ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.177 by root, Tue Dec 11 15:06:50 2007 UTC vs.
Revision 1.305 by root, Sun Jul 19 03:49:04 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 64
216#endif
217
218/* Default to some arbitrary number that's big enough to get most
219 of the common signals.
220*/
221#ifndef NSIG
222# define NSIG 50
223#endif
224/* <-- NSIG logic from Configure */
225#ifndef EV_USE_CLOCK_SYSCALL
226# if __linux && __GLIBC__ >= 2
227# define EV_USE_CLOCK_SYSCALL 1
228# else
229# define EV_USE_CLOCK_SYSCALL 0
230# endif
231#endif
142 232
143#ifndef EV_USE_MONOTONIC 233#ifndef EV_USE_MONOTONIC
234# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
235# define EV_USE_MONOTONIC 1
236# else
144# define EV_USE_MONOTONIC 0 237# define EV_USE_MONOTONIC 0
238# endif
145#endif 239#endif
146 240
147#ifndef EV_USE_REALTIME 241#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 242# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
243#endif
244
245#ifndef EV_USE_NANOSLEEP
246# if _POSIX_C_SOURCE >= 199309L
247# define EV_USE_NANOSLEEP 1
248# else
249# define EV_USE_NANOSLEEP 0
250# endif
149#endif 251#endif
150 252
151#ifndef EV_USE_SELECT 253#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 254# define EV_USE_SELECT 1
153#endif 255#endif
159# define EV_USE_POLL 1 261# define EV_USE_POLL 1
160# endif 262# endif
161#endif 263#endif
162 264
163#ifndef EV_USE_EPOLL 265#ifndef EV_USE_EPOLL
266# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
267# define EV_USE_EPOLL 1
268# else
164# define EV_USE_EPOLL 0 269# define EV_USE_EPOLL 0
270# endif
165#endif 271#endif
166 272
167#ifndef EV_USE_KQUEUE 273#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 274# define EV_USE_KQUEUE 0
169#endif 275#endif
171#ifndef EV_USE_PORT 277#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 278# define EV_USE_PORT 0
173#endif 279#endif
174 280
175#ifndef EV_USE_INOTIFY 281#ifndef EV_USE_INOTIFY
282# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
283# define EV_USE_INOTIFY 1
284# else
176# define EV_USE_INOTIFY 0 285# define EV_USE_INOTIFY 0
286# endif
177#endif 287#endif
178 288
179#ifndef EV_PID_HASHSIZE 289#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 290# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 291# define EV_PID_HASHSIZE 1
190# else 300# else
191# define EV_INOTIFY_HASHSIZE 16 301# define EV_INOTIFY_HASHSIZE 16
192# endif 302# endif
193#endif 303#endif
194 304
195/**/ 305#ifndef EV_USE_EVENTFD
306# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
307# define EV_USE_EVENTFD 1
308# else
309# define EV_USE_EVENTFD 0
310# endif
311#endif
312
313#ifndef EV_USE_SIGNALFD
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
315# define EV_USE_SIGNALFD 1
316# else
317# define EV_USE_SIGNALFD 0
318# endif
319#endif
320
321#if 0 /* debugging */
322# define EV_VERIFY 3
323# define EV_USE_4HEAP 1
324# define EV_HEAP_CACHE_AT 1
325#endif
326
327#ifndef EV_VERIFY
328# define EV_VERIFY !EV_MINIMAL
329#endif
330
331#ifndef EV_USE_4HEAP
332# define EV_USE_4HEAP !EV_MINIMAL
333#endif
334
335#ifndef EV_HEAP_CACHE_AT
336# define EV_HEAP_CACHE_AT !EV_MINIMAL
337#endif
338
339/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
340/* which makes programs even slower. might work on other unices, too. */
341#if EV_USE_CLOCK_SYSCALL
342# include <syscall.h>
343# ifdef SYS_clock_gettime
344# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
345# undef EV_USE_MONOTONIC
346# define EV_USE_MONOTONIC 1
347# else
348# undef EV_USE_CLOCK_SYSCALL
349# define EV_USE_CLOCK_SYSCALL 0
350# endif
351#endif
352
353/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 354
197#ifndef CLOCK_MONOTONIC 355#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 356# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 357# define EV_USE_MONOTONIC 0
200#endif 358#endif
202#ifndef CLOCK_REALTIME 360#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 361# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 362# define EV_USE_REALTIME 0
205#endif 363#endif
206 364
365#if !EV_STAT_ENABLE
366# undef EV_USE_INOTIFY
367# define EV_USE_INOTIFY 0
368#endif
369
370#if !EV_USE_NANOSLEEP
371# ifndef _WIN32
372# include <sys/select.h>
373# endif
374#endif
375
376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
385#endif
386
207#if EV_SELECT_IS_WINSOCKET 387#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 388# include <winsock.h>
209#endif 389#endif
210 390
211#if !EV_STAT_ENABLE 391#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
213#endif 396# endif
397# ifndef EFD_CLOEXEC
398# define EFD_CLOEXEC O_CLOEXEC
399# endif
400# ifdef __cplusplus
401extern "C" {
402# endif
403int eventfd (unsigned int initval, int flags);
404# ifdef __cplusplus
405}
406# endif
407#endif
214 408
215#if EV_USE_INOTIFY 409#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 410# include <sys/signalfd.h>
217#endif 411#endif
218 412
219/**/ 413/**/
414
415#if EV_VERIFY >= 3
416# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
417#else
418# define EV_FREQUENT_CHECK do { } while (0)
419#endif
220 420
221/* 421/*
222 * This is used to avoid floating point rounding problems. 422 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 423 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 424 * to ensure progress, time-wise, even when rounding
230 430
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 431#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 432#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 433/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 434
235#if __GNUC__ >= 3 435#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 436# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 437# define noinline __attribute__ ((noinline))
238#else 438#else
239# define expect(expr,value) (expr) 439# define expect(expr,value) (expr)
240# define noinline 440# define noinline
241# if __STDC_VERSION__ < 199901L 441# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 442# define inline
243# endif 443# endif
244#endif 444#endif
245 445
246#define expect_false(expr) expect ((expr) != 0, 0) 446#define expect_false(expr) expect ((expr) != 0, 0)
251# define inline_speed static noinline 451# define inline_speed static noinline
252#else 452#else
253# define inline_speed static inline 453# define inline_speed static inline
254#endif 454#endif
255 455
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 456#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
457
458#if EV_MINPRI == EV_MAXPRI
459# define ABSPRI(w) (((W)w), 0)
460#else
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 461# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
462#endif
258 463
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 464#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 465#define EMPTY2(a,b) /* used to suppress some warnings */
261 466
262typedef ev_watcher *W; 467typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 468typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 469typedef ev_watcher_time *WT;
265 470
471#define ev_active(w) ((W)(w))->active
472#define ev_at(w) ((WT)(w))->at
473
474#if EV_USE_REALTIME
475/* sig_atomic_t is used to avoid per-thread variables or locking but still */
476/* giving it a reasonably high chance of working on typical architetcures */
477static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
478#endif
479
480#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 481static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
482#endif
267 483
268#ifdef _WIN32 484#ifdef _WIN32
269# include "ev_win32.c" 485# include "ev_win32.c"
270#endif 486#endif
271 487
278{ 494{
279 syserr_cb = cb; 495 syserr_cb = cb;
280} 496}
281 497
282static void noinline 498static void noinline
283syserr (const char *msg) 499ev_syserr (const char *msg)
284{ 500{
285 if (!msg) 501 if (!msg)
286 msg = "(libev) system error"; 502 msg = "(libev) system error";
287 503
288 if (syserr_cb) 504 if (syserr_cb)
292 perror (msg); 508 perror (msg);
293 abort (); 509 abort ();
294 } 510 }
295} 511}
296 512
513static void *
514ev_realloc_emul (void *ptr, long size)
515{
516 /* some systems, notably openbsd and darwin, fail to properly
517 * implement realloc (x, 0) (as required by both ansi c-98 and
518 * the single unix specification, so work around them here.
519 */
520
521 if (size)
522 return realloc (ptr, size);
523
524 free (ptr);
525 return 0;
526}
527
297static void *(*alloc)(void *ptr, long size); 528static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 529
299void 530void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 531ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 532{
302 alloc = cb; 533 alloc = cb;
303} 534}
304 535
305inline_speed void * 536inline_speed void *
306ev_realloc (void *ptr, long size) 537ev_realloc (void *ptr, long size)
307{ 538{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 539 ptr = alloc (ptr, size);
309 540
310 if (!ptr && size) 541 if (!ptr && size)
311 { 542 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 543 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 544 abort ();
319#define ev_malloc(size) ev_realloc (0, (size)) 550#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 551#define ev_free(ptr) ev_realloc ((ptr), 0)
321 552
322/*****************************************************************************/ 553/*****************************************************************************/
323 554
555/* set in reify when reification needed */
556#define EV_ANFD_REIFY 1
557
558/* file descriptor info structure */
324typedef struct 559typedef struct
325{ 560{
326 WL head; 561 WL head;
327 unsigned char events; 562 unsigned char events; /* the events watched for */
563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 565 unsigned char unused;
566#if EV_USE_EPOLL
567 unsigned int egen; /* generation counter to counter epoll bugs */
568#endif
329#if EV_SELECT_IS_WINSOCKET 569#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 570 SOCKET handle;
331#endif 571#endif
332} ANFD; 572} ANFD;
333 573
574/* stores the pending event set for a given watcher */
334typedef struct 575typedef struct
335{ 576{
336 W w; 577 W w;
337 int events; 578 int events; /* the pending event set for the given watcher */
338} ANPENDING; 579} ANPENDING;
339 580
340#if EV_USE_INOTIFY 581#if EV_USE_INOTIFY
582/* hash table entry per inotify-id */
341typedef struct 583typedef struct
342{ 584{
343 WL head; 585 WL head;
344} ANFS; 586} ANFS;
587#endif
588
589/* Heap Entry */
590#if EV_HEAP_CACHE_AT
591 /* a heap element */
592 typedef struct {
593 ev_tstamp at;
594 WT w;
595 } ANHE;
596
597 #define ANHE_w(he) (he).w /* access watcher, read-write */
598 #define ANHE_at(he) (he).at /* access cached at, read-only */
599 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
600#else
601 /* a heap element */
602 typedef WT ANHE;
603
604 #define ANHE_w(he) (he)
605 #define ANHE_at(he) (he)->at
606 #define ANHE_at_cache(he)
345#endif 607#endif
346 608
347#if EV_MULTIPLICITY 609#if EV_MULTIPLICITY
348 610
349 struct ev_loop 611 struct ev_loop
368 630
369 static int ev_default_loop_ptr; 631 static int ev_default_loop_ptr;
370 632
371#endif 633#endif
372 634
635#if EV_MINIMAL < 2
636# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
637# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
638# define EV_INVOKE_PENDING invoke_cb (EV_A)
639#else
640# define EV_RELEASE_CB (void)0
641# define EV_ACQUIRE_CB (void)0
642# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
643#endif
644
645#define EVUNLOOP_RECURSE 0x80
646
373/*****************************************************************************/ 647/*****************************************************************************/
374 648
649#ifndef EV_HAVE_EV_TIME
375ev_tstamp 650ev_tstamp
376ev_time (void) 651ev_time (void)
377{ 652{
378#if EV_USE_REALTIME 653#if EV_USE_REALTIME
654 if (expect_true (have_realtime))
655 {
379 struct timespec ts; 656 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 657 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 658 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 659 }
660#endif
661
383 struct timeval tv; 662 struct timeval tv;
384 gettimeofday (&tv, 0); 663 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 664 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 665}
666#endif
388 667
389ev_tstamp inline_size 668inline_size ev_tstamp
390get_clock (void) 669get_clock (void)
391{ 670{
392#if EV_USE_MONOTONIC 671#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 672 if (expect_true (have_monotonic))
394 { 673 {
407{ 686{
408 return ev_rt_now; 687 return ev_rt_now;
409} 688}
410#endif 689#endif
411 690
412int inline_size 691void
692ev_sleep (ev_tstamp delay)
693{
694 if (delay > 0.)
695 {
696#if EV_USE_NANOSLEEP
697 struct timespec ts;
698
699 ts.tv_sec = (time_t)delay;
700 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
701
702 nanosleep (&ts, 0);
703#elif defined(_WIN32)
704 Sleep ((unsigned long)(delay * 1e3));
705#else
706 struct timeval tv;
707
708 tv.tv_sec = (time_t)delay;
709 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
710
711 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
712 /* something not guaranteed by newer posix versions, but guaranteed */
713 /* by older ones */
714 select (0, 0, 0, 0, &tv);
715#endif
716 }
717}
718
719/*****************************************************************************/
720
721#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
722
723/* find a suitable new size for the given array, */
724/* hopefully by rounding to a ncie-to-malloc size */
725inline_size int
413array_nextsize (int elem, int cur, int cnt) 726array_nextsize (int elem, int cur, int cnt)
414{ 727{
415 int ncur = cur + 1; 728 int ncur = cur + 1;
416 729
417 do 730 do
418 ncur <<= 1; 731 ncur <<= 1;
419 while (cnt > ncur); 732 while (cnt > ncur);
420 733
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 734 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 735 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 736 {
424 ncur *= elem; 737 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 738 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 739 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 740 ncur /= elem;
428 } 741 }
429 742
430 return ncur; 743 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 747array_realloc (int elem, void *base, int *cur, int cnt)
435{ 748{
436 *cur = array_nextsize (elem, *cur, cnt); 749 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 750 return ev_realloc (base, elem * *cur);
438} 751}
752
753#define array_init_zero(base,count) \
754 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 755
440#define array_needsize(type,base,cur,cnt,init) \ 756#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 757 if (expect_false ((cnt) > (cur))) \
442 { \ 758 { \
443 int ocur_ = (cur); \ 759 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 771 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 772 }
457#endif 773#endif
458 774
459#define array_free(stem, idx) \ 775#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 776 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 777
462/*****************************************************************************/ 778/*****************************************************************************/
779
780/* dummy callback for pending events */
781static void noinline
782pendingcb (EV_P_ ev_prepare *w, int revents)
783{
784}
463 785
464void noinline 786void noinline
465ev_feed_event (EV_P_ void *w, int revents) 787ev_feed_event (EV_P_ void *w, int revents)
466{ 788{
467 W w_ = (W)w; 789 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 798 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 799 pendings [pri][w_->pending - 1].events = revents;
478 } 800 }
479} 801}
480 802
481void inline_size 803inline_speed void
804feed_reverse (EV_P_ W w)
805{
806 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
807 rfeeds [rfeedcnt++] = w;
808}
809
810inline_size void
811feed_reverse_done (EV_P_ int revents)
812{
813 do
814 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
815 while (rfeedcnt);
816}
817
818inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 819queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 820{
484 int i; 821 int i;
485 822
486 for (i = 0; i < eventcnt; ++i) 823 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 824 ev_feed_event (EV_A_ events [i], type);
488} 825}
489 826
490/*****************************************************************************/ 827/*****************************************************************************/
491 828
492void inline_size 829inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 830fd_event_nc (EV_P_ int fd, int revents)
507{ 831{
508 ANFD *anfd = anfds + fd; 832 ANFD *anfd = anfds + fd;
509 ev_io *w; 833 ev_io *w;
510 834
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 835 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 839 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 840 ev_feed_event (EV_A_ (W)w, ev);
517 } 841 }
518} 842}
519 843
844/* do not submit kernel events for fds that have reify set */
845/* because that means they changed while we were polling for new events */
846inline_speed void
847fd_event (EV_P_ int fd, int revents)
848{
849 ANFD *anfd = anfds + fd;
850
851 if (expect_true (!anfd->reify))
852 fd_event_nc (EV_A_ fd, revents);
853}
854
520void 855void
521ev_feed_fd_event (EV_P_ int fd, int revents) 856ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 857{
523 if (fd >= 0 && fd < anfdmax) 858 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 859 fd_event_nc (EV_A_ fd, revents);
525} 860}
526 861
527void inline_size 862/* make sure the external fd watch events are in-sync */
863/* with the kernel/libev internal state */
864inline_size void
528fd_reify (EV_P) 865fd_reify (EV_P)
529{ 866{
530 int i; 867 int i;
531 868
532 for (i = 0; i < fdchangecnt; ++i) 869 for (i = 0; i < fdchangecnt; ++i)
533 { 870 {
534 int fd = fdchanges [i]; 871 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 872 ANFD *anfd = anfds + fd;
536 ev_io *w; 873 ev_io *w;
537 874
538 int events = 0; 875 unsigned char events = 0;
539 876
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 877 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 878 events |= (unsigned char)w->events;
542 879
543#if EV_SELECT_IS_WINSOCKET 880#if EV_SELECT_IS_WINSOCKET
544 if (events) 881 if (events)
545 { 882 {
546 unsigned long argp; 883 unsigned long arg;
884 #ifdef EV_FD_TO_WIN32_HANDLE
885 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
886 #else
547 anfd->handle = _get_osfhandle (fd); 887 anfd->handle = _get_osfhandle (fd);
888 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 889 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 890 }
550#endif 891#endif
551 892
893 {
894 unsigned char o_events = anfd->events;
895 unsigned char o_reify = anfd->reify;
896
552 anfd->reify = 0; 897 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 898 anfd->events = events;
899
900 if (o_events != events || o_reify & EV__IOFDSET)
901 backend_modify (EV_A_ fd, o_events, events);
902 }
556 } 903 }
557 904
558 fdchangecnt = 0; 905 fdchangecnt = 0;
559} 906}
560 907
561void inline_size 908/* something about the given fd changed */
909inline_size void
562fd_change (EV_P_ int fd) 910fd_change (EV_P_ int fd, int flags)
563{ 911{
564 if (expect_false (anfds [fd].reify)) 912 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 913 anfds [fd].reify |= flags;
568 914
915 if (expect_true (!reify))
916 {
569 ++fdchangecnt; 917 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 919 fdchanges [fdchangecnt - 1] = fd;
920 }
572} 921}
573 922
574void inline_speed 923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
924inline_speed void
575fd_kill (EV_P_ int fd) 925fd_kill (EV_P_ int fd)
576{ 926{
577 ev_io *w; 927 ev_io *w;
578 928
579 while ((w = (ev_io *)anfds [fd].head)) 929 while ((w = (ev_io *)anfds [fd].head))
581 ev_io_stop (EV_A_ w); 931 ev_io_stop (EV_A_ w);
582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
583 } 933 }
584} 934}
585 935
586int inline_size 936/* check whether the given fd is atcually valid, for error recovery */
937inline_size int
587fd_valid (int fd) 938fd_valid (int fd)
588{ 939{
589#ifdef _WIN32 940#ifdef _WIN32
590 return _get_osfhandle (fd) != -1; 941 return _get_osfhandle (fd) != -1;
591#else 942#else
599{ 950{
600 int fd; 951 int fd;
601 952
602 for (fd = 0; fd < anfdmax; ++fd) 953 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 954 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 955 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 956 fd_kill (EV_A_ fd);
606} 957}
607 958
608/* called on ENOMEM in select/poll to kill some fds and retry */ 959/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 960static void noinline
627 978
628 for (fd = 0; fd < anfdmax; ++fd) 979 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 980 if (anfds [fd].events)
630 { 981 {
631 anfds [fd].events = 0; 982 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 983 anfds [fd].emask = 0;
984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
633 } 985 }
634} 986}
635 987
636/*****************************************************************************/ 988/*****************************************************************************/
637 989
638void inline_speed 990/*
639upheap (WT *heap, int k) 991 * the heap functions want a real array index. array index 0 uis guaranteed to not
640{ 992 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
641 WT w = heap [k]; 993 * the branching factor of the d-tree.
994 */
642 995
643 while (k && heap [k >> 1]->at > w->at) 996/*
644 { 997 * at the moment we allow libev the luxury of two heaps,
645 heap [k] = heap [k >> 1]; 998 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
646 ((W)heap [k])->active = k + 1; 999 * which is more cache-efficient.
647 k >>= 1; 1000 * the difference is about 5% with 50000+ watchers.
648 } 1001 */
1002#if EV_USE_4HEAP
649 1003
650 heap [k] = w; 1004#define DHEAP 4
651 ((W)heap [k])->active = k + 1; 1005#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1006#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1007#define UPHEAP_DONE(p,k) ((p) == (k))
652 1008
653} 1009/* away from the root */
654 1010inline_speed void
655void inline_speed
656downheap (WT *heap, int N, int k) 1011downheap (ANHE *heap, int N, int k)
657{ 1012{
658 WT w = heap [k]; 1013 ANHE he = heap [k];
1014 ANHE *E = heap + N + HEAP0;
659 1015
660 while (k < (N >> 1)) 1016 for (;;)
661 { 1017 {
662 int j = k << 1; 1018 ev_tstamp minat;
1019 ANHE *minpos;
1020 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
663 1021
664 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1022 /* find minimum child */
1023 if (expect_true (pos + DHEAP - 1 < E))
665 ++j; 1024 {
666 1025 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
667 if (w->at <= heap [j]->at) 1026 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else if (pos < E)
1031 {
1032 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1033 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1034 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1035 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1036 }
1037 else
668 break; 1038 break;
669 1039
1040 if (ANHE_at (he) <= minat)
1041 break;
1042
1043 heap [k] = *minpos;
1044 ev_active (ANHE_w (*minpos)) = k;
1045
1046 k = minpos - heap;
1047 }
1048
1049 heap [k] = he;
1050 ev_active (ANHE_w (he)) = k;
1051}
1052
1053#else /* 4HEAP */
1054
1055#define HEAP0 1
1056#define HPARENT(k) ((k) >> 1)
1057#define UPHEAP_DONE(p,k) (!(p))
1058
1059/* away from the root */
1060inline_speed void
1061downheap (ANHE *heap, int N, int k)
1062{
1063 ANHE he = heap [k];
1064
1065 for (;;)
1066 {
1067 int c = k << 1;
1068
1069 if (c > N + HEAP0 - 1)
1070 break;
1071
1072 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1073 ? 1 : 0;
1074
1075 if (ANHE_at (he) <= ANHE_at (heap [c]))
1076 break;
1077
670 heap [k] = heap [j]; 1078 heap [k] = heap [c];
671 ((W)heap [k])->active = k + 1; 1079 ev_active (ANHE_w (heap [k])) = k;
1080
672 k = j; 1081 k = c;
673 } 1082 }
674 1083
675 heap [k] = w; 1084 heap [k] = he;
676 ((W)heap [k])->active = k + 1; 1085 ev_active (ANHE_w (he)) = k;
677} 1086}
1087#endif
678 1088
679void inline_size 1089/* towards the root */
1090inline_speed void
1091upheap (ANHE *heap, int k)
1092{
1093 ANHE he = heap [k];
1094
1095 for (;;)
1096 {
1097 int p = HPARENT (k);
1098
1099 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1100 break;
1101
1102 heap [k] = heap [p];
1103 ev_active (ANHE_w (heap [k])) = k;
1104 k = p;
1105 }
1106
1107 heap [k] = he;
1108 ev_active (ANHE_w (he)) = k;
1109}
1110
1111/* move an element suitably so it is in a correct place */
1112inline_size void
680adjustheap (WT *heap, int N, int k) 1113adjustheap (ANHE *heap, int N, int k)
681{ 1114{
1115 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
682 upheap (heap, k); 1116 upheap (heap, k);
1117 else
683 downheap (heap, N, k); 1118 downheap (heap, N, k);
1119}
1120
1121/* rebuild the heap: this function is used only once and executed rarely */
1122inline_size void
1123reheap (ANHE *heap, int N)
1124{
1125 int i;
1126
1127 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1128 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1129 for (i = 0; i < N; ++i)
1130 upheap (heap, i + HEAP0);
684} 1131}
685 1132
686/*****************************************************************************/ 1133/*****************************************************************************/
687 1134
1135/* associate signal watchers to a signal signal */
688typedef struct 1136typedef struct
689{ 1137{
690 WL head; 1138 WL head;
691 sig_atomic_t volatile gotsig; 1139 EV_ATOMIC_T gotsig;
692} ANSIG; 1140} ANSIG;
693 1141
694static ANSIG *signals; 1142static ANSIG *signals;
695static int signalmax; 1143static int signalmax;
696 1144
697static int sigpipe [2]; 1145static EV_ATOMIC_T gotsig;
698static sig_atomic_t volatile gotsig;
699static ev_io sigev;
700 1146
701void inline_size 1147/*****************************************************************************/
702signals_init (ANSIG *base, int count)
703{
704 while (count--)
705 {
706 base->head = 0;
707 base->gotsig = 0;
708 1148
709 ++base; 1149/* used to prepare libev internal fd's */
710 } 1150/* this is not fork-safe */
711} 1151inline_speed void
712
713static void
714sighandler (int signum)
715{
716#if _WIN32
717 signal (signum, sighandler);
718#endif
719
720 signals [signum - 1].gotsig = 1;
721
722 if (!gotsig)
723 {
724 int old_errno = errno;
725 gotsig = 1;
726 write (sigpipe [1], &signum, 1);
727 errno = old_errno;
728 }
729}
730
731void noinline
732ev_feed_signal_event (EV_P_ int signum)
733{
734 WL w;
735
736#if EV_MULTIPLICITY
737 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
738#endif
739
740 --signum;
741
742 if (signum < 0 || signum >= signalmax)
743 return;
744
745 signals [signum].gotsig = 0;
746
747 for (w = signals [signum].head; w; w = w->next)
748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
749}
750
751static void
752sigcb (EV_P_ ev_io *iow, int revents)
753{
754 int signum;
755
756 read (sigpipe [0], &revents, 1);
757 gotsig = 0;
758
759 for (signum = signalmax; signum--; )
760 if (signals [signum].gotsig)
761 ev_feed_signal_event (EV_A_ signum + 1);
762}
763
764void inline_speed
765fd_intern (int fd) 1152fd_intern (int fd)
766{ 1153{
767#ifdef _WIN32 1154#ifdef _WIN32
768 int arg = 1; 1155 unsigned long arg = 1;
769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1156 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
770#else 1157#else
771 fcntl (fd, F_SETFD, FD_CLOEXEC); 1158 fcntl (fd, F_SETFD, FD_CLOEXEC);
772 fcntl (fd, F_SETFL, O_NONBLOCK); 1159 fcntl (fd, F_SETFL, O_NONBLOCK);
773#endif 1160#endif
774} 1161}
775 1162
776static void noinline 1163static void noinline
777siginit (EV_P) 1164evpipe_init (EV_P)
778{ 1165{
1166 if (!ev_is_active (&pipe_w))
1167 {
1168#if EV_USE_EVENTFD
1169 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1170 if (evfd < 0 && errno == EINVAL)
1171 evfd = eventfd (0, 0);
1172
1173 if (evfd >= 0)
1174 {
1175 evpipe [0] = -1;
1176 fd_intern (evfd); /* doing it twice doesn't hurt */
1177 ev_io_set (&pipe_w, evfd, EV_READ);
1178 }
1179 else
1180#endif
1181 {
1182 while (pipe (evpipe))
1183 ev_syserr ("(libev) error creating signal/async pipe");
1184
779 fd_intern (sigpipe [0]); 1185 fd_intern (evpipe [0]);
780 fd_intern (sigpipe [1]); 1186 fd_intern (evpipe [1]);
1187 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1188 }
781 1189
782 ev_io_set (&sigev, sigpipe [0], EV_READ);
783 ev_io_start (EV_A_ &sigev); 1190 ev_io_start (EV_A_ &pipe_w);
784 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1191 ev_unref (EV_A); /* watcher should not keep loop alive */
1192 }
1193}
1194
1195inline_size void
1196evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1197{
1198 if (!*flag)
1199 {
1200 int old_errno = errno; /* save errno because write might clobber it */
1201
1202 *flag = 1;
1203
1204#if EV_USE_EVENTFD
1205 if (evfd >= 0)
1206 {
1207 uint64_t counter = 1;
1208 write (evfd, &counter, sizeof (uint64_t));
1209 }
1210 else
1211#endif
1212 write (evpipe [1], &old_errno, 1);
1213
1214 errno = old_errno;
1215 }
1216}
1217
1218/* called whenever the libev signal pipe */
1219/* got some events (signal, async) */
1220static void
1221pipecb (EV_P_ ev_io *iow, int revents)
1222{
1223#if EV_USE_EVENTFD
1224 if (evfd >= 0)
1225 {
1226 uint64_t counter;
1227 read (evfd, &counter, sizeof (uint64_t));
1228 }
1229 else
1230#endif
1231 {
1232 char dummy;
1233 read (evpipe [0], &dummy, 1);
1234 }
1235
1236 if (gotsig && ev_is_default_loop (EV_A))
1237 {
1238 int signum;
1239 gotsig = 0;
1240
1241 for (signum = signalmax; signum--; )
1242 if (signals [signum].gotsig)
1243 ev_feed_signal_event (EV_A_ signum + 1);
1244 }
1245
1246#if EV_ASYNC_ENABLE
1247 if (gotasync)
1248 {
1249 int i;
1250 gotasync = 0;
1251
1252 for (i = asynccnt; i--; )
1253 if (asyncs [i]->sent)
1254 {
1255 asyncs [i]->sent = 0;
1256 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1257 }
1258 }
1259#endif
785} 1260}
786 1261
787/*****************************************************************************/ 1262/*****************************************************************************/
788 1263
1264static void
1265ev_sighandler (int signum)
1266{
1267#if EV_MULTIPLICITY
1268 struct ev_loop *loop = &default_loop_struct;
1269#endif
1270
1271#if _WIN32
1272 signal (signum, ev_sighandler);
1273#endif
1274
1275 signals [signum - 1].gotsig = 1;
1276 evpipe_write (EV_A_ &gotsig);
1277}
1278
1279void noinline
1280ev_feed_signal_event (EV_P_ int signum)
1281{
1282 WL w;
1283
1284#if EV_MULTIPLICITY
1285 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1286#endif
1287
1288 --signum;
1289
1290 if (signum < 0 || signum >= signalmax)
1291 return;
1292
1293 signals [signum].gotsig = 0;
1294
1295 for (w = signals [signum].head; w; w = w->next)
1296 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1297}
1298
1299#if EV_USE_SIGNALFD
1300static void
1301sigfdcb (EV_P_ ev_io *iow, int revents)
1302{
1303 struct signalfd_siginfo si[4], *sip;
1304
1305 for (;;)
1306 {
1307 ssize_t res = read (sigfd, si, sizeof (si));
1308
1309 /* not ISO-C, as res might be -1, but works with SuS */
1310 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1311 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1312
1313 if (res < (ssize_t)sizeof (si))
1314 break;
1315 }
1316}
1317#endif
1318
1319/*****************************************************************************/
1320
789static ev_child *childs [EV_PID_HASHSIZE]; 1321static WL childs [EV_PID_HASHSIZE];
790 1322
791#ifndef _WIN32 1323#ifndef _WIN32
792 1324
793static ev_signal childev; 1325static ev_signal childev;
794 1326
795void inline_speed 1327#ifndef WIFCONTINUED
1328# define WIFCONTINUED(status) 0
1329#endif
1330
1331/* handle a single child status event */
1332inline_speed void
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1333child_reap (EV_P_ int chain, int pid, int status)
797{ 1334{
798 ev_child *w; 1335 ev_child *w;
1336 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
799 1337
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1338 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1339 {
801 if (w->pid == pid || !w->pid) 1340 if ((w->pid == pid || !w->pid)
1341 && (!traced || (w->flags & 1)))
802 { 1342 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1343 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
804 w->rpid = pid; 1344 w->rpid = pid;
805 w->rstatus = status; 1345 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1346 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 } 1347 }
1348 }
808} 1349}
809 1350
810#ifndef WCONTINUED 1351#ifndef WCONTINUED
811# define WCONTINUED 0 1352# define WCONTINUED 0
812#endif 1353#endif
813 1354
1355/* called on sigchld etc., calls waitpid */
814static void 1356static void
815childcb (EV_P_ ev_signal *sw, int revents) 1357childcb (EV_P_ ev_signal *sw, int revents)
816{ 1358{
817 int pid, status; 1359 int pid, status;
818 1360
821 if (!WCONTINUED 1363 if (!WCONTINUED
822 || errno != EINVAL 1364 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1365 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return; 1366 return;
825 1367
826 /* make sure we are called again until all childs have been reaped */ 1368 /* make sure we are called again until all children have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */ 1369 /* we need to do it this way so that the callback gets called before we continue */
828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1370 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
829 1371
830 child_reap (EV_A_ sw, pid, pid, status); 1372 child_reap (EV_A_ pid, pid, status);
831 if (EV_PID_HASHSIZE > 1) 1373 if (EV_PID_HASHSIZE > 1)
832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1374 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
833} 1375}
834 1376
835#endif 1377#endif
836 1378
837/*****************************************************************************/ 1379/*****************************************************************************/
899 /* kqueue is borked on everything but netbsd apparently */ 1441 /* kqueue is borked on everything but netbsd apparently */
900 /* it usually doesn't work correctly on anything but sockets and pipes */ 1442 /* it usually doesn't work correctly on anything but sockets and pipes */
901 flags &= ~EVBACKEND_KQUEUE; 1443 flags &= ~EVBACKEND_KQUEUE;
902#endif 1444#endif
903#ifdef __APPLE__ 1445#ifdef __APPLE__
904 // flags &= ~EVBACKEND_KQUEUE; for documentation 1446 /* only select works correctly on that "unix-certified" platform */
905 flags &= ~EVBACKEND_POLL; 1447 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1448 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
906#endif 1449#endif
907 1450
908 return flags; 1451 return flags;
909} 1452}
910 1453
911unsigned int 1454unsigned int
912ev_embeddable_backends (void) 1455ev_embeddable_backends (void)
913{ 1456{
914 return EVBACKEND_EPOLL 1457 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
915 | EVBACKEND_KQUEUE 1458
916 | EVBACKEND_PORT; 1459 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1460 /* please fix it and tell me how to detect the fix */
1461 flags &= ~EVBACKEND_EPOLL;
1462
1463 return flags;
917} 1464}
918 1465
919unsigned int 1466unsigned int
920ev_backend (EV_P) 1467ev_backend (EV_P)
921{ 1468{
922 return backend; 1469 return backend;
923} 1470}
924 1471
1472#if EV_MINIMAL < 2
925unsigned int 1473unsigned int
926ev_loop_count (EV_P) 1474ev_loop_count (EV_P)
927{ 1475{
928 return loop_count; 1476 return loop_count;
929} 1477}
930 1478
1479unsigned int
1480ev_loop_depth (EV_P)
1481{
1482 return loop_depth;
1483}
1484
1485void
1486ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1487{
1488 io_blocktime = interval;
1489}
1490
1491void
1492ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1493{
1494 timeout_blocktime = interval;
1495}
1496
1497void
1498ev_set_userdata (EV_P_ void *data)
1499{
1500 userdata = data;
1501}
1502
1503void *
1504ev_userdata (EV_P)
1505{
1506 return userdata;
1507}
1508
1509void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1510{
1511 invoke_cb = invoke_pending_cb;
1512}
1513
1514void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1515{
1516 release_cb = release;
1517 acquire_cb = acquire;
1518}
1519#endif
1520
1521/* initialise a loop structure, must be zero-initialised */
931static void noinline 1522static void noinline
932loop_init (EV_P_ unsigned int flags) 1523loop_init (EV_P_ unsigned int flags)
933{ 1524{
934 if (!backend) 1525 if (!backend)
935 { 1526 {
1527#if EV_USE_REALTIME
1528 if (!have_realtime)
1529 {
1530 struct timespec ts;
1531
1532 if (!clock_gettime (CLOCK_REALTIME, &ts))
1533 have_realtime = 1;
1534 }
1535#endif
1536
936#if EV_USE_MONOTONIC 1537#if EV_USE_MONOTONIC
1538 if (!have_monotonic)
937 { 1539 {
938 struct timespec ts; 1540 struct timespec ts;
1541
939 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1542 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
940 have_monotonic = 1; 1543 have_monotonic = 1;
941 } 1544 }
942#endif 1545#endif
943 1546
944 ev_rt_now = ev_time (); 1547 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1548 mn_now = get_clock ();
946 now_floor = mn_now; 1549 now_floor = mn_now;
947 rtmn_diff = ev_rt_now - mn_now; 1550 rtmn_diff = ev_rt_now - mn_now;
1551#if EV_MINIMAL < 2
1552 invoke_cb = ev_invoke_pending;
1553#endif
1554
1555 io_blocktime = 0.;
1556 timeout_blocktime = 0.;
1557 backend = 0;
1558 backend_fd = -1;
1559 gotasync = 0;
1560#if EV_USE_INOTIFY
1561 fs_fd = -2;
1562#endif
1563#if EV_USE_SIGNALFD
1564 sigfd = -2;
1565#endif
948 1566
949 /* pid check not overridable via env */ 1567 /* pid check not overridable via env */
950#ifndef _WIN32 1568#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK) 1569 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid (); 1570 curpid = getpid ();
955 if (!(flags & EVFLAG_NOENV) 1573 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure () 1574 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS")) 1575 && getenv ("LIBEV_FLAGS"))
958 flags = atoi (getenv ("LIBEV_FLAGS")); 1576 flags = atoi (getenv ("LIBEV_FLAGS"));
959 1577
960 if (!(flags & 0x0000ffffUL)) 1578 if (!(flags & 0x0000ffffU))
961 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
962
963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968 1580
969#if EV_USE_PORT 1581#if EV_USE_PORT
970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
971#endif 1583#endif
972#if EV_USE_KQUEUE 1584#if EV_USE_KQUEUE
980#endif 1592#endif
981#if EV_USE_SELECT 1593#if EV_USE_SELECT
982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
983#endif 1595#endif
984 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
985 ev_init (&sigev, sigcb); 1599 ev_init (&pipe_w, pipecb);
986 ev_set_priority (&sigev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
987 } 1601 }
988} 1602}
989 1603
1604/* free up a loop structure */
990static void noinline 1605static void noinline
991loop_destroy (EV_P) 1606loop_destroy (EV_P)
992{ 1607{
993 int i; 1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
994 1636
995#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
996 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
997 close (fs_fd); 1639 close (fs_fd);
998#endif 1640#endif
1022#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1023 array_free (idle, [i]); 1665 array_free (idle, [i]);
1024#endif 1666#endif
1025 } 1667 }
1026 1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1670
1027 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1028 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1029 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1030#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1031 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1032#endif 1677#endif
1678#if EV_FORK_ENABLE
1679 array_free (fork, EMPTY);
1680#endif
1033 array_free (prepare, EMPTY); 1681 array_free (prepare, EMPTY);
1034 array_free (check, EMPTY); 1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
1035 1686
1036 backend = 0; 1687 backend = 0;
1037} 1688}
1038 1689
1690#if EV_USE_INOTIFY
1039void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1692#endif
1040 1693
1041void inline_size 1694inline_size void
1042loop_fork (EV_P) 1695loop_fork (EV_P)
1043{ 1696{
1044#if EV_USE_PORT 1697#if EV_USE_PORT
1045 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1046#endif 1699#endif
1052#endif 1705#endif
1053#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1054 infy_fork (EV_A); 1707 infy_fork (EV_A);
1055#endif 1708#endif
1056 1709
1057 if (ev_is_active (&sigev)) 1710 if (ev_is_active (&pipe_w))
1058 { 1711 {
1059 /* default loop */ 1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 gotsig = 1;
1715#if EV_ASYNC_ENABLE
1716 gotasync = 1;
1717#endif
1060 1718
1061 ev_ref (EV_A); 1719 ev_ref (EV_A);
1062 ev_io_stop (EV_A_ &sigev); 1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1063 close (sigpipe [0]); 1729 close (evpipe [0]);
1064 close (sigpipe [1]); 1730 close (evpipe [1]);
1731 }
1065 1732
1066 while (pipe (sigpipe))
1067 syserr ("(libev) error creating pipe");
1068
1069 siginit (EV_A); 1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
1070 } 1736 }
1071 1737
1072 postfork = 0; 1738 postfork = 0;
1073} 1739}
1074 1740
1075#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1742
1076struct ev_loop * 1743struct ev_loop *
1077ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1078{ 1745{
1079 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1080 1747
1081 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (loop, 0, sizeof (struct ev_loop));
1082
1083 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1084 1750
1085 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1086 return loop; 1752 return loop;
1087 1753
1096} 1762}
1097 1763
1098void 1764void
1099ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1100{ 1766{
1101 postfork = 1; 1767 postfork = 1; /* must be in line with ev_default_fork */
1102} 1768}
1769#endif /* multiplicity */
1103 1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1867# endif
1868#endif
1869}
1104#endif 1870#endif
1105 1871
1106#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1107struct ev_loop * 1873struct ev_loop *
1108ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1109#else 1875#else
1110int 1876int
1111ev_default_loop (unsigned int flags) 1877ev_default_loop (unsigned int flags)
1112#endif 1878#endif
1113{ 1879{
1114 if (sigpipe [0] == sigpipe [1])
1115 if (pipe (sigpipe))
1116 return 0;
1117
1118 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1119 { 1881 {
1120#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1122#else 1884#else
1125 1887
1126 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1127 1889
1128 if (ev_backend (EV_A)) 1890 if (ev_backend (EV_A))
1129 { 1891 {
1130 siginit (EV_A);
1131
1132#ifndef _WIN32 1892#ifndef _WIN32
1133 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
1134 ev_set_priority (&childev, EV_MAXPRI); 1894 ev_set_priority (&childev, EV_MAXPRI);
1135 ev_signal_start (EV_A_ &childev); 1895 ev_signal_start (EV_A_ &childev);
1136 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
1148{ 1908{
1149#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1150 struct ev_loop *loop = ev_default_loop_ptr; 1910 struct ev_loop *loop = ev_default_loop_ptr;
1151#endif 1911#endif
1152 1912
1913 ev_default_loop_ptr = 0;
1914
1153#ifndef _WIN32 1915#ifndef _WIN32
1154 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
1155 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
1156#endif 1918#endif
1157 1919
1158 ev_ref (EV_A); /* signal watcher */
1159 ev_io_stop (EV_A_ &sigev);
1160
1161 close (sigpipe [0]); sigpipe [0] = 0;
1162 close (sigpipe [1]); sigpipe [1] = 0;
1163
1164 loop_destroy (EV_A); 1920 loop_destroy (EV_A);
1165} 1921}
1166 1922
1167void 1923void
1168ev_default_fork (void) 1924ev_default_fork (void)
1169{ 1925{
1170#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1927 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1928#endif
1173 1929
1174 if (backend) 1930 postfork = 1; /* must be in line with ev_loop_fork */
1175 postfork = 1;
1176} 1931}
1177 1932
1178/*****************************************************************************/ 1933/*****************************************************************************/
1179 1934
1180void 1935void
1181ev_invoke (EV_P_ void *w, int revents) 1936ev_invoke (EV_P_ void *w, int revents)
1182{ 1937{
1183 EV_CB_INVOKE ((W)w, revents); 1938 EV_CB_INVOKE ((W)w, revents);
1184} 1939}
1185 1940
1186void inline_speed 1941unsigned int
1187call_pending (EV_P) 1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1188{ 1955{
1189 int pri; 1956 int pri;
1190 1957
1191 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1192 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1193 { 1960 {
1194 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1195 1962
1196 if (expect_true (p->w))
1197 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1199 1965
1200 p->w->pending = 0; 1966 p->w->pending = 0;
1201 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1202 } 1968 EV_FREQUENT_CHECK;
1203 } 1969 }
1204} 1970}
1205 1971
1206void inline_size
1207timers_reify (EV_P)
1208{
1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1210 {
1211 ev_timer *w = timers [0];
1212
1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1214
1215 /* first reschedule or stop timer */
1216 if (w->repeat)
1217 {
1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1219
1220 ((WT)w)->at += w->repeat;
1221 if (((WT)w)->at < mn_now)
1222 ((WT)w)->at = mn_now;
1223
1224 downheap ((WT *)timers, timercnt, 0);
1225 }
1226 else
1227 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1228
1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1230 }
1231}
1232
1233#if EV_PERIODIC_ENABLE
1234void inline_size
1235periodics_reify (EV_P)
1236{
1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1238 {
1239 ev_periodic *w = periodics [0];
1240
1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1242
1243 /* first reschedule or stop timer */
1244 if (w->reschedule_cb)
1245 {
1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1248 downheap ((WT *)periodics, periodiccnt, 0);
1249 }
1250 else if (w->interval)
1251 {
1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1287void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1288idle_reify (EV_P) 1976idle_reify (EV_P)
1289{ 1977{
1290 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1291 { 1979 {
1292 int pri; 1980 int pri;
1304 } 1992 }
1305 } 1993 }
1306} 1994}
1307#endif 1995#endif
1308 1996
1309int inline_size 1997/* make timers pending */
1310time_update_monotonic (EV_P) 1998inline_size void
1999timers_reify (EV_P)
1311{ 2000{
2001 EV_FREQUENT_CHECK;
2002
2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033}
2034
2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
2038periodics_reify (EV_P)
2039{
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
2134time_update (EV_P_ ev_tstamp max_block)
2135{
2136#if EV_USE_MONOTONIC
2137 if (expect_true (have_monotonic))
2138 {
2139 int i;
2140 ev_tstamp odiff = rtmn_diff;
2141
1312 mn_now = get_clock (); 2142 mn_now = get_clock ();
1313 2143
2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2146 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 2147 {
1316 ev_rt_now = rtmn_diff + mn_now; 2148 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 2149 return;
1318 } 2150 }
1319 else 2151
1320 {
1321 now_floor = mn_now; 2152 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 2153 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 2154
1327void inline_size 2155 /* loop a few times, before making important decisions.
1328time_update (EV_P) 2156 * on the choice of "4": one iteration isn't enough,
1329{ 2157 * in case we get preempted during the calls to
1330 int i; 2158 * ev_time and get_clock. a second call is almost guaranteed
1331 2159 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 2160 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 2161 * in the unlikely event of having been preempted here.
1334 { 2162 */
1335 if (time_update_monotonic (EV_A)) 2163 for (i = 4; --i; )
1336 { 2164 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1350 2166
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 2168 return; /* all is well */
1353 2169
1354 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 2171 mn_now = get_clock ();
1356 now_floor = mn_now; 2172 now_floor = mn_now;
1357 } 2173 }
1358 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1361# endif 2179# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2180 }
1366 else 2181 else
1367#endif 2182#endif
1368 { 2183 {
1369 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1370 2185
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1375#endif 2192#endif
1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1377 for (i = 0; i < timercnt; ++i)
1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1379 } 2193 }
1380 2194
1381 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1382 } 2196 }
1383} 2197}
1384 2198
1385void 2199void
1386ev_ref (EV_P)
1387{
1388 ++activecnt;
1389}
1390
1391void
1392ev_unref (EV_P)
1393{
1394 --activecnt;
1395}
1396
1397static int loop_done;
1398
1399void
1400ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1401{ 2201{
1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2202#if EV_MINIMAL < 2
1403 ? EVUNLOOP_ONE 2203 ++loop_depth;
1404 : EVUNLOOP_CANCEL; 2204#endif
1405 2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1407 2211
1408 do 2212 do
1409 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
1410#ifndef _WIN32 2218#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */ 2219 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid)) 2220 if (expect_false (getpid () != curpid))
1413 { 2221 {
1414 curpid = getpid (); 2222 curpid = getpid ();
1420 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1422 if (forkcnt) 2230 if (forkcnt)
1423 { 2231 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1426 } 2234 }
1427#endif 2235#endif
1428 2236
1429 /* queue prepare watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1430 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1431 { 2239 {
1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1433 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1434 } 2242 }
1435 2243
1436 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1437 break; 2245 break;
1438 2246
1439 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1440 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1441 loop_fork (EV_A); 2249 loop_fork (EV_A);
1443 /* update fd-related kernel structures */ 2251 /* update fd-related kernel structures */
1444 fd_reify (EV_A); 2252 fd_reify (EV_A);
1445 2253
1446 /* calculate blocking time */ 2254 /* calculate blocking time */
1447 { 2255 {
1448 ev_tstamp block; 2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
1449 2258
1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1451 block = 0.; /* do not block at all */
1452 else
1453 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
1454 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
1455#if EV_USE_MONOTONIC
1456 if (expect_true (have_monotonic))
1457 time_update_monotonic (EV_A); 2265 time_update (EV_A_ 1e100);
1458 else
1459#endif
1460 {
1461 ev_rt_now = ev_time ();
1462 mn_now = ev_rt_now;
1463 }
1464 2266
1465 block = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1466 2268
1467 if (timercnt) 2269 if (timercnt)
1468 { 2270 {
1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1470 if (block > to) block = to; 2272 if (waittime > to) waittime = to;
1471 } 2273 }
1472 2274
1473#if EV_PERIODIC_ENABLE 2275#if EV_PERIODIC_ENABLE
1474 if (periodiccnt) 2276 if (periodiccnt)
1475 { 2277 {
1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1477 if (block > to) block = to; 2279 if (waittime > to) waittime = to;
1478 } 2280 }
1479#endif 2281#endif
1480 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
1481 if (expect_false (block < 0.)) block = 0.; 2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
1482 } 2301 }
1483 2302
2303#if EV_MINIMAL < 2
1484 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1485 backend_poll (EV_A_ block); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2309
2310 /* update ev_rt_now, do magic */
2311 time_update (EV_A_ waittime + sleeptime);
1486 } 2312 }
1487
1488 /* update ev_rt_now, do magic */
1489 time_update (EV_A);
1490 2313
1491 /* queue pending timers and reschedule them */ 2314 /* queue pending timers and reschedule them */
1492 timers_reify (EV_A); /* relative timers called last */ 2315 timers_reify (EV_A); /* relative timers called last */
1493#if EV_PERIODIC_ENABLE 2316#if EV_PERIODIC_ENABLE
1494 periodics_reify (EV_A); /* absolute timers called first */ 2317 periodics_reify (EV_A); /* absolute timers called first */
1501 2324
1502 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1503 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1505 2328
1506 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1507
1508 } 2330 }
1509 while (expect_true (activecnt && !loop_done)); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1510 2336
1511 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
1512 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1513} 2343}
1514 2344
1515void 2345void
1516ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1517{ 2347{
1518 loop_done = how; 2348 loop_done = how;
1519} 2349}
1520 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1521/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1522 2390
1523void inline_size 2391inline_size void
1524wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1525{ 2393{
1526 elem->next = *head; 2394 elem->next = *head;
1527 *head = elem; 2395 *head = elem;
1528} 2396}
1529 2397
1530void inline_size 2398inline_size void
1531wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1532{ 2400{
1533 while (*head) 2401 while (*head)
1534 { 2402 {
1535 if (*head == elem) 2403 if (*head == elem)
1540 2408
1541 head = &(*head)->next; 2409 head = &(*head)->next;
1542 } 2410 }
1543} 2411}
1544 2412
1545void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
1546clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1547{ 2416{
1548 if (w->pending) 2417 if (w->pending)
1549 { 2418 {
1550 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1551 w->pending = 0; 2420 w->pending = 0;
1552 } 2421 }
1553} 2422}
1554 2423
1555int 2424int
1559 int pending = w_->pending; 2428 int pending = w_->pending;
1560 2429
1561 if (expect_true (pending)) 2430 if (expect_true (pending))
1562 { 2431 {
1563 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
1564 w_->pending = 0; 2434 w_->pending = 0;
1565 p->w = 0;
1566 return p->events; 2435 return p->events;
1567 } 2436 }
1568 else 2437 else
1569 return 0; 2438 return 0;
1570} 2439}
1571 2440
1572void inline_size 2441inline_size void
1573pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
1574{ 2443{
1575 int pri = w->priority; 2444 int pri = ev_priority (w);
1576 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1577 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1578 w->priority = pri; 2447 ev_set_priority (w, pri);
1579} 2448}
1580 2449
1581void inline_speed 2450inline_speed void
1582ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1583{ 2452{
1584 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
1585 w->active = active; 2454 w->active = active;
1586 ev_ref (EV_A); 2455 ev_ref (EV_A);
1587} 2456}
1588 2457
1589void inline_size 2458inline_size void
1590ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1591{ 2460{
1592 ev_unref (EV_A); 2461 ev_unref (EV_A);
1593 w->active = 0; 2462 w->active = 0;
1594} 2463}
1601 int fd = w->fd; 2470 int fd = w->fd;
1602 2471
1603 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1604 return; 2473 return;
1605 2474
1606 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1607 2479
1608 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1610 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1611 2483
1612 fd_change (EV_A_ fd); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2485 w->events &= ~EV__IOFDSET;
2486
2487 EV_FREQUENT_CHECK;
1613} 2488}
1614 2489
1615void noinline 2490void noinline
1616ev_io_stop (EV_P_ ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1617{ 2492{
1618 clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1619 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
1620 return; 2495 return;
1621 2496
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1623 2498
2499 EV_FREQUENT_CHECK;
2500
1624 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1626 2503
1627 fd_change (EV_A_ w->fd); 2504 fd_change (EV_A_ w->fd, 1);
2505
2506 EV_FREQUENT_CHECK;
1628} 2507}
1629 2508
1630void noinline 2509void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1632{ 2511{
1633 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
1634 return; 2513 return;
1635 2514
1636 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1637 2516
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1640 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1641 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1642 timers [timercnt - 1] = w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1643 upheap ((WT *)timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1644 2527
2528 EV_FREQUENT_CHECK;
2529
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1646} 2531}
1647 2532
1648void noinline 2533void noinline
1649ev_timer_stop (EV_P_ ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1650{ 2535{
1651 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1653 return; 2538 return;
1654 2539
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2540 EV_FREQUENT_CHECK;
1656 2541
1657 { 2542 {
1658 int active = ((W)w)->active; 2543 int active = ev_active (w);
1659 2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
1660 if (expect_true (--active < --timercnt)) 2549 if (expect_true (active < timercnt + HEAP0))
1661 { 2550 {
1662 timers [active] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1663 adjustheap ((WT *)timers, timercnt, active); 2552 adjustheap (timers, timercnt, active);
1664 } 2553 }
1665 } 2554 }
1666 2555
1667 ((WT)w)->at -= mn_now; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1668 2559
1669 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1670} 2561}
1671 2562
1672void noinline 2563void noinline
1673ev_timer_again (EV_P_ ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1674{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1675 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1676 { 2569 {
1677 if (w->repeat) 2570 if (w->repeat)
1678 { 2571 {
1679 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
1680 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
1681 } 2575 }
1682 else 2576 else
1683 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1684 } 2578 }
1685 else if (w->repeat) 2579 else if (w->repeat)
1686 { 2580 {
1687 w->at = w->repeat; 2581 ev_at (w) = w->repeat;
1688 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1689 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1690} 2592}
1691 2593
1692#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
1693void noinline 2595void noinline
1694ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1695{ 2597{
1696 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1697 return; 2599 return;
1698 2600
1699 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval) 2603 else if (w->interval)
1702 { 2604 {
1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1704 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 } 2608 }
1707 else 2609 else
1708 ((WT)w)->at = w->offset; 2610 ev_at (w) = w->offset;
1709 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1711 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1712 periodics [periodiccnt - 1] = w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1713 upheap ((WT *)periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1714 2620
2621 EV_FREQUENT_CHECK;
2622
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1716} 2624}
1717 2625
1718void noinline 2626void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1720{ 2628{
1721 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1723 return; 2631 return;
1724 2632
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2633 EV_FREQUENT_CHECK;
1726 2634
1727 { 2635 {
1728 int active = ((W)w)->active; 2636 int active = ev_active (w);
1729 2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
1730 if (expect_true (--active < --periodiccnt)) 2642 if (expect_true (active < periodiccnt + HEAP0))
1731 { 2643 {
1732 periodics [active] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1733 adjustheap ((WT *)periodics, periodiccnt, active); 2645 adjustheap (periodics, periodiccnt, active);
1734 } 2646 }
1735 } 2647 }
2648
2649 EV_FREQUENT_CHECK;
1736 2650
1737 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1738} 2652}
1739 2653
1740void noinline 2654void noinline
1752 2666
1753void noinline 2667void noinline
1754ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
1755{ 2669{
1756#if EV_MULTIPLICITY 2670#if EV_MULTIPLICITY
1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2671 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1758#endif 2672#endif
1759 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
1760 return; 2674 return;
1761 2675
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2676 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2677
2678 EV_FREQUENT_CHECK;
2679
2680#if EV_USE_SIGNALFD
2681 if (sigfd == -2)
2682 {
2683 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2684 if (sigfd < 0 && errno == EINVAL)
2685 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2686
2687 if (sigfd >= 0)
2688 {
2689 fd_intern (sigfd); /* doing it twice will not hurt */
2690
2691 sigemptyset (&sigfd_set);
2692
2693 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2694 ev_set_priority (&sigfd_w, EV_MAXPRI);
2695 ev_io_start (EV_A_ &sigfd_w);
2696 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2697 }
2698 }
2699
2700 if (sigfd >= 0)
2701 {
2702 /* TODO: check .head */
2703 sigaddset (&sigfd_set, w->signum);
2704 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2705
2706 signalfd (sigfd, &sigfd_set, 0);
2707 }
2708 else
2709#endif
2710 evpipe_init (EV_A);
2711
2712 {
2713#ifndef _WIN32
2714 sigset_t full, prev;
2715 sigfillset (&full);
2716 sigprocmask (SIG_SETMASK, &full, &prev);
2717#endif
2718
2719 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2720
2721#ifndef _WIN32
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0)/*TODO*/
2724# endif
2725 sigdelset (&prev, w->signum);
2726 sigprocmask (SIG_SETMASK, &prev, 0);
2727#endif
2728 }
1763 2729
1764 ev_start (EV_A_ (W)w, 1); 2730 ev_start (EV_A_ (W)w, 1);
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2731 wlist_add (&signals [w->signum - 1].head, (WL)w);
1767 2732
1768 if (!((WL)w)->next) 2733 if (!((WL)w)->next)
1769 { 2734 {
1770#if _WIN32 2735#if _WIN32
1771 signal (w->signum, sighandler); 2736 signal (w->signum, ev_sighandler);
1772#else 2737#else
2738# if EV_USE_SIGNALFD
2739 if (sigfd < 0) /*TODO*/
2740# endif
2741 {
1773 struct sigaction sa; 2742 struct sigaction sa = { };
1774 sa.sa_handler = sighandler; 2743 sa.sa_handler = ev_sighandler;
1775 sigfillset (&sa.sa_mask); 2744 sigfillset (&sa.sa_mask);
1776 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2745 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1777 sigaction (w->signum, &sa, 0); 2746 sigaction (w->signum, &sa, 0);
2747 }
1778#endif 2748#endif
1779 } 2749 }
2750
2751 EV_FREQUENT_CHECK;
1780} 2752}
1781 2753
1782void noinline 2754void noinline
1783ev_signal_stop (EV_P_ ev_signal *w) 2755ev_signal_stop (EV_P_ ev_signal *w)
1784{ 2756{
1785 clear_pending (EV_A_ (W)w); 2757 clear_pending (EV_A_ (W)w);
1786 if (expect_false (!ev_is_active (w))) 2758 if (expect_false (!ev_is_active (w)))
1787 return; 2759 return;
1788 2760
2761 EV_FREQUENT_CHECK;
2762
1789 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2763 wlist_del (&signals [w->signum - 1].head, (WL)w);
1790 ev_stop (EV_A_ (W)w); 2764 ev_stop (EV_A_ (W)w);
1791 2765
1792 if (!signals [w->signum - 1].head) 2766 if (!signals [w->signum - 1].head)
2767#if EV_USE_SIGNALFD
2768 if (sigfd >= 0)
2769 {
2770 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2771 sigdelset (&sigfd_set, w->signum);
2772 signalfd (sigfd, &sigfd_set, 0);
2773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2774 /*TODO: maybe unblock signal? */
2775 }
2776 else
2777#endif
1793 signal (w->signum, SIG_DFL); 2778 signal (w->signum, SIG_DFL);
2779
2780 EV_FREQUENT_CHECK;
1794} 2781}
1795 2782
1796void 2783void
1797ev_child_start (EV_P_ ev_child *w) 2784ev_child_start (EV_P_ ev_child *w)
1798{ 2785{
1799#if EV_MULTIPLICITY 2786#if EV_MULTIPLICITY
1800 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2787 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1801#endif 2788#endif
1802 if (expect_false (ev_is_active (w))) 2789 if (expect_false (ev_is_active (w)))
1803 return; 2790 return;
1804 2791
2792 EV_FREQUENT_CHECK;
2793
1805 ev_start (EV_A_ (W)w, 1); 2794 ev_start (EV_A_ (W)w, 1);
1806 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2795 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2796
2797 EV_FREQUENT_CHECK;
1807} 2798}
1808 2799
1809void 2800void
1810ev_child_stop (EV_P_ ev_child *w) 2801ev_child_stop (EV_P_ ev_child *w)
1811{ 2802{
1812 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
1813 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
1814 return; 2805 return;
1815 2806
2807 EV_FREQUENT_CHECK;
2808
1816 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2809 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1817 ev_stop (EV_A_ (W)w); 2810 ev_stop (EV_A_ (W)w);
2811
2812 EV_FREQUENT_CHECK;
1818} 2813}
1819 2814
1820#if EV_STAT_ENABLE 2815#if EV_STAT_ENABLE
1821 2816
1822# ifdef _WIN32 2817# ifdef _WIN32
1823# undef lstat 2818# undef lstat
1824# define lstat(a,b) _stati64 (a,b) 2819# define lstat(a,b) _stati64 (a,b)
1825# endif 2820# endif
1826 2821
1827#define DEF_STAT_INTERVAL 5.0074891 2822#define DEF_STAT_INTERVAL 5.0074891
2823#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1828#define MIN_STAT_INTERVAL 0.1074891 2824#define MIN_STAT_INTERVAL 0.1074891
1829 2825
1830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2826static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1831 2827
1832#if EV_USE_INOTIFY 2828#if EV_USE_INOTIFY
1833# define EV_INOTIFY_BUFSIZE 8192 2829# define EV_INOTIFY_BUFSIZE 8192
1837{ 2833{
1838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2834 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1839 2835
1840 if (w->wd < 0) 2836 if (w->wd < 0)
1841 { 2837 {
2838 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1842 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2839 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1843 2840
1844 /* monitor some parent directory for speedup hints */ 2841 /* monitor some parent directory for speedup hints */
2842 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2843 /* but an efficiency issue only */
1845 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2844 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1846 { 2845 {
1847 char path [4096]; 2846 char path [4096];
1848 strcpy (path, w->path); 2847 strcpy (path, w->path);
1849 2848
1852 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2851 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1853 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2852 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1854 2853
1855 char *pend = strrchr (path, '/'); 2854 char *pend = strrchr (path, '/');
1856 2855
1857 if (!pend) 2856 if (!pend || pend == path)
1858 break; /* whoops, no '/', complain to your admin */ 2857 break;
1859 2858
1860 *pend = 0; 2859 *pend = 0;
1861 w->wd = inotify_add_watch (fs_fd, path, mask); 2860 w->wd = inotify_add_watch (fs_fd, path, mask);
1862 } 2861 }
1863 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2862 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1864 } 2863 }
1865 } 2864 }
1866 else
1867 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1868 2865
1869 if (w->wd >= 0) 2866 if (w->wd >= 0)
2867 {
1870 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873 struct statfs sfs;
2874
2875 if (fs_2625 && !statfs (w->path, &sfs))
2876 if (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */)
2882 return;
2883
2884 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2885 ev_timer_again (EV_A_ &w->timer);
2886 }
1871} 2887}
1872 2888
1873static void noinline 2889static void noinline
1874infy_del (EV_P_ ev_stat *w) 2890infy_del (EV_P_ ev_stat *w)
1875{ 2891{
1889 2905
1890static void noinline 2906static void noinline
1891infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2907infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1892{ 2908{
1893 if (slot < 0) 2909 if (slot < 0)
1894 /* overflow, need to check for all hahs slots */ 2910 /* overflow, need to check for all hash slots */
1895 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2911 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1896 infy_wd (EV_A_ slot, wd, ev); 2912 infy_wd (EV_A_ slot, wd, ev);
1897 else 2913 else
1898 { 2914 {
1899 WL w_; 2915 WL w_;
1905 2921
1906 if (w->wd == wd || wd == -1) 2922 if (w->wd == wd || wd == -1)
1907 { 2923 {
1908 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2924 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1909 { 2925 {
2926 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1910 w->wd = -1; 2927 w->wd = -1;
1911 infy_add (EV_A_ w); /* re-add, no matter what */ 2928 infy_add (EV_A_ w); /* re-add, no matter what */
1912 } 2929 }
1913 2930
1914 stat_timer_cb (EV_A_ &w->timer, 0); 2931 stat_timer_cb (EV_A_ &w->timer, 0);
1927 2944
1928 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1929 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1930} 2947}
1931 2948
1932void inline_size 2949inline_size void
2950check_2625 (EV_P)
2951{
2952 /* kernels < 2.6.25 are borked
2953 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2954 */
2955 struct utsname buf;
2956 int major, minor, micro;
2957
2958 if (uname (&buf))
2959 return;
2960
2961 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2962 return;
2963
2964 if (major < 2
2965 || (major == 2 && minor < 6)
2966 || (major == 2 && minor == 6 && micro < 25))
2967 return;
2968
2969 fs_2625 = 1;
2970}
2971
2972inline_size void
1933infy_init (EV_P) 2973infy_init (EV_P)
1934{ 2974{
1935 if (fs_fd != -2) 2975 if (fs_fd != -2)
1936 return; 2976 return;
2977
2978 fs_fd = -1;
2979
2980 check_2625 (EV_A);
1937 2981
1938 fs_fd = inotify_init (); 2982 fs_fd = inotify_init ();
1939 2983
1940 if (fs_fd >= 0) 2984 if (fs_fd >= 0)
1941 { 2985 {
1943 ev_set_priority (&fs_w, EV_MAXPRI); 2987 ev_set_priority (&fs_w, EV_MAXPRI);
1944 ev_io_start (EV_A_ &fs_w); 2988 ev_io_start (EV_A_ &fs_w);
1945 } 2989 }
1946} 2990}
1947 2991
1948void inline_size 2992inline_size void
1949infy_fork (EV_P) 2993infy_fork (EV_P)
1950{ 2994{
1951 int slot; 2995 int slot;
1952 2996
1953 if (fs_fd < 0) 2997 if (fs_fd < 0)
1969 w->wd = -1; 3013 w->wd = -1;
1970 3014
1971 if (fs_fd >= 0) 3015 if (fs_fd >= 0)
1972 infy_add (EV_A_ w); /* re-add, no matter what */ 3016 infy_add (EV_A_ w); /* re-add, no matter what */
1973 else 3017 else
1974 ev_timer_start (EV_A_ &w->timer); 3018 ev_timer_again (EV_A_ &w->timer);
1975 } 3019 }
1976
1977 } 3020 }
1978} 3021}
1979 3022
3023#endif
3024
3025#ifdef _WIN32
3026# define EV_LSTAT(p,b) _stati64 (p, b)
3027#else
3028# define EV_LSTAT(p,b) lstat (p, b)
1980#endif 3029#endif
1981 3030
1982void 3031void
1983ev_stat_stat (EV_P_ ev_stat *w) 3032ev_stat_stat (EV_P_ ev_stat *w)
1984{ 3033{
2011 || w->prev.st_atime != w->attr.st_atime 3060 || w->prev.st_atime != w->attr.st_atime
2012 || w->prev.st_mtime != w->attr.st_mtime 3061 || w->prev.st_mtime != w->attr.st_mtime
2013 || w->prev.st_ctime != w->attr.st_ctime 3062 || w->prev.st_ctime != w->attr.st_ctime
2014 ) { 3063 ) {
2015 #if EV_USE_INOTIFY 3064 #if EV_USE_INOTIFY
3065 if (fs_fd >= 0)
3066 {
2016 infy_del (EV_A_ w); 3067 infy_del (EV_A_ w);
2017 infy_add (EV_A_ w); 3068 infy_add (EV_A_ w);
2018 ev_stat_stat (EV_A_ w); /* avoid race... */ 3069 ev_stat_stat (EV_A_ w); /* avoid race... */
3070 }
2019 #endif 3071 #endif
2020 3072
2021 ev_feed_event (EV_A_ w, EV_STAT); 3073 ev_feed_event (EV_A_ w, EV_STAT);
2022 } 3074 }
2023} 3075}
2026ev_stat_start (EV_P_ ev_stat *w) 3078ev_stat_start (EV_P_ ev_stat *w)
2027{ 3079{
2028 if (expect_false (ev_is_active (w))) 3080 if (expect_false (ev_is_active (w)))
2029 return; 3081 return;
2030 3082
2031 /* since we use memcmp, we need to clear any padding data etc. */
2032 memset (&w->prev, 0, sizeof (ev_statdata));
2033 memset (&w->attr, 0, sizeof (ev_statdata));
2034
2035 ev_stat_stat (EV_A_ w); 3083 ev_stat_stat (EV_A_ w);
2036 3084
3085 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2037 if (w->interval < MIN_STAT_INTERVAL) 3086 w->interval = MIN_STAT_INTERVAL;
2038 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2039 3087
2040 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3088 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2041 ev_set_priority (&w->timer, ev_priority (w)); 3089 ev_set_priority (&w->timer, ev_priority (w));
2042 3090
2043#if EV_USE_INOTIFY 3091#if EV_USE_INOTIFY
2044 infy_init (EV_A); 3092 infy_init (EV_A);
2045 3093
2046 if (fs_fd >= 0) 3094 if (fs_fd >= 0)
2047 infy_add (EV_A_ w); 3095 infy_add (EV_A_ w);
2048 else 3096 else
2049#endif 3097#endif
2050 ev_timer_start (EV_A_ &w->timer); 3098 ev_timer_again (EV_A_ &w->timer);
2051 3099
2052 ev_start (EV_A_ (W)w, 1); 3100 ev_start (EV_A_ (W)w, 1);
3101
3102 EV_FREQUENT_CHECK;
2053} 3103}
2054 3104
2055void 3105void
2056ev_stat_stop (EV_P_ ev_stat *w) 3106ev_stat_stop (EV_P_ ev_stat *w)
2057{ 3107{
2058 clear_pending (EV_A_ (W)w); 3108 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 3109 if (expect_false (!ev_is_active (w)))
2060 return; 3110 return;
2061 3111
3112 EV_FREQUENT_CHECK;
3113
2062#if EV_USE_INOTIFY 3114#if EV_USE_INOTIFY
2063 infy_del (EV_A_ w); 3115 infy_del (EV_A_ w);
2064#endif 3116#endif
2065 ev_timer_stop (EV_A_ &w->timer); 3117 ev_timer_stop (EV_A_ &w->timer);
2066 3118
2067 ev_stop (EV_A_ (W)w); 3119 ev_stop (EV_A_ (W)w);
3120
3121 EV_FREQUENT_CHECK;
2068} 3122}
2069#endif 3123#endif
2070 3124
2071#if EV_IDLE_ENABLE 3125#if EV_IDLE_ENABLE
2072void 3126void
2074{ 3128{
2075 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2076 return; 3130 return;
2077 3131
2078 pri_adjust (EV_A_ (W)w); 3132 pri_adjust (EV_A_ (W)w);
3133
3134 EV_FREQUENT_CHECK;
2079 3135
2080 { 3136 {
2081 int active = ++idlecnt [ABSPRI (w)]; 3137 int active = ++idlecnt [ABSPRI (w)];
2082 3138
2083 ++idleall; 3139 ++idleall;
2084 ev_start (EV_A_ (W)w, active); 3140 ev_start (EV_A_ (W)w, active);
2085 3141
2086 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3142 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2087 idles [ABSPRI (w)][active - 1] = w; 3143 idles [ABSPRI (w)][active - 1] = w;
2088 } 3144 }
3145
3146 EV_FREQUENT_CHECK;
2089} 3147}
2090 3148
2091void 3149void
2092ev_idle_stop (EV_P_ ev_idle *w) 3150ev_idle_stop (EV_P_ ev_idle *w)
2093{ 3151{
2094 clear_pending (EV_A_ (W)w); 3152 clear_pending (EV_A_ (W)w);
2095 if (expect_false (!ev_is_active (w))) 3153 if (expect_false (!ev_is_active (w)))
2096 return; 3154 return;
2097 3155
3156 EV_FREQUENT_CHECK;
3157
2098 { 3158 {
2099 int active = ((W)w)->active; 3159 int active = ev_active (w);
2100 3160
2101 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3161 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2102 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3162 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2103 3163
2104 ev_stop (EV_A_ (W)w); 3164 ev_stop (EV_A_ (W)w);
2105 --idleall; 3165 --idleall;
2106 } 3166 }
3167
3168 EV_FREQUENT_CHECK;
2107} 3169}
2108#endif 3170#endif
2109 3171
2110void 3172void
2111ev_prepare_start (EV_P_ ev_prepare *w) 3173ev_prepare_start (EV_P_ ev_prepare *w)
2112{ 3174{
2113 if (expect_false (ev_is_active (w))) 3175 if (expect_false (ev_is_active (w)))
2114 return; 3176 return;
3177
3178 EV_FREQUENT_CHECK;
2115 3179
2116 ev_start (EV_A_ (W)w, ++preparecnt); 3180 ev_start (EV_A_ (W)w, ++preparecnt);
2117 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3181 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2118 prepares [preparecnt - 1] = w; 3182 prepares [preparecnt - 1] = w;
3183
3184 EV_FREQUENT_CHECK;
2119} 3185}
2120 3186
2121void 3187void
2122ev_prepare_stop (EV_P_ ev_prepare *w) 3188ev_prepare_stop (EV_P_ ev_prepare *w)
2123{ 3189{
2124 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
2126 return; 3192 return;
2127 3193
3194 EV_FREQUENT_CHECK;
3195
2128 { 3196 {
2129 int active = ((W)w)->active; 3197 int active = ev_active (w);
3198
2130 prepares [active - 1] = prepares [--preparecnt]; 3199 prepares [active - 1] = prepares [--preparecnt];
2131 ((W)prepares [active - 1])->active = active; 3200 ev_active (prepares [active - 1]) = active;
2132 } 3201 }
2133 3202
2134 ev_stop (EV_A_ (W)w); 3203 ev_stop (EV_A_ (W)w);
3204
3205 EV_FREQUENT_CHECK;
2135} 3206}
2136 3207
2137void 3208void
2138ev_check_start (EV_P_ ev_check *w) 3209ev_check_start (EV_P_ ev_check *w)
2139{ 3210{
2140 if (expect_false (ev_is_active (w))) 3211 if (expect_false (ev_is_active (w)))
2141 return; 3212 return;
3213
3214 EV_FREQUENT_CHECK;
2142 3215
2143 ev_start (EV_A_ (W)w, ++checkcnt); 3216 ev_start (EV_A_ (W)w, ++checkcnt);
2144 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3217 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2145 checks [checkcnt - 1] = w; 3218 checks [checkcnt - 1] = w;
3219
3220 EV_FREQUENT_CHECK;
2146} 3221}
2147 3222
2148void 3223void
2149ev_check_stop (EV_P_ ev_check *w) 3224ev_check_stop (EV_P_ ev_check *w)
2150{ 3225{
2151 clear_pending (EV_A_ (W)w); 3226 clear_pending (EV_A_ (W)w);
2152 if (expect_false (!ev_is_active (w))) 3227 if (expect_false (!ev_is_active (w)))
2153 return; 3228 return;
2154 3229
3230 EV_FREQUENT_CHECK;
3231
2155 { 3232 {
2156 int active = ((W)w)->active; 3233 int active = ev_active (w);
3234
2157 checks [active - 1] = checks [--checkcnt]; 3235 checks [active - 1] = checks [--checkcnt];
2158 ((W)checks [active - 1])->active = active; 3236 ev_active (checks [active - 1]) = active;
2159 } 3237 }
2160 3238
2161 ev_stop (EV_A_ (W)w); 3239 ev_stop (EV_A_ (W)w);
3240
3241 EV_FREQUENT_CHECK;
2162} 3242}
2163 3243
2164#if EV_EMBED_ENABLE 3244#if EV_EMBED_ENABLE
2165void noinline 3245void noinline
2166ev_embed_sweep (EV_P_ ev_embed *w) 3246ev_embed_sweep (EV_P_ ev_embed *w)
2167{ 3247{
2168 ev_loop (w->loop, EVLOOP_NONBLOCK); 3248 ev_loop (w->other, EVLOOP_NONBLOCK);
2169} 3249}
2170 3250
2171static void 3251static void
2172embed_cb (EV_P_ ev_io *io, int revents) 3252embed_io_cb (EV_P_ ev_io *io, int revents)
2173{ 3253{
2174 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3254 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2175 3255
2176 if (ev_cb (w)) 3256 if (ev_cb (w))
2177 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3257 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2178 else 3258 else
2179 ev_embed_sweep (loop, w); 3259 ev_loop (w->other, EVLOOP_NONBLOCK);
2180} 3260}
3261
3262static void
3263embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3264{
3265 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3266
3267 {
3268 struct ev_loop *loop = w->other;
3269
3270 while (fdchangecnt)
3271 {
3272 fd_reify (EV_A);
3273 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3274 }
3275 }
3276}
3277
3278static void
3279embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3280{
3281 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3282
3283 ev_embed_stop (EV_A_ w);
3284
3285 {
3286 struct ev_loop *loop = w->other;
3287
3288 ev_loop_fork (EV_A);
3289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3290 }
3291
3292 ev_embed_start (EV_A_ w);
3293}
3294
3295#if 0
3296static void
3297embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3298{
3299 ev_idle_stop (EV_A_ idle);
3300}
3301#endif
2181 3302
2182void 3303void
2183ev_embed_start (EV_P_ ev_embed *w) 3304ev_embed_start (EV_P_ ev_embed *w)
2184{ 3305{
2185 if (expect_false (ev_is_active (w))) 3306 if (expect_false (ev_is_active (w)))
2186 return; 3307 return;
2187 3308
2188 { 3309 {
2189 struct ev_loop *loop = w->loop; 3310 struct ev_loop *loop = w->other;
2190 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3311 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2191 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3312 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2192 } 3313 }
3314
3315 EV_FREQUENT_CHECK;
2193 3316
2194 ev_set_priority (&w->io, ev_priority (w)); 3317 ev_set_priority (&w->io, ev_priority (w));
2195 ev_io_start (EV_A_ &w->io); 3318 ev_io_start (EV_A_ &w->io);
2196 3319
3320 ev_prepare_init (&w->prepare, embed_prepare_cb);
3321 ev_set_priority (&w->prepare, EV_MINPRI);
3322 ev_prepare_start (EV_A_ &w->prepare);
3323
3324 ev_fork_init (&w->fork, embed_fork_cb);
3325 ev_fork_start (EV_A_ &w->fork);
3326
3327 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3328
2197 ev_start (EV_A_ (W)w, 1); 3329 ev_start (EV_A_ (W)w, 1);
3330
3331 EV_FREQUENT_CHECK;
2198} 3332}
2199 3333
2200void 3334void
2201ev_embed_stop (EV_P_ ev_embed *w) 3335ev_embed_stop (EV_P_ ev_embed *w)
2202{ 3336{
2203 clear_pending (EV_A_ (W)w); 3337 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 3338 if (expect_false (!ev_is_active (w)))
2205 return; 3339 return;
2206 3340
3341 EV_FREQUENT_CHECK;
3342
2207 ev_io_stop (EV_A_ &w->io); 3343 ev_io_stop (EV_A_ &w->io);
3344 ev_prepare_stop (EV_A_ &w->prepare);
3345 ev_fork_stop (EV_A_ &w->fork);
2208 3346
2209 ev_stop (EV_A_ (W)w); 3347 EV_FREQUENT_CHECK;
2210} 3348}
2211#endif 3349#endif
2212 3350
2213#if EV_FORK_ENABLE 3351#if EV_FORK_ENABLE
2214void 3352void
2215ev_fork_start (EV_P_ ev_fork *w) 3353ev_fork_start (EV_P_ ev_fork *w)
2216{ 3354{
2217 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2218 return; 3356 return;
3357
3358 EV_FREQUENT_CHECK;
2219 3359
2220 ev_start (EV_A_ (W)w, ++forkcnt); 3360 ev_start (EV_A_ (W)w, ++forkcnt);
2221 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3361 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2222 forks [forkcnt - 1] = w; 3362 forks [forkcnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
2223} 3365}
2224 3366
2225void 3367void
2226ev_fork_stop (EV_P_ ev_fork *w) 3368ev_fork_stop (EV_P_ ev_fork *w)
2227{ 3369{
2228 clear_pending (EV_A_ (W)w); 3370 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 3371 if (expect_false (!ev_is_active (w)))
2230 return; 3372 return;
2231 3373
3374 EV_FREQUENT_CHECK;
3375
2232 { 3376 {
2233 int active = ((W)w)->active; 3377 int active = ev_active (w);
3378
2234 forks [active - 1] = forks [--forkcnt]; 3379 forks [active - 1] = forks [--forkcnt];
2235 ((W)forks [active - 1])->active = active; 3380 ev_active (forks [active - 1]) = active;
2236 } 3381 }
2237 3382
2238 ev_stop (EV_A_ (W)w); 3383 ev_stop (EV_A_ (W)w);
3384
3385 EV_FREQUENT_CHECK;
3386}
3387#endif
3388
3389#if EV_ASYNC_ENABLE
3390void
3391ev_async_start (EV_P_ ev_async *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 evpipe_init (EV_A);
3397
3398 EV_FREQUENT_CHECK;
3399
3400 ev_start (EV_A_ (W)w, ++asynccnt);
3401 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3402 asyncs [asynccnt - 1] = w;
3403
3404 EV_FREQUENT_CHECK;
3405}
3406
3407void
3408ev_async_stop (EV_P_ ev_async *w)
3409{
3410 clear_pending (EV_A_ (W)w);
3411 if (expect_false (!ev_is_active (w)))
3412 return;
3413
3414 EV_FREQUENT_CHECK;
3415
3416 {
3417 int active = ev_active (w);
3418
3419 asyncs [active - 1] = asyncs [--asynccnt];
3420 ev_active (asyncs [active - 1]) = active;
3421 }
3422
3423 ev_stop (EV_A_ (W)w);
3424
3425 EV_FREQUENT_CHECK;
3426}
3427
3428void
3429ev_async_send (EV_P_ ev_async *w)
3430{
3431 w->sent = 1;
3432 evpipe_write (EV_A_ &gotasync);
2239} 3433}
2240#endif 3434#endif
2241 3435
2242/*****************************************************************************/ 3436/*****************************************************************************/
2243 3437
2253once_cb (EV_P_ struct ev_once *once, int revents) 3447once_cb (EV_P_ struct ev_once *once, int revents)
2254{ 3448{
2255 void (*cb)(int revents, void *arg) = once->cb; 3449 void (*cb)(int revents, void *arg) = once->cb;
2256 void *arg = once->arg; 3450 void *arg = once->arg;
2257 3451
2258 ev_io_stop (EV_A_ &once->io); 3452 ev_io_stop (EV_A_ &once->io);
2259 ev_timer_stop (EV_A_ &once->to); 3453 ev_timer_stop (EV_A_ &once->to);
2260 ev_free (once); 3454 ev_free (once);
2261 3455
2262 cb (revents, arg); 3456 cb (revents, arg);
2263} 3457}
2264 3458
2265static void 3459static void
2266once_cb_io (EV_P_ ev_io *w, int revents) 3460once_cb_io (EV_P_ ev_io *w, int revents)
2267{ 3461{
2268 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3462 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3463
3464 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2269} 3465}
2270 3466
2271static void 3467static void
2272once_cb_to (EV_P_ ev_timer *w, int revents) 3468once_cb_to (EV_P_ ev_timer *w, int revents)
2273{ 3469{
2274 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3470 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3471
3472 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2275} 3473}
2276 3474
2277void 3475void
2278ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3476ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2279{ 3477{
2301 ev_timer_set (&once->to, timeout, 0.); 3499 ev_timer_set (&once->to, timeout, 0.);
2302 ev_timer_start (EV_A_ &once->to); 3500 ev_timer_start (EV_A_ &once->to);
2303 } 3501 }
2304} 3502}
2305 3503
3504/*****************************************************************************/
3505
3506#if EV_WALK_ENABLE
3507void
3508ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3509{
3510 int i, j;
3511 ev_watcher_list *wl, *wn;
3512
3513 if (types & (EV_IO | EV_EMBED))
3514 for (i = 0; i < anfdmax; ++i)
3515 for (wl = anfds [i].head; wl; )
3516 {
3517 wn = wl->next;
3518
3519#if EV_EMBED_ENABLE
3520 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3521 {
3522 if (types & EV_EMBED)
3523 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3524 }
3525 else
3526#endif
3527#if EV_USE_INOTIFY
3528 if (ev_cb ((ev_io *)wl) == infy_cb)
3529 ;
3530 else
3531#endif
3532 if ((ev_io *)wl != &pipe_w)
3533 if (types & EV_IO)
3534 cb (EV_A_ EV_IO, wl);
3535
3536 wl = wn;
3537 }
3538
3539 if (types & (EV_TIMER | EV_STAT))
3540 for (i = timercnt + HEAP0; i-- > HEAP0; )
3541#if EV_STAT_ENABLE
3542 /*TODO: timer is not always active*/
3543 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3544 {
3545 if (types & EV_STAT)
3546 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3547 }
3548 else
3549#endif
3550 if (types & EV_TIMER)
3551 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3552
3553#if EV_PERIODIC_ENABLE
3554 if (types & EV_PERIODIC)
3555 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3556 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3557#endif
3558
3559#if EV_IDLE_ENABLE
3560 if (types & EV_IDLE)
3561 for (j = NUMPRI; i--; )
3562 for (i = idlecnt [j]; i--; )
3563 cb (EV_A_ EV_IDLE, idles [j][i]);
3564#endif
3565
3566#if EV_FORK_ENABLE
3567 if (types & EV_FORK)
3568 for (i = forkcnt; i--; )
3569 if (ev_cb (forks [i]) != embed_fork_cb)
3570 cb (EV_A_ EV_FORK, forks [i]);
3571#endif
3572
3573#if EV_ASYNC_ENABLE
3574 if (types & EV_ASYNC)
3575 for (i = asynccnt; i--; )
3576 cb (EV_A_ EV_ASYNC, asyncs [i]);
3577#endif
3578
3579 if (types & EV_PREPARE)
3580 for (i = preparecnt; i--; )
3581#if EV_EMBED_ENABLE
3582 if (ev_cb (prepares [i]) != embed_prepare_cb)
3583#endif
3584 cb (EV_A_ EV_PREPARE, prepares [i]);
3585
3586 if (types & EV_CHECK)
3587 for (i = checkcnt; i--; )
3588 cb (EV_A_ EV_CHECK, checks [i]);
3589
3590 if (types & EV_SIGNAL)
3591 for (i = 0; i < signalmax; ++i)
3592 for (wl = signals [i].head; wl; )
3593 {
3594 wn = wl->next;
3595 cb (EV_A_ EV_SIGNAL, wl);
3596 wl = wn;
3597 }
3598
3599 if (types & EV_CHILD)
3600 for (i = EV_PID_HASHSIZE; i--; )
3601 for (wl = childs [i]; wl; )
3602 {
3603 wn = wl->next;
3604 cb (EV_A_ EV_CHILD, wl);
3605 wl = wn;
3606 }
3607/* EV_STAT 0x00001000 /* stat data changed */
3608/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3609}
3610#endif
3611
3612#if EV_MULTIPLICITY
3613 #include "ev_wrap.h"
3614#endif
3615
2306#ifdef __cplusplus 3616#ifdef __cplusplus
2307} 3617}
2308#endif 3618#endif
2309 3619

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines