ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.167 by root, Sat Dec 8 04:02:31 2007 UTC vs.
Revision 1.305 by root, Sun Jul 19 03:49:04 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 64
216#endif
217
218/* Default to some arbitrary number that's big enough to get most
219 of the common signals.
220*/
221#ifndef NSIG
222# define NSIG 50
223#endif
224/* <-- NSIG logic from Configure */
225#ifndef EV_USE_CLOCK_SYSCALL
226# if __linux && __GLIBC__ >= 2
227# define EV_USE_CLOCK_SYSCALL 1
228# else
229# define EV_USE_CLOCK_SYSCALL 0
230# endif
231#endif
142 232
143#ifndef EV_USE_MONOTONIC 233#ifndef EV_USE_MONOTONIC
234# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
235# define EV_USE_MONOTONIC 1
236# else
144# define EV_USE_MONOTONIC 0 237# define EV_USE_MONOTONIC 0
238# endif
145#endif 239#endif
146 240
147#ifndef EV_USE_REALTIME 241#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 242# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
243#endif
244
245#ifndef EV_USE_NANOSLEEP
246# if _POSIX_C_SOURCE >= 199309L
247# define EV_USE_NANOSLEEP 1
248# else
249# define EV_USE_NANOSLEEP 0
250# endif
149#endif 251#endif
150 252
151#ifndef EV_USE_SELECT 253#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 254# define EV_USE_SELECT 1
153#endif 255#endif
159# define EV_USE_POLL 1 261# define EV_USE_POLL 1
160# endif 262# endif
161#endif 263#endif
162 264
163#ifndef EV_USE_EPOLL 265#ifndef EV_USE_EPOLL
266# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
267# define EV_USE_EPOLL 1
268# else
164# define EV_USE_EPOLL 0 269# define EV_USE_EPOLL 0
270# endif
165#endif 271#endif
166 272
167#ifndef EV_USE_KQUEUE 273#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 274# define EV_USE_KQUEUE 0
169#endif 275#endif
171#ifndef EV_USE_PORT 277#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 278# define EV_USE_PORT 0
173#endif 279#endif
174 280
175#ifndef EV_USE_INOTIFY 281#ifndef EV_USE_INOTIFY
282# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
283# define EV_USE_INOTIFY 1
284# else
176# define EV_USE_INOTIFY 0 285# define EV_USE_INOTIFY 0
286# endif
177#endif 287#endif
178 288
179#ifndef EV_PID_HASHSIZE 289#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 290# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 291# define EV_PID_HASHSIZE 1
190# else 300# else
191# define EV_INOTIFY_HASHSIZE 16 301# define EV_INOTIFY_HASHSIZE 16
192# endif 302# endif
193#endif 303#endif
194 304
195/**/ 305#ifndef EV_USE_EVENTFD
306# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
307# define EV_USE_EVENTFD 1
308# else
309# define EV_USE_EVENTFD 0
310# endif
311#endif
312
313#ifndef EV_USE_SIGNALFD
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
315# define EV_USE_SIGNALFD 1
316# else
317# define EV_USE_SIGNALFD 0
318# endif
319#endif
320
321#if 0 /* debugging */
322# define EV_VERIFY 3
323# define EV_USE_4HEAP 1
324# define EV_HEAP_CACHE_AT 1
325#endif
326
327#ifndef EV_VERIFY
328# define EV_VERIFY !EV_MINIMAL
329#endif
330
331#ifndef EV_USE_4HEAP
332# define EV_USE_4HEAP !EV_MINIMAL
333#endif
334
335#ifndef EV_HEAP_CACHE_AT
336# define EV_HEAP_CACHE_AT !EV_MINIMAL
337#endif
338
339/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
340/* which makes programs even slower. might work on other unices, too. */
341#if EV_USE_CLOCK_SYSCALL
342# include <syscall.h>
343# ifdef SYS_clock_gettime
344# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
345# undef EV_USE_MONOTONIC
346# define EV_USE_MONOTONIC 1
347# else
348# undef EV_USE_CLOCK_SYSCALL
349# define EV_USE_CLOCK_SYSCALL 0
350# endif
351#endif
352
353/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 354
197#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
200#endif 358#endif
202#ifndef CLOCK_REALTIME 360#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 361# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 362# define EV_USE_REALTIME 0
205#endif 363#endif
206 364
365#if !EV_STAT_ENABLE
366# undef EV_USE_INOTIFY
367# define EV_USE_INOTIFY 0
368#endif
369
370#if !EV_USE_NANOSLEEP
371# ifndef _WIN32
372# include <sys/select.h>
373# endif
374#endif
375
376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
385#endif
386
207#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 388# include <winsock.h>
209#endif 389#endif
210 390
211#if !EV_STAT_ENABLE 391#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
213#endif 396# endif
397# ifndef EFD_CLOEXEC
398# define EFD_CLOEXEC O_CLOEXEC
399# endif
400# ifdef __cplusplus
401extern "C" {
402# endif
403int eventfd (unsigned int initval, int flags);
404# ifdef __cplusplus
405}
406# endif
407#endif
214 408
215#if EV_USE_INOTIFY 409#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 410# include <sys/signalfd.h>
217#endif 411#endif
218 412
219/**/ 413/**/
414
415#if EV_VERIFY >= 3
416# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
417#else
418# define EV_FREQUENT_CHECK do { } while (0)
419#endif
420
421/*
422 * This is used to avoid floating point rounding problems.
423 * It is added to ev_rt_now when scheduling periodics
424 * to ensure progress, time-wise, even when rounding
425 * errors are against us.
426 * This value is good at least till the year 4000.
427 * Better solutions welcome.
428 */
429#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 430
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 431#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 432#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 433/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 434
225#if __GNUC__ >= 3 435#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 436# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 437# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 438#else
236# define expect(expr,value) (expr) 439# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 440# define noinline
441# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
442# define inline
443# endif
240#endif 444#endif
241 445
242#define expect_false(expr) expect ((expr) != 0, 0) 446#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 447#define expect_true(expr) expect ((expr) != 0, 1)
448#define inline_size static inline
244 449
450#if EV_MINIMAL
451# define inline_speed static noinline
452#else
453# define inline_speed static inline
454#endif
455
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 456#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
457
458#if EV_MINPRI == EV_MAXPRI
459# define ABSPRI(w) (((W)w), 0)
460#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 461# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
462#endif
247 463
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 464#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 465#define EMPTY2(a,b) /* used to suppress some warnings */
250 466
251typedef ev_watcher *W; 467typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 468typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 469typedef ev_watcher_time *WT;
254 470
471#define ev_active(w) ((W)(w))->active
472#define ev_at(w) ((WT)(w))->at
473
474#if EV_USE_REALTIME
475/* sig_atomic_t is used to avoid per-thread variables or locking but still */
476/* giving it a reasonably high chance of working on typical architetcures */
477static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
478#endif
479
480#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 481static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
482#endif
256 483
257#ifdef _WIN32 484#ifdef _WIN32
258# include "ev_win32.c" 485# include "ev_win32.c"
259#endif 486#endif
260 487
267{ 494{
268 syserr_cb = cb; 495 syserr_cb = cb;
269} 496}
270 497
271static void noinline 498static void noinline
272syserr (const char *msg) 499ev_syserr (const char *msg)
273{ 500{
274 if (!msg) 501 if (!msg)
275 msg = "(libev) system error"; 502 msg = "(libev) system error";
276 503
277 if (syserr_cb) 504 if (syserr_cb)
281 perror (msg); 508 perror (msg);
282 abort (); 509 abort ();
283 } 510 }
284} 511}
285 512
513static void *
514ev_realloc_emul (void *ptr, long size)
515{
516 /* some systems, notably openbsd and darwin, fail to properly
517 * implement realloc (x, 0) (as required by both ansi c-98 and
518 * the single unix specification, so work around them here.
519 */
520
521 if (size)
522 return realloc (ptr, size);
523
524 free (ptr);
525 return 0;
526}
527
286static void *(*alloc)(void *ptr, long size); 528static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 529
288void 530void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 531ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 532{
291 alloc = cb; 533 alloc = cb;
292} 534}
293 535
294inline_speed void * 536inline_speed void *
295ev_realloc (void *ptr, long size) 537ev_realloc (void *ptr, long size)
296{ 538{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 539 ptr = alloc (ptr, size);
298 540
299 if (!ptr && size) 541 if (!ptr && size)
300 { 542 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 543 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 544 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 550#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 551#define ev_free(ptr) ev_realloc ((ptr), 0)
310 552
311/*****************************************************************************/ 553/*****************************************************************************/
312 554
555/* set in reify when reification needed */
556#define EV_ANFD_REIFY 1
557
558/* file descriptor info structure */
313typedef struct 559typedef struct
314{ 560{
315 WL head; 561 WL head;
316 unsigned char events; 562 unsigned char events; /* the events watched for */
563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 565 unsigned char unused;
566#if EV_USE_EPOLL
567 unsigned int egen; /* generation counter to counter epoll bugs */
568#endif
318#if EV_SELECT_IS_WINSOCKET 569#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 570 SOCKET handle;
320#endif 571#endif
321} ANFD; 572} ANFD;
322 573
574/* stores the pending event set for a given watcher */
323typedef struct 575typedef struct
324{ 576{
325 W w; 577 W w;
326 int events; 578 int events; /* the pending event set for the given watcher */
327} ANPENDING; 579} ANPENDING;
328 580
329#if EV_USE_INOTIFY 581#if EV_USE_INOTIFY
582/* hash table entry per inotify-id */
330typedef struct 583typedef struct
331{ 584{
332 WL head; 585 WL head;
333} ANFS; 586} ANFS;
587#endif
588
589/* Heap Entry */
590#if EV_HEAP_CACHE_AT
591 /* a heap element */
592 typedef struct {
593 ev_tstamp at;
594 WT w;
595 } ANHE;
596
597 #define ANHE_w(he) (he).w /* access watcher, read-write */
598 #define ANHE_at(he) (he).at /* access cached at, read-only */
599 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
600#else
601 /* a heap element */
602 typedef WT ANHE;
603
604 #define ANHE_w(he) (he)
605 #define ANHE_at(he) (he)->at
606 #define ANHE_at_cache(he)
334#endif 607#endif
335 608
336#if EV_MULTIPLICITY 609#if EV_MULTIPLICITY
337 610
338 struct ev_loop 611 struct ev_loop
357 630
358 static int ev_default_loop_ptr; 631 static int ev_default_loop_ptr;
359 632
360#endif 633#endif
361 634
635#if EV_MINIMAL < 2
636# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
637# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
638# define EV_INVOKE_PENDING invoke_cb (EV_A)
639#else
640# define EV_RELEASE_CB (void)0
641# define EV_ACQUIRE_CB (void)0
642# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
643#endif
644
645#define EVUNLOOP_RECURSE 0x80
646
362/*****************************************************************************/ 647/*****************************************************************************/
363 648
649#ifndef EV_HAVE_EV_TIME
364ev_tstamp 650ev_tstamp
365ev_time (void) 651ev_time (void)
366{ 652{
367#if EV_USE_REALTIME 653#if EV_USE_REALTIME
654 if (expect_true (have_realtime))
655 {
368 struct timespec ts; 656 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 657 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 658 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 659 }
660#endif
661
372 struct timeval tv; 662 struct timeval tv;
373 gettimeofday (&tv, 0); 663 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 664 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 665}
666#endif
377 667
378ev_tstamp inline_size 668inline_size ev_tstamp
379get_clock (void) 669get_clock (void)
380{ 670{
381#if EV_USE_MONOTONIC 671#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 672 if (expect_true (have_monotonic))
383 { 673 {
396{ 686{
397 return ev_rt_now; 687 return ev_rt_now;
398} 688}
399#endif 689#endif
400 690
401int inline_size 691void
692ev_sleep (ev_tstamp delay)
693{
694 if (delay > 0.)
695 {
696#if EV_USE_NANOSLEEP
697 struct timespec ts;
698
699 ts.tv_sec = (time_t)delay;
700 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
701
702 nanosleep (&ts, 0);
703#elif defined(_WIN32)
704 Sleep ((unsigned long)(delay * 1e3));
705#else
706 struct timeval tv;
707
708 tv.tv_sec = (time_t)delay;
709 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
710
711 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
712 /* something not guaranteed by newer posix versions, but guaranteed */
713 /* by older ones */
714 select (0, 0, 0, 0, &tv);
715#endif
716 }
717}
718
719/*****************************************************************************/
720
721#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
722
723/* find a suitable new size for the given array, */
724/* hopefully by rounding to a ncie-to-malloc size */
725inline_size int
402array_nextsize (int elem, int cur, int cnt) 726array_nextsize (int elem, int cur, int cnt)
403{ 727{
404 int ncur = cur + 1; 728 int ncur = cur + 1;
405 729
406 do 730 do
407 ncur <<= 1; 731 ncur <<= 1;
408 while (cnt > ncur); 732 while (cnt > ncur);
409 733
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 734 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 735 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 736 {
413 ncur *= elem; 737 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 738 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 739 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 740 ncur /= elem;
417 } 741 }
418 742
419 return ncur; 743 return ncur;
420} 744}
421 745
422inline_speed void * 746static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 747array_realloc (int elem, void *base, int *cur, int cnt)
424{ 748{
425 *cur = array_nextsize (elem, *cur, cnt); 749 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 750 return ev_realloc (base, elem * *cur);
427} 751}
752
753#define array_init_zero(base,count) \
754 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 755
429#define array_needsize(type,base,cur,cnt,init) \ 756#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 757 if (expect_false ((cnt) > (cur))) \
431 { \ 758 { \
432 int ocur_ = (cur); \ 759 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 771 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 772 }
446#endif 773#endif
447 774
448#define array_free(stem, idx) \ 775#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 776 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 777
451/*****************************************************************************/ 778/*****************************************************************************/
779
780/* dummy callback for pending events */
781static void noinline
782pendingcb (EV_P_ ev_prepare *w, int revents)
783{
784}
452 785
453void noinline 786void noinline
454ev_feed_event (EV_P_ void *w, int revents) 787ev_feed_event (EV_P_ void *w, int revents)
455{ 788{
456 W w_ = (W)w; 789 W w_ = (W)w;
790 int pri = ABSPRI (w_);
457 791
458 if (expect_false (w_->pending)) 792 if (expect_false (w_->pending))
793 pendings [pri][w_->pending - 1].events |= revents;
794 else
459 { 795 {
796 w_->pending = ++pendingcnt [pri];
797 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
798 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 799 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 800 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 801}
469 802
470void inline_size 803inline_speed void
804feed_reverse (EV_P_ W w)
805{
806 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
807 rfeeds [rfeedcnt++] = w;
808}
809
810inline_size void
811feed_reverse_done (EV_P_ int revents)
812{
813 do
814 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
815 while (rfeedcnt);
816}
817
818inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 819queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 820{
473 int i; 821 int i;
474 822
475 for (i = 0; i < eventcnt; ++i) 823 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 824 ev_feed_event (EV_A_ events [i], type);
477} 825}
478 826
479/*****************************************************************************/ 827/*****************************************************************************/
480 828
481void inline_size 829inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 830fd_event_nc (EV_P_ int fd, int revents)
496{ 831{
497 ANFD *anfd = anfds + fd; 832 ANFD *anfd = anfds + fd;
498 ev_io *w; 833 ev_io *w;
499 834
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 835 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 839 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 840 ev_feed_event (EV_A_ (W)w, ev);
506 } 841 }
507} 842}
508 843
844/* do not submit kernel events for fds that have reify set */
845/* because that means they changed while we were polling for new events */
846inline_speed void
847fd_event (EV_P_ int fd, int revents)
848{
849 ANFD *anfd = anfds + fd;
850
851 if (expect_true (!anfd->reify))
852 fd_event_nc (EV_A_ fd, revents);
853}
854
509void 855void
510ev_feed_fd_event (EV_P_ int fd, int revents) 856ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 857{
858 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 859 fd_event_nc (EV_A_ fd, revents);
513} 860}
514 861
515void inline_size 862/* make sure the external fd watch events are in-sync */
863/* with the kernel/libev internal state */
864inline_size void
516fd_reify (EV_P) 865fd_reify (EV_P)
517{ 866{
518 int i; 867 int i;
519 868
520 for (i = 0; i < fdchangecnt; ++i) 869 for (i = 0; i < fdchangecnt; ++i)
521 { 870 {
522 int fd = fdchanges [i]; 871 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 872 ANFD *anfd = anfds + fd;
524 ev_io *w; 873 ev_io *w;
525 874
526 int events = 0; 875 unsigned char events = 0;
527 876
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 877 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 878 events |= (unsigned char)w->events;
530 879
531#if EV_SELECT_IS_WINSOCKET 880#if EV_SELECT_IS_WINSOCKET
532 if (events) 881 if (events)
533 { 882 {
534 unsigned long argp; 883 unsigned long arg;
884 #ifdef EV_FD_TO_WIN32_HANDLE
885 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
886 #else
535 anfd->handle = _get_osfhandle (fd); 887 anfd->handle = _get_osfhandle (fd);
888 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 889 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 890 }
538#endif 891#endif
539 892
893 {
894 unsigned char o_events = anfd->events;
895 unsigned char o_reify = anfd->reify;
896
540 anfd->reify = 0; 897 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 898 anfd->events = events;
899
900 if (o_events != events || o_reify & EV__IOFDSET)
901 backend_modify (EV_A_ fd, o_events, events);
902 }
544 } 903 }
545 904
546 fdchangecnt = 0; 905 fdchangecnt = 0;
547} 906}
548 907
549void inline_size 908/* something about the given fd changed */
909inline_size void
550fd_change (EV_P_ int fd) 910fd_change (EV_P_ int fd, int flags)
551{ 911{
552 if (expect_false (anfds [fd].reify)) 912 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 913 anfds [fd].reify |= flags;
556 914
915 if (expect_true (!reify))
916 {
557 ++fdchangecnt; 917 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 919 fdchanges [fdchangecnt - 1] = fd;
920 }
560} 921}
561 922
562void inline_speed 923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
924inline_speed void
563fd_kill (EV_P_ int fd) 925fd_kill (EV_P_ int fd)
564{ 926{
565 ev_io *w; 927 ev_io *w;
566 928
567 while ((w = (ev_io *)anfds [fd].head)) 929 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 931 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 933 }
572} 934}
573 935
574int inline_size 936/* check whether the given fd is atcually valid, for error recovery */
937inline_size int
575fd_valid (int fd) 938fd_valid (int fd)
576{ 939{
577#ifdef _WIN32 940#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 941 return _get_osfhandle (fd) != -1;
579#else 942#else
587{ 950{
588 int fd; 951 int fd;
589 952
590 for (fd = 0; fd < anfdmax; ++fd) 953 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 954 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 955 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 956 fd_kill (EV_A_ fd);
594} 957}
595 958
596/* called on ENOMEM in select/poll to kill some fds and retry */ 959/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 960static void noinline
615 978
616 for (fd = 0; fd < anfdmax; ++fd) 979 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 980 if (anfds [fd].events)
618 { 981 {
619 anfds [fd].events = 0; 982 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 983 anfds [fd].emask = 0;
984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 985 }
622} 986}
623 987
624/*****************************************************************************/ 988/*****************************************************************************/
625 989
626void inline_speed 990/*
627upheap (WT *heap, int k) 991 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 992 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 993 * the branching factor of the d-tree.
994 */
630 995
631 while (k && heap [k >> 1]->at > w->at) 996/*
632 { 997 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 998 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 999 * which is more cache-efficient.
635 k >>= 1; 1000 * the difference is about 5% with 50000+ watchers.
636 } 1001 */
1002#if EV_USE_4HEAP
637 1003
638 heap [k] = w; 1004#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 1005#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1006#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1007#define UPHEAP_DONE(p,k) ((p) == (k))
640 1008
641} 1009/* away from the root */
642 1010inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 1011downheap (ANHE *heap, int N, int k)
645{ 1012{
646 WT w = heap [k]; 1013 ANHE he = heap [k];
1014 ANHE *E = heap + N + HEAP0;
647 1015
648 while (k < (N >> 1)) 1016 for (;;)
649 { 1017 {
650 int j = k << 1; 1018 ev_tstamp minat;
1019 ANHE *minpos;
1020 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 1021
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1022 /* find minimum child */
1023 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 1024 {
654 1025 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 1026 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else if (pos < E)
1031 {
1032 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1033 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1034 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1035 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1036 }
1037 else
656 break; 1038 break;
657 1039
1040 if (ANHE_at (he) <= minat)
1041 break;
1042
1043 heap [k] = *minpos;
1044 ev_active (ANHE_w (*minpos)) = k;
1045
1046 k = minpos - heap;
1047 }
1048
1049 heap [k] = he;
1050 ev_active (ANHE_w (he)) = k;
1051}
1052
1053#else /* 4HEAP */
1054
1055#define HEAP0 1
1056#define HPARENT(k) ((k) >> 1)
1057#define UPHEAP_DONE(p,k) (!(p))
1058
1059/* away from the root */
1060inline_speed void
1061downheap (ANHE *heap, int N, int k)
1062{
1063 ANHE he = heap [k];
1064
1065 for (;;)
1066 {
1067 int c = k << 1;
1068
1069 if (c > N + HEAP0 - 1)
1070 break;
1071
1072 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1073 ? 1 : 0;
1074
1075 if (ANHE_at (he) <= ANHE_at (heap [c]))
1076 break;
1077
658 heap [k] = heap [j]; 1078 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 1079 ev_active (ANHE_w (heap [k])) = k;
1080
660 k = j; 1081 k = c;
661 } 1082 }
662 1083
663 heap [k] = w; 1084 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1085 ev_active (ANHE_w (he)) = k;
665} 1086}
1087#endif
666 1088
667void inline_size 1089/* towards the root */
1090inline_speed void
1091upheap (ANHE *heap, int k)
1092{
1093 ANHE he = heap [k];
1094
1095 for (;;)
1096 {
1097 int p = HPARENT (k);
1098
1099 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1100 break;
1101
1102 heap [k] = heap [p];
1103 ev_active (ANHE_w (heap [k])) = k;
1104 k = p;
1105 }
1106
1107 heap [k] = he;
1108 ev_active (ANHE_w (he)) = k;
1109}
1110
1111/* move an element suitably so it is in a correct place */
1112inline_size void
668adjustheap (WT *heap, int N, int k) 1113adjustheap (ANHE *heap, int N, int k)
669{ 1114{
1115 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 1116 upheap (heap, k);
1117 else
671 downheap (heap, N, k); 1118 downheap (heap, N, k);
1119}
1120
1121/* rebuild the heap: this function is used only once and executed rarely */
1122inline_size void
1123reheap (ANHE *heap, int N)
1124{
1125 int i;
1126
1127 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1128 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1129 for (i = 0; i < N; ++i)
1130 upheap (heap, i + HEAP0);
672} 1131}
673 1132
674/*****************************************************************************/ 1133/*****************************************************************************/
675 1134
1135/* associate signal watchers to a signal signal */
676typedef struct 1136typedef struct
677{ 1137{
678 WL head; 1138 WL head;
679 sig_atomic_t volatile gotsig; 1139 EV_ATOMIC_T gotsig;
680} ANSIG; 1140} ANSIG;
681 1141
682static ANSIG *signals; 1142static ANSIG *signals;
683static int signalmax; 1143static int signalmax;
684 1144
685static int sigpipe [2]; 1145static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1146
689void inline_size 1147/*****************************************************************************/
690signals_init (ANSIG *base, int count)
691{
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696 1148
697 ++base; 1149/* used to prepare libev internal fd's */
698 } 1150/* this is not fork-safe */
699} 1151inline_speed void
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1152fd_intern (int fd)
754{ 1153{
755#ifdef _WIN32 1154#ifdef _WIN32
756 int arg = 1; 1155 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1156 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1157#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1158 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1159 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1160#endif
762} 1161}
763 1162
764static void noinline 1163static void noinline
765siginit (EV_P) 1164evpipe_init (EV_P)
766{ 1165{
1166 if (!ev_is_active (&pipe_w))
1167 {
1168#if EV_USE_EVENTFD
1169 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1170 if (evfd < 0 && errno == EINVAL)
1171 evfd = eventfd (0, 0);
1172
1173 if (evfd >= 0)
1174 {
1175 evpipe [0] = -1;
1176 fd_intern (evfd); /* doing it twice doesn't hurt */
1177 ev_io_set (&pipe_w, evfd, EV_READ);
1178 }
1179 else
1180#endif
1181 {
1182 while (pipe (evpipe))
1183 ev_syserr ("(libev) error creating signal/async pipe");
1184
767 fd_intern (sigpipe [0]); 1185 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1186 fd_intern (evpipe [1]);
1187 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1188 }
769 1189
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1190 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1191 ev_unref (EV_A); /* watcher should not keep loop alive */
1192 }
1193}
1194
1195inline_size void
1196evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1197{
1198 if (!*flag)
1199 {
1200 int old_errno = errno; /* save errno because write might clobber it */
1201
1202 *flag = 1;
1203
1204#if EV_USE_EVENTFD
1205 if (evfd >= 0)
1206 {
1207 uint64_t counter = 1;
1208 write (evfd, &counter, sizeof (uint64_t));
1209 }
1210 else
1211#endif
1212 write (evpipe [1], &old_errno, 1);
1213
1214 errno = old_errno;
1215 }
1216}
1217
1218/* called whenever the libev signal pipe */
1219/* got some events (signal, async) */
1220static void
1221pipecb (EV_P_ ev_io *iow, int revents)
1222{
1223#if EV_USE_EVENTFD
1224 if (evfd >= 0)
1225 {
1226 uint64_t counter;
1227 read (evfd, &counter, sizeof (uint64_t));
1228 }
1229 else
1230#endif
1231 {
1232 char dummy;
1233 read (evpipe [0], &dummy, 1);
1234 }
1235
1236 if (gotsig && ev_is_default_loop (EV_A))
1237 {
1238 int signum;
1239 gotsig = 0;
1240
1241 for (signum = signalmax; signum--; )
1242 if (signals [signum].gotsig)
1243 ev_feed_signal_event (EV_A_ signum + 1);
1244 }
1245
1246#if EV_ASYNC_ENABLE
1247 if (gotasync)
1248 {
1249 int i;
1250 gotasync = 0;
1251
1252 for (i = asynccnt; i--; )
1253 if (asyncs [i]->sent)
1254 {
1255 asyncs [i]->sent = 0;
1256 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1257 }
1258 }
1259#endif
773} 1260}
774 1261
775/*****************************************************************************/ 1262/*****************************************************************************/
776 1263
1264static void
1265ev_sighandler (int signum)
1266{
1267#if EV_MULTIPLICITY
1268 struct ev_loop *loop = &default_loop_struct;
1269#endif
1270
1271#if _WIN32
1272 signal (signum, ev_sighandler);
1273#endif
1274
1275 signals [signum - 1].gotsig = 1;
1276 evpipe_write (EV_A_ &gotsig);
1277}
1278
1279void noinline
1280ev_feed_signal_event (EV_P_ int signum)
1281{
1282 WL w;
1283
1284#if EV_MULTIPLICITY
1285 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1286#endif
1287
1288 --signum;
1289
1290 if (signum < 0 || signum >= signalmax)
1291 return;
1292
1293 signals [signum].gotsig = 0;
1294
1295 for (w = signals [signum].head; w; w = w->next)
1296 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1297}
1298
1299#if EV_USE_SIGNALFD
1300static void
1301sigfdcb (EV_P_ ev_io *iow, int revents)
1302{
1303 struct signalfd_siginfo si[4], *sip;
1304
1305 for (;;)
1306 {
1307 ssize_t res = read (sigfd, si, sizeof (si));
1308
1309 /* not ISO-C, as res might be -1, but works with SuS */
1310 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1311 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1312
1313 if (res < (ssize_t)sizeof (si))
1314 break;
1315 }
1316}
1317#endif
1318
1319/*****************************************************************************/
1320
777static ev_child *childs [EV_PID_HASHSIZE]; 1321static WL childs [EV_PID_HASHSIZE];
778 1322
779#ifndef _WIN32 1323#ifndef _WIN32
780 1324
781static ev_signal childev; 1325static ev_signal childev;
782 1326
783void inline_speed 1327#ifndef WIFCONTINUED
1328# define WIFCONTINUED(status) 0
1329#endif
1330
1331/* handle a single child status event */
1332inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1333child_reap (EV_P_ int chain, int pid, int status)
785{ 1334{
786 ev_child *w; 1335 ev_child *w;
1336 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1337
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1338 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1339 {
789 if (w->pid == pid || !w->pid) 1340 if ((w->pid == pid || !w->pid)
1341 && (!traced || (w->flags & 1)))
790 { 1342 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1343 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1344 w->rpid = pid;
793 w->rstatus = status; 1345 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1346 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1347 }
1348 }
796} 1349}
797 1350
798#ifndef WCONTINUED 1351#ifndef WCONTINUED
799# define WCONTINUED 0 1352# define WCONTINUED 0
800#endif 1353#endif
801 1354
1355/* called on sigchld etc., calls waitpid */
802static void 1356static void
803childcb (EV_P_ ev_signal *sw, int revents) 1357childcb (EV_P_ ev_signal *sw, int revents)
804{ 1358{
805 int pid, status; 1359 int pid, status;
806 1360
809 if (!WCONTINUED 1363 if (!WCONTINUED
810 || errno != EINVAL 1364 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1365 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1366 return;
813 1367
814 /* make sure we are called again until all childs have been reaped */ 1368 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1369 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1370 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1371
818 child_reap (EV_A_ sw, pid, pid, status); 1372 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1373 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1374 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1375}
822 1376
823#endif 1377#endif
824 1378
825/*****************************************************************************/ 1379/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1441 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1442 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1443 flags &= ~EVBACKEND_KQUEUE;
890#endif 1444#endif
891#ifdef __APPLE__ 1445#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1446 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1447 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1448 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1449#endif
895 1450
896 return flags; 1451 return flags;
897} 1452}
898 1453
899unsigned int 1454unsigned int
900ev_embeddable_backends (void) 1455ev_embeddable_backends (void)
901{ 1456{
902 return EVBACKEND_EPOLL 1457 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1458
904 | EVBACKEND_PORT; 1459 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1460 /* please fix it and tell me how to detect the fix */
1461 flags &= ~EVBACKEND_EPOLL;
1462
1463 return flags;
905} 1464}
906 1465
907unsigned int 1466unsigned int
908ev_backend (EV_P) 1467ev_backend (EV_P)
909{ 1468{
910 return backend; 1469 return backend;
911} 1470}
912 1471
1472#if EV_MINIMAL < 2
913unsigned int 1473unsigned int
914ev_loop_count (EV_P) 1474ev_loop_count (EV_P)
915{ 1475{
916 return loop_count; 1476 return loop_count;
917} 1477}
918 1478
1479unsigned int
1480ev_loop_depth (EV_P)
1481{
1482 return loop_depth;
1483}
1484
1485void
1486ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1487{
1488 io_blocktime = interval;
1489}
1490
1491void
1492ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1493{
1494 timeout_blocktime = interval;
1495}
1496
1497void
1498ev_set_userdata (EV_P_ void *data)
1499{
1500 userdata = data;
1501}
1502
1503void *
1504ev_userdata (EV_P)
1505{
1506 return userdata;
1507}
1508
1509void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1510{
1511 invoke_cb = invoke_pending_cb;
1512}
1513
1514void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1515{
1516 release_cb = release;
1517 acquire_cb = acquire;
1518}
1519#endif
1520
1521/* initialise a loop structure, must be zero-initialised */
919static void noinline 1522static void noinline
920loop_init (EV_P_ unsigned int flags) 1523loop_init (EV_P_ unsigned int flags)
921{ 1524{
922 if (!backend) 1525 if (!backend)
923 { 1526 {
1527#if EV_USE_REALTIME
1528 if (!have_realtime)
1529 {
1530 struct timespec ts;
1531
1532 if (!clock_gettime (CLOCK_REALTIME, &ts))
1533 have_realtime = 1;
1534 }
1535#endif
1536
924#if EV_USE_MONOTONIC 1537#if EV_USE_MONOTONIC
1538 if (!have_monotonic)
925 { 1539 {
926 struct timespec ts; 1540 struct timespec ts;
1541
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1542 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1543 have_monotonic = 1;
929 } 1544 }
930#endif 1545#endif
931 1546
932 ev_rt_now = ev_time (); 1547 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1548 mn_now = get_clock ();
934 now_floor = mn_now; 1549 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1550 rtmn_diff = ev_rt_now - mn_now;
1551#if EV_MINIMAL < 2
1552 invoke_cb = ev_invoke_pending;
1553#endif
1554
1555 io_blocktime = 0.;
1556 timeout_blocktime = 0.;
1557 backend = 0;
1558 backend_fd = -1;
1559 gotasync = 0;
1560#if EV_USE_INOTIFY
1561 fs_fd = -2;
1562#endif
1563#if EV_USE_SIGNALFD
1564 sigfd = -2;
1565#endif
936 1566
937 /* pid check not overridable via env */ 1567 /* pid check not overridable via env */
938#ifndef _WIN32 1568#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1569 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1570 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1573 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1574 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1575 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1576 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1577
948 if (!(flags & 0x0000ffffUL)) 1578 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1580
957#if EV_USE_PORT 1581#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1583#endif
960#if EV_USE_KQUEUE 1584#if EV_USE_KQUEUE
968#endif 1592#endif
969#if EV_USE_SELECT 1593#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1595#endif
972 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
973 ev_init (&sigev, sigcb); 1599 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1601 }
976} 1602}
977 1603
1604/* free up a loop structure */
978static void noinline 1605static void noinline
979loop_destroy (EV_P) 1606loop_destroy (EV_P)
980{ 1607{
981 int i; 1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
982 1636
983#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
985 close (fs_fd); 1639 close (fs_fd);
986#endif 1640#endif
1010#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1665 array_free (idle, [i]);
1012#endif 1666#endif
1013 } 1667 }
1014 1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1670
1015 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1020#endif 1677#endif
1678#if EV_FORK_ENABLE
1679 array_free (fork, EMPTY);
1680#endif
1021 array_free (prepare, EMPTY); 1681 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
1023 1686
1024 backend = 0; 1687 backend = 0;
1025} 1688}
1026 1689
1690#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1692#endif
1028 1693
1029void inline_size 1694inline_size void
1030loop_fork (EV_P) 1695loop_fork (EV_P)
1031{ 1696{
1032#if EV_USE_PORT 1697#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1699#endif
1040#endif 1705#endif
1041#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1707 infy_fork (EV_A);
1043#endif 1708#endif
1044 1709
1045 if (ev_is_active (&sigev)) 1710 if (ev_is_active (&pipe_w))
1046 { 1711 {
1047 /* default loop */ 1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 gotsig = 1;
1715#if EV_ASYNC_ENABLE
1716 gotasync = 1;
1717#endif
1048 1718
1049 ev_ref (EV_A); 1719 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1051 close (sigpipe [0]); 1729 close (evpipe [0]);
1052 close (sigpipe [1]); 1730 close (evpipe [1]);
1731 }
1053 1732
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
1058 } 1736 }
1059 1737
1060 postfork = 0; 1738 postfork = 0;
1061} 1739}
1062 1740
1063#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1742
1064struct ev_loop * 1743struct ev_loop *
1065ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1066{ 1745{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1747
1069 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (loop, 0, sizeof (struct ev_loop));
1070
1071 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1072 1750
1073 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1074 return loop; 1752 return loop;
1075 1753
1084} 1762}
1085 1763
1086void 1764void
1087ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1088{ 1766{
1089 postfork = 1; 1767 postfork = 1; /* must be in line with ev_default_fork */
1090} 1768}
1769#endif /* multiplicity */
1091 1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1867# endif
1868#endif
1869}
1092#endif 1870#endif
1093 1871
1094#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1095struct ev_loop * 1873struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1097#else 1875#else
1098int 1876int
1099ev_default_loop (unsigned int flags) 1877ev_default_loop (unsigned int flags)
1100#endif 1878#endif
1101{ 1879{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1107 { 1881 {
1108#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1884#else
1113 1887
1114 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1115 1889
1116 if (ev_backend (EV_A)) 1890 if (ev_backend (EV_A))
1117 { 1891 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1892#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1894 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1895 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
1136{ 1908{
1137#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1138 struct ev_loop *loop = ev_default_loop_ptr; 1910 struct ev_loop *loop = ev_default_loop_ptr;
1139#endif 1911#endif
1140 1912
1913 ev_default_loop_ptr = 0;
1914
1141#ifndef _WIN32 1915#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
1144#endif 1918#endif
1145 1919
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1920 loop_destroy (EV_A);
1153} 1921}
1154 1922
1155void 1923void
1156ev_default_fork (void) 1924ev_default_fork (void)
1157{ 1925{
1158#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1927 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1928#endif
1161 1929
1162 if (backend) 1930 postfork = 1; /* must be in line with ev_loop_fork */
1163 postfork = 1;
1164} 1931}
1165 1932
1166/*****************************************************************************/ 1933/*****************************************************************************/
1167 1934
1168void inline_speed 1935void
1169call_pending (EV_P) 1936ev_invoke (EV_P_ void *w, int revents)
1937{
1938 EV_CB_INVOKE ((W)w, revents);
1939}
1940
1941unsigned int
1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1170{ 1955{
1171 int pri; 1956 int pri;
1172 1957
1173 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1175 { 1960 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 1962
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1181 1965
1182 p->w->pending = 0; 1966 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1184 } 1968 EV_FREQUENT_CHECK;
1185 } 1969 }
1186} 1970}
1187 1971
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1268void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1269idle_reify (EV_P) 1976idle_reify (EV_P)
1270{ 1977{
1271 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1272 { 1979 {
1273 int pri; 1980 int pri;
1285 } 1992 }
1286 } 1993 }
1287} 1994}
1288#endif 1995#endif
1289 1996
1290int inline_size 1997/* make timers pending */
1291time_update_monotonic (EV_P) 1998inline_size void
1999timers_reify (EV_P)
1292{ 2000{
2001 EV_FREQUENT_CHECK;
2002
2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033}
2034
2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
2038periodics_reify (EV_P)
2039{
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
2134time_update (EV_P_ ev_tstamp max_block)
2135{
2136#if EV_USE_MONOTONIC
2137 if (expect_true (have_monotonic))
2138 {
2139 int i;
2140 ev_tstamp odiff = rtmn_diff;
2141
1293 mn_now = get_clock (); 2142 mn_now = get_clock ();
1294 2143
2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2146 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 2147 {
1297 ev_rt_now = rtmn_diff + mn_now; 2148 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 2149 return;
1299 } 2150 }
1300 else 2151
1301 {
1302 now_floor = mn_now; 2152 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 2153 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 2154
1308void inline_size 2155 /* loop a few times, before making important decisions.
1309time_update (EV_P) 2156 * on the choice of "4": one iteration isn't enough,
1310{ 2157 * in case we get preempted during the calls to
1311 int i; 2158 * ev_time and get_clock. a second call is almost guaranteed
1312 2159 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 2160 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 2161 * in the unlikely event of having been preempted here.
1315 { 2162 */
1316 if (time_update_monotonic (EV_A)) 2163 for (i = 4; --i; )
1317 { 2164 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1331 2166
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2168 return; /* all is well */
1334 2169
1335 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2171 mn_now = get_clock ();
1337 now_floor = mn_now; 2172 now_floor = mn_now;
1338 } 2173 }
1339 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1342# endif 2179# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2180 }
1347 else 2181 else
1348#endif 2182#endif
1349 { 2183 {
1350 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1351 2185
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1356#endif 2192#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2193 }
1362 2194
1363 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1364 } 2196 }
1365} 2197}
1366 2198
1367void 2199void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1383{ 2201{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2202#if EV_MINIMAL < 2
1385 ? EVUNLOOP_ONE 2203 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 2204#endif
1387 2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 2211
1390 do 2212 do
1391 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
1392#ifndef _WIN32 2218#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2219 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2220 if (expect_false (getpid () != curpid))
1395 { 2221 {
1396 curpid = getpid (); 2222 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1404 if (forkcnt) 2230 if (forkcnt)
1405 { 2231 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1408 } 2234 }
1409#endif 2235#endif
1410 2236
1411 /* queue check watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1413 { 2239 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1416 } 2242 }
1417 2243
1418 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1419 break; 2245 break;
1420 2246
1421 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1423 loop_fork (EV_A); 2249 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 2251 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2252 fd_reify (EV_A);
1427 2253
1428 /* calculate blocking time */ 2254 /* calculate blocking time */
1429 { 2255 {
1430 ev_tstamp block; 2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
1431 2258
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
1436 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 2265 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 2266
1447 block = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1448 2268
1449 if (timercnt) 2269 if (timercnt)
1450 { 2270 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2272 if (waittime > to) waittime = to;
1453 } 2273 }
1454 2274
1455#if EV_PERIODIC_ENABLE 2275#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2276 if (periodiccnt)
1457 { 2277 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2279 if (waittime > to) waittime = to;
1460 } 2280 }
1461#endif 2281#endif
1462 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
1464 } 2301 }
1465 2302
2303#if EV_MINIMAL < 2
1466 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2309
2310 /* update ev_rt_now, do magic */
2311 time_update (EV_A_ waittime + sleeptime);
1468 } 2312 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2313
1473 /* queue pending timers and reschedule them */ 2314 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2315 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2316#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2317 periodics_reify (EV_A); /* absolute timers called first */
1483 2324
1484 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2328
1488 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1489
1490 } 2330 }
1491 while (expect_true (activecnt && !loop_done)); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1492 2336
1493 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1495} 2343}
1496 2344
1497void 2345void
1498ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1499{ 2347{
1500 loop_done = how; 2348 loop_done = how;
1501} 2349}
1502 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1503/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1504 2390
1505void inline_size 2391inline_size void
1506wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1507{ 2393{
1508 elem->next = *head; 2394 elem->next = *head;
1509 *head = elem; 2395 *head = elem;
1510} 2396}
1511 2397
1512void inline_size 2398inline_size void
1513wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1514{ 2400{
1515 while (*head) 2401 while (*head)
1516 { 2402 {
1517 if (*head == elem) 2403 if (*head == elem)
1522 2408
1523 head = &(*head)->next; 2409 head = &(*head)->next;
1524 } 2410 }
1525} 2411}
1526 2412
1527void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
1528clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1529{ 2416{
1530 if (w->pending) 2417 if (w->pending)
1531 { 2418 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2420 w->pending = 0;
1534 } 2421 }
1535} 2422}
1536 2423
1537int 2424int
1538ev_clear_pending (EV_P_ void *w) 2425ev_clear_pending (EV_P_ void *w)
1539{ 2426{
1540 W w_ = (W)w; 2427 W w_ = (W)w;
1541 int pending = w_->pending; 2428 int pending = w_->pending;
1542 2429
1543 if (!pending) 2430 if (expect_true (pending))
2431 {
2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2434 w_->pending = 0;
2435 return p->events;
2436 }
2437 else
1544 return 0; 2438 return 0;
1545
1546 w_->pending = 0;
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 p->w = 0;
1549
1550 return p->events;
1551} 2439}
1552 2440
1553void inline_size 2441inline_size void
1554pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
1555{ 2443{
1556 int pri = w->priority; 2444 int pri = ev_priority (w);
1557 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1558 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1559 w->priority = pri; 2447 ev_set_priority (w, pri);
1560} 2448}
1561 2449
1562void inline_speed 2450inline_speed void
1563ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1564{ 2452{
1565 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
1566 w->active = active; 2454 w->active = active;
1567 ev_ref (EV_A); 2455 ev_ref (EV_A);
1568} 2456}
1569 2457
1570void inline_size 2458inline_size void
1571ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1572{ 2460{
1573 ev_unref (EV_A); 2461 ev_unref (EV_A);
1574 w->active = 0; 2462 w->active = 0;
1575} 2463}
1576 2464
1577/*****************************************************************************/ 2465/*****************************************************************************/
1578 2466
1579void 2467void noinline
1580ev_io_start (EV_P_ ev_io *w) 2468ev_io_start (EV_P_ ev_io *w)
1581{ 2469{
1582 int fd = w->fd; 2470 int fd = w->fd;
1583 2471
1584 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1585 return; 2473 return;
1586 2474
1587 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1588 2479
1589 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1590 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1591 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1592 2483
1593 fd_change (EV_A_ fd); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1594} 2485 w->events &= ~EV__IOFDSET;
1595 2486
1596void 2487 EV_FREQUENT_CHECK;
2488}
2489
2490void noinline
1597ev_io_stop (EV_P_ ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1598{ 2492{
1599 clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
1601 return; 2495 return;
1602 2496
1603 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1604 2498
2499 EV_FREQUENT_CHECK;
2500
1605 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1606 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1607 2503
1608 fd_change (EV_A_ w->fd); 2504 fd_change (EV_A_ w->fd, 1);
1609}
1610 2505
1611void 2506 EV_FREQUENT_CHECK;
2507}
2508
2509void noinline
1612ev_timer_start (EV_P_ ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1613{ 2511{
1614 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
1615 return; 2513 return;
1616 2514
1617 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1618 2516
1619 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1620 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1621 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1622 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1623 timers [timercnt - 1] = w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1624 upheap ((WT *)timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1625 2527
2528 EV_FREQUENT_CHECK;
2529
1626 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1627} 2531}
1628 2532
1629void 2533void noinline
1630ev_timer_stop (EV_P_ ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1631{ 2535{
1632 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1634 return; 2538 return;
1635 2539
1636 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2540 EV_FREQUENT_CHECK;
1637 2541
1638 { 2542 {
1639 int active = ((W)w)->active; 2543 int active = ev_active (w);
1640 2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
1641 if (expect_true (--active < --timercnt)) 2549 if (expect_true (active < timercnt + HEAP0))
1642 { 2550 {
1643 timers [active] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1644 adjustheap ((WT *)timers, timercnt, active); 2552 adjustheap (timers, timercnt, active);
1645 } 2553 }
1646 } 2554 }
1647 2555
1648 ((WT)w)->at -= mn_now; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1649 2559
1650 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1651} 2561}
1652 2562
1653void 2563void noinline
1654ev_timer_again (EV_P_ ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1655{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1656 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1657 { 2569 {
1658 if (w->repeat) 2570 if (w->repeat)
1659 { 2571 {
1660 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
1661 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
1662 } 2575 }
1663 else 2576 else
1664 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1665 } 2578 }
1666 else if (w->repeat) 2579 else if (w->repeat)
1667 { 2580 {
1668 w->at = w->repeat; 2581 ev_at (w) = w->repeat;
1669 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1670 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1671} 2592}
1672 2593
1673#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
1674void 2595void noinline
1675ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1676{ 2597{
1677 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1678 return; 2599 return;
1679 2600
1680 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1681 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1682 else if (w->interval) 2603 else if (w->interval)
1683 { 2604 {
1684 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1685 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1686 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1687 } 2608 }
2609 else
2610 ev_at (w) = w->offset;
1688 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1689 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1690 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1691 periodics [periodiccnt - 1] = w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1692 upheap ((WT *)periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1693 2620
2621 EV_FREQUENT_CHECK;
2622
1694 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1695} 2624}
1696 2625
1697void 2626void noinline
1698ev_periodic_stop (EV_P_ ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1699{ 2628{
1700 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1702 return; 2631 return;
1703 2632
1704 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2633 EV_FREQUENT_CHECK;
1705 2634
1706 { 2635 {
1707 int active = ((W)w)->active; 2636 int active = ev_active (w);
1708 2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
1709 if (expect_true (--active < --periodiccnt)) 2642 if (expect_true (active < periodiccnt + HEAP0))
1710 { 2643 {
1711 periodics [active] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1712 adjustheap ((WT *)periodics, periodiccnt, active); 2645 adjustheap (periodics, periodiccnt, active);
1713 } 2646 }
1714 } 2647 }
1715 2648
2649 EV_FREQUENT_CHECK;
2650
1716 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1717} 2652}
1718 2653
1719void 2654void noinline
1720ev_periodic_again (EV_P_ ev_periodic *w) 2655ev_periodic_again (EV_P_ ev_periodic *w)
1721{ 2656{
1722 /* TODO: use adjustheap and recalculation */ 2657 /* TODO: use adjustheap and recalculation */
1723 ev_periodic_stop (EV_A_ w); 2658 ev_periodic_stop (EV_A_ w);
1724 ev_periodic_start (EV_A_ w); 2659 ev_periodic_start (EV_A_ w);
1727 2662
1728#ifndef SA_RESTART 2663#ifndef SA_RESTART
1729# define SA_RESTART 0 2664# define SA_RESTART 0
1730#endif 2665#endif
1731 2666
1732void 2667void noinline
1733ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
1734{ 2669{
1735#if EV_MULTIPLICITY 2670#if EV_MULTIPLICITY
1736 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2671 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1737#endif 2672#endif
1738 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
1739 return; 2674 return;
1740 2675
1741 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2676 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2677
2678 EV_FREQUENT_CHECK;
2679
2680#if EV_USE_SIGNALFD
2681 if (sigfd == -2)
2682 {
2683 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2684 if (sigfd < 0 && errno == EINVAL)
2685 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2686
2687 if (sigfd >= 0)
2688 {
2689 fd_intern (sigfd); /* doing it twice will not hurt */
2690
2691 sigemptyset (&sigfd_set);
2692
2693 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2694 ev_set_priority (&sigfd_w, EV_MAXPRI);
2695 ev_io_start (EV_A_ &sigfd_w);
2696 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2697 }
2698 }
2699
2700 if (sigfd >= 0)
2701 {
2702 /* TODO: check .head */
2703 sigaddset (&sigfd_set, w->signum);
2704 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2705
2706 signalfd (sigfd, &sigfd_set, 0);
2707 }
2708 else
2709#endif
2710 evpipe_init (EV_A);
2711
2712 {
2713#ifndef _WIN32
2714 sigset_t full, prev;
2715 sigfillset (&full);
2716 sigprocmask (SIG_SETMASK, &full, &prev);
2717#endif
2718
2719 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2720
2721#ifndef _WIN32
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0)/*TODO*/
2724# endif
2725 sigdelset (&prev, w->signum);
2726 sigprocmask (SIG_SETMASK, &prev, 0);
2727#endif
2728 }
1742 2729
1743 ev_start (EV_A_ (W)w, 1); 2730 ev_start (EV_A_ (W)w, 1);
1744 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1745 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2731 wlist_add (&signals [w->signum - 1].head, (WL)w);
1746 2732
1747 if (!((WL)w)->next) 2733 if (!((WL)w)->next)
1748 { 2734 {
1749#if _WIN32 2735#if _WIN32
1750 signal (w->signum, sighandler); 2736 signal (w->signum, ev_sighandler);
1751#else 2737#else
2738# if EV_USE_SIGNALFD
2739 if (sigfd < 0) /*TODO*/
2740# endif
2741 {
1752 struct sigaction sa; 2742 struct sigaction sa = { };
1753 sa.sa_handler = sighandler; 2743 sa.sa_handler = ev_sighandler;
1754 sigfillset (&sa.sa_mask); 2744 sigfillset (&sa.sa_mask);
1755 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2745 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1756 sigaction (w->signum, &sa, 0); 2746 sigaction (w->signum, &sa, 0);
2747 }
1757#endif 2748#endif
1758 } 2749 }
1759}
1760 2750
1761void 2751 EV_FREQUENT_CHECK;
2752}
2753
2754void noinline
1762ev_signal_stop (EV_P_ ev_signal *w) 2755ev_signal_stop (EV_P_ ev_signal *w)
1763{ 2756{
1764 clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
1766 return; 2759 return;
1767 2760
2761 EV_FREQUENT_CHECK;
2762
1768 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2763 wlist_del (&signals [w->signum - 1].head, (WL)w);
1769 ev_stop (EV_A_ (W)w); 2764 ev_stop (EV_A_ (W)w);
1770 2765
1771 if (!signals [w->signum - 1].head) 2766 if (!signals [w->signum - 1].head)
2767#if EV_USE_SIGNALFD
2768 if (sigfd >= 0)
2769 {
2770 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2771 sigdelset (&sigfd_set, w->signum);
2772 signalfd (sigfd, &sigfd_set, 0);
2773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2774 /*TODO: maybe unblock signal? */
2775 }
2776 else
2777#endif
1772 signal (w->signum, SIG_DFL); 2778 signal (w->signum, SIG_DFL);
2779
2780 EV_FREQUENT_CHECK;
1773} 2781}
1774 2782
1775void 2783void
1776ev_child_start (EV_P_ ev_child *w) 2784ev_child_start (EV_P_ ev_child *w)
1777{ 2785{
1778#if EV_MULTIPLICITY 2786#if EV_MULTIPLICITY
1779 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2787 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1780#endif 2788#endif
1781 if (expect_false (ev_is_active (w))) 2789 if (expect_false (ev_is_active (w)))
1782 return; 2790 return;
1783 2791
2792 EV_FREQUENT_CHECK;
2793
1784 ev_start (EV_A_ (W)w, 1); 2794 ev_start (EV_A_ (W)w, 1);
1785 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2795 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2796
2797 EV_FREQUENT_CHECK;
1786} 2798}
1787 2799
1788void 2800void
1789ev_child_stop (EV_P_ ev_child *w) 2801ev_child_stop (EV_P_ ev_child *w)
1790{ 2802{
1791 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
1793 return; 2805 return;
1794 2806
2807 EV_FREQUENT_CHECK;
2808
1795 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2809 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1796 ev_stop (EV_A_ (W)w); 2810 ev_stop (EV_A_ (W)w);
2811
2812 EV_FREQUENT_CHECK;
1797} 2813}
1798 2814
1799#if EV_STAT_ENABLE 2815#if EV_STAT_ENABLE
1800 2816
1801# ifdef _WIN32 2817# ifdef _WIN32
1802# undef lstat 2818# undef lstat
1803# define lstat(a,b) _stati64 (a,b) 2819# define lstat(a,b) _stati64 (a,b)
1804# endif 2820# endif
1805 2821
1806#define DEF_STAT_INTERVAL 5.0074891 2822#define DEF_STAT_INTERVAL 5.0074891
2823#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1807#define MIN_STAT_INTERVAL 0.1074891 2824#define MIN_STAT_INTERVAL 0.1074891
1808 2825
1809static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2826static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1810 2827
1811#if EV_USE_INOTIFY 2828#if EV_USE_INOTIFY
1812# define EV_INOTIFY_BUFSIZE 8192 2829# define EV_INOTIFY_BUFSIZE 8192
1816{ 2833{
1817 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2834 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1818 2835
1819 if (w->wd < 0) 2836 if (w->wd < 0)
1820 { 2837 {
2838 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1821 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2839 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1822 2840
1823 /* monitor some parent directory for speedup hints */ 2841 /* monitor some parent directory for speedup hints */
2842 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2843 /* but an efficiency issue only */
1824 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2844 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1825 { 2845 {
1826 char path [4096]; 2846 char path [4096];
1827 strcpy (path, w->path); 2847 strcpy (path, w->path);
1828 2848
1831 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2851 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1832 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2852 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1833 2853
1834 char *pend = strrchr (path, '/'); 2854 char *pend = strrchr (path, '/');
1835 2855
1836 if (!pend) 2856 if (!pend || pend == path)
1837 break; /* whoops, no '/', complain to your admin */ 2857 break;
1838 2858
1839 *pend = 0; 2859 *pend = 0;
1840 w->wd = inotify_add_watch (fs_fd, path, mask); 2860 w->wd = inotify_add_watch (fs_fd, path, mask);
1841 } 2861 }
1842 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2862 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1843 } 2863 }
1844 } 2864 }
1845 else
1846 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1847 2865
1848 if (w->wd >= 0) 2866 if (w->wd >= 0)
2867 {
1849 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873 struct statfs sfs;
2874
2875 if (fs_2625 && !statfs (w->path, &sfs))
2876 if (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */)
2882 return;
2883
2884 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2885 ev_timer_again (EV_A_ &w->timer);
2886 }
1850} 2887}
1851 2888
1852static void noinline 2889static void noinline
1853infy_del (EV_P_ ev_stat *w) 2890infy_del (EV_P_ ev_stat *w)
1854{ 2891{
1868 2905
1869static void noinline 2906static void noinline
1870infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2907infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1871{ 2908{
1872 if (slot < 0) 2909 if (slot < 0)
1873 /* overflow, need to check for all hahs slots */ 2910 /* overflow, need to check for all hash slots */
1874 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2911 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1875 infy_wd (EV_A_ slot, wd, ev); 2912 infy_wd (EV_A_ slot, wd, ev);
1876 else 2913 else
1877 { 2914 {
1878 WL w_; 2915 WL w_;
1884 2921
1885 if (w->wd == wd || wd == -1) 2922 if (w->wd == wd || wd == -1)
1886 { 2923 {
1887 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2924 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1888 { 2925 {
2926 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1889 w->wd = -1; 2927 w->wd = -1;
1890 infy_add (EV_A_ w); /* re-add, no matter what */ 2928 infy_add (EV_A_ w); /* re-add, no matter what */
1891 } 2929 }
1892 2930
1893 stat_timer_cb (EV_A_ &w->timer, 0); 2931 stat_timer_cb (EV_A_ &w->timer, 0);
1906 2944
1907 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1908 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1909} 2947}
1910 2948
1911void inline_size 2949inline_size void
2950check_2625 (EV_P)
2951{
2952 /* kernels < 2.6.25 are borked
2953 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2954 */
2955 struct utsname buf;
2956 int major, minor, micro;
2957
2958 if (uname (&buf))
2959 return;
2960
2961 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2962 return;
2963
2964 if (major < 2
2965 || (major == 2 && minor < 6)
2966 || (major == 2 && minor == 6 && micro < 25))
2967 return;
2968
2969 fs_2625 = 1;
2970}
2971
2972inline_size void
1912infy_init (EV_P) 2973infy_init (EV_P)
1913{ 2974{
1914 if (fs_fd != -2) 2975 if (fs_fd != -2)
1915 return; 2976 return;
2977
2978 fs_fd = -1;
2979
2980 check_2625 (EV_A);
1916 2981
1917 fs_fd = inotify_init (); 2982 fs_fd = inotify_init ();
1918 2983
1919 if (fs_fd >= 0) 2984 if (fs_fd >= 0)
1920 { 2985 {
1922 ev_set_priority (&fs_w, EV_MAXPRI); 2987 ev_set_priority (&fs_w, EV_MAXPRI);
1923 ev_io_start (EV_A_ &fs_w); 2988 ev_io_start (EV_A_ &fs_w);
1924 } 2989 }
1925} 2990}
1926 2991
1927void inline_size 2992inline_size void
1928infy_fork (EV_P) 2993infy_fork (EV_P)
1929{ 2994{
1930 int slot; 2995 int slot;
1931 2996
1932 if (fs_fd < 0) 2997 if (fs_fd < 0)
1948 w->wd = -1; 3013 w->wd = -1;
1949 3014
1950 if (fs_fd >= 0) 3015 if (fs_fd >= 0)
1951 infy_add (EV_A_ w); /* re-add, no matter what */ 3016 infy_add (EV_A_ w); /* re-add, no matter what */
1952 else 3017 else
1953 ev_timer_start (EV_A_ &w->timer); 3018 ev_timer_again (EV_A_ &w->timer);
1954 } 3019 }
1955
1956 } 3020 }
1957} 3021}
1958 3022
3023#endif
3024
3025#ifdef _WIN32
3026# define EV_LSTAT(p,b) _stati64 (p, b)
3027#else
3028# define EV_LSTAT(p,b) lstat (p, b)
1959#endif 3029#endif
1960 3030
1961void 3031void
1962ev_stat_stat (EV_P_ ev_stat *w) 3032ev_stat_stat (EV_P_ ev_stat *w)
1963{ 3033{
1990 || w->prev.st_atime != w->attr.st_atime 3060 || w->prev.st_atime != w->attr.st_atime
1991 || w->prev.st_mtime != w->attr.st_mtime 3061 || w->prev.st_mtime != w->attr.st_mtime
1992 || w->prev.st_ctime != w->attr.st_ctime 3062 || w->prev.st_ctime != w->attr.st_ctime
1993 ) { 3063 ) {
1994 #if EV_USE_INOTIFY 3064 #if EV_USE_INOTIFY
3065 if (fs_fd >= 0)
3066 {
1995 infy_del (EV_A_ w); 3067 infy_del (EV_A_ w);
1996 infy_add (EV_A_ w); 3068 infy_add (EV_A_ w);
1997 ev_stat_stat (EV_A_ w); /* avoid race... */ 3069 ev_stat_stat (EV_A_ w); /* avoid race... */
3070 }
1998 #endif 3071 #endif
1999 3072
2000 ev_feed_event (EV_A_ w, EV_STAT); 3073 ev_feed_event (EV_A_ w, EV_STAT);
2001 } 3074 }
2002} 3075}
2005ev_stat_start (EV_P_ ev_stat *w) 3078ev_stat_start (EV_P_ ev_stat *w)
2006{ 3079{
2007 if (expect_false (ev_is_active (w))) 3080 if (expect_false (ev_is_active (w)))
2008 return; 3081 return;
2009 3082
2010 /* since we use memcmp, we need to clear any padding data etc. */
2011 memset (&w->prev, 0, sizeof (ev_statdata));
2012 memset (&w->attr, 0, sizeof (ev_statdata));
2013
2014 ev_stat_stat (EV_A_ w); 3083 ev_stat_stat (EV_A_ w);
2015 3084
3085 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2016 if (w->interval < MIN_STAT_INTERVAL) 3086 w->interval = MIN_STAT_INTERVAL;
2017 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2018 3087
2019 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3088 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2020 ev_set_priority (&w->timer, ev_priority (w)); 3089 ev_set_priority (&w->timer, ev_priority (w));
2021 3090
2022#if EV_USE_INOTIFY 3091#if EV_USE_INOTIFY
2023 infy_init (EV_A); 3092 infy_init (EV_A);
2024 3093
2025 if (fs_fd >= 0) 3094 if (fs_fd >= 0)
2026 infy_add (EV_A_ w); 3095 infy_add (EV_A_ w);
2027 else 3096 else
2028#endif 3097#endif
2029 ev_timer_start (EV_A_ &w->timer); 3098 ev_timer_again (EV_A_ &w->timer);
2030 3099
2031 ev_start (EV_A_ (W)w, 1); 3100 ev_start (EV_A_ (W)w, 1);
3101
3102 EV_FREQUENT_CHECK;
2032} 3103}
2033 3104
2034void 3105void
2035ev_stat_stop (EV_P_ ev_stat *w) 3106ev_stat_stop (EV_P_ ev_stat *w)
2036{ 3107{
2037 clear_pending (EV_A_ (W)w); 3108 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 3109 if (expect_false (!ev_is_active (w)))
2039 return; 3110 return;
2040 3111
3112 EV_FREQUENT_CHECK;
3113
2041#if EV_USE_INOTIFY 3114#if EV_USE_INOTIFY
2042 infy_del (EV_A_ w); 3115 infy_del (EV_A_ w);
2043#endif 3116#endif
2044 ev_timer_stop (EV_A_ &w->timer); 3117 ev_timer_stop (EV_A_ &w->timer);
2045 3118
2046 ev_stop (EV_A_ (W)w); 3119 ev_stop (EV_A_ (W)w);
3120
3121 EV_FREQUENT_CHECK;
2047} 3122}
2048#endif 3123#endif
2049 3124
2050#if EV_IDLE_ENABLE 3125#if EV_IDLE_ENABLE
2051void 3126void
2053{ 3128{
2054 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2055 return; 3130 return;
2056 3131
2057 pri_adjust (EV_A_ (W)w); 3132 pri_adjust (EV_A_ (W)w);
3133
3134 EV_FREQUENT_CHECK;
2058 3135
2059 { 3136 {
2060 int active = ++idlecnt [ABSPRI (w)]; 3137 int active = ++idlecnt [ABSPRI (w)];
2061 3138
2062 ++idleall; 3139 ++idleall;
2063 ev_start (EV_A_ (W)w, active); 3140 ev_start (EV_A_ (W)w, active);
2064 3141
2065 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3142 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2066 idles [ABSPRI (w)][active - 1] = w; 3143 idles [ABSPRI (w)][active - 1] = w;
2067 } 3144 }
3145
3146 EV_FREQUENT_CHECK;
2068} 3147}
2069 3148
2070void 3149void
2071ev_idle_stop (EV_P_ ev_idle *w) 3150ev_idle_stop (EV_P_ ev_idle *w)
2072{ 3151{
2073 clear_pending (EV_A_ (W)w); 3152 clear_pending (EV_A_ (W)w);
2074 if (expect_false (!ev_is_active (w))) 3153 if (expect_false (!ev_is_active (w)))
2075 return; 3154 return;
2076 3155
3156 EV_FREQUENT_CHECK;
3157
2077 { 3158 {
2078 int active = ((W)w)->active; 3159 int active = ev_active (w);
2079 3160
2080 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3161 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2081 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3162 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2082 3163
2083 ev_stop (EV_A_ (W)w); 3164 ev_stop (EV_A_ (W)w);
2084 --idleall; 3165 --idleall;
2085 } 3166 }
3167
3168 EV_FREQUENT_CHECK;
2086} 3169}
2087#endif 3170#endif
2088 3171
2089void 3172void
2090ev_prepare_start (EV_P_ ev_prepare *w) 3173ev_prepare_start (EV_P_ ev_prepare *w)
2091{ 3174{
2092 if (expect_false (ev_is_active (w))) 3175 if (expect_false (ev_is_active (w)))
2093 return; 3176 return;
3177
3178 EV_FREQUENT_CHECK;
2094 3179
2095 ev_start (EV_A_ (W)w, ++preparecnt); 3180 ev_start (EV_A_ (W)w, ++preparecnt);
2096 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3181 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2097 prepares [preparecnt - 1] = w; 3182 prepares [preparecnt - 1] = w;
3183
3184 EV_FREQUENT_CHECK;
2098} 3185}
2099 3186
2100void 3187void
2101ev_prepare_stop (EV_P_ ev_prepare *w) 3188ev_prepare_stop (EV_P_ ev_prepare *w)
2102{ 3189{
2103 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
2105 return; 3192 return;
2106 3193
3194 EV_FREQUENT_CHECK;
3195
2107 { 3196 {
2108 int active = ((W)w)->active; 3197 int active = ev_active (w);
3198
2109 prepares [active - 1] = prepares [--preparecnt]; 3199 prepares [active - 1] = prepares [--preparecnt];
2110 ((W)prepares [active - 1])->active = active; 3200 ev_active (prepares [active - 1]) = active;
2111 } 3201 }
2112 3202
2113 ev_stop (EV_A_ (W)w); 3203 ev_stop (EV_A_ (W)w);
3204
3205 EV_FREQUENT_CHECK;
2114} 3206}
2115 3207
2116void 3208void
2117ev_check_start (EV_P_ ev_check *w) 3209ev_check_start (EV_P_ ev_check *w)
2118{ 3210{
2119 if (expect_false (ev_is_active (w))) 3211 if (expect_false (ev_is_active (w)))
2120 return; 3212 return;
3213
3214 EV_FREQUENT_CHECK;
2121 3215
2122 ev_start (EV_A_ (W)w, ++checkcnt); 3216 ev_start (EV_A_ (W)w, ++checkcnt);
2123 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3217 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2124 checks [checkcnt - 1] = w; 3218 checks [checkcnt - 1] = w;
3219
3220 EV_FREQUENT_CHECK;
2125} 3221}
2126 3222
2127void 3223void
2128ev_check_stop (EV_P_ ev_check *w) 3224ev_check_stop (EV_P_ ev_check *w)
2129{ 3225{
2130 clear_pending (EV_A_ (W)w); 3226 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w))) 3227 if (expect_false (!ev_is_active (w)))
2132 return; 3228 return;
2133 3229
3230 EV_FREQUENT_CHECK;
3231
2134 { 3232 {
2135 int active = ((W)w)->active; 3233 int active = ev_active (w);
3234
2136 checks [active - 1] = checks [--checkcnt]; 3235 checks [active - 1] = checks [--checkcnt];
2137 ((W)checks [active - 1])->active = active; 3236 ev_active (checks [active - 1]) = active;
2138 } 3237 }
2139 3238
2140 ev_stop (EV_A_ (W)w); 3239 ev_stop (EV_A_ (W)w);
3240
3241 EV_FREQUENT_CHECK;
2141} 3242}
2142 3243
2143#if EV_EMBED_ENABLE 3244#if EV_EMBED_ENABLE
2144void noinline 3245void noinline
2145ev_embed_sweep (EV_P_ ev_embed *w) 3246ev_embed_sweep (EV_P_ ev_embed *w)
2146{ 3247{
2147 ev_loop (w->loop, EVLOOP_NONBLOCK); 3248 ev_loop (w->other, EVLOOP_NONBLOCK);
2148} 3249}
2149 3250
2150static void 3251static void
2151embed_cb (EV_P_ ev_io *io, int revents) 3252embed_io_cb (EV_P_ ev_io *io, int revents)
2152{ 3253{
2153 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3254 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2154 3255
2155 if (ev_cb (w)) 3256 if (ev_cb (w))
2156 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3257 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2157 else 3258 else
2158 ev_embed_sweep (loop, w); 3259 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 3260}
3261
3262static void
3263embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3264{
3265 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3266
3267 {
3268 struct ev_loop *loop = w->other;
3269
3270 while (fdchangecnt)
3271 {
3272 fd_reify (EV_A);
3273 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3274 }
3275 }
3276}
3277
3278static void
3279embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3280{
3281 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3282
3283 ev_embed_stop (EV_A_ w);
3284
3285 {
3286 struct ev_loop *loop = w->other;
3287
3288 ev_loop_fork (EV_A);
3289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3290 }
3291
3292 ev_embed_start (EV_A_ w);
3293}
3294
3295#if 0
3296static void
3297embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3298{
3299 ev_idle_stop (EV_A_ idle);
3300}
3301#endif
2160 3302
2161void 3303void
2162ev_embed_start (EV_P_ ev_embed *w) 3304ev_embed_start (EV_P_ ev_embed *w)
2163{ 3305{
2164 if (expect_false (ev_is_active (w))) 3306 if (expect_false (ev_is_active (w)))
2165 return; 3307 return;
2166 3308
2167 { 3309 {
2168 struct ev_loop *loop = w->loop; 3310 struct ev_loop *loop = w->other;
2169 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3311 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2170 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3312 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2171 } 3313 }
3314
3315 EV_FREQUENT_CHECK;
2172 3316
2173 ev_set_priority (&w->io, ev_priority (w)); 3317 ev_set_priority (&w->io, ev_priority (w));
2174 ev_io_start (EV_A_ &w->io); 3318 ev_io_start (EV_A_ &w->io);
2175 3319
3320 ev_prepare_init (&w->prepare, embed_prepare_cb);
3321 ev_set_priority (&w->prepare, EV_MINPRI);
3322 ev_prepare_start (EV_A_ &w->prepare);
3323
3324 ev_fork_init (&w->fork, embed_fork_cb);
3325 ev_fork_start (EV_A_ &w->fork);
3326
3327 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3328
2176 ev_start (EV_A_ (W)w, 1); 3329 ev_start (EV_A_ (W)w, 1);
3330
3331 EV_FREQUENT_CHECK;
2177} 3332}
2178 3333
2179void 3334void
2180ev_embed_stop (EV_P_ ev_embed *w) 3335ev_embed_stop (EV_P_ ev_embed *w)
2181{ 3336{
2182 clear_pending (EV_A_ (W)w); 3337 clear_pending (EV_A_ (W)w);
2183 if (expect_false (!ev_is_active (w))) 3338 if (expect_false (!ev_is_active (w)))
2184 return; 3339 return;
2185 3340
3341 EV_FREQUENT_CHECK;
3342
2186 ev_io_stop (EV_A_ &w->io); 3343 ev_io_stop (EV_A_ &w->io);
3344 ev_prepare_stop (EV_A_ &w->prepare);
3345 ev_fork_stop (EV_A_ &w->fork);
2187 3346
2188 ev_stop (EV_A_ (W)w); 3347 EV_FREQUENT_CHECK;
2189} 3348}
2190#endif 3349#endif
2191 3350
2192#if EV_FORK_ENABLE 3351#if EV_FORK_ENABLE
2193void 3352void
2194ev_fork_start (EV_P_ ev_fork *w) 3353ev_fork_start (EV_P_ ev_fork *w)
2195{ 3354{
2196 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2197 return; 3356 return;
3357
3358 EV_FREQUENT_CHECK;
2198 3359
2199 ev_start (EV_A_ (W)w, ++forkcnt); 3360 ev_start (EV_A_ (W)w, ++forkcnt);
2200 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3361 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2201 forks [forkcnt - 1] = w; 3362 forks [forkcnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
2202} 3365}
2203 3366
2204void 3367void
2205ev_fork_stop (EV_P_ ev_fork *w) 3368ev_fork_stop (EV_P_ ev_fork *w)
2206{ 3369{
2207 clear_pending (EV_A_ (W)w); 3370 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 3371 if (expect_false (!ev_is_active (w)))
2209 return; 3372 return;
2210 3373
3374 EV_FREQUENT_CHECK;
3375
2211 { 3376 {
2212 int active = ((W)w)->active; 3377 int active = ev_active (w);
3378
2213 forks [active - 1] = forks [--forkcnt]; 3379 forks [active - 1] = forks [--forkcnt];
2214 ((W)forks [active - 1])->active = active; 3380 ev_active (forks [active - 1]) = active;
2215 } 3381 }
2216 3382
2217 ev_stop (EV_A_ (W)w); 3383 ev_stop (EV_A_ (W)w);
3384
3385 EV_FREQUENT_CHECK;
3386}
3387#endif
3388
3389#if EV_ASYNC_ENABLE
3390void
3391ev_async_start (EV_P_ ev_async *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 evpipe_init (EV_A);
3397
3398 EV_FREQUENT_CHECK;
3399
3400 ev_start (EV_A_ (W)w, ++asynccnt);
3401 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3402 asyncs [asynccnt - 1] = w;
3403
3404 EV_FREQUENT_CHECK;
3405}
3406
3407void
3408ev_async_stop (EV_P_ ev_async *w)
3409{
3410 clear_pending (EV_A_ (W)w);
3411 if (expect_false (!ev_is_active (w)))
3412 return;
3413
3414 EV_FREQUENT_CHECK;
3415
3416 {
3417 int active = ev_active (w);
3418
3419 asyncs [active - 1] = asyncs [--asynccnt];
3420 ev_active (asyncs [active - 1]) = active;
3421 }
3422
3423 ev_stop (EV_A_ (W)w);
3424
3425 EV_FREQUENT_CHECK;
3426}
3427
3428void
3429ev_async_send (EV_P_ ev_async *w)
3430{
3431 w->sent = 1;
3432 evpipe_write (EV_A_ &gotasync);
2218} 3433}
2219#endif 3434#endif
2220 3435
2221/*****************************************************************************/ 3436/*****************************************************************************/
2222 3437
2232once_cb (EV_P_ struct ev_once *once, int revents) 3447once_cb (EV_P_ struct ev_once *once, int revents)
2233{ 3448{
2234 void (*cb)(int revents, void *arg) = once->cb; 3449 void (*cb)(int revents, void *arg) = once->cb;
2235 void *arg = once->arg; 3450 void *arg = once->arg;
2236 3451
2237 ev_io_stop (EV_A_ &once->io); 3452 ev_io_stop (EV_A_ &once->io);
2238 ev_timer_stop (EV_A_ &once->to); 3453 ev_timer_stop (EV_A_ &once->to);
2239 ev_free (once); 3454 ev_free (once);
2240 3455
2241 cb (revents, arg); 3456 cb (revents, arg);
2242} 3457}
2243 3458
2244static void 3459static void
2245once_cb_io (EV_P_ ev_io *w, int revents) 3460once_cb_io (EV_P_ ev_io *w, int revents)
2246{ 3461{
2247 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3462 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3463
3464 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2248} 3465}
2249 3466
2250static void 3467static void
2251once_cb_to (EV_P_ ev_timer *w, int revents) 3468once_cb_to (EV_P_ ev_timer *w, int revents)
2252{ 3469{
2253 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3470 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3471
3472 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2254} 3473}
2255 3474
2256void 3475void
2257ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3476ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2258{ 3477{
2280 ev_timer_set (&once->to, timeout, 0.); 3499 ev_timer_set (&once->to, timeout, 0.);
2281 ev_timer_start (EV_A_ &once->to); 3500 ev_timer_start (EV_A_ &once->to);
2282 } 3501 }
2283} 3502}
2284 3503
3504/*****************************************************************************/
3505
3506#if EV_WALK_ENABLE
3507void
3508ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3509{
3510 int i, j;
3511 ev_watcher_list *wl, *wn;
3512
3513 if (types & (EV_IO | EV_EMBED))
3514 for (i = 0; i < anfdmax; ++i)
3515 for (wl = anfds [i].head; wl; )
3516 {
3517 wn = wl->next;
3518
3519#if EV_EMBED_ENABLE
3520 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3521 {
3522 if (types & EV_EMBED)
3523 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3524 }
3525 else
3526#endif
3527#if EV_USE_INOTIFY
3528 if (ev_cb ((ev_io *)wl) == infy_cb)
3529 ;
3530 else
3531#endif
3532 if ((ev_io *)wl != &pipe_w)
3533 if (types & EV_IO)
3534 cb (EV_A_ EV_IO, wl);
3535
3536 wl = wn;
3537 }
3538
3539 if (types & (EV_TIMER | EV_STAT))
3540 for (i = timercnt + HEAP0; i-- > HEAP0; )
3541#if EV_STAT_ENABLE
3542 /*TODO: timer is not always active*/
3543 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3544 {
3545 if (types & EV_STAT)
3546 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3547 }
3548 else
3549#endif
3550 if (types & EV_TIMER)
3551 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3552
3553#if EV_PERIODIC_ENABLE
3554 if (types & EV_PERIODIC)
3555 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3556 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3557#endif
3558
3559#if EV_IDLE_ENABLE
3560 if (types & EV_IDLE)
3561 for (j = NUMPRI; i--; )
3562 for (i = idlecnt [j]; i--; )
3563 cb (EV_A_ EV_IDLE, idles [j][i]);
3564#endif
3565
3566#if EV_FORK_ENABLE
3567 if (types & EV_FORK)
3568 for (i = forkcnt; i--; )
3569 if (ev_cb (forks [i]) != embed_fork_cb)
3570 cb (EV_A_ EV_FORK, forks [i]);
3571#endif
3572
3573#if EV_ASYNC_ENABLE
3574 if (types & EV_ASYNC)
3575 for (i = asynccnt; i--; )
3576 cb (EV_A_ EV_ASYNC, asyncs [i]);
3577#endif
3578
3579 if (types & EV_PREPARE)
3580 for (i = preparecnt; i--; )
3581#if EV_EMBED_ENABLE
3582 if (ev_cb (prepares [i]) != embed_prepare_cb)
3583#endif
3584 cb (EV_A_ EV_PREPARE, prepares [i]);
3585
3586 if (types & EV_CHECK)
3587 for (i = checkcnt; i--; )
3588 cb (EV_A_ EV_CHECK, checks [i]);
3589
3590 if (types & EV_SIGNAL)
3591 for (i = 0; i < signalmax; ++i)
3592 for (wl = signals [i].head; wl; )
3593 {
3594 wn = wl->next;
3595 cb (EV_A_ EV_SIGNAL, wl);
3596 wl = wn;
3597 }
3598
3599 if (types & EV_CHILD)
3600 for (i = EV_PID_HASHSIZE; i--; )
3601 for (wl = childs [i]; wl; )
3602 {
3603 wn = wl->next;
3604 cb (EV_A_ EV_CHILD, wl);
3605 wl = wn;
3606 }
3607/* EV_STAT 0x00001000 /* stat data changed */
3608/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3609}
3610#endif
3611
3612#if EV_MULTIPLICITY
3613 #include "ev_wrap.h"
3614#endif
3615
2285#ifdef __cplusplus 3616#ifdef __cplusplus
2286} 3617}
2287#endif 3618#endif
2288 3619

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines