); 3118 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 3119 if (expect_false (!ev_is_active (w)))
1968 return; 3120 return;
1969 3121
3122 EV_FREQUENT_CHECK;
3123
1970 { 3124 {
1971 int active = ((W)w)->active; 3125 int active = ev_active (w);
1972 idles [active - 1] = idles [--idlecnt]; 3126
1973 ((W)idles [active - 1])->active = active; 3127 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3128 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3129
3130 ev_stop (EV_A_ (W)w);
3131 --idleall;
1974 } 3132 }
1975 3133
1976 ev_stop (EV_A_ (W)w); 3134 EV_FREQUENT_CHECK;
1977} 3135}
3136#endif
1978 3137
1979void 3138void
1980ev_prepare_start (EV_P_ ev_prepare *w) 3139ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 3140{
1982 if (expect_false (ev_is_active (w))) 3141 if (expect_false (ev_is_active (w)))
1983 return; 3142 return;
3143
3144 EV_FREQUENT_CHECK;
1984 3145
1985 ev_start (EV_A_ (W)w, ++preparecnt); 3146 ev_start (EV_A_ (W)w, ++preparecnt);
1986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3147 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1987 prepares [preparecnt - 1] = w; 3148 prepares [preparecnt - 1] = w;
3149
3150 EV_FREQUENT_CHECK;
1988} 3151}
1989 3152
1990void 3153void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 3154ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 3155{
1993 ev_clear_pending (EV_A_ (W)w); 3156 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 3157 if (expect_false (!ev_is_active (w)))
1995 return; 3158 return;
1996 3159
3160 EV_FREQUENT_CHECK;
3161
1997 { 3162 {
1998 int active = ((W)w)->active; 3163 int active = ev_active (w);
3164
1999 prepares [active - 1] = prepares [--preparecnt]; 3165 prepares [active - 1] = prepares [--preparecnt];
2000 ((W)prepares [active - 1])->active = active; 3166 ev_active (prepares [active - 1]) = active;
2001 } 3167 }
2002 3168
2003 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
2004} 3172}
2005 3173
2006void 3174void
2007ev_check_start (EV_P_ ev_check *w) 3175ev_check_start (EV_P_ ev_check *w)
2008{ 3176{
2009 if (expect_false (ev_is_active (w))) 3177 if (expect_false (ev_is_active (w)))
2010 return; 3178 return;
3179
3180 EV_FREQUENT_CHECK;
2011 3181
2012 ev_start (EV_A_ (W)w, ++checkcnt); 3182 ev_start (EV_A_ (W)w, ++checkcnt);
2013 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3183 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2014 checks [checkcnt - 1] = w; 3184 checks [checkcnt - 1] = w;
3185
3186 EV_FREQUENT_CHECK;
2015} 3187}
2016 3188
2017void 3189void
2018ev_check_stop (EV_P_ ev_check *w) 3190ev_check_stop (EV_P_ ev_check *w)
2019{ 3191{
2020 ev_clear_pending (EV_A_ (W)w); 3192 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 3193 if (expect_false (!ev_is_active (w)))
2022 return; 3194 return;
2023 3195
3196 EV_FREQUENT_CHECK;
3197
2024 { 3198 {
2025 int active = ((W)w)->active; 3199 int active = ev_active (w);
3200
2026 checks [active - 1] = checks [--checkcnt]; 3201 checks [active - 1] = checks [--checkcnt];
2027 ((W)checks [active - 1])->active = active; 3202 ev_active (checks [active - 1]) = active;
2028 } 3203 }
2029 3204
2030 ev_stop (EV_A_ (W)w); 3205 ev_stop (EV_A_ (W)w);
3206
3207 EV_FREQUENT_CHECK;
2031} 3208}
2032 3209
2033#if EV_EMBED_ENABLE 3210#if EV_EMBED_ENABLE
2034void noinline 3211void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 3212ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 3213{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 3214 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 3215}
2039 3216
2040static void 3217static void
2041embed_cb (EV_P_ ev_io *io, int revents) 3218embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 3219{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3220 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 3221
2045 if (ev_cb (w)) 3222 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3223 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 3224 else
2048 ev_embed_sweep (loop, w); 3225 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 3226}
3227
3228static void
3229embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3230{
3231 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3232
3233 {
3234 struct ev_loop *loop = w->other;
3235
3236 while (fdchangecnt)
3237 {
3238 fd_reify (EV_A);
3239 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3240 }
3241 }
3242}
3243
3244static void
3245embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3246{
3247 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3248
3249 ev_embed_stop (EV_A_ w);
3250
3251 {
3252 struct ev_loop *loop = w->other;
3253
3254 ev_loop_fork (EV_A);
3255 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3256 }
3257
3258 ev_embed_start (EV_A_ w);
3259}
3260
3261#if 0
3262static void
3263embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3264{
3265 ev_idle_stop (EV_A_ idle);
3266}
3267#endif
2050 3268
2051void 3269void
2052ev_embed_start (EV_P_ ev_embed *w) 3270ev_embed_start (EV_P_ ev_embed *w)
2053{ 3271{
2054 if (expect_false (ev_is_active (w))) 3272 if (expect_false (ev_is_active (w)))
2055 return; 3273 return;
2056 3274
2057 { 3275 {
2058 struct ev_loop *loop = w->loop; 3276 struct ev_loop *loop = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3277 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3278 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 3279 }
3280
3281 EV_FREQUENT_CHECK;
2062 3282
2063 ev_set_priority (&w->io, ev_priority (w)); 3283 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 3284 ev_io_start (EV_A_ &w->io);
2065 3285
3286 ev_prepare_init (&w->prepare, embed_prepare_cb);
3287 ev_set_priority (&w->prepare, EV_MINPRI);
3288 ev_prepare_start (EV_A_ &w->prepare);
3289
3290 ev_fork_init (&w->fork, embed_fork_cb);
3291 ev_fork_start (EV_A_ &w->fork);
3292
3293 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3294
2066 ev_start (EV_A_ (W)w, 1); 3295 ev_start (EV_A_ (W)w, 1);
3296
3297 EV_FREQUENT_CHECK;
2067} 3298}
2068 3299
2069void 3300void
2070ev_embed_stop (EV_P_ ev_embed *w) 3301ev_embed_stop (EV_P_ ev_embed *w)
2071{ 3302{
2072 ev_clear_pending (EV_A_ (W)w); 3303 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 3304 if (expect_false (!ev_is_active (w)))
2074 return; 3305 return;
2075 3306
3307 EV_FREQUENT_CHECK;
3308
2076 ev_io_stop (EV_A_ &w->io); 3309 ev_io_stop (EV_A_ &w->io);
3310 ev_prepare_stop (EV_A_ &w->prepare);
3311 ev_fork_stop (EV_A_ &w->fork);
2077 3312
2078 ev_stop (EV_A_ (W)w); 3313 EV_FREQUENT_CHECK;
2079} 3314}
2080#endif 3315#endif
2081 3316
2082#if EV_FORK_ENABLE 3317#if EV_FORK_ENABLE
2083void 3318void
2084ev_fork_start (EV_P_ ev_fork *w) 3319ev_fork_start (EV_P_ ev_fork *w)
2085{ 3320{
2086 if (expect_false (ev_is_active (w))) 3321 if (expect_false (ev_is_active (w)))
2087 return; 3322 return;
3323
3324 EV_FREQUENT_CHECK;
2088 3325
2089 ev_start (EV_A_ (W)w, ++forkcnt); 3326 ev_start (EV_A_ (W)w, ++forkcnt);
2090 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3327 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2091 forks [forkcnt - 1] = w; 3328 forks [forkcnt - 1] = w;
3329
3330 EV_FREQUENT_CHECK;
2092} 3331}
2093 3332
2094void 3333void
2095ev_fork_stop (EV_P_ ev_fork *w) 3334ev_fork_stop (EV_P_ ev_fork *w)
2096{ 3335{
2097 ev_clear_pending (EV_A_ (W)w); 3336 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 3337 if (expect_false (!ev_is_active (w)))
2099 return; 3338 return;
2100 3339
3340 EV_FREQUENT_CHECK;
3341
2101 { 3342 {
2102 int active = ((W)w)->active; 3343 int active = ev_active (w);
3344
2103 forks [active - 1] = forks [--forkcnt]; 3345 forks [active - 1] = forks [--forkcnt];
2104 ((W)forks [active - 1])->active = active; 3346 ev_active (forks [active - 1]) = active;
2105 } 3347 }
2106 3348
2107 ev_stop (EV_A_ (W)w); 3349 ev_stop (EV_A_ (W)w);
3350
3351 EV_FREQUENT_CHECK;
3352}
3353#endif
3354
3355#if EV_ASYNC_ENABLE
3356void
3357ev_async_start (EV_P_ ev_async *w)
3358{
3359 if (expect_false (ev_is_active (w)))
3360 return;
3361
3362 evpipe_init (EV_A);
3363
3364 EV_FREQUENT_CHECK;
3365
3366 ev_start (EV_A_ (W)w, ++asynccnt);
3367 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3368 asyncs [asynccnt - 1] = w;
3369
3370 EV_FREQUENT_CHECK;
3371}
3372
3373void
3374ev_async_stop (EV_P_ ev_async *w)
3375{
3376 clear_pending (EV_A_ (W)w);
3377 if (expect_false (!ev_is_active (w)))
3378 return;
3379
3380 EV_FREQUENT_CHECK;
3381
3382 {
3383 int active = ev_active (w);
3384
3385 asyncs [active - 1] = asyncs [--asynccnt];
3386 ev_active (asyncs [active - 1]) = active;
3387 }
3388
3389 ev_stop (EV_A_ (W)w);
3390
3391 EV_FREQUENT_CHECK;
3392}
3393
3394void
3395ev_async_send (EV_P_ ev_async *w)
3396{
3397 w->sent = 1;
3398 evpipe_write (EV_A_ &gotasync);
2108} 3399}
2109#endif 3400#endif
2110 3401
2111/*****************************************************************************/ 3402/*****************************************************************************/
2112 3403
2122once_cb (EV_P_ struct ev_once *once, int revents) 3413once_cb (EV_P_ struct ev_once *once, int revents)
2123{ 3414{
2124 void (*cb)(int revents, void *arg) = once->cb; 3415 void (*cb)(int revents, void *arg) = once->cb;
2125 void *arg = once->arg; 3416 void *arg = once->arg;
2126 3417
2127 ev_io_stop (EV_A_ &once->io); 3418 ev_io_stop (EV_A_ &once->io);
2128 ev_timer_stop (EV_A_ &once->to); 3419 ev_timer_stop (EV_A_ &once->to);
2129 ev_free (once); 3420 ev_free (once);
2130 3421
2131 cb (revents, arg); 3422 cb (revents, arg);
2132} 3423}
2133 3424
2134static void 3425static void
2135once_cb_io (EV_P_ ev_io *w, int revents) 3426once_cb_io (EV_P_ ev_io *w, int revents)
2136{ 3427{
2137 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3428 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3429
3430 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2138} 3431}
2139 3432
2140static void 3433static void
2141once_cb_to (EV_P_ ev_timer *w, int revents) 3434once_cb_to (EV_P_ ev_timer *w, int revents)
2142{ 3435{
2143 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3436 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3437
3438 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2144} 3439}
2145 3440
2146void 3441void
2147ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3442ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2148{ 3443{
2170 ev_timer_set (&once->to, timeout, 0.); 3465 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 3466 ev_timer_start (EV_A_ &once->to);
2172 } 3467 }
2173} 3468}
2174 3469
3470/*****************************************************************************/
3471
3472#if EV_WALK_ENABLE
3473void
3474ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3475{
3476 int i, j;
3477 ev_watcher_list *wl, *wn;
3478
3479 if (types & (EV_IO | EV_EMBED))
3480 for (i = 0; i < anfdmax; ++i)
3481 for (wl = anfds [i].head; wl; )
3482 {
3483 wn = wl->next;
3484
3485#if EV_EMBED_ENABLE
3486 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3487 {
3488 if (types & EV_EMBED)
3489 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3490 }
3491 else
3492#endif
3493#if EV_USE_INOTIFY
3494 if (ev_cb ((ev_io *)wl) == infy_cb)
3495 ;
3496 else
3497#endif
3498 if ((ev_io *)wl != &pipe_w)
3499 if (types & EV_IO)
3500 cb (EV_A_ EV_IO, wl);
3501
3502 wl = wn;
3503 }
3504
3505 if (types & (EV_TIMER | EV_STAT))
3506 for (i = timercnt + HEAP0; i-- > HEAP0; )
3507#if EV_STAT_ENABLE
3508 /*TODO: timer is not always active*/
3509 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3510 {
3511 if (types & EV_STAT)
3512 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3513 }
3514 else
3515#endif
3516 if (types & EV_TIMER)
3517 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3518
3519#if EV_PERIODIC_ENABLE
3520 if (types & EV_PERIODIC)
3521 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3522 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3523#endif
3524
3525#if EV_IDLE_ENABLE
3526 if (types & EV_IDLE)
3527 for (j = NUMPRI; i--; )
3528 for (i = idlecnt [j]; i--; )
3529 cb (EV_A_ EV_IDLE, idles [j][i]);
3530#endif
3531
3532#if EV_FORK_ENABLE
3533 if (types & EV_FORK)
3534 for (i = forkcnt; i--; )
3535 if (ev_cb (forks [i]) != embed_fork_cb)
3536 cb (EV_A_ EV_FORK, forks [i]);
3537#endif
3538
3539#if EV_ASYNC_ENABLE
3540 if (types & EV_ASYNC)
3541 for (i = asynccnt; i--; )
3542 cb (EV_A_ EV_ASYNC, asyncs [i]);
3543#endif
3544
3545 if (types & EV_PREPARE)
3546 for (i = preparecnt; i--; )
3547#if EV_EMBED_ENABLE
3548 if (ev_cb (prepares [i]) != embed_prepare_cb)
3549#endif
3550 cb (EV_A_ EV_PREPARE, prepares [i]);
3551
3552 if (types & EV_CHECK)
3553 for (i = checkcnt; i--; )
3554 cb (EV_A_ EV_CHECK, checks [i]);
3555
3556 if (types & EV_SIGNAL)
3557 for (i = 0; i < signalmax; ++i)
3558 for (wl = signals [i].head; wl; )
3559 {
3560 wn = wl->next;
3561 cb (EV_A_ EV_SIGNAL, wl);
3562 wl = wn;
3563 }
3564
3565 if (types & EV_CHILD)
3566 for (i = EV_PID_HASHSIZE; i--; )
3567 for (wl = childs [i]; wl; )
3568 {
3569 wn = wl->next;
3570 cb (EV_A_ EV_CHILD, wl);
3571 wl = wn;
3572 }
3573/* EV_STAT 0x00001000 /* stat data changed */
3574/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3575}
3576#endif
3577
3578#if EV_MULTIPLICITY
3579 #include "ev_wrap.h"
3580#endif
3581
2175#ifdef __cplusplus 3582#ifdef __cplusplus
2176} 3583}
2177#endif 3584#endif
2178 3585

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines