ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.133 by root, Fri Nov 23 11:32:22 2007 UTC vs.
Revision 1.305 by root, Sun Jul 19 03:49:04 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
99#endif 154#endif
100 155
101#include <math.h> 156#include <math.h>
102#include <stdlib.h> 157#include <stdlib.h>
103#include <fcntl.h> 158#include <fcntl.h>
110#include <sys/types.h> 165#include <sys/types.h>
111#include <time.h> 166#include <time.h>
112 167
113#include <signal.h> 168#include <signal.h>
114 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
115#ifndef _WIN32 176#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 177# include <sys/time.h>
118# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
119#else 180#else
181# include <io.h>
120# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 183# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
124# endif 186# endif
125#endif 187#endif
126 188
127/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 64
216#endif
217
218/* Default to some arbitrary number that's big enough to get most
219 of the common signals.
220*/
221#ifndef NSIG
222# define NSIG 50
223#endif
224/* <-- NSIG logic from Configure */
225#ifndef EV_USE_CLOCK_SYSCALL
226# if __linux && __GLIBC__ >= 2
227# define EV_USE_CLOCK_SYSCALL 1
228# else
229# define EV_USE_CLOCK_SYSCALL 0
230# endif
231#endif
128 232
129#ifndef EV_USE_MONOTONIC 233#ifndef EV_USE_MONOTONIC
234# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
235# define EV_USE_MONOTONIC 1
236# else
130# define EV_USE_MONOTONIC 0 237# define EV_USE_MONOTONIC 0
238# endif
131#endif 239#endif
132 240
133#ifndef EV_USE_REALTIME 241#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 242# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
243#endif
244
245#ifndef EV_USE_NANOSLEEP
246# if _POSIX_C_SOURCE >= 199309L
247# define EV_USE_NANOSLEEP 1
248# else
249# define EV_USE_NANOSLEEP 0
250# endif
135#endif 251#endif
136 252
137#ifndef EV_USE_SELECT 253#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 254# define EV_USE_SELECT 1
139#endif 255#endif
145# define EV_USE_POLL 1 261# define EV_USE_POLL 1
146# endif 262# endif
147#endif 263#endif
148 264
149#ifndef EV_USE_EPOLL 265#ifndef EV_USE_EPOLL
266# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
267# define EV_USE_EPOLL 1
268# else
150# define EV_USE_EPOLL 0 269# define EV_USE_EPOLL 0
270# endif
151#endif 271#endif
152 272
153#ifndef EV_USE_KQUEUE 273#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 274# define EV_USE_KQUEUE 0
155#endif 275#endif
156 276
157#ifndef EV_USE_PORT 277#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 278# define EV_USE_PORT 0
159#endif 279#endif
160 280
161/**/ 281#ifndef EV_USE_INOTIFY
282# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
283# define EV_USE_INOTIFY 1
284# else
285# define EV_USE_INOTIFY 0
286# endif
287#endif
288
289#ifndef EV_PID_HASHSIZE
290# if EV_MINIMAL
291# define EV_PID_HASHSIZE 1
292# else
293# define EV_PID_HASHSIZE 16
294# endif
295#endif
296
297#ifndef EV_INOTIFY_HASHSIZE
298# if EV_MINIMAL
299# define EV_INOTIFY_HASHSIZE 1
300# else
301# define EV_INOTIFY_HASHSIZE 16
302# endif
303#endif
304
305#ifndef EV_USE_EVENTFD
306# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
307# define EV_USE_EVENTFD 1
308# else
309# define EV_USE_EVENTFD 0
310# endif
311#endif
312
313#ifndef EV_USE_SIGNALFD
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
315# define EV_USE_SIGNALFD 1
316# else
317# define EV_USE_SIGNALFD 0
318# endif
319#endif
320
321#if 0 /* debugging */
322# define EV_VERIFY 3
323# define EV_USE_4HEAP 1
324# define EV_HEAP_CACHE_AT 1
325#endif
326
327#ifndef EV_VERIFY
328# define EV_VERIFY !EV_MINIMAL
329#endif
330
331#ifndef EV_USE_4HEAP
332# define EV_USE_4HEAP !EV_MINIMAL
333#endif
334
335#ifndef EV_HEAP_CACHE_AT
336# define EV_HEAP_CACHE_AT !EV_MINIMAL
337#endif
338
339/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
340/* which makes programs even slower. might work on other unices, too. */
341#if EV_USE_CLOCK_SYSCALL
342# include <syscall.h>
343# ifdef SYS_clock_gettime
344# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
345# undef EV_USE_MONOTONIC
346# define EV_USE_MONOTONIC 1
347# else
348# undef EV_USE_CLOCK_SYSCALL
349# define EV_USE_CLOCK_SYSCALL 0
350# endif
351#endif
352
353/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 354
163#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
166#endif 358#endif
168#ifndef CLOCK_REALTIME 360#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 361# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 362# define EV_USE_REALTIME 0
171#endif 363#endif
172 364
365#if !EV_STAT_ENABLE
366# undef EV_USE_INOTIFY
367# define EV_USE_INOTIFY 0
368#endif
369
370#if !EV_USE_NANOSLEEP
371# ifndef _WIN32
372# include <sys/select.h>
373# endif
374#endif
375
376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
385#endif
386
173#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 388# include <winsock.h>
175#endif 389#endif
176 390
391#if EV_USE_EVENTFD
392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# define EFD_CLOEXEC O_CLOEXEC
399# endif
400# ifdef __cplusplus
401extern "C" {
402# endif
403int eventfd (unsigned int initval, int flags);
404# ifdef __cplusplus
405}
406# endif
407#endif
408
409#if EV_USE_SIGNALFD
410# include <sys/signalfd.h>
411#endif
412
177/**/ 413/**/
414
415#if EV_VERIFY >= 3
416# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
417#else
418# define EV_FREQUENT_CHECK do { } while (0)
419#endif
420
421/*
422 * This is used to avoid floating point rounding problems.
423 * It is added to ev_rt_now when scheduling periodics
424 * to ensure progress, time-wise, even when rounding
425 * errors are against us.
426 * This value is good at least till the year 4000.
427 * Better solutions welcome.
428 */
429#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 430
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 431#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 432#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 433/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 434
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 435#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 436# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 437# define noinline __attribute__ ((noinline))
193#else 438#else
194# define expect(expr,value) (expr) 439# define expect(expr,value) (expr)
195# define inline static 440# define noinline
441# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
442# define inline
443# endif
196#endif 444#endif
197 445
198#define expect_false(expr) expect ((expr) != 0, 0) 446#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 447#define expect_true(expr) expect ((expr) != 0, 1)
448#define inline_size static inline
200 449
450#if EV_MINIMAL
451# define inline_speed static noinline
452#else
453# define inline_speed static inline
454#endif
455
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 456#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
457
458#if EV_MINPRI == EV_MAXPRI
459# define ABSPRI(w) (((W)w), 0)
460#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 461# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
462#endif
203 463
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 464#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 465#define EMPTY2(a,b) /* used to suppress some warnings */
206 466
207typedef struct ev_watcher *W; 467typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 468typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 469typedef ev_watcher_time *WT;
210 470
471#define ev_active(w) ((W)(w))->active
472#define ev_at(w) ((WT)(w))->at
473
474#if EV_USE_REALTIME
475/* sig_atomic_t is used to avoid per-thread variables or locking but still */
476/* giving it a reasonably high chance of working on typical architetcures */
477static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
478#endif
479
480#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 481static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
482#endif
212 483
213#ifdef _WIN32 484#ifdef _WIN32
214# include "ev_win32.c" 485# include "ev_win32.c"
215#endif 486#endif
216 487
217/*****************************************************************************/ 488/*****************************************************************************/
218 489
219static void (*syserr_cb)(const char *msg); 490static void (*syserr_cb)(const char *msg);
220 491
492void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 493ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 494{
223 syserr_cb = cb; 495 syserr_cb = cb;
224} 496}
225 497
226static void 498static void noinline
227syserr (const char *msg) 499ev_syserr (const char *msg)
228{ 500{
229 if (!msg) 501 if (!msg)
230 msg = "(libev) system error"; 502 msg = "(libev) system error";
231 503
232 if (syserr_cb) 504 if (syserr_cb)
236 perror (msg); 508 perror (msg);
237 abort (); 509 abort ();
238 } 510 }
239} 511}
240 512
513static void *
514ev_realloc_emul (void *ptr, long size)
515{
516 /* some systems, notably openbsd and darwin, fail to properly
517 * implement realloc (x, 0) (as required by both ansi c-98 and
518 * the single unix specification, so work around them here.
519 */
520
521 if (size)
522 return realloc (ptr, size);
523
524 free (ptr);
525 return 0;
526}
527
241static void *(*alloc)(void *ptr, long size); 528static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 529
530void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 531ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 532{
245 alloc = cb; 533 alloc = cb;
246} 534}
247 535
248static void * 536inline_speed void *
249ev_realloc (void *ptr, long size) 537ev_realloc (void *ptr, long size)
250{ 538{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 539 ptr = alloc (ptr, size);
252 540
253 if (!ptr && size) 541 if (!ptr && size)
254 { 542 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 543 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 544 abort ();
262#define ev_malloc(size) ev_realloc (0, (size)) 550#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 551#define ev_free(ptr) ev_realloc ((ptr), 0)
264 552
265/*****************************************************************************/ 553/*****************************************************************************/
266 554
555/* set in reify when reification needed */
556#define EV_ANFD_REIFY 1
557
558/* file descriptor info structure */
267typedef struct 559typedef struct
268{ 560{
269 WL head; 561 WL head;
270 unsigned char events; 562 unsigned char events; /* the events watched for */
563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 565 unsigned char unused;
566#if EV_USE_EPOLL
567 unsigned int egen; /* generation counter to counter epoll bugs */
568#endif
272#if EV_SELECT_IS_WINSOCKET 569#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle; 570 SOCKET handle;
274#endif 571#endif
275} ANFD; 572} ANFD;
276 573
574/* stores the pending event set for a given watcher */
277typedef struct 575typedef struct
278{ 576{
279 W w; 577 W w;
280 int events; 578 int events; /* the pending event set for the given watcher */
281} ANPENDING; 579} ANPENDING;
580
581#if EV_USE_INOTIFY
582/* hash table entry per inotify-id */
583typedef struct
584{
585 WL head;
586} ANFS;
587#endif
588
589/* Heap Entry */
590#if EV_HEAP_CACHE_AT
591 /* a heap element */
592 typedef struct {
593 ev_tstamp at;
594 WT w;
595 } ANHE;
596
597 #define ANHE_w(he) (he).w /* access watcher, read-write */
598 #define ANHE_at(he) (he).at /* access cached at, read-only */
599 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
600#else
601 /* a heap element */
602 typedef WT ANHE;
603
604 #define ANHE_w(he) (he)
605 #define ANHE_at(he) (he)->at
606 #define ANHE_at_cache(he)
607#endif
282 608
283#if EV_MULTIPLICITY 609#if EV_MULTIPLICITY
284 610
285 struct ev_loop 611 struct ev_loop
286 { 612 {
304 630
305 static int ev_default_loop_ptr; 631 static int ev_default_loop_ptr;
306 632
307#endif 633#endif
308 634
635#if EV_MINIMAL < 2
636# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
637# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
638# define EV_INVOKE_PENDING invoke_cb (EV_A)
639#else
640# define EV_RELEASE_CB (void)0
641# define EV_ACQUIRE_CB (void)0
642# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
643#endif
644
645#define EVUNLOOP_RECURSE 0x80
646
309/*****************************************************************************/ 647/*****************************************************************************/
310 648
649#ifndef EV_HAVE_EV_TIME
311ev_tstamp 650ev_tstamp
312ev_time (void) 651ev_time (void)
313{ 652{
314#if EV_USE_REALTIME 653#if EV_USE_REALTIME
654 if (expect_true (have_realtime))
655 {
315 struct timespec ts; 656 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 657 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 658 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 659 }
660#endif
661
319 struct timeval tv; 662 struct timeval tv;
320 gettimeofday (&tv, 0); 663 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 664 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 665}
666#endif
324 667
325inline ev_tstamp 668inline_size ev_tstamp
326get_clock (void) 669get_clock (void)
327{ 670{
328#if EV_USE_MONOTONIC 671#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 672 if (expect_true (have_monotonic))
330 { 673 {
343{ 686{
344 return ev_rt_now; 687 return ev_rt_now;
345} 688}
346#endif 689#endif
347 690
348#define array_roundsize(type,n) (((n) | 4) & ~3) 691void
692ev_sleep (ev_tstamp delay)
693{
694 if (delay > 0.)
695 {
696#if EV_USE_NANOSLEEP
697 struct timespec ts;
698
699 ts.tv_sec = (time_t)delay;
700 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
701
702 nanosleep (&ts, 0);
703#elif defined(_WIN32)
704 Sleep ((unsigned long)(delay * 1e3));
705#else
706 struct timeval tv;
707
708 tv.tv_sec = (time_t)delay;
709 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
710
711 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
712 /* something not guaranteed by newer posix versions, but guaranteed */
713 /* by older ones */
714 select (0, 0, 0, 0, &tv);
715#endif
716 }
717}
718
719/*****************************************************************************/
720
721#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
722
723/* find a suitable new size for the given array, */
724/* hopefully by rounding to a ncie-to-malloc size */
725inline_size int
726array_nextsize (int elem, int cur, int cnt)
727{
728 int ncur = cur + 1;
729
730 do
731 ncur <<= 1;
732 while (cnt > ncur);
733
734 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
735 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
736 {
737 ncur *= elem;
738 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
739 ncur = ncur - sizeof (void *) * 4;
740 ncur /= elem;
741 }
742
743 return ncur;
744}
745
746static noinline void *
747array_realloc (int elem, void *base, int *cur, int cnt)
748{
749 *cur = array_nextsize (elem, *cur, cnt);
750 return ev_realloc (base, elem * *cur);
751}
752
753#define array_init_zero(base,count) \
754 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 755
350#define array_needsize(type,base,cur,cnt,init) \ 756#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 757 if (expect_false ((cnt) > (cur))) \
352 { \ 758 { \
353 int newcnt = cur; \ 759 int ocur_ = (cur); \
354 do \ 760 (base) = (type *)array_realloc \
355 { \ 761 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 762 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 763 }
364 764
765#if 0
365#define array_slim(type,stem) \ 766#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 767 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 768 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 769 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 770 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 771 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 772 }
773#endif
372 774
373#define array_free(stem, idx) \ 775#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 776 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 777
376/*****************************************************************************/ 778/*****************************************************************************/
377 779
378static void 780/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 781static void noinline
782pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 783{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 784}
390 785
391void 786void noinline
392ev_feed_event (EV_P_ void *w, int revents) 787ev_feed_event (EV_P_ void *w, int revents)
393{ 788{
394 W w_ = (W)w; 789 W w_ = (W)w;
790 int pri = ABSPRI (w_);
395 791
396 if (expect_false (w_->pending)) 792 if (expect_false (w_->pending))
793 pendings [pri][w_->pending - 1].events |= revents;
794 else
397 { 795 {
796 w_->pending = ++pendingcnt [pri];
797 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
798 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 799 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 800 }
401
402 w_->pending = ++pendingcnt [ABSPRI (w_)];
403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
406} 801}
407 802
408static void 803inline_speed void
804feed_reverse (EV_P_ W w)
805{
806 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
807 rfeeds [rfeedcnt++] = w;
808}
809
810inline_size void
811feed_reverse_done (EV_P_ int revents)
812{
813 do
814 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
815 while (rfeedcnt);
816}
817
818inline_speed void
409queue_events (EV_P_ W *events, int eventcnt, int type) 819queue_events (EV_P_ W *events, int eventcnt, int type)
410{ 820{
411 int i; 821 int i;
412 822
413 for (i = 0; i < eventcnt; ++i) 823 for (i = 0; i < eventcnt; ++i)
414 ev_feed_event (EV_A_ events [i], type); 824 ev_feed_event (EV_A_ events [i], type);
415} 825}
416 826
827/*****************************************************************************/
828
417inline void 829inline_speed void
418fd_event (EV_P_ int fd, int revents) 830fd_event_nc (EV_P_ int fd, int revents)
419{ 831{
420 ANFD *anfd = anfds + fd; 832 ANFD *anfd = anfds + fd;
421 struct ev_io *w; 833 ev_io *w;
422 834
423 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 835 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
424 { 836 {
425 int ev = w->events & revents; 837 int ev = w->events & revents;
426 838
427 if (ev) 839 if (ev)
428 ev_feed_event (EV_A_ (W)w, ev); 840 ev_feed_event (EV_A_ (W)w, ev);
429 } 841 }
430} 842}
431 843
844/* do not submit kernel events for fds that have reify set */
845/* because that means they changed while we were polling for new events */
846inline_speed void
847fd_event (EV_P_ int fd, int revents)
848{
849 ANFD *anfd = anfds + fd;
850
851 if (expect_true (!anfd->reify))
852 fd_event_nc (EV_A_ fd, revents);
853}
854
432void 855void
433ev_feed_fd_event (EV_P_ int fd, int revents) 856ev_feed_fd_event (EV_P_ int fd, int revents)
434{ 857{
858 if (fd >= 0 && fd < anfdmax)
435 fd_event (EV_A_ fd, revents); 859 fd_event_nc (EV_A_ fd, revents);
436} 860}
437 861
438/*****************************************************************************/ 862/* make sure the external fd watch events are in-sync */
439 863/* with the kernel/libev internal state */
440inline void 864inline_size void
441fd_reify (EV_P) 865fd_reify (EV_P)
442{ 866{
443 int i; 867 int i;
444 868
445 for (i = 0; i < fdchangecnt; ++i) 869 for (i = 0; i < fdchangecnt; ++i)
446 { 870 {
447 int fd = fdchanges [i]; 871 int fd = fdchanges [i];
448 ANFD *anfd = anfds + fd; 872 ANFD *anfd = anfds + fd;
449 struct ev_io *w; 873 ev_io *w;
450 874
451 int events = 0; 875 unsigned char events = 0;
452 876
453 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 877 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
454 events |= w->events; 878 events |= (unsigned char)w->events;
455 879
456#if EV_SELECT_IS_WINSOCKET 880#if EV_SELECT_IS_WINSOCKET
457 if (events) 881 if (events)
458 { 882 {
459 unsigned long argp; 883 unsigned long arg;
884 #ifdef EV_FD_TO_WIN32_HANDLE
885 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
886 #else
460 anfd->handle = _get_osfhandle (fd); 887 anfd->handle = _get_osfhandle (fd);
888 #endif
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 889 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
462 } 890 }
463#endif 891#endif
464 892
893 {
894 unsigned char o_events = anfd->events;
895 unsigned char o_reify = anfd->reify;
896
465 anfd->reify = 0; 897 anfd->reify = 0;
466
467 backend_modify (EV_A_ fd, anfd->events, events);
468 anfd->events = events; 898 anfd->events = events;
899
900 if (o_events != events || o_reify & EV__IOFDSET)
901 backend_modify (EV_A_ fd, o_events, events);
902 }
469 } 903 }
470 904
471 fdchangecnt = 0; 905 fdchangecnt = 0;
472} 906}
473 907
474static void 908/* something about the given fd changed */
909inline_size void
475fd_change (EV_P_ int fd) 910fd_change (EV_P_ int fd, int flags)
476{ 911{
477 if (expect_false (anfds [fd].reify)) 912 unsigned char reify = anfds [fd].reify;
478 return;
479
480 anfds [fd].reify = 1; 913 anfds [fd].reify |= flags;
481 914
915 if (expect_true (!reify))
916 {
482 ++fdchangecnt; 917 ++fdchangecnt;
483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
484 fdchanges [fdchangecnt - 1] = fd; 919 fdchanges [fdchangecnt - 1] = fd;
920 }
485} 921}
486 922
487static void 923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
924inline_speed void
488fd_kill (EV_P_ int fd) 925fd_kill (EV_P_ int fd)
489{ 926{
490 struct ev_io *w; 927 ev_io *w;
491 928
492 while ((w = (struct ev_io *)anfds [fd].head)) 929 while ((w = (ev_io *)anfds [fd].head))
493 { 930 {
494 ev_io_stop (EV_A_ w); 931 ev_io_stop (EV_A_ w);
495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
496 } 933 }
497} 934}
498 935
936/* check whether the given fd is atcually valid, for error recovery */
499inline int 937inline_size int
500fd_valid (int fd) 938fd_valid (int fd)
501{ 939{
502#ifdef _WIN32 940#ifdef _WIN32
503 return _get_osfhandle (fd) != -1; 941 return _get_osfhandle (fd) != -1;
504#else 942#else
505 return fcntl (fd, F_GETFD) != -1; 943 return fcntl (fd, F_GETFD) != -1;
506#endif 944#endif
507} 945}
508 946
509/* called on EBADF to verify fds */ 947/* called on EBADF to verify fds */
510static void 948static void noinline
511fd_ebadf (EV_P) 949fd_ebadf (EV_P)
512{ 950{
513 int fd; 951 int fd;
514 952
515 for (fd = 0; fd < anfdmax; ++fd) 953 for (fd = 0; fd < anfdmax; ++fd)
516 if (anfds [fd].events) 954 if (anfds [fd].events)
517 if (!fd_valid (fd) == -1 && errno == EBADF) 955 if (!fd_valid (fd) && errno == EBADF)
518 fd_kill (EV_A_ fd); 956 fd_kill (EV_A_ fd);
519} 957}
520 958
521/* called on ENOMEM in select/poll to kill some fds and retry */ 959/* called on ENOMEM in select/poll to kill some fds and retry */
522static void 960static void noinline
523fd_enomem (EV_P) 961fd_enomem (EV_P)
524{ 962{
525 int fd; 963 int fd;
526 964
527 for (fd = anfdmax; fd--; ) 965 for (fd = anfdmax; fd--; )
531 return; 969 return;
532 } 970 }
533} 971}
534 972
535/* usually called after fork if backend needs to re-arm all fds from scratch */ 973/* usually called after fork if backend needs to re-arm all fds from scratch */
536static void 974static void noinline
537fd_rearm_all (EV_P) 975fd_rearm_all (EV_P)
538{ 976{
539 int fd; 977 int fd;
540 978
541 /* this should be highly optimised to not do anything but set a flag */
542 for (fd = 0; fd < anfdmax; ++fd) 979 for (fd = 0; fd < anfdmax; ++fd)
543 if (anfds [fd].events) 980 if (anfds [fd].events)
544 { 981 {
545 anfds [fd].events = 0; 982 anfds [fd].events = 0;
546 fd_change (EV_A_ fd); 983 anfds [fd].emask = 0;
984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
547 } 985 }
548} 986}
549 987
550/*****************************************************************************/ 988/*****************************************************************************/
551 989
552static void 990/*
553upheap (WT *heap, int k) 991 * the heap functions want a real array index. array index 0 uis guaranteed to not
554{ 992 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
555 WT w = heap [k]; 993 * the branching factor of the d-tree.
994 */
556 995
557 while (k && heap [k >> 1]->at > w->at) 996/*
558 { 997 * at the moment we allow libev the luxury of two heaps,
559 heap [k] = heap [k >> 1]; 998 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
560 ((W)heap [k])->active = k + 1; 999 * which is more cache-efficient.
561 k >>= 1; 1000 * the difference is about 5% with 50000+ watchers.
562 } 1001 */
1002#if EV_USE_4HEAP
563 1003
564 heap [k] = w; 1004#define DHEAP 4
565 ((W)heap [k])->active = k + 1; 1005#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1006#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1007#define UPHEAP_DONE(p,k) ((p) == (k))
566 1008
567} 1009/* away from the root */
568 1010inline_speed void
569static void
570downheap (WT *heap, int N, int k) 1011downheap (ANHE *heap, int N, int k)
571{ 1012{
572 WT w = heap [k]; 1013 ANHE he = heap [k];
1014 ANHE *E = heap + N + HEAP0;
573 1015
574 while (k < (N >> 1)) 1016 for (;;)
575 { 1017 {
576 int j = k << 1; 1018 ev_tstamp minat;
1019 ANHE *minpos;
1020 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
577 1021
578 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1022 /* find minimum child */
1023 if (expect_true (pos + DHEAP - 1 < E))
579 ++j; 1024 {
580 1025 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
581 if (w->at <= heap [j]->at) 1026 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else if (pos < E)
1031 {
1032 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1033 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1034 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1035 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1036 }
1037 else
582 break; 1038 break;
583 1039
1040 if (ANHE_at (he) <= minat)
1041 break;
1042
1043 heap [k] = *minpos;
1044 ev_active (ANHE_w (*minpos)) = k;
1045
1046 k = minpos - heap;
1047 }
1048
1049 heap [k] = he;
1050 ev_active (ANHE_w (he)) = k;
1051}
1052
1053#else /* 4HEAP */
1054
1055#define HEAP0 1
1056#define HPARENT(k) ((k) >> 1)
1057#define UPHEAP_DONE(p,k) (!(p))
1058
1059/* away from the root */
1060inline_speed void
1061downheap (ANHE *heap, int N, int k)
1062{
1063 ANHE he = heap [k];
1064
1065 for (;;)
1066 {
1067 int c = k << 1;
1068
1069 if (c > N + HEAP0 - 1)
1070 break;
1071
1072 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1073 ? 1 : 0;
1074
1075 if (ANHE_at (he) <= ANHE_at (heap [c]))
1076 break;
1077
584 heap [k] = heap [j]; 1078 heap [k] = heap [c];
585 ((W)heap [k])->active = k + 1; 1079 ev_active (ANHE_w (heap [k])) = k;
1080
586 k = j; 1081 k = c;
587 } 1082 }
588 1083
589 heap [k] = w; 1084 heap [k] = he;
590 ((W)heap [k])->active = k + 1; 1085 ev_active (ANHE_w (he)) = k;
591} 1086}
1087#endif
592 1088
1089/* towards the root */
1090inline_speed void
1091upheap (ANHE *heap, int k)
1092{
1093 ANHE he = heap [k];
1094
1095 for (;;)
1096 {
1097 int p = HPARENT (k);
1098
1099 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1100 break;
1101
1102 heap [k] = heap [p];
1103 ev_active (ANHE_w (heap [k])) = k;
1104 k = p;
1105 }
1106
1107 heap [k] = he;
1108 ev_active (ANHE_w (he)) = k;
1109}
1110
1111/* move an element suitably so it is in a correct place */
593inline void 1112inline_size void
594adjustheap (WT *heap, int N, int k) 1113adjustheap (ANHE *heap, int N, int k)
595{ 1114{
1115 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
596 upheap (heap, k); 1116 upheap (heap, k);
1117 else
597 downheap (heap, N, k); 1118 downheap (heap, N, k);
1119}
1120
1121/* rebuild the heap: this function is used only once and executed rarely */
1122inline_size void
1123reheap (ANHE *heap, int N)
1124{
1125 int i;
1126
1127 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1128 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1129 for (i = 0; i < N; ++i)
1130 upheap (heap, i + HEAP0);
598} 1131}
599 1132
600/*****************************************************************************/ 1133/*****************************************************************************/
601 1134
1135/* associate signal watchers to a signal signal */
602typedef struct 1136typedef struct
603{ 1137{
604 WL head; 1138 WL head;
605 sig_atomic_t volatile gotsig; 1139 EV_ATOMIC_T gotsig;
606} ANSIG; 1140} ANSIG;
607 1141
608static ANSIG *signals; 1142static ANSIG *signals;
609static int signalmax; 1143static int signalmax;
610 1144
611static int sigpipe [2]; 1145static EV_ATOMIC_T gotsig;
612static sig_atomic_t volatile gotsig;
613static struct ev_io sigev;
614 1146
615static void 1147/*****************************************************************************/
616signals_init (ANSIG *base, int count)
617{
618 while (count--)
619 {
620 base->head = 0;
621 base->gotsig = 0;
622 1148
623 ++base; 1149/* used to prepare libev internal fd's */
624 } 1150/* this is not fork-safe */
625} 1151inline_speed void
626
627static void
628sighandler (int signum)
629{
630#if _WIN32
631 signal (signum, sighandler);
632#endif
633
634 signals [signum - 1].gotsig = 1;
635
636 if (!gotsig)
637 {
638 int old_errno = errno;
639 gotsig = 1;
640 write (sigpipe [1], &signum, 1);
641 errno = old_errno;
642 }
643}
644
645void
646ev_feed_signal_event (EV_P_ int signum)
647{
648 WL w;
649
650#if EV_MULTIPLICITY
651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
652#endif
653
654 --signum;
655
656 if (signum < 0 || signum >= signalmax)
657 return;
658
659 signals [signum].gotsig = 0;
660
661 for (w = signals [signum].head; w; w = w->next)
662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
663}
664
665static void
666sigcb (EV_P_ struct ev_io *iow, int revents)
667{
668 int signum;
669
670 read (sigpipe [0], &revents, 1);
671 gotsig = 0;
672
673 for (signum = signalmax; signum--; )
674 if (signals [signum].gotsig)
675 ev_feed_signal_event (EV_A_ signum + 1);
676}
677
678static void
679fd_intern (int fd) 1152fd_intern (int fd)
680{ 1153{
681#ifdef _WIN32 1154#ifdef _WIN32
682 int arg = 1; 1155 unsigned long arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1156 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
684#else 1157#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC); 1158 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK); 1159 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif 1160#endif
688} 1161}
689 1162
1163static void noinline
1164evpipe_init (EV_P)
1165{
1166 if (!ev_is_active (&pipe_w))
1167 {
1168#if EV_USE_EVENTFD
1169 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1170 if (evfd < 0 && errno == EINVAL)
1171 evfd = eventfd (0, 0);
1172
1173 if (evfd >= 0)
1174 {
1175 evpipe [0] = -1;
1176 fd_intern (evfd); /* doing it twice doesn't hurt */
1177 ev_io_set (&pipe_w, evfd, EV_READ);
1178 }
1179 else
1180#endif
1181 {
1182 while (pipe (evpipe))
1183 ev_syserr ("(libev) error creating signal/async pipe");
1184
1185 fd_intern (evpipe [0]);
1186 fd_intern (evpipe [1]);
1187 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1188 }
1189
1190 ev_io_start (EV_A_ &pipe_w);
1191 ev_unref (EV_A); /* watcher should not keep loop alive */
1192 }
1193}
1194
1195inline_size void
1196evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1197{
1198 if (!*flag)
1199 {
1200 int old_errno = errno; /* save errno because write might clobber it */
1201
1202 *flag = 1;
1203
1204#if EV_USE_EVENTFD
1205 if (evfd >= 0)
1206 {
1207 uint64_t counter = 1;
1208 write (evfd, &counter, sizeof (uint64_t));
1209 }
1210 else
1211#endif
1212 write (evpipe [1], &old_errno, 1);
1213
1214 errno = old_errno;
1215 }
1216}
1217
1218/* called whenever the libev signal pipe */
1219/* got some events (signal, async) */
690static void 1220static void
691siginit (EV_P) 1221pipecb (EV_P_ ev_io *iow, int revents)
692{ 1222{
693 fd_intern (sigpipe [0]); 1223#if EV_USE_EVENTFD
694 fd_intern (sigpipe [1]); 1224 if (evfd >= 0)
1225 {
1226 uint64_t counter;
1227 read (evfd, &counter, sizeof (uint64_t));
1228 }
1229 else
1230#endif
1231 {
1232 char dummy;
1233 read (evpipe [0], &dummy, 1);
1234 }
695 1235
696 ev_io_set (&sigev, sigpipe [0], EV_READ); 1236 if (gotsig && ev_is_default_loop (EV_A))
697 ev_io_start (EV_A_ &sigev); 1237 {
698 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1238 int signum;
1239 gotsig = 0;
1240
1241 for (signum = signalmax; signum--; )
1242 if (signals [signum].gotsig)
1243 ev_feed_signal_event (EV_A_ signum + 1);
1244 }
1245
1246#if EV_ASYNC_ENABLE
1247 if (gotasync)
1248 {
1249 int i;
1250 gotasync = 0;
1251
1252 for (i = asynccnt; i--; )
1253 if (asyncs [i]->sent)
1254 {
1255 asyncs [i]->sent = 0;
1256 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1257 }
1258 }
1259#endif
699} 1260}
700 1261
701/*****************************************************************************/ 1262/*****************************************************************************/
702 1263
703static struct ev_child *childs [PID_HASHSIZE]; 1264static void
1265ev_sighandler (int signum)
1266{
1267#if EV_MULTIPLICITY
1268 struct ev_loop *loop = &default_loop_struct;
1269#endif
1270
1271#if _WIN32
1272 signal (signum, ev_sighandler);
1273#endif
1274
1275 signals [signum - 1].gotsig = 1;
1276 evpipe_write (EV_A_ &gotsig);
1277}
1278
1279void noinline
1280ev_feed_signal_event (EV_P_ int signum)
1281{
1282 WL w;
1283
1284#if EV_MULTIPLICITY
1285 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1286#endif
1287
1288 --signum;
1289
1290 if (signum < 0 || signum >= signalmax)
1291 return;
1292
1293 signals [signum].gotsig = 0;
1294
1295 for (w = signals [signum].head; w; w = w->next)
1296 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1297}
1298
1299#if EV_USE_SIGNALFD
1300static void
1301sigfdcb (EV_P_ ev_io *iow, int revents)
1302{
1303 struct signalfd_siginfo si[4], *sip;
1304
1305 for (;;)
1306 {
1307 ssize_t res = read (sigfd, si, sizeof (si));
1308
1309 /* not ISO-C, as res might be -1, but works with SuS */
1310 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1311 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1312
1313 if (res < (ssize_t)sizeof (si))
1314 break;
1315 }
1316}
1317#endif
1318
1319/*****************************************************************************/
1320
1321static WL childs [EV_PID_HASHSIZE];
704 1322
705#ifndef _WIN32 1323#ifndef _WIN32
706 1324
707static struct ev_signal childev; 1325static ev_signal childev;
1326
1327#ifndef WIFCONTINUED
1328# define WIFCONTINUED(status) 0
1329#endif
1330
1331/* handle a single child status event */
1332inline_speed void
1333child_reap (EV_P_ int chain, int pid, int status)
1334{
1335 ev_child *w;
1336 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1337
1338 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1339 {
1340 if ((w->pid == pid || !w->pid)
1341 && (!traced || (w->flags & 1)))
1342 {
1343 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1344 w->rpid = pid;
1345 w->rstatus = status;
1346 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1347 }
1348 }
1349}
708 1350
709#ifndef WCONTINUED 1351#ifndef WCONTINUED
710# define WCONTINUED 0 1352# define WCONTINUED 0
711#endif 1353#endif
712 1354
1355/* called on sigchld etc., calls waitpid */
713static void 1356static void
714child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
715{
716 struct ev_child *w;
717
718 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
719 if (w->pid == pid || !w->pid)
720 {
721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
722 w->rpid = pid;
723 w->rstatus = status;
724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
725 }
726}
727
728static void
729childcb (EV_P_ struct ev_signal *sw, int revents) 1357childcb (EV_P_ ev_signal *sw, int revents)
730{ 1358{
731 int pid, status; 1359 int pid, status;
732 1360
1361 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1362 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
734 { 1363 if (!WCONTINUED
1364 || errno != EINVAL
1365 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1366 return;
1367
735 /* make sure we are called again until all childs have been reaped */ 1368 /* make sure we are called again until all children have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */ 1369 /* we need to do it this way so that the callback gets called before we continue */
737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1370 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
738 1371
739 child_reap (EV_A_ sw, pid, pid, status); 1372 child_reap (EV_A_ pid, pid, status);
1373 if (EV_PID_HASHSIZE > 1)
740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1374 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
741 }
742} 1375}
743 1376
744#endif 1377#endif
745 1378
746/*****************************************************************************/ 1379/*****************************************************************************/
772{ 1405{
773 return EV_VERSION_MINOR; 1406 return EV_VERSION_MINOR;
774} 1407}
775 1408
776/* return true if we are running with elevated privileges and should ignore env variables */ 1409/* return true if we are running with elevated privileges and should ignore env variables */
777static int 1410int inline_size
778enable_secure (void) 1411enable_secure (void)
779{ 1412{
780#ifdef _WIN32 1413#ifdef _WIN32
781 return 0; 1414 return 0;
782#else 1415#else
808 /* kqueue is borked on everything but netbsd apparently */ 1441 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1442 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1443 flags &= ~EVBACKEND_KQUEUE;
811#endif 1444#endif
812#ifdef __APPLE__ 1445#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation 1446 /* only select works correctly on that "unix-certified" platform */
1447 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1448 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1449#endif
1450
1451 return flags;
1452}
1453
1454unsigned int
1455ev_embeddable_backends (void)
1456{
1457 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1458
1459 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1460 /* please fix it and tell me how to detect the fix */
814 flags &= ~EVBACKEND_POLL; 1461 flags &= ~EVBACKEND_EPOLL;
815#endif
816 1462
817 return flags; 1463 return flags;
818} 1464}
819 1465
820unsigned int 1466unsigned int
821ev_backend (EV_P) 1467ev_backend (EV_P)
822{ 1468{
823 return backend; 1469 return backend;
824} 1470}
825 1471
826static void 1472#if EV_MINIMAL < 2
1473unsigned int
1474ev_loop_count (EV_P)
1475{
1476 return loop_count;
1477}
1478
1479unsigned int
1480ev_loop_depth (EV_P)
1481{
1482 return loop_depth;
1483}
1484
1485void
1486ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1487{
1488 io_blocktime = interval;
1489}
1490
1491void
1492ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1493{
1494 timeout_blocktime = interval;
1495}
1496
1497void
1498ev_set_userdata (EV_P_ void *data)
1499{
1500 userdata = data;
1501}
1502
1503void *
1504ev_userdata (EV_P)
1505{
1506 return userdata;
1507}
1508
1509void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1510{
1511 invoke_cb = invoke_pending_cb;
1512}
1513
1514void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1515{
1516 release_cb = release;
1517 acquire_cb = acquire;
1518}
1519#endif
1520
1521/* initialise a loop structure, must be zero-initialised */
1522static void noinline
827loop_init (EV_P_ unsigned int flags) 1523loop_init (EV_P_ unsigned int flags)
828{ 1524{
829 if (!backend) 1525 if (!backend)
830 { 1526 {
1527#if EV_USE_REALTIME
1528 if (!have_realtime)
1529 {
1530 struct timespec ts;
1531
1532 if (!clock_gettime (CLOCK_REALTIME, &ts))
1533 have_realtime = 1;
1534 }
1535#endif
1536
831#if EV_USE_MONOTONIC 1537#if EV_USE_MONOTONIC
1538 if (!have_monotonic)
832 { 1539 {
833 struct timespec ts; 1540 struct timespec ts;
1541
834 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1542 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
835 have_monotonic = 1; 1543 have_monotonic = 1;
836 } 1544 }
837#endif 1545#endif
838 1546
839 ev_rt_now = ev_time (); 1547 ev_rt_now = ev_time ();
840 mn_now = get_clock (); 1548 mn_now = get_clock ();
841 now_floor = mn_now; 1549 now_floor = mn_now;
842 rtmn_diff = ev_rt_now - mn_now; 1550 rtmn_diff = ev_rt_now - mn_now;
1551#if EV_MINIMAL < 2
1552 invoke_cb = ev_invoke_pending;
1553#endif
1554
1555 io_blocktime = 0.;
1556 timeout_blocktime = 0.;
1557 backend = 0;
1558 backend_fd = -1;
1559 gotasync = 0;
1560#if EV_USE_INOTIFY
1561 fs_fd = -2;
1562#endif
1563#if EV_USE_SIGNALFD
1564 sigfd = -2;
1565#endif
1566
1567 /* pid check not overridable via env */
1568#ifndef _WIN32
1569 if (flags & EVFLAG_FORKCHECK)
1570 curpid = getpid ();
1571#endif
843 1572
844 if (!(flags & EVFLAG_NOENV) 1573 if (!(flags & EVFLAG_NOENV)
845 && !enable_secure () 1574 && !enable_secure ()
846 && getenv ("LIBEV_FLAGS")) 1575 && getenv ("LIBEV_FLAGS"))
847 flags = atoi (getenv ("LIBEV_FLAGS")); 1576 flags = atoi (getenv ("LIBEV_FLAGS"));
848 1577
849 if (!(flags & 0x0000ffffUL)) 1578 if (!(flags & 0x0000ffffU))
850 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
851 1580
852 backend = 0;
853#if EV_USE_PORT 1581#if EV_USE_PORT
854 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
855#endif 1583#endif
856#if EV_USE_KQUEUE 1584#if EV_USE_KQUEUE
857 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1585 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864#endif 1592#endif
865#if EV_USE_SELECT 1593#if EV_USE_SELECT
866 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
867#endif 1595#endif
868 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
869 ev_init (&sigev, sigcb); 1599 ev_init (&pipe_w, pipecb);
870 ev_set_priority (&sigev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
871 } 1601 }
872} 1602}
873 1603
874static void 1604/* free up a loop structure */
1605static void noinline
875loop_destroy (EV_P) 1606loop_destroy (EV_P)
876{ 1607{
877 int i; 1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1636
1637#if EV_USE_INOTIFY
1638 if (fs_fd >= 0)
1639 close (fs_fd);
1640#endif
1641
1642 if (backend_fd >= 0)
1643 close (backend_fd);
878 1644
879#if EV_USE_PORT 1645#if EV_USE_PORT
880 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1646 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
881#endif 1647#endif
882#if EV_USE_KQUEUE 1648#if EV_USE_KQUEUE
891#if EV_USE_SELECT 1657#if EV_USE_SELECT
892 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1658 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
893#endif 1659#endif
894 1660
895 for (i = NUMPRI; i--; ) 1661 for (i = NUMPRI; i--; )
1662 {
896 array_free (pending, [i]); 1663 array_free (pending, [i]);
1664#if EV_IDLE_ENABLE
1665 array_free (idle, [i]);
1666#endif
1667 }
1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
897 1670
898 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
899 array_free (fdchange, EMPTY0); 1673 array_free (fdchange, EMPTY);
900 array_free (timer, EMPTY0); 1674 array_free (timer, EMPTY);
901#if EV_PERIODICS 1675#if EV_PERIODIC_ENABLE
902 array_free (periodic, EMPTY0); 1676 array_free (periodic, EMPTY);
903#endif 1677#endif
1678#if EV_FORK_ENABLE
904 array_free (idle, EMPTY0); 1679 array_free (fork, EMPTY);
1680#endif
905 array_free (prepare, EMPTY0); 1681 array_free (prepare, EMPTY);
906 array_free (check, EMPTY0); 1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
907 1686
908 backend = 0; 1687 backend = 0;
909} 1688}
910 1689
911static void 1690#if EV_USE_INOTIFY
1691inline_size void infy_fork (EV_P);
1692#endif
1693
1694inline_size void
912loop_fork (EV_P) 1695loop_fork (EV_P)
913{ 1696{
914#if EV_USE_PORT 1697#if EV_USE_PORT
915 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
916#endif 1699#endif
918 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1701 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
919#endif 1702#endif
920#if EV_USE_EPOLL 1703#if EV_USE_EPOLL
921 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1704 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
922#endif 1705#endif
1706#if EV_USE_INOTIFY
1707 infy_fork (EV_A);
1708#endif
923 1709
924 if (ev_is_active (&sigev)) 1710 if (ev_is_active (&pipe_w))
925 { 1711 {
926 /* default loop */ 1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 gotsig = 1;
1715#if EV_ASYNC_ENABLE
1716 gotasync = 1;
1717#endif
927 1718
928 ev_ref (EV_A); 1719 ev_ref (EV_A);
929 ev_io_stop (EV_A_ &sigev); 1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
930 close (sigpipe [0]); 1729 close (evpipe [0]);
931 close (sigpipe [1]); 1730 close (evpipe [1]);
1731 }
932 1732
933 while (pipe (sigpipe))
934 syserr ("(libev) error creating pipe");
935
936 siginit (EV_A); 1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
937 } 1736 }
938 1737
939 postfork = 0; 1738 postfork = 0;
940} 1739}
941 1740
942#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1742
943struct ev_loop * 1743struct ev_loop *
944ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
945{ 1745{
946 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
947 1747
948 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (loop, 0, sizeof (struct ev_loop));
949
950 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
951 1750
952 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
953 return loop; 1752 return loop;
954 1753
963} 1762}
964 1763
965void 1764void
966ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
967{ 1766{
968 postfork = 1; 1767 postfork = 1; /* must be in line with ev_default_fork */
969} 1768}
1769#endif /* multiplicity */
970 1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1867# endif
1868#endif
1869}
971#endif 1870#endif
972 1871
973#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
974struct ev_loop * 1873struct ev_loop *
975ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
976#else 1875#else
977int 1876int
978ev_default_loop (unsigned int flags) 1877ev_default_loop (unsigned int flags)
979#endif 1878#endif
980{ 1879{
981 if (sigpipe [0] == sigpipe [1])
982 if (pipe (sigpipe))
983 return 0;
984
985 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
986 { 1881 {
987#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
988 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
989#else 1884#else
992 1887
993 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
994 1889
995 if (ev_backend (EV_A)) 1890 if (ev_backend (EV_A))
996 { 1891 {
997 siginit (EV_A);
998
999#ifndef _WIN32 1892#ifndef _WIN32
1000 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
1001 ev_set_priority (&childev, EV_MAXPRI); 1894 ev_set_priority (&childev, EV_MAXPRI);
1002 ev_signal_start (EV_A_ &childev); 1895 ev_signal_start (EV_A_ &childev);
1003 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
1015{ 1908{
1016#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1017 struct ev_loop *loop = ev_default_loop_ptr; 1910 struct ev_loop *loop = ev_default_loop_ptr;
1018#endif 1911#endif
1019 1912
1913 ev_default_loop_ptr = 0;
1914
1020#ifndef _WIN32 1915#ifndef _WIN32
1021 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
1022 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
1023#endif 1918#endif
1024 1919
1025 ev_ref (EV_A); /* signal watcher */
1026 ev_io_stop (EV_A_ &sigev);
1027
1028 close (sigpipe [0]); sigpipe [0] = 0;
1029 close (sigpipe [1]); sigpipe [1] = 0;
1030
1031 loop_destroy (EV_A); 1920 loop_destroy (EV_A);
1032} 1921}
1033 1922
1034void 1923void
1035ev_default_fork (void) 1924ev_default_fork (void)
1036{ 1925{
1037#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1038 struct ev_loop *loop = ev_default_loop_ptr; 1927 struct ev_loop *loop = ev_default_loop_ptr;
1039#endif 1928#endif
1040 1929
1041 if (backend) 1930 postfork = 1; /* must be in line with ev_loop_fork */
1042 postfork = 1;
1043} 1931}
1044 1932
1045/*****************************************************************************/ 1933/*****************************************************************************/
1046 1934
1047static int 1935void
1048any_pending (EV_P) 1936ev_invoke (EV_P_ void *w, int revents)
1937{
1938 EV_CB_INVOKE ((W)w, revents);
1939}
1940
1941unsigned int
1942ev_pending_count (EV_P)
1049{ 1943{
1050 int pri; 1944 int pri;
1945 unsigned int count = 0;
1051 1946
1052 for (pri = NUMPRI; pri--; ) 1947 for (pri = NUMPRI; pri--; )
1053 if (pendingcnt [pri]) 1948 count += pendingcnt [pri];
1054 return 1;
1055 1949
1056 return 0; 1950 return count;
1057} 1951}
1058 1952
1059inline void 1953void noinline
1060call_pending (EV_P) 1954ev_invoke_pending (EV_P)
1061{ 1955{
1062 int pri; 1956 int pri;
1063 1957
1064 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1065 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1066 { 1960 {
1067 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1068 1962
1069 if (expect_true (p->w)) 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1070 { 1964 /* ^ this is no longer true, as pending_w could be here */
1965
1071 p->w->pending = 0; 1966 p->w->pending = 0;
1072 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1073 } 1968 EV_FREQUENT_CHECK;
1074 } 1969 }
1075} 1970}
1076 1971
1972#if EV_IDLE_ENABLE
1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1077inline void 1975inline_size void
1976idle_reify (EV_P)
1977{
1978 if (expect_false (idleall))
1979 {
1980 int pri;
1981
1982 for (pri = NUMPRI; pri--; )
1983 {
1984 if (pendingcnt [pri])
1985 break;
1986
1987 if (idlecnt [pri])
1988 {
1989 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1990 break;
1991 }
1992 }
1993 }
1994}
1995#endif
1996
1997/* make timers pending */
1998inline_size void
1078timers_reify (EV_P) 1999timers_reify (EV_P)
1079{ 2000{
2001 EV_FREQUENT_CHECK;
2002
1080 while (timercnt && ((WT)timers [0])->at <= mn_now) 2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1081 { 2004 {
1082 struct ev_timer *w = timers [0]; 2005 do
1083
1084 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1085
1086 /* first reschedule or stop timer */
1087 if (w->repeat)
1088 { 2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
1089 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1090 2019
1091 ((WT)w)->at += w->repeat; 2020 ANHE_at_cache (timers [HEAP0]);
1092 if (((WT)w)->at < mn_now)
1093 ((WT)w)->at = mn_now;
1094
1095 downheap ((WT *)timers, timercnt, 0); 2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
1096 } 2028 }
1097 else 2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1098 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1099 2030
1100 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
1101 } 2032 }
1102} 2033}
1103 2034
1104#if EV_PERIODICS 2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
1105inline void 2037inline_size void
1106periodics_reify (EV_P) 2038periodics_reify (EV_P)
1107{ 2039{
2040 EV_FREQUENT_CHECK;
2041
1108 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1109 { 2043 {
1110 struct ev_periodic *w = periodics [0]; 2044 int feed_count = 0;
1111 2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
1112 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1113 2051
1114 /* first reschedule or stop timer */ 2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
1115 if (w->reschedule_cb) 2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
2134time_update (EV_P_ ev_tstamp max_block)
2135{
2136#if EV_USE_MONOTONIC
2137 if (expect_true (have_monotonic))
2138 {
2139 int i;
2140 ev_tstamp odiff = rtmn_diff;
2141
2142 mn_now = get_clock ();
2143
2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145 /* interpolate in the meantime */
2146 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1116 { 2147 {
1117 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2148 ev_rt_now = rtmn_diff + mn_now;
1118 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2149 return;
1119 downheap ((WT *)periodics, periodiccnt, 0);
1120 } 2150 }
1121 else if (w->interval)
1122 {
1123 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1124 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1125 downheap ((WT *)periodics, periodiccnt, 0);
1126 }
1127 else
1128 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1129 2151
1130 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1131 }
1132}
1133
1134static void
1135periodics_reschedule (EV_P)
1136{
1137 int i;
1138
1139 /* adjust periodics after time jump */
1140 for (i = 0; i < periodiccnt; ++i)
1141 {
1142 struct ev_periodic *w = periodics [i];
1143
1144 if (w->reschedule_cb)
1145 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1146 else if (w->interval)
1147 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1148 }
1149
1150 /* now rebuild the heap */
1151 for (i = periodiccnt >> 1; i--; )
1152 downheap ((WT *)periodics, periodiccnt, i);
1153}
1154#endif
1155
1156inline int
1157time_update_monotonic (EV_P)
1158{
1159 mn_now = get_clock ();
1160
1161 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1162 {
1163 ev_rt_now = rtmn_diff + mn_now;
1164 return 0;
1165 }
1166 else
1167 {
1168 now_floor = mn_now; 2152 now_floor = mn_now;
1169 ev_rt_now = ev_time (); 2153 ev_rt_now = ev_time ();
1170 return 1;
1171 }
1172}
1173 2154
1174inline void 2155 /* loop a few times, before making important decisions.
1175time_update (EV_P) 2156 * on the choice of "4": one iteration isn't enough,
1176{ 2157 * in case we get preempted during the calls to
1177 int i; 2158 * ev_time and get_clock. a second call is almost guaranteed
1178 2159 * to succeed in that case, though. and looping a few more times
1179#if EV_USE_MONOTONIC 2160 * doesn't hurt either as we only do this on time-jumps or
1180 if (expect_true (have_monotonic)) 2161 * in the unlikely event of having been preempted here.
1181 { 2162 */
1182 if (time_update_monotonic (EV_A)) 2163 for (i = 4; --i; )
1183 { 2164 {
1184 ev_tstamp odiff = rtmn_diff;
1185
1186 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1187 {
1188 rtmn_diff = ev_rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1189 2166
1190 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1191 return; /* all is well */ 2168 return; /* all is well */
1192 2169
1193 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1194 mn_now = get_clock (); 2171 mn_now = get_clock ();
1195 now_floor = mn_now; 2172 now_floor = mn_now;
1196 } 2173 }
1197 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198# if EV_PERIODICS 2177# if EV_PERIODIC_ENABLE
2178 periodics_reschedule (EV_A);
2179# endif
2180 }
2181 else
2182#endif
2183 {
2184 ev_rt_now = ev_time ();
2185
2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2190#if EV_PERIODIC_ENABLE
1199 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1200# endif 2192#endif
1201 /* no timer adjustment, as the monotonic clock doesn't jump */
1202 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1203 } 2193 }
1204 }
1205 else
1206#endif
1207 {
1208 ev_rt_now = ev_time ();
1209
1210 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1211 {
1212#if EV_PERIODICS
1213 periodics_reschedule (EV_A);
1214#endif
1215
1216 /* adjust timers. this is easy, as the offset is the same for all */
1217 for (i = 0; i < timercnt; ++i)
1218 ((WT)timers [i])->at += ev_rt_now - mn_now;
1219 }
1220 2194
1221 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1222 } 2196 }
1223} 2197}
1224 2198
1225void 2199void
1226ev_ref (EV_P)
1227{
1228 ++activecnt;
1229}
1230
1231void
1232ev_unref (EV_P)
1233{
1234 --activecnt;
1235}
1236
1237static int loop_done;
1238
1239void
1240ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1241{ 2201{
1242 double block; 2202#if EV_MINIMAL < 2
1243 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2203 ++loop_depth;
2204#endif
1244 2205
1245 while (activecnt) 2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2211
2212 do
1246 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
2218#ifndef _WIN32
2219 if (expect_false (curpid)) /* penalise the forking check even more */
2220 if (expect_false (getpid () != curpid))
2221 {
2222 curpid = getpid ();
2223 postfork = 1;
2224 }
2225#endif
2226
2227#if EV_FORK_ENABLE
2228 /* we might have forked, so queue fork handlers */
2229 if (expect_false (postfork))
2230 if (forkcnt)
2231 {
2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2233 EV_INVOKE_PENDING;
2234 }
2235#endif
2236
1247 /* queue check watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1248 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1249 { 2239 {
1250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1251 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1252 } 2242 }
2243
2244 if (expect_false (loop_done))
2245 break;
1253 2246
1254 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1255 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1256 loop_fork (EV_A); 2249 loop_fork (EV_A);
1257 2250
1258 /* update fd-related kernel structures */ 2251 /* update fd-related kernel structures */
1259 fd_reify (EV_A); 2252 fd_reify (EV_A);
1260 2253
1261 /* calculate blocking time */ 2254 /* calculate blocking time */
2255 {
2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
1262 2258
1263 /* we only need this for !monotonic clock or timers, but as we basically 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1264 always have timers, we just calculate it always */
1265#if EV_USE_MONOTONIC
1266 if (expect_true (have_monotonic))
1267 time_update_monotonic (EV_A);
1268 else
1269#endif
1270 { 2260 {
1271 ev_rt_now = ev_time (); 2261 /* remember old timestamp for io_blocktime calculation */
1272 mn_now = ev_rt_now; 2262 ev_tstamp prev_mn_now = mn_now;
1273 }
1274 2263
1275 if (flags & EVLOOP_NONBLOCK || idlecnt) 2264 /* update time to cancel out callback processing overhead */
1276 block = 0.; 2265 time_update (EV_A_ 1e100);
1277 else 2266
1278 {
1279 block = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1280 2268
1281 if (timercnt) 2269 if (timercnt)
1282 { 2270 {
1283 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1284 if (block > to) block = to; 2272 if (waittime > to) waittime = to;
1285 } 2273 }
1286 2274
1287#if EV_PERIODICS 2275#if EV_PERIODIC_ENABLE
1288 if (periodiccnt) 2276 if (periodiccnt)
1289 { 2277 {
1290 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1291 if (block > to) block = to; 2279 if (waittime > to) waittime = to;
1292 } 2280 }
1293#endif 2281#endif
1294 2282
1295 if (expect_false (block < 0.)) block = 0.; 2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
1296 } 2301 }
1297 2302
2303#if EV_MINIMAL < 2
2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1298 backend_poll (EV_A_ block); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1299 2309
1300 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
1301 time_update (EV_A); 2311 time_update (EV_A_ waittime + sleeptime);
2312 }
1302 2313
1303 /* queue pending timers and reschedule them */ 2314 /* queue pending timers and reschedule them */
1304 timers_reify (EV_A); /* relative timers called last */ 2315 timers_reify (EV_A); /* relative timers called last */
1305#if EV_PERIODICS 2316#if EV_PERIODIC_ENABLE
1306 periodics_reify (EV_A); /* absolute timers called first */ 2317 periodics_reify (EV_A); /* absolute timers called first */
1307#endif 2318#endif
1308 2319
2320#if EV_IDLE_ENABLE
1309 /* queue idle watchers unless io or timers are pending */ 2321 /* queue idle watchers unless other events are pending */
1310 if (idlecnt && !any_pending (EV_A)) 2322 idle_reify (EV_A);
1311 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2323#endif
1312 2324
1313 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1314 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
1315 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1316 2328
1317 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1318
1319 if (expect_false (loop_done))
1320 break;
1321 } 2330 }
2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1322 2336
1323 if (loop_done != 2) 2337 if (loop_done == EVUNLOOP_ONE)
1324 loop_done = 0; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1325} 2343}
1326 2344
1327void 2345void
1328ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1329{ 2347{
1330 loop_done = how; 2348 loop_done = how;
1331} 2349}
1332 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1333/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1334 2390
1335inline void 2391inline_size void
1336wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1337{ 2393{
1338 elem->next = *head; 2394 elem->next = *head;
1339 *head = elem; 2395 *head = elem;
1340} 2396}
1341 2397
1342inline void 2398inline_size void
1343wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1344{ 2400{
1345 while (*head) 2401 while (*head)
1346 { 2402 {
1347 if (*head == elem) 2403 if (*head == elem)
1352 2408
1353 head = &(*head)->next; 2409 head = &(*head)->next;
1354 } 2410 }
1355} 2411}
1356 2412
2413/* internal, faster, version of ev_clear_pending */
1357inline void 2414inline_speed void
1358ev_clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1359{ 2416{
1360 if (w->pending) 2417 if (w->pending)
1361 { 2418 {
1362 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1363 w->pending = 0; 2420 w->pending = 0;
1364 } 2421 }
1365} 2422}
1366 2423
2424int
2425ev_clear_pending (EV_P_ void *w)
2426{
2427 W w_ = (W)w;
2428 int pending = w_->pending;
2429
2430 if (expect_true (pending))
2431 {
2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2434 w_->pending = 0;
2435 return p->events;
2436 }
2437 else
2438 return 0;
2439}
2440
1367inline void 2441inline_size void
2442pri_adjust (EV_P_ W w)
2443{
2444 int pri = ev_priority (w);
2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2447 ev_set_priority (w, pri);
2448}
2449
2450inline_speed void
1368ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1369{ 2452{
1370 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2453 pri_adjust (EV_A_ w);
1371 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1372
1373 w->active = active; 2454 w->active = active;
1374 ev_ref (EV_A); 2455 ev_ref (EV_A);
1375} 2456}
1376 2457
1377inline void 2458inline_size void
1378ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1379{ 2460{
1380 ev_unref (EV_A); 2461 ev_unref (EV_A);
1381 w->active = 0; 2462 w->active = 0;
1382} 2463}
1383 2464
1384/*****************************************************************************/ 2465/*****************************************************************************/
1385 2466
1386void 2467void noinline
1387ev_io_start (EV_P_ struct ev_io *w) 2468ev_io_start (EV_P_ ev_io *w)
1388{ 2469{
1389 int fd = w->fd; 2470 int fd = w->fd;
1390 2471
1391 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1392 return; 2473 return;
1393 2474
1394 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1395 2479
1396 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1397 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1398 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1399 2483
1400 fd_change (EV_A_ fd); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1401} 2485 w->events &= ~EV__IOFDSET;
1402 2486
1403void 2487 EV_FREQUENT_CHECK;
2488}
2489
2490void noinline
1404ev_io_stop (EV_P_ struct ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1405{ 2492{
1406 ev_clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1407 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
1408 return; 2495 return;
1409 2496
1410 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1411 2498
2499 EV_FREQUENT_CHECK;
2500
1412 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1413 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1414 2503
1415 fd_change (EV_A_ w->fd); 2504 fd_change (EV_A_ w->fd, 1);
1416}
1417 2505
1418void 2506 EV_FREQUENT_CHECK;
2507}
2508
2509void noinline
1419ev_timer_start (EV_P_ struct ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1420{ 2511{
1421 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
1422 return; 2513 return;
1423 2514
1424 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1425 2516
1426 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1427 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1428 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1429 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1430 timers [timercnt - 1] = w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1431 upheap ((WT *)timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1432 2527
2528 EV_FREQUENT_CHECK;
2529
1433 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1434} 2531}
1435 2532
1436void 2533void noinline
1437ev_timer_stop (EV_P_ struct ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1438{ 2535{
1439 ev_clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1440 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1441 return; 2538 return;
1442 2539
2540 EV_FREQUENT_CHECK;
2541
2542 {
2543 int active = ev_active (w);
2544
1443 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1444 2546
2547 --timercnt;
2548
1445 if (expect_true (((W)w)->active < timercnt--)) 2549 if (expect_true (active < timercnt + HEAP0))
1446 { 2550 {
1447 timers [((W)w)->active - 1] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1448 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2552 adjustheap (timers, timercnt, active);
1449 } 2553 }
2554 }
1450 2555
1451 ((WT)w)->at -= mn_now; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1452 2559
1453 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1454} 2561}
1455 2562
1456void 2563void noinline
1457ev_timer_again (EV_P_ struct ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1458{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1459 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1460 { 2569 {
1461 if (w->repeat) 2570 if (w->repeat)
1462 { 2571 {
1463 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
1464 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
1465 } 2575 }
1466 else 2576 else
1467 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1468 } 2578 }
1469 else if (w->repeat) 2579 else if (w->repeat)
1470 { 2580 {
1471 w->at = w->repeat; 2581 ev_at (w) = w->repeat;
1472 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1473 } 2583 }
1474}
1475 2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592}
2593
1476#if EV_PERIODICS 2594#if EV_PERIODIC_ENABLE
1477void 2595void noinline
1478ev_periodic_start (EV_P_ struct ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1479{ 2597{
1480 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1481 return; 2599 return;
1482 2600
1483 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1484 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1485 else if (w->interval) 2603 else if (w->interval)
1486 { 2604 {
1487 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1488 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1489 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1490 } 2608 }
2609 else
2610 ev_at (w) = w->offset;
1491 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1492 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1493 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1494 periodics [periodiccnt - 1] = w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1495 upheap ((WT *)periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1496 2620
2621 EV_FREQUENT_CHECK;
2622
1497 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1498} 2624}
1499 2625
1500void 2626void noinline
1501ev_periodic_stop (EV_P_ struct ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1502{ 2628{
1503 ev_clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1505 return; 2631 return;
1506 2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
1507 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1508 2639
2640 --periodiccnt;
2641
1509 if (expect_true (((W)w)->active < periodiccnt--)) 2642 if (expect_true (active < periodiccnt + HEAP0))
1510 { 2643 {
1511 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1512 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2645 adjustheap (periodics, periodiccnt, active);
1513 } 2646 }
2647 }
2648
2649 EV_FREQUENT_CHECK;
1514 2650
1515 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1516} 2652}
1517 2653
1518void 2654void noinline
1519ev_periodic_again (EV_P_ struct ev_periodic *w) 2655ev_periodic_again (EV_P_ ev_periodic *w)
1520{ 2656{
1521 /* TODO: use adjustheap and recalculation */ 2657 /* TODO: use adjustheap and recalculation */
1522 ev_periodic_stop (EV_A_ w); 2658 ev_periodic_stop (EV_A_ w);
1523 ev_periodic_start (EV_A_ w); 2659 ev_periodic_start (EV_A_ w);
1524} 2660}
1525#endif 2661#endif
1526 2662
1527void 2663#ifndef SA_RESTART
1528ev_idle_start (EV_P_ struct ev_idle *w) 2664# define SA_RESTART 0
2665#endif
2666
2667void noinline
2668ev_signal_start (EV_P_ ev_signal *w)
1529{ 2669{
2670#if EV_MULTIPLICITY
2671 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2672#endif
1530 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
1531 return; 2674 return;
1532 2675
2676 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2677
2678 EV_FREQUENT_CHECK;
2679
2680#if EV_USE_SIGNALFD
2681 if (sigfd == -2)
2682 {
2683 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2684 if (sigfd < 0 && errno == EINVAL)
2685 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2686
2687 if (sigfd >= 0)
2688 {
2689 fd_intern (sigfd); /* doing it twice will not hurt */
2690
2691 sigemptyset (&sigfd_set);
2692
2693 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2694 ev_set_priority (&sigfd_w, EV_MAXPRI);
2695 ev_io_start (EV_A_ &sigfd_w);
2696 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2697 }
2698 }
2699
2700 if (sigfd >= 0)
2701 {
2702 /* TODO: check .head */
2703 sigaddset (&sigfd_set, w->signum);
2704 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2705
2706 signalfd (sigfd, &sigfd_set, 0);
2707 }
2708 else
2709#endif
2710 evpipe_init (EV_A);
2711
2712 {
2713#ifndef _WIN32
2714 sigset_t full, prev;
2715 sigfillset (&full);
2716 sigprocmask (SIG_SETMASK, &full, &prev);
2717#endif
2718
2719 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2720
2721#ifndef _WIN32
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0)/*TODO*/
2724# endif
2725 sigdelset (&prev, w->signum);
2726 sigprocmask (SIG_SETMASK, &prev, 0);
2727#endif
2728 }
2729
1533 ev_start (EV_A_ (W)w, ++idlecnt); 2730 ev_start (EV_A_ (W)w, 1);
1534 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2731 wlist_add (&signals [w->signum - 1].head, (WL)w);
1535 idles [idlecnt - 1] = w;
1536}
1537 2732
1538void 2733 if (!((WL)w)->next)
1539ev_idle_stop (EV_P_ struct ev_idle *w) 2734 {
2735#if _WIN32
2736 signal (w->signum, ev_sighandler);
2737#else
2738# if EV_USE_SIGNALFD
2739 if (sigfd < 0) /*TODO*/
2740# endif
2741 {
2742 struct sigaction sa = { };
2743 sa.sa_handler = ev_sighandler;
2744 sigfillset (&sa.sa_mask);
2745 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2746 sigaction (w->signum, &sa, 0);
2747 }
2748#endif
2749 }
2750
2751 EV_FREQUENT_CHECK;
2752}
2753
2754void noinline
2755ev_signal_stop (EV_P_ ev_signal *w)
1540{ 2756{
1541 ev_clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
1543 return; 2759 return;
1544 2760
1545 idles [((W)w)->active - 1] = idles [--idlecnt]; 2761 EV_FREQUENT_CHECK;
2762
2763 wlist_del (&signals [w->signum - 1].head, (WL)w);
1546 ev_stop (EV_A_ (W)w); 2764 ev_stop (EV_A_ (W)w);
1547}
1548 2765
2766 if (!signals [w->signum - 1].head)
2767#if EV_USE_SIGNALFD
2768 if (sigfd >= 0)
2769 {
2770 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2771 sigdelset (&sigfd_set, w->signum);
2772 signalfd (sigfd, &sigfd_set, 0);
2773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2774 /*TODO: maybe unblock signal? */
2775 }
2776 else
2777#endif
2778 signal (w->signum, SIG_DFL);
2779
2780 EV_FREQUENT_CHECK;
2781}
2782
1549void 2783void
1550ev_prepare_start (EV_P_ struct ev_prepare *w) 2784ev_child_start (EV_P_ ev_child *w)
1551{ 2785{
2786#if EV_MULTIPLICITY
2787 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2788#endif
1552 if (expect_false (ev_is_active (w))) 2789 if (expect_false (ev_is_active (w)))
1553 return; 2790 return;
1554 2791
2792 EV_FREQUENT_CHECK;
2793
1555 ev_start (EV_A_ (W)w, ++preparecnt); 2794 ev_start (EV_A_ (W)w, 1);
1556 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2795 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1557 prepares [preparecnt - 1] = w;
1558}
1559 2796
2797 EV_FREQUENT_CHECK;
2798}
2799
1560void 2800void
1561ev_prepare_stop (EV_P_ struct ev_prepare *w) 2801ev_child_stop (EV_P_ ev_child *w)
1562{ 2802{
1563 ev_clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1564 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
1565 return; 2805 return;
1566 2806
1567 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2807 EV_FREQUENT_CHECK;
2808
2809 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1568 ev_stop (EV_A_ (W)w); 2810 ev_stop (EV_A_ (W)w);
1569}
1570 2811
2812 EV_FREQUENT_CHECK;
2813}
2814
2815#if EV_STAT_ENABLE
2816
2817# ifdef _WIN32
2818# undef lstat
2819# define lstat(a,b) _stati64 (a,b)
2820# endif
2821
2822#define DEF_STAT_INTERVAL 5.0074891
2823#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2824#define MIN_STAT_INTERVAL 0.1074891
2825
2826static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2827
2828#if EV_USE_INOTIFY
2829# define EV_INOTIFY_BUFSIZE 8192
2830
2831static void noinline
2832infy_add (EV_P_ ev_stat *w)
2833{
2834 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2835
2836 if (w->wd < 0)
2837 {
2838 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2839 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2840
2841 /* monitor some parent directory for speedup hints */
2842 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2843 /* but an efficiency issue only */
2844 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2845 {
2846 char path [4096];
2847 strcpy (path, w->path);
2848
2849 do
2850 {
2851 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2852 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2853
2854 char *pend = strrchr (path, '/');
2855
2856 if (!pend || pend == path)
2857 break;
2858
2859 *pend = 0;
2860 w->wd = inotify_add_watch (fs_fd, path, mask);
2861 }
2862 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2863 }
2864 }
2865
2866 if (w->wd >= 0)
2867 {
2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873 struct statfs sfs;
2874
2875 if (fs_2625 && !statfs (w->path, &sfs))
2876 if (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */)
2882 return;
2883
2884 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2885 ev_timer_again (EV_A_ &w->timer);
2886 }
2887}
2888
2889static void noinline
2890infy_del (EV_P_ ev_stat *w)
2891{
2892 int slot;
2893 int wd = w->wd;
2894
2895 if (wd < 0)
2896 return;
2897
2898 w->wd = -2;
2899 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2900 wlist_del (&fs_hash [slot].head, (WL)w);
2901
2902 /* remove this watcher, if others are watching it, they will rearm */
2903 inotify_rm_watch (fs_fd, wd);
2904}
2905
2906static void noinline
2907infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2908{
2909 if (slot < 0)
2910 /* overflow, need to check for all hash slots */
2911 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2912 infy_wd (EV_A_ slot, wd, ev);
2913 else
2914 {
2915 WL w_;
2916
2917 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2918 {
2919 ev_stat *w = (ev_stat *)w_;
2920 w_ = w_->next; /* lets us remove this watcher and all before it */
2921
2922 if (w->wd == wd || wd == -1)
2923 {
2924 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2925 {
2926 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927 w->wd = -1;
2928 infy_add (EV_A_ w); /* re-add, no matter what */
2929 }
2930
2931 stat_timer_cb (EV_A_ &w->timer, 0);
2932 }
2933 }
2934 }
2935}
2936
2937static void
2938infy_cb (EV_P_ ev_io *w, int revents)
2939{
2940 char buf [EV_INOTIFY_BUFSIZE];
2941 struct inotify_event *ev = (struct inotify_event *)buf;
2942 int ofs;
2943 int len = read (fs_fd, buf, sizeof (buf));
2944
2945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2947}
2948
2949inline_size void
2950check_2625 (EV_P)
2951{
2952 /* kernels < 2.6.25 are borked
2953 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2954 */
2955 struct utsname buf;
2956 int major, minor, micro;
2957
2958 if (uname (&buf))
2959 return;
2960
2961 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2962 return;
2963
2964 if (major < 2
2965 || (major == 2 && minor < 6)
2966 || (major == 2 && minor == 6 && micro < 25))
2967 return;
2968
2969 fs_2625 = 1;
2970}
2971
2972inline_size void
2973infy_init (EV_P)
2974{
2975 if (fs_fd != -2)
2976 return;
2977
2978 fs_fd = -1;
2979
2980 check_2625 (EV_A);
2981
2982 fs_fd = inotify_init ();
2983
2984 if (fs_fd >= 0)
2985 {
2986 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2987 ev_set_priority (&fs_w, EV_MAXPRI);
2988 ev_io_start (EV_A_ &fs_w);
2989 }
2990}
2991
2992inline_size void
2993infy_fork (EV_P)
2994{
2995 int slot;
2996
2997 if (fs_fd < 0)
2998 return;
2999
3000 close (fs_fd);
3001 fs_fd = inotify_init ();
3002
3003 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3004 {
3005 WL w_ = fs_hash [slot].head;
3006 fs_hash [slot].head = 0;
3007
3008 while (w_)
3009 {
3010 ev_stat *w = (ev_stat *)w_;
3011 w_ = w_->next; /* lets us add this watcher */
3012
3013 w->wd = -1;
3014
3015 if (fs_fd >= 0)
3016 infy_add (EV_A_ w); /* re-add, no matter what */
3017 else
3018 ev_timer_again (EV_A_ &w->timer);
3019 }
3020 }
3021}
3022
3023#endif
3024
3025#ifdef _WIN32
3026# define EV_LSTAT(p,b) _stati64 (p, b)
3027#else
3028# define EV_LSTAT(p,b) lstat (p, b)
3029#endif
3030
1571void 3031void
1572ev_check_start (EV_P_ struct ev_check *w) 3032ev_stat_stat (EV_P_ ev_stat *w)
3033{
3034 if (lstat (w->path, &w->attr) < 0)
3035 w->attr.st_nlink = 0;
3036 else if (!w->attr.st_nlink)
3037 w->attr.st_nlink = 1;
3038}
3039
3040static void noinline
3041stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3042{
3043 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3044
3045 /* we copy this here each the time so that */
3046 /* prev has the old value when the callback gets invoked */
3047 w->prev = w->attr;
3048 ev_stat_stat (EV_A_ w);
3049
3050 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3051 if (
3052 w->prev.st_dev != w->attr.st_dev
3053 || w->prev.st_ino != w->attr.st_ino
3054 || w->prev.st_mode != w->attr.st_mode
3055 || w->prev.st_nlink != w->attr.st_nlink
3056 || w->prev.st_uid != w->attr.st_uid
3057 || w->prev.st_gid != w->attr.st_gid
3058 || w->prev.st_rdev != w->attr.st_rdev
3059 || w->prev.st_size != w->attr.st_size
3060 || w->prev.st_atime != w->attr.st_atime
3061 || w->prev.st_mtime != w->attr.st_mtime
3062 || w->prev.st_ctime != w->attr.st_ctime
3063 ) {
3064 #if EV_USE_INOTIFY
3065 if (fs_fd >= 0)
3066 {
3067 infy_del (EV_A_ w);
3068 infy_add (EV_A_ w);
3069 ev_stat_stat (EV_A_ w); /* avoid race... */
3070 }
3071 #endif
3072
3073 ev_feed_event (EV_A_ w, EV_STAT);
3074 }
3075}
3076
3077void
3078ev_stat_start (EV_P_ ev_stat *w)
1573{ 3079{
1574 if (expect_false (ev_is_active (w))) 3080 if (expect_false (ev_is_active (w)))
1575 return; 3081 return;
1576 3082
3083 ev_stat_stat (EV_A_ w);
3084
3085 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3086 w->interval = MIN_STAT_INTERVAL;
3087
3088 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3089 ev_set_priority (&w->timer, ev_priority (w));
3090
3091#if EV_USE_INOTIFY
3092 infy_init (EV_A);
3093
3094 if (fs_fd >= 0)
3095 infy_add (EV_A_ w);
3096 else
3097#endif
3098 ev_timer_again (EV_A_ &w->timer);
3099
1577 ev_start (EV_A_ (W)w, ++checkcnt); 3100 ev_start (EV_A_ (W)w, 1);
1578 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1579 checks [checkcnt - 1] = w;
1580}
1581 3101
3102 EV_FREQUENT_CHECK;
3103}
3104
1582void 3105void
1583ev_check_stop (EV_P_ struct ev_check *w) 3106ev_stat_stop (EV_P_ ev_stat *w)
1584{ 3107{
1585 ev_clear_pending (EV_A_ (W)w); 3108 clear_pending (EV_A_ (W)w);
1586 if (expect_false (!ev_is_active (w))) 3109 if (expect_false (!ev_is_active (w)))
1587 return; 3110 return;
1588 3111
1589 checks [((W)w)->active - 1] = checks [--checkcnt]; 3112 EV_FREQUENT_CHECK;
3113
3114#if EV_USE_INOTIFY
3115 infy_del (EV_A_ w);
3116#endif
3117 ev_timer_stop (EV_A_ &w->timer);
3118
1590 ev_stop (EV_A_ (W)w); 3119 ev_stop (EV_A_ (W)w);
1591}
1592 3120
1593#ifndef SA_RESTART 3121 EV_FREQUENT_CHECK;
1594# define SA_RESTART 0 3122}
1595#endif 3123#endif
1596 3124
3125#if EV_IDLE_ENABLE
1597void 3126void
1598ev_signal_start (EV_P_ struct ev_signal *w) 3127ev_idle_start (EV_P_ ev_idle *w)
1599{ 3128{
1600#if EV_MULTIPLICITY
1601 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1602#endif
1603 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
1604 return; 3130 return;
1605 3131
1606 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3132 pri_adjust (EV_A_ (W)w);
1607 3133
3134 EV_FREQUENT_CHECK;
3135
3136 {
3137 int active = ++idlecnt [ABSPRI (w)];
3138
3139 ++idleall;
1608 ev_start (EV_A_ (W)w, 1); 3140 ev_start (EV_A_ (W)w, active);
1609 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1610 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1611 3141
1612 if (!((WL)w)->next) 3142 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1613 { 3143 idles [ABSPRI (w)][active - 1] = w;
1614#if _WIN32
1615 signal (w->signum, sighandler);
1616#else
1617 struct sigaction sa;
1618 sa.sa_handler = sighandler;
1619 sigfillset (&sa.sa_mask);
1620 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1621 sigaction (w->signum, &sa, 0);
1622#endif
1623 } 3144 }
1624}
1625 3145
3146 EV_FREQUENT_CHECK;
3147}
3148
1626void 3149void
1627ev_signal_stop (EV_P_ struct ev_signal *w) 3150ev_idle_stop (EV_P_ ev_idle *w)
1628{ 3151{
1629 ev_clear_pending (EV_A_ (W)w); 3152 clear_pending (EV_A_ (W)w);
1630 if (expect_false (!ev_is_active (w))) 3153 if (expect_false (!ev_is_active (w)))
1631 return; 3154 return;
1632 3155
1633 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3156 EV_FREQUENT_CHECK;
3157
3158 {
3159 int active = ev_active (w);
3160
3161 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3162 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3163
1634 ev_stop (EV_A_ (W)w); 3164 ev_stop (EV_A_ (W)w);
3165 --idleall;
3166 }
1635 3167
1636 if (!signals [w->signum - 1].head) 3168 EV_FREQUENT_CHECK;
1637 signal (w->signum, SIG_DFL);
1638} 3169}
1639
1640void
1641ev_child_start (EV_P_ struct ev_child *w)
1642{
1643#if EV_MULTIPLICITY
1644 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1645#endif 3170#endif
3171
3172void
3173ev_prepare_start (EV_P_ ev_prepare *w)
3174{
1646 if (expect_false (ev_is_active (w))) 3175 if (expect_false (ev_is_active (w)))
1647 return; 3176 return;
1648 3177
3178 EV_FREQUENT_CHECK;
3179
1649 ev_start (EV_A_ (W)w, 1); 3180 ev_start (EV_A_ (W)w, ++preparecnt);
1650 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3181 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1651} 3182 prepares [preparecnt - 1] = w;
1652 3183
3184 EV_FREQUENT_CHECK;
3185}
3186
1653void 3187void
1654ev_child_stop (EV_P_ struct ev_child *w) 3188ev_prepare_stop (EV_P_ ev_prepare *w)
1655{ 3189{
1656 ev_clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
1657 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
1658 return; 3192 return;
1659 3193
1660 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3194 EV_FREQUENT_CHECK;
3195
3196 {
3197 int active = ev_active (w);
3198
3199 prepares [active - 1] = prepares [--preparecnt];
3200 ev_active (prepares [active - 1]) = active;
3201 }
3202
1661 ev_stop (EV_A_ (W)w); 3203 ev_stop (EV_A_ (W)w);
3204
3205 EV_FREQUENT_CHECK;
1662} 3206}
3207
3208void
3209ev_check_start (EV_P_ ev_check *w)
3210{
3211 if (expect_false (ev_is_active (w)))
3212 return;
3213
3214 EV_FREQUENT_CHECK;
3215
3216 ev_start (EV_A_ (W)w, ++checkcnt);
3217 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3218 checks [checkcnt - 1] = w;
3219
3220 EV_FREQUENT_CHECK;
3221}
3222
3223void
3224ev_check_stop (EV_P_ ev_check *w)
3225{
3226 clear_pending (EV_A_ (W)w);
3227 if (expect_false (!ev_is_active (w)))
3228 return;
3229
3230 EV_FREQUENT_CHECK;
3231
3232 {
3233 int active = ev_active (w);
3234
3235 checks [active - 1] = checks [--checkcnt];
3236 ev_active (checks [active - 1]) = active;
3237 }
3238
3239 ev_stop (EV_A_ (W)w);
3240
3241 EV_FREQUENT_CHECK;
3242}
3243
3244#if EV_EMBED_ENABLE
3245void noinline
3246ev_embed_sweep (EV_P_ ev_embed *w)
3247{
3248 ev_loop (w->other, EVLOOP_NONBLOCK);
3249}
3250
3251static void
3252embed_io_cb (EV_P_ ev_io *io, int revents)
3253{
3254 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3255
3256 if (ev_cb (w))
3257 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3258 else
3259 ev_loop (w->other, EVLOOP_NONBLOCK);
3260}
3261
3262static void
3263embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3264{
3265 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3266
3267 {
3268 struct ev_loop *loop = w->other;
3269
3270 while (fdchangecnt)
3271 {
3272 fd_reify (EV_A);
3273 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3274 }
3275 }
3276}
3277
3278static void
3279embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3280{
3281 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3282
3283 ev_embed_stop (EV_A_ w);
3284
3285 {
3286 struct ev_loop *loop = w->other;
3287
3288 ev_loop_fork (EV_A);
3289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3290 }
3291
3292 ev_embed_start (EV_A_ w);
3293}
3294
3295#if 0
3296static void
3297embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3298{
3299 ev_idle_stop (EV_A_ idle);
3300}
3301#endif
3302
3303void
3304ev_embed_start (EV_P_ ev_embed *w)
3305{
3306 if (expect_false (ev_is_active (w)))
3307 return;
3308
3309 {
3310 struct ev_loop *loop = w->other;
3311 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3312 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3313 }
3314
3315 EV_FREQUENT_CHECK;
3316
3317 ev_set_priority (&w->io, ev_priority (w));
3318 ev_io_start (EV_A_ &w->io);
3319
3320 ev_prepare_init (&w->prepare, embed_prepare_cb);
3321 ev_set_priority (&w->prepare, EV_MINPRI);
3322 ev_prepare_start (EV_A_ &w->prepare);
3323
3324 ev_fork_init (&w->fork, embed_fork_cb);
3325 ev_fork_start (EV_A_ &w->fork);
3326
3327 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3328
3329 ev_start (EV_A_ (W)w, 1);
3330
3331 EV_FREQUENT_CHECK;
3332}
3333
3334void
3335ev_embed_stop (EV_P_ ev_embed *w)
3336{
3337 clear_pending (EV_A_ (W)w);
3338 if (expect_false (!ev_is_active (w)))
3339 return;
3340
3341 EV_FREQUENT_CHECK;
3342
3343 ev_io_stop (EV_A_ &w->io);
3344 ev_prepare_stop (EV_A_ &w->prepare);
3345 ev_fork_stop (EV_A_ &w->fork);
3346
3347 EV_FREQUENT_CHECK;
3348}
3349#endif
3350
3351#if EV_FORK_ENABLE
3352void
3353ev_fork_start (EV_P_ ev_fork *w)
3354{
3355 if (expect_false (ev_is_active (w)))
3356 return;
3357
3358 EV_FREQUENT_CHECK;
3359
3360 ev_start (EV_A_ (W)w, ++forkcnt);
3361 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3362 forks [forkcnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
3365}
3366
3367void
3368ev_fork_stop (EV_P_ ev_fork *w)
3369{
3370 clear_pending (EV_A_ (W)w);
3371 if (expect_false (!ev_is_active (w)))
3372 return;
3373
3374 EV_FREQUENT_CHECK;
3375
3376 {
3377 int active = ev_active (w);
3378
3379 forks [active - 1] = forks [--forkcnt];
3380 ev_active (forks [active - 1]) = active;
3381 }
3382
3383 ev_stop (EV_A_ (W)w);
3384
3385 EV_FREQUENT_CHECK;
3386}
3387#endif
3388
3389#if EV_ASYNC_ENABLE
3390void
3391ev_async_start (EV_P_ ev_async *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 evpipe_init (EV_A);
3397
3398 EV_FREQUENT_CHECK;
3399
3400 ev_start (EV_A_ (W)w, ++asynccnt);
3401 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3402 asyncs [asynccnt - 1] = w;
3403
3404 EV_FREQUENT_CHECK;
3405}
3406
3407void
3408ev_async_stop (EV_P_ ev_async *w)
3409{
3410 clear_pending (EV_A_ (W)w);
3411 if (expect_false (!ev_is_active (w)))
3412 return;
3413
3414 EV_FREQUENT_CHECK;
3415
3416 {
3417 int active = ev_active (w);
3418
3419 asyncs [active - 1] = asyncs [--asynccnt];
3420 ev_active (asyncs [active - 1]) = active;
3421 }
3422
3423 ev_stop (EV_A_ (W)w);
3424
3425 EV_FREQUENT_CHECK;
3426}
3427
3428void
3429ev_async_send (EV_P_ ev_async *w)
3430{
3431 w->sent = 1;
3432 evpipe_write (EV_A_ &gotasync);
3433}
3434#endif
1663 3435
1664/*****************************************************************************/ 3436/*****************************************************************************/
1665 3437
1666struct ev_once 3438struct ev_once
1667{ 3439{
1668 struct ev_io io; 3440 ev_io io;
1669 struct ev_timer to; 3441 ev_timer to;
1670 void (*cb)(int revents, void *arg); 3442 void (*cb)(int revents, void *arg);
1671 void *arg; 3443 void *arg;
1672}; 3444};
1673 3445
1674static void 3446static void
1675once_cb (EV_P_ struct ev_once *once, int revents) 3447once_cb (EV_P_ struct ev_once *once, int revents)
1676{ 3448{
1677 void (*cb)(int revents, void *arg) = once->cb; 3449 void (*cb)(int revents, void *arg) = once->cb;
1678 void *arg = once->arg; 3450 void *arg = once->arg;
1679 3451
1680 ev_io_stop (EV_A_ &once->io); 3452 ev_io_stop (EV_A_ &once->io);
1681 ev_timer_stop (EV_A_ &once->to); 3453 ev_timer_stop (EV_A_ &once->to);
1682 ev_free (once); 3454 ev_free (once);
1683 3455
1684 cb (revents, arg); 3456 cb (revents, arg);
1685} 3457}
1686 3458
1687static void 3459static void
1688once_cb_io (EV_P_ struct ev_io *w, int revents) 3460once_cb_io (EV_P_ ev_io *w, int revents)
1689{ 3461{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3462 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3463
3464 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1691} 3465}
1692 3466
1693static void 3467static void
1694once_cb_to (EV_P_ struct ev_timer *w, int revents) 3468once_cb_to (EV_P_ ev_timer *w, int revents)
1695{ 3469{
1696 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3470 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3471
3472 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1697} 3473}
1698 3474
1699void 3475void
1700ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3476ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1701{ 3477{
1723 ev_timer_set (&once->to, timeout, 0.); 3499 ev_timer_set (&once->to, timeout, 0.);
1724 ev_timer_start (EV_A_ &once->to); 3500 ev_timer_start (EV_A_ &once->to);
1725 } 3501 }
1726} 3502}
1727 3503
3504/*****************************************************************************/
3505
3506#if EV_WALK_ENABLE
3507void
3508ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3509{
3510 int i, j;
3511 ev_watcher_list *wl, *wn;
3512
3513 if (types & (EV_IO | EV_EMBED))
3514 for (i = 0; i < anfdmax; ++i)
3515 for (wl = anfds [i].head; wl; )
3516 {
3517 wn = wl->next;
3518
3519#if EV_EMBED_ENABLE
3520 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3521 {
3522 if (types & EV_EMBED)
3523 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3524 }
3525 else
3526#endif
3527#if EV_USE_INOTIFY
3528 if (ev_cb ((ev_io *)wl) == infy_cb)
3529 ;
3530 else
3531#endif
3532 if ((ev_io *)wl != &pipe_w)
3533 if (types & EV_IO)
3534 cb (EV_A_ EV_IO, wl);
3535
3536 wl = wn;
3537 }
3538
3539 if (types & (EV_TIMER | EV_STAT))
3540 for (i = timercnt + HEAP0; i-- > HEAP0; )
3541#if EV_STAT_ENABLE
3542 /*TODO: timer is not always active*/
3543 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3544 {
3545 if (types & EV_STAT)
3546 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3547 }
3548 else
3549#endif
3550 if (types & EV_TIMER)
3551 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3552
3553#if EV_PERIODIC_ENABLE
3554 if (types & EV_PERIODIC)
3555 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3556 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3557#endif
3558
3559#if EV_IDLE_ENABLE
3560 if (types & EV_IDLE)
3561 for (j = NUMPRI; i--; )
3562 for (i = idlecnt [j]; i--; )
3563 cb (EV_A_ EV_IDLE, idles [j][i]);
3564#endif
3565
3566#if EV_FORK_ENABLE
3567 if (types & EV_FORK)
3568 for (i = forkcnt; i--; )
3569 if (ev_cb (forks [i]) != embed_fork_cb)
3570 cb (EV_A_ EV_FORK, forks [i]);
3571#endif
3572
3573#if EV_ASYNC_ENABLE
3574 if (types & EV_ASYNC)
3575 for (i = asynccnt; i--; )
3576 cb (EV_A_ EV_ASYNC, asyncs [i]);
3577#endif
3578
3579 if (types & EV_PREPARE)
3580 for (i = preparecnt; i--; )
3581#if EV_EMBED_ENABLE
3582 if (ev_cb (prepares [i]) != embed_prepare_cb)
3583#endif
3584 cb (EV_A_ EV_PREPARE, prepares [i]);
3585
3586 if (types & EV_CHECK)
3587 for (i = checkcnt; i--; )
3588 cb (EV_A_ EV_CHECK, checks [i]);
3589
3590 if (types & EV_SIGNAL)
3591 for (i = 0; i < signalmax; ++i)
3592 for (wl = signals [i].head; wl; )
3593 {
3594 wn = wl->next;
3595 cb (EV_A_ EV_SIGNAL, wl);
3596 wl = wn;
3597 }
3598
3599 if (types & EV_CHILD)
3600 for (i = EV_PID_HASHSIZE; i--; )
3601 for (wl = childs [i]; wl; )
3602 {
3603 wn = wl->next;
3604 cb (EV_A_ EV_CHILD, wl);
3605 wl = wn;
3606 }
3607/* EV_STAT 0x00001000 /* stat data changed */
3608/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3609}
3610#endif
3611
3612#if EV_MULTIPLICITY
3613 #include "ev_wrap.h"
3614#endif
3615
1728#ifdef __cplusplus 3616#ifdef __cplusplus
1729} 3617}
1730#endif 3618#endif
1731 3619

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines