ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.33 by root, Thu Nov 1 11:11:22 2007 UTC vs.
Revision 1.305 by root, Sun Jul 19 03:49:04 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
29#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
30# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
31#endif 154#endif
32 155
33#include <math.h> 156#include <math.h>
34#include <stdlib.h> 157#include <stdlib.h>
35#include <unistd.h>
36#include <fcntl.h> 158#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 159#include <stddef.h>
39 160
40#include <stdio.h> 161#include <stdio.h>
41 162
42#include <assert.h> 163#include <assert.h>
43#include <errno.h> 164#include <errno.h>
44#include <sys/types.h> 165#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 166#include <time.h>
48 167
168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
176#ifndef _WIN32
177# include <sys/time.h>
178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
186# endif
187#endif
188
189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 64
216#endif
217
218/* Default to some arbitrary number that's big enough to get most
219 of the common signals.
220*/
221#ifndef NSIG
222# define NSIG 50
223#endif
224/* <-- NSIG logic from Configure */
225#ifndef EV_USE_CLOCK_SYSCALL
226# if __linux && __GLIBC__ >= 2
227# define EV_USE_CLOCK_SYSCALL 1
228# else
229# define EV_USE_CLOCK_SYSCALL 0
230# endif
231#endif
232
49#ifndef EV_USE_MONOTONIC 233#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC 234# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
51# define EV_USE_MONOTONIC 1 235# define EV_USE_MONOTONIC 1
236# else
237# define EV_USE_MONOTONIC 0
238# endif
239#endif
240
241#ifndef EV_USE_REALTIME
242# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
243#endif
244
245#ifndef EV_USE_NANOSLEEP
246# if _POSIX_C_SOURCE >= 199309L
247# define EV_USE_NANOSLEEP 1
248# else
249# define EV_USE_NANOSLEEP 0
52# endif 250# endif
53#endif 251#endif
54 252
55#ifndef EV_USE_SELECT 253#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 254# define EV_USE_SELECT 1
57#endif 255#endif
58 256
257#ifndef EV_USE_POLL
258# ifdef _WIN32
259# define EV_USE_POLL 0
260# else
261# define EV_USE_POLL 1
262# endif
263#endif
264
59#ifndef EV_USE_EPOLL 265#ifndef EV_USE_EPOLL
266# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
267# define EV_USE_EPOLL 1
268# else
60# define EV_USE_EPOLL 0 269# define EV_USE_EPOLL 0
270# endif
271#endif
272
273#ifndef EV_USE_KQUEUE
274# define EV_USE_KQUEUE 0
275#endif
276
277#ifndef EV_USE_PORT
278# define EV_USE_PORT 0
279#endif
280
281#ifndef EV_USE_INOTIFY
282# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
283# define EV_USE_INOTIFY 1
284# else
285# define EV_USE_INOTIFY 0
286# endif
287#endif
288
289#ifndef EV_PID_HASHSIZE
290# if EV_MINIMAL
291# define EV_PID_HASHSIZE 1
292# else
293# define EV_PID_HASHSIZE 16
294# endif
295#endif
296
297#ifndef EV_INOTIFY_HASHSIZE
298# if EV_MINIMAL
299# define EV_INOTIFY_HASHSIZE 1
300# else
301# define EV_INOTIFY_HASHSIZE 16
302# endif
303#endif
304
305#ifndef EV_USE_EVENTFD
306# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
307# define EV_USE_EVENTFD 1
308# else
309# define EV_USE_EVENTFD 0
310# endif
311#endif
312
313#ifndef EV_USE_SIGNALFD
314# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
315# define EV_USE_SIGNALFD 1
316# else
317# define EV_USE_SIGNALFD 0
318# endif
319#endif
320
321#if 0 /* debugging */
322# define EV_VERIFY 3
323# define EV_USE_4HEAP 1
324# define EV_HEAP_CACHE_AT 1
325#endif
326
327#ifndef EV_VERIFY
328# define EV_VERIFY !EV_MINIMAL
329#endif
330
331#ifndef EV_USE_4HEAP
332# define EV_USE_4HEAP !EV_MINIMAL
333#endif
334
335#ifndef EV_HEAP_CACHE_AT
336# define EV_HEAP_CACHE_AT !EV_MINIMAL
337#endif
338
339/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
340/* which makes programs even slower. might work on other unices, too. */
341#if EV_USE_CLOCK_SYSCALL
342# include <syscall.h>
343# ifdef SYS_clock_gettime
344# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
345# undef EV_USE_MONOTONIC
346# define EV_USE_MONOTONIC 1
347# else
348# undef EV_USE_CLOCK_SYSCALL
349# define EV_USE_CLOCK_SYSCALL 0
350# endif
351#endif
352
353/* this block fixes any misconfiguration where we know we run into trouble otherwise */
354
355#ifndef CLOCK_MONOTONIC
356# undef EV_USE_MONOTONIC
357# define EV_USE_MONOTONIC 0
61#endif 358#endif
62 359
63#ifndef CLOCK_REALTIME 360#ifndef CLOCK_REALTIME
361# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 362# define EV_USE_REALTIME 0
65#endif 363#endif
66#ifndef EV_USE_REALTIME 364
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 365#if !EV_STAT_ENABLE
366# undef EV_USE_INOTIFY
367# define EV_USE_INOTIFY 0
368#endif
369
370#if !EV_USE_NANOSLEEP
371# ifndef _WIN32
372# include <sys/select.h>
68#endif 373# endif
374#endif
375
376#if EV_USE_INOTIFY
377# include <sys/utsname.h>
378# include <sys/statfs.h>
379# include <sys/inotify.h>
380/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
381# ifndef IN_DONT_FOLLOW
382# undef EV_USE_INOTIFY
383# define EV_USE_INOTIFY 0
384# endif
385#endif
386
387#if EV_SELECT_IS_WINSOCKET
388# include <winsock.h>
389#endif
390
391#if EV_USE_EVENTFD
392/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
393# include <stdint.h>
394# ifndef EFD_NONBLOCK
395# define EFD_NONBLOCK O_NONBLOCK
396# endif
397# ifndef EFD_CLOEXEC
398# define EFD_CLOEXEC O_CLOEXEC
399# endif
400# ifdef __cplusplus
401extern "C" {
402# endif
403int eventfd (unsigned int initval, int flags);
404# ifdef __cplusplus
405}
406# endif
407#endif
408
409#if EV_USE_SIGNALFD
410# include <sys/signalfd.h>
411#endif
412
413/**/
414
415#if EV_VERIFY >= 3
416# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
417#else
418# define EV_FREQUENT_CHECK do { } while (0)
419#endif
420
421/*
422 * This is used to avoid floating point rounding problems.
423 * It is added to ev_rt_now when scheduling periodics
424 * to ensure progress, time-wise, even when rounding
425 * errors are against us.
426 * This value is good at least till the year 4000.
427 * Better solutions welcome.
428 */
429#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
69 430
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 431#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 432#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 433/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
74 434
75#include "ev.h" 435#if __GNUC__ >= 4
436# define expect(expr,value) __builtin_expect ((expr),(value))
437# define noinline __attribute__ ((noinline))
438#else
439# define expect(expr,value) (expr)
440# define noinline
441# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
442# define inline
443# endif
444#endif
76 445
446#define expect_false(expr) expect ((expr) != 0, 0)
447#define expect_true(expr) expect ((expr) != 0, 1)
448#define inline_size static inline
449
450#if EV_MINIMAL
451# define inline_speed static noinline
452#else
453# define inline_speed static inline
454#endif
455
456#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
457
458#if EV_MINPRI == EV_MAXPRI
459# define ABSPRI(w) (((W)w), 0)
460#else
461# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
462#endif
463
464#define EMPTY /* required for microsofts broken pseudo-c compiler */
465#define EMPTY2(a,b) /* used to suppress some warnings */
466
77typedef struct ev_watcher *W; 467typedef ev_watcher *W;
78typedef struct ev_watcher_list *WL; 468typedef ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 469typedef ev_watcher_time *WT;
80 470
81static ev_tstamp now, diff; /* monotonic clock */ 471#define ev_active(w) ((W)(w))->active
82ev_tstamp ev_now; 472#define ev_at(w) ((WT)(w))->at
83int ev_method;
84 473
85static int have_monotonic; /* runtime */ 474#if EV_USE_REALTIME
475/* sig_atomic_t is used to avoid per-thread variables or locking but still */
476/* giving it a reasonably high chance of working on typical architetcures */
477static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
478#endif
86 479
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 480#if EV_USE_MONOTONIC
88static void (*method_modify)(int fd, int oev, int nev); 481static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
89static void (*method_poll)(ev_tstamp timeout); 482#endif
483
484#ifdef _WIN32
485# include "ev_win32.c"
486#endif
90 487
91/*****************************************************************************/ 488/*****************************************************************************/
92 489
490static void (*syserr_cb)(const char *msg);
491
492void
493ev_set_syserr_cb (void (*cb)(const char *msg))
494{
495 syserr_cb = cb;
496}
497
498static void noinline
499ev_syserr (const char *msg)
500{
501 if (!msg)
502 msg = "(libev) system error";
503
504 if (syserr_cb)
505 syserr_cb (msg);
506 else
507 {
508 perror (msg);
509 abort ();
510 }
511}
512
513static void *
514ev_realloc_emul (void *ptr, long size)
515{
516 /* some systems, notably openbsd and darwin, fail to properly
517 * implement realloc (x, 0) (as required by both ansi c-98 and
518 * the single unix specification, so work around them here.
519 */
520
521 if (size)
522 return realloc (ptr, size);
523
524 free (ptr);
525 return 0;
526}
527
528static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
529
530void
531ev_set_allocator (void *(*cb)(void *ptr, long size))
532{
533 alloc = cb;
534}
535
536inline_speed void *
537ev_realloc (void *ptr, long size)
538{
539 ptr = alloc (ptr, size);
540
541 if (!ptr && size)
542 {
543 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
544 abort ();
545 }
546
547 return ptr;
548}
549
550#define ev_malloc(size) ev_realloc (0, (size))
551#define ev_free(ptr) ev_realloc ((ptr), 0)
552
553/*****************************************************************************/
554
555/* set in reify when reification needed */
556#define EV_ANFD_REIFY 1
557
558/* file descriptor info structure */
559typedef struct
560{
561 WL head;
562 unsigned char events; /* the events watched for */
563 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
564 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
565 unsigned char unused;
566#if EV_USE_EPOLL
567 unsigned int egen; /* generation counter to counter epoll bugs */
568#endif
569#if EV_SELECT_IS_WINSOCKET
570 SOCKET handle;
571#endif
572} ANFD;
573
574/* stores the pending event set for a given watcher */
575typedef struct
576{
577 W w;
578 int events; /* the pending event set for the given watcher */
579} ANPENDING;
580
581#if EV_USE_INOTIFY
582/* hash table entry per inotify-id */
583typedef struct
584{
585 WL head;
586} ANFS;
587#endif
588
589/* Heap Entry */
590#if EV_HEAP_CACHE_AT
591 /* a heap element */
592 typedef struct {
593 ev_tstamp at;
594 WT w;
595 } ANHE;
596
597 #define ANHE_w(he) (he).w /* access watcher, read-write */
598 #define ANHE_at(he) (he).at /* access cached at, read-only */
599 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
600#else
601 /* a heap element */
602 typedef WT ANHE;
603
604 #define ANHE_w(he) (he)
605 #define ANHE_at(he) (he)->at
606 #define ANHE_at_cache(he)
607#endif
608
609#if EV_MULTIPLICITY
610
611 struct ev_loop
612 {
613 ev_tstamp ev_rt_now;
614 #define ev_rt_now ((loop)->ev_rt_now)
615 #define VAR(name,decl) decl;
616 #include "ev_vars.h"
617 #undef VAR
618 };
619 #include "ev_wrap.h"
620
621 static struct ev_loop default_loop_struct;
622 struct ev_loop *ev_default_loop_ptr;
623
624#else
625
626 ev_tstamp ev_rt_now;
627 #define VAR(name,decl) static decl;
628 #include "ev_vars.h"
629 #undef VAR
630
631 static int ev_default_loop_ptr;
632
633#endif
634
635#if EV_MINIMAL < 2
636# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
637# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
638# define EV_INVOKE_PENDING invoke_cb (EV_A)
639#else
640# define EV_RELEASE_CB (void)0
641# define EV_ACQUIRE_CB (void)0
642# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
643#endif
644
645#define EVUNLOOP_RECURSE 0x80
646
647/*****************************************************************************/
648
649#ifndef EV_HAVE_EV_TIME
93ev_tstamp 650ev_tstamp
94ev_time (void) 651ev_time (void)
95{ 652{
96#if EV_USE_REALTIME 653#if EV_USE_REALTIME
654 if (expect_true (have_realtime))
655 {
97 struct timespec ts; 656 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 657 clock_gettime (CLOCK_REALTIME, &ts);
99 return ts.tv_sec + ts.tv_nsec * 1e-9; 658 return ts.tv_sec + ts.tv_nsec * 1e-9;
100#else 659 }
660#endif
661
101 struct timeval tv; 662 struct timeval tv;
102 gettimeofday (&tv, 0); 663 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 664 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif
105} 665}
666#endif
106 667
107static ev_tstamp 668inline_size ev_tstamp
108get_clock (void) 669get_clock (void)
109{ 670{
110#if EV_USE_MONOTONIC 671#if EV_USE_MONOTONIC
111 if (have_monotonic) 672 if (expect_true (have_monotonic))
112 { 673 {
113 struct timespec ts; 674 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 675 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 676 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 677 }
117#endif 678#endif
118 679
119 return ev_time (); 680 return ev_time ();
120} 681}
121 682
122#define array_roundsize(base,n) ((n) | 4 & ~3) 683#if EV_MULTIPLICITY
684ev_tstamp
685ev_now (EV_P)
686{
687 return ev_rt_now;
688}
689#endif
123 690
124#define array_needsize(base,cur,cnt,init) \ 691void
125 if ((cnt) > cur) \ 692ev_sleep (ev_tstamp delay)
126 { \ 693{
127 int newcnt = cur; \ 694 if (delay > 0.)
128 do \
129 { \
130 newcnt = array_roundsize (base, newcnt << 1); \
131 } \
132 while ((cnt) > newcnt); \
133 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \
136 cur = newcnt; \
137 } 695 {
696#if EV_USE_NANOSLEEP
697 struct timespec ts;
698
699 ts.tv_sec = (time_t)delay;
700 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
701
702 nanosleep (&ts, 0);
703#elif defined(_WIN32)
704 Sleep ((unsigned long)(delay * 1e3));
705#else
706 struct timeval tv;
707
708 tv.tv_sec = (time_t)delay;
709 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
710
711 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
712 /* something not guaranteed by newer posix versions, but guaranteed */
713 /* by older ones */
714 select (0, 0, 0, 0, &tv);
715#endif
716 }
717}
138 718
139/*****************************************************************************/ 719/*****************************************************************************/
140 720
141typedef struct 721#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147 722
148static ANFD *anfds; 723/* find a suitable new size for the given array, */
149static int anfdmax; 724/* hopefully by rounding to a ncie-to-malloc size */
150 725inline_size int
151static void 726array_nextsize (int elem, int cur, int cnt)
152anfds_init (ANFD *base, int count)
153{ 727{
154 while (count--) 728 int ncur = cur + 1;
155 {
156 base->head = 0;
157 base->events = EV_NONE;
158 base->reify = 0;
159 729
160 ++base; 730 do
731 ncur <<= 1;
732 while (cnt > ncur);
733
734 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
735 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
161 } 736 {
162} 737 ncur *= elem;
163 738 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
164typedef struct 739 ncur = ncur - sizeof (void *) * 4;
165{ 740 ncur /= elem;
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void
174event (W w, int events)
175{
176 if (w->pending)
177 { 741 }
742
743 return ncur;
744}
745
746static noinline void *
747array_realloc (int elem, void *base, int *cur, int cnt)
748{
749 *cur = array_nextsize (elem, *cur, cnt);
750 return ev_realloc (base, elem * *cur);
751}
752
753#define array_init_zero(base,count) \
754 memset ((void *)(base), 0, sizeof (*(base)) * (count))
755
756#define array_needsize(type,base,cur,cnt,init) \
757 if (expect_false ((cnt) > (cur))) \
758 { \
759 int ocur_ = (cur); \
760 (base) = (type *)array_realloc \
761 (sizeof (type), (base), &(cur), (cnt)); \
762 init ((base) + (ocur_), (cur) - ocur_); \
763 }
764
765#if 0
766#define array_slim(type,stem) \
767 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
768 { \
769 stem ## max = array_roundsize (stem ## cnt >> 1); \
770 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
771 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
772 }
773#endif
774
775#define array_free(stem, idx) \
776 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
777
778/*****************************************************************************/
779
780/* dummy callback for pending events */
781static void noinline
782pendingcb (EV_P_ ev_prepare *w, int revents)
783{
784}
785
786void noinline
787ev_feed_event (EV_P_ void *w, int revents)
788{
789 W w_ = (W)w;
790 int pri = ABSPRI (w_);
791
792 if (expect_false (w_->pending))
793 pendings [pri][w_->pending - 1].events |= revents;
794 else
795 {
796 w_->pending = ++pendingcnt [pri];
797 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
798 pendings [pri][w_->pending - 1].w = w_;
178 pendings [w->pending - 1].events |= events; 799 pendings [pri][w_->pending - 1].events = revents;
179 return;
180 } 800 }
181
182 w->pending = ++pendingcnt;
183 array_needsize (pendings, pendingmax, pendingcnt, );
184 pendings [pendingcnt - 1].w = w;
185 pendings [pendingcnt - 1].events = events;
186} 801}
187 802
188static void 803inline_speed void
804feed_reverse (EV_P_ W w)
805{
806 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
807 rfeeds [rfeedcnt++] = w;
808}
809
810inline_size void
811feed_reverse_done (EV_P_ int revents)
812{
813 do
814 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
815 while (rfeedcnt);
816}
817
818inline_speed void
189queue_events (W *events, int eventcnt, int type) 819queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 820{
191 int i; 821 int i;
192 822
193 for (i = 0; i < eventcnt; ++i) 823 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 824 ev_feed_event (EV_A_ events [i], type);
195} 825}
196 826
197static void 827/*****************************************************************************/
828
829inline_speed void
198fd_event (int fd, int events) 830fd_event_nc (EV_P_ int fd, int revents)
199{ 831{
200 ANFD *anfd = anfds + fd; 832 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 833 ev_io *w;
202 834
203 for (w = anfd->head; w; w = w->next) 835 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
204 { 836 {
205 int ev = w->events & events; 837 int ev = w->events & revents;
206 838
207 if (ev) 839 if (ev)
208 event ((W)w, ev); 840 ev_feed_event (EV_A_ (W)w, ev);
209 } 841 }
210} 842}
211 843
212/*****************************************************************************/ 844/* do not submit kernel events for fds that have reify set */
845/* because that means they changed while we were polling for new events */
846inline_speed void
847fd_event (EV_P_ int fd, int revents)
848{
849 ANFD *anfd = anfds + fd;
213 850
214static int *fdchanges; 851 if (expect_true (!anfd->reify))
215static int fdchangemax, fdchangecnt; 852 fd_event_nc (EV_A_ fd, revents);
853}
216 854
217static void 855void
218fd_reify (void) 856ev_feed_fd_event (EV_P_ int fd, int revents)
857{
858 if (fd >= 0 && fd < anfdmax)
859 fd_event_nc (EV_A_ fd, revents);
860}
861
862/* make sure the external fd watch events are in-sync */
863/* with the kernel/libev internal state */
864inline_size void
865fd_reify (EV_P)
219{ 866{
220 int i; 867 int i;
221 868
222 for (i = 0; i < fdchangecnt; ++i) 869 for (i = 0; i < fdchangecnt; ++i)
223 { 870 {
224 int fd = fdchanges [i]; 871 int fd = fdchanges [i];
225 ANFD *anfd = anfds + fd; 872 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 873 ev_io *w;
227 874
228 int events = 0; 875 unsigned char events = 0;
229 876
230 for (w = anfd->head; w; w = w->next) 877 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
231 events |= w->events; 878 events |= (unsigned char)w->events;
232 879
233 anfd->reify = 0; 880#if EV_SELECT_IS_WINSOCKET
234 881 if (events)
235 if (anfd->events != events)
236 { 882 {
237 method_modify (fd, anfd->events, events); 883 unsigned long arg;
238 anfd->events = events; 884 #ifdef EV_FD_TO_WIN32_HANDLE
885 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
886 #else
887 anfd->handle = _get_osfhandle (fd);
888 #endif
889 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
239 } 890 }
891#endif
892
893 {
894 unsigned char o_events = anfd->events;
895 unsigned char o_reify = anfd->reify;
896
897 anfd->reify = 0;
898 anfd->events = events;
899
900 if (o_events != events || o_reify & EV__IOFDSET)
901 backend_modify (EV_A_ fd, o_events, events);
902 }
240 } 903 }
241 904
242 fdchangecnt = 0; 905 fdchangecnt = 0;
243} 906}
244 907
245static void 908/* something about the given fd changed */
246fd_change (int fd) 909inline_size void
910fd_change (EV_P_ int fd, int flags)
247{ 911{
248 if (anfds [fd].reify || fdchangecnt < 0) 912 unsigned char reify = anfds [fd].reify;
249 return;
250
251 anfds [fd].reify = 1; 913 anfds [fd].reify |= flags;
252 914
915 if (expect_true (!reify))
916 {
253 ++fdchangecnt; 917 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
255 fdchanges [fdchangecnt - 1] = fd; 919 fdchanges [fdchangecnt - 1] = fd;
920 }
921}
922
923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
924inline_speed void
925fd_kill (EV_P_ int fd)
926{
927 ev_io *w;
928
929 while ((w = (ev_io *)anfds [fd].head))
930 {
931 ev_io_stop (EV_A_ w);
932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
933 }
934}
935
936/* check whether the given fd is atcually valid, for error recovery */
937inline_size int
938fd_valid (int fd)
939{
940#ifdef _WIN32
941 return _get_osfhandle (fd) != -1;
942#else
943 return fcntl (fd, F_GETFD) != -1;
944#endif
256} 945}
257 946
258/* called on EBADF to verify fds */ 947/* called on EBADF to verify fds */
259static void 948static void noinline
260fd_recheck (void) 949fd_ebadf (EV_P)
261{ 950{
262 int fd; 951 int fd;
263 952
264 for (fd = 0; fd < anfdmax; ++fd) 953 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 954 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 955 if (!fd_valid (fd) && errno == EBADF)
267 while (anfds [fd].head) 956 fd_kill (EV_A_ fd);
957}
958
959/* called on ENOMEM in select/poll to kill some fds and retry */
960static void noinline
961fd_enomem (EV_P)
962{
963 int fd;
964
965 for (fd = anfdmax; fd--; )
966 if (anfds [fd].events)
268 { 967 {
269 ev_io_stop (anfds [fd].head); 968 fd_kill (EV_A_ fd);
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 969 return;
271 } 970 }
971}
972
973/* usually called after fork if backend needs to re-arm all fds from scratch */
974static void noinline
975fd_rearm_all (EV_P)
976{
977 int fd;
978
979 for (fd = 0; fd < anfdmax; ++fd)
980 if (anfds [fd].events)
981 {
982 anfds [fd].events = 0;
983 anfds [fd].emask = 0;
984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
985 }
272} 986}
273 987
274/*****************************************************************************/ 988/*****************************************************************************/
275 989
276static struct ev_timer **timers; 990/*
277static int timermax, timercnt; 991 * the heap functions want a real array index. array index 0 uis guaranteed to not
992 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
993 * the branching factor of the d-tree.
994 */
278 995
279static struct ev_periodic **periodics; 996/*
280static int periodicmax, periodiccnt; 997 * at the moment we allow libev the luxury of two heaps,
998 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
999 * which is more cache-efficient.
1000 * the difference is about 5% with 50000+ watchers.
1001 */
1002#if EV_USE_4HEAP
281 1003
282static void 1004#define DHEAP 4
283upheap (WT *timers, int k) 1005#define HEAP0 (DHEAP - 1) /* index of first element in heap */
284{ 1006#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
285 WT w = timers [k]; 1007#define UPHEAP_DONE(p,k) ((p) == (k))
286 1008
287 while (k && timers [k >> 1]->at > w->at) 1009/* away from the root */
288 { 1010inline_speed void
289 timers [k] = timers [k >> 1];
290 timers [k]->active = k + 1;
291 k >>= 1;
292 }
293
294 timers [k] = w;
295 timers [k]->active = k + 1;
296
297}
298
299static void
300downheap (WT *timers, int N, int k) 1011downheap (ANHE *heap, int N, int k)
301{ 1012{
302 WT w = timers [k]; 1013 ANHE he = heap [k];
1014 ANHE *E = heap + N + HEAP0;
303 1015
304 while (k < (N >> 1)) 1016 for (;;)
305 { 1017 {
306 int j = k << 1; 1018 ev_tstamp minat;
1019 ANHE *minpos;
1020 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
307 1021
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1022 /* find minimum child */
1023 if (expect_true (pos + DHEAP - 1 < E))
309 ++j; 1024 {
310 1025 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
311 if (w->at <= timers [j]->at) 1026 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else if (pos < E)
1031 {
1032 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1033 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1034 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1035 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1036 }
1037 else
312 break; 1038 break;
313 1039
314 timers [k] = timers [j]; 1040 if (ANHE_at (he) <= minat)
315 timers [k]->active = k + 1; 1041 break;
1042
1043 heap [k] = *minpos;
1044 ev_active (ANHE_w (*minpos)) = k;
1045
1046 k = minpos - heap;
1047 }
1048
1049 heap [k] = he;
1050 ev_active (ANHE_w (he)) = k;
1051}
1052
1053#else /* 4HEAP */
1054
1055#define HEAP0 1
1056#define HPARENT(k) ((k) >> 1)
1057#define UPHEAP_DONE(p,k) (!(p))
1058
1059/* away from the root */
1060inline_speed void
1061downheap (ANHE *heap, int N, int k)
1062{
1063 ANHE he = heap [k];
1064
1065 for (;;)
1066 {
1067 int c = k << 1;
1068
1069 if (c > N + HEAP0 - 1)
1070 break;
1071
1072 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1073 ? 1 : 0;
1074
1075 if (ANHE_at (he) <= ANHE_at (heap [c]))
1076 break;
1077
1078 heap [k] = heap [c];
1079 ev_active (ANHE_w (heap [k])) = k;
1080
316 k = j; 1081 k = c;
1082 }
1083
1084 heap [k] = he;
1085 ev_active (ANHE_w (he)) = k;
1086}
1087#endif
1088
1089/* towards the root */
1090inline_speed void
1091upheap (ANHE *heap, int k)
1092{
1093 ANHE he = heap [k];
1094
1095 for (;;)
317 } 1096 {
1097 int p = HPARENT (k);
318 1098
319 timers [k] = w; 1099 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
320 timers [k]->active = k + 1; 1100 break;
1101
1102 heap [k] = heap [p];
1103 ev_active (ANHE_w (heap [k])) = k;
1104 k = p;
1105 }
1106
1107 heap [k] = he;
1108 ev_active (ANHE_w (he)) = k;
1109}
1110
1111/* move an element suitably so it is in a correct place */
1112inline_size void
1113adjustheap (ANHE *heap, int N, int k)
1114{
1115 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
1116 upheap (heap, k);
1117 else
1118 downheap (heap, N, k);
1119}
1120
1121/* rebuild the heap: this function is used only once and executed rarely */
1122inline_size void
1123reheap (ANHE *heap, int N)
1124{
1125 int i;
1126
1127 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1128 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1129 for (i = 0; i < N; ++i)
1130 upheap (heap, i + HEAP0);
321} 1131}
322 1132
323/*****************************************************************************/ 1133/*****************************************************************************/
324 1134
1135/* associate signal watchers to a signal signal */
325typedef struct 1136typedef struct
326{ 1137{
327 struct ev_signal *head; 1138 WL head;
328 sig_atomic_t gotsig; 1139 EV_ATOMIC_T gotsig;
329} ANSIG; 1140} ANSIG;
330 1141
331static ANSIG *signals; 1142static ANSIG *signals;
332static int signalmax; 1143static int signalmax;
333 1144
334static int sigpipe [2]; 1145static EV_ATOMIC_T gotsig;
335static sig_atomic_t gotsig;
336static struct ev_io sigev;
337 1146
1147/*****************************************************************************/
1148
1149/* used to prepare libev internal fd's */
1150/* this is not fork-safe */
1151inline_speed void
1152fd_intern (int fd)
1153{
1154#ifdef _WIN32
1155 unsigned long arg = 1;
1156 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1157#else
1158 fcntl (fd, F_SETFD, FD_CLOEXEC);
1159 fcntl (fd, F_SETFL, O_NONBLOCK);
1160#endif
1161}
1162
1163static void noinline
1164evpipe_init (EV_P)
1165{
1166 if (!ev_is_active (&pipe_w))
1167 {
1168#if EV_USE_EVENTFD
1169 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1170 if (evfd < 0 && errno == EINVAL)
1171 evfd = eventfd (0, 0);
1172
1173 if (evfd >= 0)
1174 {
1175 evpipe [0] = -1;
1176 fd_intern (evfd); /* doing it twice doesn't hurt */
1177 ev_io_set (&pipe_w, evfd, EV_READ);
1178 }
1179 else
1180#endif
1181 {
1182 while (pipe (evpipe))
1183 ev_syserr ("(libev) error creating signal/async pipe");
1184
1185 fd_intern (evpipe [0]);
1186 fd_intern (evpipe [1]);
1187 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1188 }
1189
1190 ev_io_start (EV_A_ &pipe_w);
1191 ev_unref (EV_A); /* watcher should not keep loop alive */
1192 }
1193}
1194
1195inline_size void
1196evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1197{
1198 if (!*flag)
1199 {
1200 int old_errno = errno; /* save errno because write might clobber it */
1201
1202 *flag = 1;
1203
1204#if EV_USE_EVENTFD
1205 if (evfd >= 0)
1206 {
1207 uint64_t counter = 1;
1208 write (evfd, &counter, sizeof (uint64_t));
1209 }
1210 else
1211#endif
1212 write (evpipe [1], &old_errno, 1);
1213
1214 errno = old_errno;
1215 }
1216}
1217
1218/* called whenever the libev signal pipe */
1219/* got some events (signal, async) */
338static void 1220static void
339signals_init (ANSIG *base, int count) 1221pipecb (EV_P_ ev_io *iow, int revents)
340{ 1222{
341 while (count--) 1223#if EV_USE_EVENTFD
1224 if (evfd >= 0)
1225 {
1226 uint64_t counter;
1227 read (evfd, &counter, sizeof (uint64_t));
342 { 1228 }
343 base->head = 0; 1229 else
1230#endif
1231 {
1232 char dummy;
1233 read (evpipe [0], &dummy, 1);
1234 }
1235
1236 if (gotsig && ev_is_default_loop (EV_A))
1237 {
1238 int signum;
344 base->gotsig = 0; 1239 gotsig = 0;
345 1240
346 ++base; 1241 for (signum = signalmax; signum--; )
1242 if (signals [signum].gotsig)
1243 ev_feed_signal_event (EV_A_ signum + 1);
1244 }
1245
1246#if EV_ASYNC_ENABLE
1247 if (gotasync)
347 } 1248 {
1249 int i;
1250 gotasync = 0;
1251
1252 for (i = asynccnt; i--; )
1253 if (asyncs [i]->sent)
1254 {
1255 asyncs [i]->sent = 0;
1256 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1257 }
1258 }
1259#endif
348} 1260}
1261
1262/*****************************************************************************/
349 1263
350static void 1264static void
351sighandler (int signum) 1265ev_sighandler (int signum)
352{ 1266{
1267#if EV_MULTIPLICITY
1268 struct ev_loop *loop = &default_loop_struct;
1269#endif
1270
1271#if _WIN32
1272 signal (signum, ev_sighandler);
1273#endif
1274
353 signals [signum - 1].gotsig = 1; 1275 signals [signum - 1].gotsig = 1;
354 1276 evpipe_write (EV_A_ &gotsig);
355 if (!gotsig)
356 {
357 gotsig = 1;
358 write (sigpipe [1], &gotsig, 1);
359 }
360} 1277}
361 1278
1279void noinline
1280ev_feed_signal_event (EV_P_ int signum)
1281{
1282 WL w;
1283
1284#if EV_MULTIPLICITY
1285 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1286#endif
1287
1288 --signum;
1289
1290 if (signum < 0 || signum >= signalmax)
1291 return;
1292
1293 signals [signum].gotsig = 0;
1294
1295 for (w = signals [signum].head; w; w = w->next)
1296 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1297}
1298
1299#if EV_USE_SIGNALFD
362static void 1300static void
363sigcb (struct ev_io *iow, int revents) 1301sigfdcb (EV_P_ ev_io *iow, int revents)
364{ 1302{
365 struct ev_signal *w; 1303 struct signalfd_siginfo si[4], *sip;
366 int sig;
367 1304
368 gotsig = 0; 1305 for (;;)
369 read (sigpipe [0], &revents, 1);
370
371 for (sig = signalmax; sig--; )
372 if (signals [sig].gotsig)
373 { 1306 {
374 signals [sig].gotsig = 0; 1307 ssize_t res = read (sigfd, si, sizeof (si));
375 1308
376 for (w = signals [sig].head; w; w = w->next) 1309 /* not ISO-C, as res might be -1, but works with SuS */
377 event ((W)w, EV_SIGNAL); 1310 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1311 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1312
1313 if (res < (ssize_t)sizeof (si))
1314 break;
378 } 1315 }
379} 1316}
380 1317#endif
381static void
382siginit (void)
383{
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386
387 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
390
391 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev);
393}
394 1318
395/*****************************************************************************/ 1319/*****************************************************************************/
396 1320
397static struct ev_idle **idles; 1321static WL childs [EV_PID_HASHSIZE];
398static int idlemax, idlecnt;
399 1322
400static struct ev_prepare **prepares; 1323#ifndef _WIN32
401static int preparemax, preparecnt;
402 1324
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407
408static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 1325static ev_signal childev;
1326
1327#ifndef WIFCONTINUED
1328# define WIFCONTINUED(status) 0
1329#endif
1330
1331/* handle a single child status event */
1332inline_speed void
1333child_reap (EV_P_ int chain, int pid, int status)
1334{
1335 ev_child *w;
1336 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1337
1338 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1339 {
1340 if ((w->pid == pid || !w->pid)
1341 && (!traced || (w->flags & 1)))
1342 {
1343 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1344 w->rpid = pid;
1345 w->rstatus = status;
1346 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1347 }
1348 }
1349}
410 1350
411#ifndef WCONTINUED 1351#ifndef WCONTINUED
412# define WCONTINUED 0 1352# define WCONTINUED 0
413#endif 1353#endif
414 1354
1355/* called on sigchld etc., calls waitpid */
415static void 1356static void
416childcb (struct ev_signal *sw, int revents) 1357childcb (EV_P_ ev_signal *sw, int revents)
417{ 1358{
418 struct ev_child *w;
419 int pid, status; 1359 int pid, status;
420 1360
1361 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1362 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1363 if (!WCONTINUED
423 if (w->pid == pid || w->pid == -1) 1364 || errno != EINVAL
424 { 1365 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
425 w->status = status; 1366 return;
426 event ((W)w, EV_CHILD); 1367
427 } 1368 /* make sure we are called again until all children have been reaped */
1369 /* we need to do it this way so that the callback gets called before we continue */
1370 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1371
1372 child_reap (EV_A_ pid, pid, status);
1373 if (EV_PID_HASHSIZE > 1)
1374 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
428} 1375}
1376
1377#endif
429 1378
430/*****************************************************************************/ 1379/*****************************************************************************/
431 1380
1381#if EV_USE_PORT
1382# include "ev_port.c"
1383#endif
1384#if EV_USE_KQUEUE
1385# include "ev_kqueue.c"
1386#endif
432#if EV_USE_EPOLL 1387#if EV_USE_EPOLL
433# include "ev_epoll.c" 1388# include "ev_epoll.c"
434#endif 1389#endif
1390#if EV_USE_POLL
1391# include "ev_poll.c"
1392#endif
435#if EV_USE_SELECT 1393#if EV_USE_SELECT
436# include "ev_select.c" 1394# include "ev_select.c"
437#endif 1395#endif
438 1396
439int 1397int
446ev_version_minor (void) 1404ev_version_minor (void)
447{ 1405{
448 return EV_VERSION_MINOR; 1406 return EV_VERSION_MINOR;
449} 1407}
450 1408
451int ev_init (int flags) 1409/* return true if we are running with elevated privileges and should ignore env variables */
1410int inline_size
1411enable_secure (void)
452{ 1412{
453 if (!ev_method) 1413#ifdef _WIN32
1414 return 0;
1415#else
1416 return getuid () != geteuid ()
1417 || getgid () != getegid ();
1418#endif
1419}
1420
1421unsigned int
1422ev_supported_backends (void)
1423{
1424 unsigned int flags = 0;
1425
1426 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1427 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1428 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1429 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1430 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1431
1432 return flags;
1433}
1434
1435unsigned int
1436ev_recommended_backends (void)
1437{
1438 unsigned int flags = ev_supported_backends ();
1439
1440#ifndef __NetBSD__
1441 /* kqueue is borked on everything but netbsd apparently */
1442 /* it usually doesn't work correctly on anything but sockets and pipes */
1443 flags &= ~EVBACKEND_KQUEUE;
1444#endif
1445#ifdef __APPLE__
1446 /* only select works correctly on that "unix-certified" platform */
1447 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1448 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1449#endif
1450
1451 return flags;
1452}
1453
1454unsigned int
1455ev_embeddable_backends (void)
1456{
1457 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1458
1459 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1460 /* please fix it and tell me how to detect the fix */
1461 flags &= ~EVBACKEND_EPOLL;
1462
1463 return flags;
1464}
1465
1466unsigned int
1467ev_backend (EV_P)
1468{
1469 return backend;
1470}
1471
1472#if EV_MINIMAL < 2
1473unsigned int
1474ev_loop_count (EV_P)
1475{
1476 return loop_count;
1477}
1478
1479unsigned int
1480ev_loop_depth (EV_P)
1481{
1482 return loop_depth;
1483}
1484
1485void
1486ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1487{
1488 io_blocktime = interval;
1489}
1490
1491void
1492ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1493{
1494 timeout_blocktime = interval;
1495}
1496
1497void
1498ev_set_userdata (EV_P_ void *data)
1499{
1500 userdata = data;
1501}
1502
1503void *
1504ev_userdata (EV_P)
1505{
1506 return userdata;
1507}
1508
1509void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1510{
1511 invoke_cb = invoke_pending_cb;
1512}
1513
1514void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1515{
1516 release_cb = release;
1517 acquire_cb = acquire;
1518}
1519#endif
1520
1521/* initialise a loop structure, must be zero-initialised */
1522static void noinline
1523loop_init (EV_P_ unsigned int flags)
1524{
1525 if (!backend)
454 { 1526 {
1527#if EV_USE_REALTIME
1528 if (!have_realtime)
1529 {
1530 struct timespec ts;
1531
1532 if (!clock_gettime (CLOCK_REALTIME, &ts))
1533 have_realtime = 1;
1534 }
1535#endif
1536
455#if EV_USE_MONOTONIC 1537#if EV_USE_MONOTONIC
1538 if (!have_monotonic)
1539 {
1540 struct timespec ts;
1541
1542 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1543 have_monotonic = 1;
1544 }
1545#endif
1546
1547 ev_rt_now = ev_time ();
1548 mn_now = get_clock ();
1549 now_floor = mn_now;
1550 rtmn_diff = ev_rt_now - mn_now;
1551#if EV_MINIMAL < 2
1552 invoke_cb = ev_invoke_pending;
1553#endif
1554
1555 io_blocktime = 0.;
1556 timeout_blocktime = 0.;
1557 backend = 0;
1558 backend_fd = -1;
1559 gotasync = 0;
1560#if EV_USE_INOTIFY
1561 fs_fd = -2;
1562#endif
1563#if EV_USE_SIGNALFD
1564 sigfd = -2;
1565#endif
1566
1567 /* pid check not overridable via env */
1568#ifndef _WIN32
1569 if (flags & EVFLAG_FORKCHECK)
1570 curpid = getpid ();
1571#endif
1572
1573 if (!(flags & EVFLAG_NOENV)
1574 && !enable_secure ()
1575 && getenv ("LIBEV_FLAGS"))
1576 flags = atoi (getenv ("LIBEV_FLAGS"));
1577
1578 if (!(flags & 0x0000ffffU))
1579 flags |= ev_recommended_backends ();
1580
1581#if EV_USE_PORT
1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1583#endif
1584#if EV_USE_KQUEUE
1585 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1586#endif
1587#if EV_USE_EPOLL
1588 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1589#endif
1590#if EV_USE_POLL
1591 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1592#endif
1593#if EV_USE_SELECT
1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1595#endif
1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1599 ev_init (&pipe_w, pipecb);
1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1601 }
1602}
1603
1604/* free up a loop structure */
1605static void noinline
1606loop_destroy (EV_P)
1607{
1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1636
1637#if EV_USE_INOTIFY
1638 if (fs_fd >= 0)
1639 close (fs_fd);
1640#endif
1641
1642 if (backend_fd >= 0)
1643 close (backend_fd);
1644
1645#if EV_USE_PORT
1646 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1647#endif
1648#if EV_USE_KQUEUE
1649 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1650#endif
1651#if EV_USE_EPOLL
1652 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1653#endif
1654#if EV_USE_POLL
1655 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1656#endif
1657#if EV_USE_SELECT
1658 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1659#endif
1660
1661 for (i = NUMPRI; i--; )
1662 {
1663 array_free (pending, [i]);
1664#if EV_IDLE_ENABLE
1665 array_free (idle, [i]);
1666#endif
1667 }
1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1670
1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1673 array_free (fdchange, EMPTY);
1674 array_free (timer, EMPTY);
1675#if EV_PERIODIC_ENABLE
1676 array_free (periodic, EMPTY);
1677#endif
1678#if EV_FORK_ENABLE
1679 array_free (fork, EMPTY);
1680#endif
1681 array_free (prepare, EMPTY);
1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
1686
1687 backend = 0;
1688}
1689
1690#if EV_USE_INOTIFY
1691inline_size void infy_fork (EV_P);
1692#endif
1693
1694inline_size void
1695loop_fork (EV_P)
1696{
1697#if EV_USE_PORT
1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1699#endif
1700#if EV_USE_KQUEUE
1701 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1702#endif
1703#if EV_USE_EPOLL
1704 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1705#endif
1706#if EV_USE_INOTIFY
1707 infy_fork (EV_A);
1708#endif
1709
1710 if (ev_is_active (&pipe_w))
1711 {
1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 gotsig = 1;
1715#if EV_ASYNC_ENABLE
1716 gotasync = 1;
1717#endif
1718
1719 ev_ref (EV_A);
1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1729 close (evpipe [0]);
1730 close (evpipe [1]);
1731 }
1732
1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
1736 }
1737
1738 postfork = 0;
1739}
1740
1741#if EV_MULTIPLICITY
1742
1743struct ev_loop *
1744ev_loop_new (unsigned int flags)
1745{
1746 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1747
1748 memset (loop, 0, sizeof (struct ev_loop));
1749 loop_init (EV_A_ flags);
1750
1751 if (ev_backend (EV_A))
1752 return loop;
1753
1754 return 0;
1755}
1756
1757void
1758ev_loop_destroy (EV_P)
1759{
1760 loop_destroy (EV_A);
1761 ev_free (loop);
1762}
1763
1764void
1765ev_loop_fork (EV_P)
1766{
1767 postfork = 1; /* must be in line with ev_default_fork */
1768}
1769#endif /* multiplicity */
1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
456 { 1824 {
457 struct timespec ts; 1825 verify_watcher (EV_A_ (W)w);
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
459 have_monotonic = 1; 1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
460 } 1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
461#endif 1867# endif
462
463 ev_now = ev_time ();
464 now = get_clock ();
465 diff = ev_now - now;
466
467 if (pipe (sigpipe))
468 return 0;
469
470 ev_method = EVMETHOD_NONE;
471#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
473#endif 1868#endif
474#if EV_USE_SELECT 1869}
475 if (ev_method == EVMETHOD_NONE) select_init (flags);
476#endif 1870#endif
477 1871
478 if (ev_method) 1872#if EV_MULTIPLICITY
1873struct ev_loop *
1874ev_default_loop_init (unsigned int flags)
1875#else
1876int
1877ev_default_loop (unsigned int flags)
1878#endif
1879{
1880 if (!ev_default_loop_ptr)
1881 {
1882#if EV_MULTIPLICITY
1883 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1884#else
1885 ev_default_loop_ptr = 1;
1886#endif
1887
1888 loop_init (EV_A_ flags);
1889
1890 if (ev_backend (EV_A))
479 { 1891 {
480 ev_watcher_init (&sigev, sigcb); 1892#ifndef _WIN32
481 siginit ();
482
483 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
1894 ev_set_priority (&childev, EV_MAXPRI);
484 ev_signal_start (&childev); 1895 ev_signal_start (EV_A_ &childev);
485 } 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
486 }
487
488 return ev_method;
489}
490
491/*****************************************************************************/
492
493void
494ev_prefork (void)
495{
496 /* nop */
497}
498
499void
500ev_postfork_parent (void)
501{
502 /* nop */
503}
504
505void
506ev_postfork_child (void)
507{
508#if EV_USE_EPOLL
509 if (ev_method == EVMETHOD_EPOLL)
510 epoll_postfork_child ();
511#endif 1897#endif
512
513 ev_io_stop (&sigev);
514 close (sigpipe [0]);
515 close (sigpipe [1]);
516 pipe (sigpipe);
517 siginit ();
518}
519
520/*****************************************************************************/
521
522static void
523call_pending (void)
524{
525 while (pendingcnt)
526 {
527 ANPENDING *p = pendings + --pendingcnt;
528
529 if (p->w)
530 {
531 p->w->pending = 0;
532 p->w->cb (p->w, p->events);
533 }
534 }
535}
536
537static void
538timers_reify (void)
539{
540 while (timercnt && timers [0]->at <= now)
541 {
542 struct ev_timer *w = timers [0];
543
544 /* first reschedule or stop timer */
545 if (w->repeat)
546 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0);
550 } 1898 }
551 else 1899 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 1900 ev_default_loop_ptr = 0;
553
554 event ((W)w, EV_TIMEOUT);
555 } 1901 }
556}
557 1902
558static void 1903 return ev_default_loop_ptr;
559periodics_reify (void) 1904}
1905
1906void
1907ev_default_destroy (void)
560{ 1908{
561 while (periodiccnt && periodics [0]->at <= ev_now) 1909#if EV_MULTIPLICITY
1910 struct ev_loop *loop = ev_default_loop_ptr;
1911#endif
1912
1913 ev_default_loop_ptr = 0;
1914
1915#ifndef _WIN32
1916 ev_ref (EV_A); /* child watcher */
1917 ev_signal_stop (EV_A_ &childev);
1918#endif
1919
1920 loop_destroy (EV_A);
1921}
1922
1923void
1924ev_default_fork (void)
1925{
1926#if EV_MULTIPLICITY
1927 struct ev_loop *loop = ev_default_loop_ptr;
1928#endif
1929
1930 postfork = 1; /* must be in line with ev_loop_fork */
1931}
1932
1933/*****************************************************************************/
1934
1935void
1936ev_invoke (EV_P_ void *w, int revents)
1937{
1938 EV_CB_INVOKE ((W)w, revents);
1939}
1940
1941unsigned int
1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1955{
1956 int pri;
1957
1958 for (pri = NUMPRI; pri--; )
1959 while (pendingcnt [pri])
562 { 1960 {
563 struct ev_periodic *w = periodics [0]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
564 1962
565 /* first reschedule or stop timer */ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
566 if (w->interval) 1964 /* ^ this is no longer true, as pending_w could be here */
1965
1966 p->w->pending = 0;
1967 EV_CB_INVOKE (p->w, p->events);
1968 EV_FREQUENT_CHECK;
1969 }
1970}
1971
1972#if EV_IDLE_ENABLE
1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1976idle_reify (EV_P)
1977{
1978 if (expect_false (idleall))
1979 {
1980 int pri;
1981
1982 for (pri = NUMPRI; pri--; )
567 { 1983 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1984 if (pendingcnt [pri])
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1985 break;
570 downheap ((WT *)periodics, periodiccnt, 0);
571 }
572 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */
574 1986
575 event ((W)w, EV_PERIODIC); 1987 if (idlecnt [pri])
576 }
577}
578
579static void
580periodics_reschedule (ev_tstamp diff)
581{
582 int i;
583
584 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i)
586 {
587 struct ev_periodic *w = periodics [i];
588
589 if (w->interval)
590 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval;
592
593 if (fabs (diff) >= 1e-4)
594 { 1988 {
595 ev_periodic_stop (w); 1989 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
596 ev_periodic_start (w); 1990 break;
597
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */
599 } 1991 }
600 } 1992 }
601 } 1993 }
602} 1994}
1995#endif
603 1996
604static void 1997/* make timers pending */
605time_update (void) 1998inline_size void
1999timers_reify (EV_P)
2000{
2001 EV_FREQUENT_CHECK;
2002
2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033}
2034
2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
2038periodics_reify (EV_P)
2039{
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
606{ 2097{
607 int i; 2098 int i;
608 2099
609 ev_now = ev_time (); 2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
610 2104
611 if (have_monotonic) 2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
612 { 2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
2134time_update (EV_P_ ev_tstamp max_block)
2135{
2136#if EV_USE_MONOTONIC
2137 if (expect_true (have_monotonic))
2138 {
2139 int i;
613 ev_tstamp odiff = diff; 2140 ev_tstamp odiff = rtmn_diff;
614 2141
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2142 mn_now = get_clock ();
2143
2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145 /* interpolate in the meantime */
2146 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
616 { 2147 {
617 now = get_clock (); 2148 ev_rt_now = rtmn_diff + mn_now;
2149 return;
2150 }
2151
2152 now_floor = mn_now;
2153 ev_rt_now = ev_time ();
2154
2155 /* loop a few times, before making important decisions.
2156 * on the choice of "4": one iteration isn't enough,
2157 * in case we get preempted during the calls to
2158 * ev_time and get_clock. a second call is almost guaranteed
2159 * to succeed in that case, though. and looping a few more times
2160 * doesn't hurt either as we only do this on time-jumps or
2161 * in the unlikely event of having been preempted here.
2162 */
2163 for (i = 4; --i; )
2164 {
618 diff = ev_now - now; 2165 rtmn_diff = ev_rt_now - mn_now;
619 2166
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
621 return; /* all is well */ 2168 return; /* all is well */
622 2169
623 ev_now = ev_time (); 2170 ev_rt_now = ev_time ();
2171 mn_now = get_clock ();
2172 now_floor = mn_now;
624 } 2173 }
625 2174
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */ 2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2177# if EV_PERIODIC_ENABLE
2178 periodics_reschedule (EV_A);
2179# endif
628 } 2180 }
629 else 2181 else
2182#endif
630 { 2183 {
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 2184 ev_rt_now = ev_time ();
2185
2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
632 { 2187 {
633 periodics_reschedule (ev_now - now);
634
635 /* adjust timers. this is easy, as the offset is the same for all */ 2188 /* adjust timers. this is easy, as the offset is the same for all of them */
636 for (i = 0; i < timercnt; ++i) 2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
637 timers [i]->at += diff; 2190#if EV_PERIODIC_ENABLE
2191 periodics_reschedule (EV_A);
2192#endif
638 } 2193 }
639 2194
640 now = ev_now; 2195 mn_now = ev_rt_now;
641 } 2196 }
642} 2197}
643 2198
644int ev_loop_done; 2199void
645
646void ev_loop (int flags) 2200ev_loop (EV_P_ int flags)
647{ 2201{
648 double block; 2202#if EV_MINIMAL < 2
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2203 ++loop_depth;
2204#endif
2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
650 2211
651 do 2212 do
652 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
2218#ifndef _WIN32
2219 if (expect_false (curpid)) /* penalise the forking check even more */
2220 if (expect_false (getpid () != curpid))
2221 {
2222 curpid = getpid ();
2223 postfork = 1;
2224 }
2225#endif
2226
2227#if EV_FORK_ENABLE
2228 /* we might have forked, so queue fork handlers */
2229 if (expect_false (postfork))
2230 if (forkcnt)
2231 {
2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2233 EV_INVOKE_PENDING;
2234 }
2235#endif
2236
653 /* queue check watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
654 if (preparecnt) 2238 if (expect_false (preparecnt))
655 { 2239 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
657 call_pending (); 2241 EV_INVOKE_PENDING;
658 } 2242 }
659 2243
2244 if (expect_false (loop_done))
2245 break;
2246
2247 /* we might have forked, so reify kernel state if necessary */
2248 if (expect_false (postfork))
2249 loop_fork (EV_A);
2250
660 /* update fd-related kernel structures */ 2251 /* update fd-related kernel structures */
661 fd_reify (); 2252 fd_reify (EV_A);
662 2253
663 /* calculate blocking time */ 2254 /* calculate blocking time */
2255 {
2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
664 2258
665 /* we only need this for !monotonic clockor timers, but as we basically 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
666 always have timers, we just calculate it always */
667 ev_now = ev_time ();
668
669 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.;
671 else
672 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
2264 /* update time to cancel out callback processing overhead */
2265 time_update (EV_A_ 1e100);
2266
673 block = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
674 2268
675 if (timercnt) 2269 if (timercnt)
676 { 2270 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
678 if (block > to) block = to; 2272 if (waittime > to) waittime = to;
679 } 2273 }
680 2274
2275#if EV_PERIODIC_ENABLE
681 if (periodiccnt) 2276 if (periodiccnt)
682 { 2277 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
684 if (block > to) block = to; 2279 if (waittime > to) waittime = to;
685 } 2280 }
2281#endif
686 2282
687 if (block < 0.) block = 0.; 2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
688 } 2301 }
689 2302
690 method_poll (block); 2303#if EV_MINIMAL < 2
2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
691 2309
692 /* update ev_now, do magic */ 2310 /* update ev_rt_now, do magic */
693 time_update (); 2311 time_update (EV_A_ waittime + sleeptime);
2312 }
694 2313
695 /* queue pending timers and reschedule them */ 2314 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */ 2315 timers_reify (EV_A); /* relative timers called last */
2316#if EV_PERIODIC_ENABLE
697 periodics_reify (); /* absolute timers called first */ 2317 periodics_reify (EV_A); /* absolute timers called first */
2318#endif
698 2319
2320#if EV_IDLE_ENABLE
699 /* queue idle watchers unless io or timers are pending */ 2321 /* queue idle watchers unless other events are pending */
700 if (!pendingcnt) 2322 idle_reify (EV_A);
701 queue_events ((W *)idles, idlecnt, EV_IDLE); 2323#endif
702 2324
703 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
704 if (checkcnt) 2326 if (expect_false (checkcnt))
705 queue_events ((W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
706 2328
707 call_pending (); 2329 EV_INVOKE_PENDING;
708 } 2330 }
709 while (!ev_loop_done); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
710 2336
711 if (ev_loop_done != 2) 2337 if (loop_done == EVUNLOOP_ONE)
2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
2343}
2344
2345void
2346ev_unloop (EV_P_ int how)
2347{
712 ev_loop_done = 0; 2348 loop_done = how;
2349}
2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
713} 2386}
714 2387
715/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
716 2390
717static void 2391inline_size void
718wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
719{ 2393{
720 elem->next = *head; 2394 elem->next = *head;
721 *head = elem; 2395 *head = elem;
722} 2396}
723 2397
724static void 2398inline_size void
725wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
726{ 2400{
727 while (*head) 2401 while (*head)
728 { 2402 {
729 if (*head == elem) 2403 if (*head == elem)
734 2408
735 head = &(*head)->next; 2409 head = &(*head)->next;
736 } 2410 }
737} 2411}
738 2412
739static void 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
740ev_clear_pending (W w) 2415clear_pending (EV_P_ W w)
741{ 2416{
742 if (w->pending) 2417 if (w->pending)
743 { 2418 {
744 pendings [w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
745 w->pending = 0; 2420 w->pending = 0;
746 } 2421 }
747} 2422}
748 2423
749static void 2424int
2425ev_clear_pending (EV_P_ void *w)
2426{
2427 W w_ = (W)w;
2428 int pending = w_->pending;
2429
2430 if (expect_true (pending))
2431 {
2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2434 w_->pending = 0;
2435 return p->events;
2436 }
2437 else
2438 return 0;
2439}
2440
2441inline_size void
2442pri_adjust (EV_P_ W w)
2443{
2444 int pri = ev_priority (w);
2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2447 ev_set_priority (w, pri);
2448}
2449
2450inline_speed void
750ev_start (W w, int active) 2451ev_start (EV_P_ W w, int active)
751{ 2452{
2453 pri_adjust (EV_A_ w);
752 w->active = active; 2454 w->active = active;
2455 ev_ref (EV_A);
753} 2456}
754 2457
755static void 2458inline_size void
756ev_stop (W w) 2459ev_stop (EV_P_ W w)
757{ 2460{
2461 ev_unref (EV_A);
758 w->active = 0; 2462 w->active = 0;
759} 2463}
760 2464
761/*****************************************************************************/ 2465/*****************************************************************************/
762 2466
763void 2467void noinline
764ev_io_start (struct ev_io *w) 2468ev_io_start (EV_P_ ev_io *w)
765{ 2469{
2470 int fd = w->fd;
2471
766 if (ev_is_active (w)) 2472 if (expect_false (ev_is_active (w)))
767 return; 2473 return;
768 2474
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
772 2477
2478 EV_FREQUENT_CHECK;
2479
773 ev_start ((W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
776 2483
777 fd_change (fd); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
778} 2485 w->events &= ~EV__IOFDSET;
779 2486
780void 2487 EV_FREQUENT_CHECK;
2488}
2489
2490void noinline
781ev_io_stop (struct ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
782{ 2492{
783 ev_clear_pending ((W)w); 2493 clear_pending (EV_A_ (W)w);
784 if (!ev_is_active (w)) 2494 if (expect_false (!ev_is_active (w)))
785 return; 2495 return;
786 2496
2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2498
2499 EV_FREQUENT_CHECK;
2500
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w); 2502 ev_stop (EV_A_ (W)w);
789 2503
790 fd_change (w->fd); 2504 fd_change (EV_A_ w->fd, 1);
791}
792 2505
793void 2506 EV_FREQUENT_CHECK;
2507}
2508
2509void noinline
794ev_timer_start (struct ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
795{ 2511{
796 if (ev_is_active (w)) 2512 if (expect_false (ev_is_active (w)))
797 return; 2513 return;
798 2514
799 w->at += now; 2515 ev_at (w) += mn_now;
800 2516
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802 2518
803 ev_start ((W)w, ++timercnt); 2519 EV_FREQUENT_CHECK;
804 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1);
807}
808 2520
809void 2521 ++timercnt;
2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
2527
2528 EV_FREQUENT_CHECK;
2529
2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2531}
2532
2533void noinline
810ev_timer_stop (struct ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
811{ 2535{
812 ev_clear_pending ((W)w); 2536 clear_pending (EV_A_ (W)w);
813 if (!ev_is_active (w)) 2537 if (expect_false (!ev_is_active (w)))
814 return; 2538 return;
815 2539
816 if (w->active < timercnt--) 2540 EV_FREQUENT_CHECK;
2541
2542 {
2543 int active = ev_active (w);
2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
2549 if (expect_true (active < timercnt + HEAP0))
817 { 2550 {
818 timers [w->active - 1] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
819 downheap ((WT *)timers, timercnt, w->active - 1); 2552 adjustheap (timers, timercnt, active);
820 } 2553 }
2554 }
821 2555
822 w->at = w->repeat; 2556 EV_FREQUENT_CHECK;
823 2557
2558 ev_at (w) -= mn_now;
2559
824 ev_stop ((W)w); 2560 ev_stop (EV_A_ (W)w);
825} 2561}
826 2562
827void 2563void noinline
828ev_timer_again (struct ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
829{ 2565{
2566 EV_FREQUENT_CHECK;
2567
830 if (ev_is_active (w)) 2568 if (ev_is_active (w))
831 { 2569 {
832 if (w->repeat) 2570 if (w->repeat)
833 { 2571 {
834 w->at = now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
835 downheap ((WT *)timers, timercnt, w->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
836 } 2575 }
837 else 2576 else
838 ev_timer_stop (w); 2577 ev_timer_stop (EV_A_ w);
839 } 2578 }
840 else if (w->repeat) 2579 else if (w->repeat)
2580 {
2581 ev_at (w) = w->repeat;
841 ev_timer_start (w); 2582 ev_timer_start (EV_A_ w);
842} 2583 }
843 2584
844void 2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592}
2593
2594#if EV_PERIODIC_ENABLE
2595void noinline
845ev_periodic_start (struct ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
846{ 2597{
847 if (ev_is_active (w)) 2598 if (expect_false (ev_is_active (w)))
848 return; 2599 return;
849 2600
2601 if (w->reschedule_cb)
2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2603 else if (w->interval)
2604 {
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
851
852 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2608 }
2609 else
2610 ev_at (w) = w->offset;
855 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
856 ev_start ((W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
857 array_needsize (periodics, periodicmax, periodiccnt, ); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
858 periodics [periodiccnt - 1] = w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
859 upheap ((WT *)periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
860} 2619 upheap (periodics, ev_active (w));
861 2620
862void 2621 EV_FREQUENT_CHECK;
2622
2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2624}
2625
2626void noinline
863ev_periodic_stop (struct ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
864{ 2628{
865 ev_clear_pending ((W)w); 2629 clear_pending (EV_A_ (W)w);
866 if (!ev_is_active (w)) 2630 if (expect_false (!ev_is_active (w)))
867 return; 2631 return;
868 2632
869 if (w->active < periodiccnt--) 2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
2642 if (expect_true (active < periodiccnt + HEAP0))
870 { 2643 {
871 periodics [w->active - 1] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2645 adjustheap (periodics, periodiccnt, active);
873 } 2646 }
2647 }
874 2648
2649 EV_FREQUENT_CHECK;
2650
875 ev_stop ((W)w); 2651 ev_stop (EV_A_ (W)w);
876} 2652}
877 2653
878void 2654void noinline
2655ev_periodic_again (EV_P_ ev_periodic *w)
2656{
2657 /* TODO: use adjustheap and recalculation */
2658 ev_periodic_stop (EV_A_ w);
2659 ev_periodic_start (EV_A_ w);
2660}
2661#endif
2662
2663#ifndef SA_RESTART
2664# define SA_RESTART 0
2665#endif
2666
2667void noinline
879ev_signal_start (struct ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
880{ 2669{
2670#if EV_MULTIPLICITY
2671 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2672#endif
881 if (ev_is_active (w)) 2673 if (expect_false (ev_is_active (w)))
882 return; 2674 return;
883 2675
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2676 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
885 2677
2678 EV_FREQUENT_CHECK;
2679
2680#if EV_USE_SIGNALFD
2681 if (sigfd == -2)
2682 {
2683 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2684 if (sigfd < 0 && errno == EINVAL)
2685 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2686
2687 if (sigfd >= 0)
2688 {
2689 fd_intern (sigfd); /* doing it twice will not hurt */
2690
2691 sigemptyset (&sigfd_set);
2692
2693 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2694 ev_set_priority (&sigfd_w, EV_MAXPRI);
2695 ev_io_start (EV_A_ &sigfd_w);
2696 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2697 }
2698 }
2699
2700 if (sigfd >= 0)
2701 {
2702 /* TODO: check .head */
2703 sigaddset (&sigfd_set, w->signum);
2704 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2705
2706 signalfd (sigfd, &sigfd_set, 0);
2707 }
2708 else
2709#endif
2710 evpipe_init (EV_A);
2711
2712 {
2713#ifndef _WIN32
2714 sigset_t full, prev;
2715 sigfillset (&full);
2716 sigprocmask (SIG_SETMASK, &full, &prev);
2717#endif
2718
2719 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2720
2721#ifndef _WIN32
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0)/*TODO*/
2724# endif
2725 sigdelset (&prev, w->signum);
2726 sigprocmask (SIG_SETMASK, &prev, 0);
2727#endif
2728 }
2729
886 ev_start ((W)w, 1); 2730 ev_start (EV_A_ (W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2731 wlist_add (&signals [w->signum - 1].head, (WL)w);
889 2732
890 if (!w->next) 2733 if (!((WL)w)->next)
891 { 2734 {
2735#if _WIN32
2736 signal (w->signum, ev_sighandler);
2737#else
2738# if EV_USE_SIGNALFD
2739 if (sigfd < 0) /*TODO*/
2740# endif
2741 {
892 struct sigaction sa; 2742 struct sigaction sa = { };
893 sa.sa_handler = sighandler; 2743 sa.sa_handler = ev_sighandler;
894 sigfillset (&sa.sa_mask); 2744 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0; 2745 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
896 sigaction (w->signum, &sa, 0); 2746 sigaction (w->signum, &sa, 0);
2747 }
2748#endif
897 } 2749 }
898}
899 2750
900void 2751 EV_FREQUENT_CHECK;
2752}
2753
2754void noinline
901ev_signal_stop (struct ev_signal *w) 2755ev_signal_stop (EV_P_ ev_signal *w)
902{ 2756{
903 ev_clear_pending ((W)w); 2757 clear_pending (EV_A_ (W)w);
904 if (!ev_is_active (w)) 2758 if (expect_false (!ev_is_active (w)))
905 return; 2759 return;
906 2760
2761 EV_FREQUENT_CHECK;
2762
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2763 wlist_del (&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w); 2764 ev_stop (EV_A_ (W)w);
909 2765
910 if (!signals [w->signum - 1].head) 2766 if (!signals [w->signum - 1].head)
2767#if EV_USE_SIGNALFD
2768 if (sigfd >= 0)
2769 {
2770 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2771 sigdelset (&sigfd_set, w->signum);
2772 signalfd (sigfd, &sigfd_set, 0);
2773 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2774 /*TODO: maybe unblock signal? */
2775 }
2776 else
2777#endif
911 signal (w->signum, SIG_DFL); 2778 signal (w->signum, SIG_DFL);
912}
913 2779
2780 EV_FREQUENT_CHECK;
2781}
2782
914void 2783void
915ev_idle_start (struct ev_idle *w) 2784ev_child_start (EV_P_ ev_child *w)
916{ 2785{
2786#if EV_MULTIPLICITY
2787 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2788#endif
917 if (ev_is_active (w)) 2789 if (expect_false (ev_is_active (w)))
918 return; 2790 return;
919 2791
920 ev_start ((W)w, ++idlecnt); 2792 EV_FREQUENT_CHECK;
921 array_needsize (idles, idlemax, idlecnt, );
922 idles [idlecnt - 1] = w;
923}
924 2793
2794 ev_start (EV_A_ (W)w, 1);
2795 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2796
2797 EV_FREQUENT_CHECK;
2798}
2799
925void 2800void
926ev_idle_stop (struct ev_idle *w) 2801ev_child_stop (EV_P_ ev_child *w)
927{ 2802{
928 ev_clear_pending ((W)w); 2803 clear_pending (EV_A_ (W)w);
929 if (ev_is_active (w)) 2804 if (expect_false (!ev_is_active (w)))
930 return; 2805 return;
931 2806
932 idles [w->active - 1] = idles [--idlecnt]; 2807 EV_FREQUENT_CHECK;
2808
2809 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
933 ev_stop ((W)w); 2810 ev_stop (EV_A_ (W)w);
934}
935 2811
936void 2812 EV_FREQUENT_CHECK;
937ev_prepare_start (struct ev_prepare *w) 2813}
2814
2815#if EV_STAT_ENABLE
2816
2817# ifdef _WIN32
2818# undef lstat
2819# define lstat(a,b) _stati64 (a,b)
2820# endif
2821
2822#define DEF_STAT_INTERVAL 5.0074891
2823#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2824#define MIN_STAT_INTERVAL 0.1074891
2825
2826static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2827
2828#if EV_USE_INOTIFY
2829# define EV_INOTIFY_BUFSIZE 8192
2830
2831static void noinline
2832infy_add (EV_P_ ev_stat *w)
938{ 2833{
939 if (ev_is_active (w)) 2834 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2835
2836 if (w->wd < 0)
2837 {
2838 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2839 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2840
2841 /* monitor some parent directory for speedup hints */
2842 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2843 /* but an efficiency issue only */
2844 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2845 {
2846 char path [4096];
2847 strcpy (path, w->path);
2848
2849 do
2850 {
2851 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2852 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2853
2854 char *pend = strrchr (path, '/');
2855
2856 if (!pend || pend == path)
2857 break;
2858
2859 *pend = 0;
2860 w->wd = inotify_add_watch (fs_fd, path, mask);
2861 }
2862 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2863 }
2864 }
2865
2866 if (w->wd >= 0)
2867 {
2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873 struct statfs sfs;
2874
2875 if (fs_2625 && !statfs (w->path, &sfs))
2876 if (sfs.f_type == 0x1373 /* devfs */
2877 || sfs.f_type == 0xEF53 /* ext2/3 */
2878 || sfs.f_type == 0x3153464a /* jfs */
2879 || sfs.f_type == 0x52654973 /* reiser3 */
2880 || sfs.f_type == 0x01021994 /* tempfs */
2881 || sfs.f_type == 0x58465342 /* xfs */)
2882 return;
2883
2884 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2885 ev_timer_again (EV_A_ &w->timer);
2886 }
2887}
2888
2889static void noinline
2890infy_del (EV_P_ ev_stat *w)
2891{
2892 int slot;
2893 int wd = w->wd;
2894
2895 if (wd < 0)
940 return; 2896 return;
941 2897
2898 w->wd = -2;
2899 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2900 wlist_del (&fs_hash [slot].head, (WL)w);
2901
2902 /* remove this watcher, if others are watching it, they will rearm */
2903 inotify_rm_watch (fs_fd, wd);
2904}
2905
2906static void noinline
2907infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2908{
2909 if (slot < 0)
2910 /* overflow, need to check for all hash slots */
2911 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2912 infy_wd (EV_A_ slot, wd, ev);
2913 else
2914 {
2915 WL w_;
2916
2917 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2918 {
2919 ev_stat *w = (ev_stat *)w_;
2920 w_ = w_->next; /* lets us remove this watcher and all before it */
2921
2922 if (w->wd == wd || wd == -1)
2923 {
2924 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2925 {
2926 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2927 w->wd = -1;
2928 infy_add (EV_A_ w); /* re-add, no matter what */
2929 }
2930
2931 stat_timer_cb (EV_A_ &w->timer, 0);
2932 }
2933 }
2934 }
2935}
2936
2937static void
2938infy_cb (EV_P_ ev_io *w, int revents)
2939{
2940 char buf [EV_INOTIFY_BUFSIZE];
2941 struct inotify_event *ev = (struct inotify_event *)buf;
2942 int ofs;
2943 int len = read (fs_fd, buf, sizeof (buf));
2944
2945 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2946 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2947}
2948
2949inline_size void
2950check_2625 (EV_P)
2951{
2952 /* kernels < 2.6.25 are borked
2953 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2954 */
2955 struct utsname buf;
2956 int major, minor, micro;
2957
2958 if (uname (&buf))
2959 return;
2960
2961 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2962 return;
2963
2964 if (major < 2
2965 || (major == 2 && minor < 6)
2966 || (major == 2 && minor == 6 && micro < 25))
2967 return;
2968
2969 fs_2625 = 1;
2970}
2971
2972inline_size void
2973infy_init (EV_P)
2974{
2975 if (fs_fd != -2)
2976 return;
2977
2978 fs_fd = -1;
2979
2980 check_2625 (EV_A);
2981
2982 fs_fd = inotify_init ();
2983
2984 if (fs_fd >= 0)
2985 {
2986 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2987 ev_set_priority (&fs_w, EV_MAXPRI);
2988 ev_io_start (EV_A_ &fs_w);
2989 }
2990}
2991
2992inline_size void
2993infy_fork (EV_P)
2994{
2995 int slot;
2996
2997 if (fs_fd < 0)
2998 return;
2999
3000 close (fs_fd);
3001 fs_fd = inotify_init ();
3002
3003 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3004 {
3005 WL w_ = fs_hash [slot].head;
3006 fs_hash [slot].head = 0;
3007
3008 while (w_)
3009 {
3010 ev_stat *w = (ev_stat *)w_;
3011 w_ = w_->next; /* lets us add this watcher */
3012
3013 w->wd = -1;
3014
3015 if (fs_fd >= 0)
3016 infy_add (EV_A_ w); /* re-add, no matter what */
3017 else
3018 ev_timer_again (EV_A_ &w->timer);
3019 }
3020 }
3021}
3022
3023#endif
3024
3025#ifdef _WIN32
3026# define EV_LSTAT(p,b) _stati64 (p, b)
3027#else
3028# define EV_LSTAT(p,b) lstat (p, b)
3029#endif
3030
3031void
3032ev_stat_stat (EV_P_ ev_stat *w)
3033{
3034 if (lstat (w->path, &w->attr) < 0)
3035 w->attr.st_nlink = 0;
3036 else if (!w->attr.st_nlink)
3037 w->attr.st_nlink = 1;
3038}
3039
3040static void noinline
3041stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3042{
3043 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3044
3045 /* we copy this here each the time so that */
3046 /* prev has the old value when the callback gets invoked */
3047 w->prev = w->attr;
3048 ev_stat_stat (EV_A_ w);
3049
3050 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3051 if (
3052 w->prev.st_dev != w->attr.st_dev
3053 || w->prev.st_ino != w->attr.st_ino
3054 || w->prev.st_mode != w->attr.st_mode
3055 || w->prev.st_nlink != w->attr.st_nlink
3056 || w->prev.st_uid != w->attr.st_uid
3057 || w->prev.st_gid != w->attr.st_gid
3058 || w->prev.st_rdev != w->attr.st_rdev
3059 || w->prev.st_size != w->attr.st_size
3060 || w->prev.st_atime != w->attr.st_atime
3061 || w->prev.st_mtime != w->attr.st_mtime
3062 || w->prev.st_ctime != w->attr.st_ctime
3063 ) {
3064 #if EV_USE_INOTIFY
3065 if (fs_fd >= 0)
3066 {
3067 infy_del (EV_A_ w);
3068 infy_add (EV_A_ w);
3069 ev_stat_stat (EV_A_ w); /* avoid race... */
3070 }
3071 #endif
3072
3073 ev_feed_event (EV_A_ w, EV_STAT);
3074 }
3075}
3076
3077void
3078ev_stat_start (EV_P_ ev_stat *w)
3079{
3080 if (expect_false (ev_is_active (w)))
3081 return;
3082
3083 ev_stat_stat (EV_A_ w);
3084
3085 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3086 w->interval = MIN_STAT_INTERVAL;
3087
3088 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3089 ev_set_priority (&w->timer, ev_priority (w));
3090
3091#if EV_USE_INOTIFY
3092 infy_init (EV_A);
3093
3094 if (fs_fd >= 0)
3095 infy_add (EV_A_ w);
3096 else
3097#endif
3098 ev_timer_again (EV_A_ &w->timer);
3099
3100 ev_start (EV_A_ (W)w, 1);
3101
3102 EV_FREQUENT_CHECK;
3103}
3104
3105void
3106ev_stat_stop (EV_P_ ev_stat *w)
3107{
3108 clear_pending (EV_A_ (W)w);
3109 if (expect_false (!ev_is_active (w)))
3110 return;
3111
3112 EV_FREQUENT_CHECK;
3113
3114#if EV_USE_INOTIFY
3115 infy_del (EV_A_ w);
3116#endif
3117 ev_timer_stop (EV_A_ &w->timer);
3118
3119 ev_stop (EV_A_ (W)w);
3120
3121 EV_FREQUENT_CHECK;
3122}
3123#endif
3124
3125#if EV_IDLE_ENABLE
3126void
3127ev_idle_start (EV_P_ ev_idle *w)
3128{
3129 if (expect_false (ev_is_active (w)))
3130 return;
3131
3132 pri_adjust (EV_A_ (W)w);
3133
3134 EV_FREQUENT_CHECK;
3135
3136 {
3137 int active = ++idlecnt [ABSPRI (w)];
3138
3139 ++idleall;
3140 ev_start (EV_A_ (W)w, active);
3141
3142 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3143 idles [ABSPRI (w)][active - 1] = w;
3144 }
3145
3146 EV_FREQUENT_CHECK;
3147}
3148
3149void
3150ev_idle_stop (EV_P_ ev_idle *w)
3151{
3152 clear_pending (EV_A_ (W)w);
3153 if (expect_false (!ev_is_active (w)))
3154 return;
3155
3156 EV_FREQUENT_CHECK;
3157
3158 {
3159 int active = ev_active (w);
3160
3161 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3162 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3163
3164 ev_stop (EV_A_ (W)w);
3165 --idleall;
3166 }
3167
3168 EV_FREQUENT_CHECK;
3169}
3170#endif
3171
3172void
3173ev_prepare_start (EV_P_ ev_prepare *w)
3174{
3175 if (expect_false (ev_is_active (w)))
3176 return;
3177
3178 EV_FREQUENT_CHECK;
3179
942 ev_start ((W)w, ++preparecnt); 3180 ev_start (EV_A_ (W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, ); 3181 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
944 prepares [preparecnt - 1] = w; 3182 prepares [preparecnt - 1] = w;
945}
946 3183
3184 EV_FREQUENT_CHECK;
3185}
3186
947void 3187void
948ev_prepare_stop (struct ev_prepare *w) 3188ev_prepare_stop (EV_P_ ev_prepare *w)
949{ 3189{
950 ev_clear_pending ((W)w); 3190 clear_pending (EV_A_ (W)w);
951 if (ev_is_active (w)) 3191 if (expect_false (!ev_is_active (w)))
952 return; 3192 return;
953 3193
3194 EV_FREQUENT_CHECK;
3195
3196 {
3197 int active = ev_active (w);
3198
954 prepares [w->active - 1] = prepares [--preparecnt]; 3199 prepares [active - 1] = prepares [--preparecnt];
3200 ev_active (prepares [active - 1]) = active;
3201 }
3202
955 ev_stop ((W)w); 3203 ev_stop (EV_A_ (W)w);
956}
957 3204
3205 EV_FREQUENT_CHECK;
3206}
3207
958void 3208void
959ev_check_start (struct ev_check *w) 3209ev_check_start (EV_P_ ev_check *w)
960{ 3210{
961 if (ev_is_active (w)) 3211 if (expect_false (ev_is_active (w)))
962 return; 3212 return;
963 3213
3214 EV_FREQUENT_CHECK;
3215
964 ev_start ((W)w, ++checkcnt); 3216 ev_start (EV_A_ (W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, ); 3217 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
966 checks [checkcnt - 1] = w; 3218 checks [checkcnt - 1] = w;
967}
968 3219
3220 EV_FREQUENT_CHECK;
3221}
3222
969void 3223void
970ev_check_stop (struct ev_check *w) 3224ev_check_stop (EV_P_ ev_check *w)
971{ 3225{
972 ev_clear_pending ((W)w); 3226 clear_pending (EV_A_ (W)w);
973 if (ev_is_active (w)) 3227 if (expect_false (!ev_is_active (w)))
974 return; 3228 return;
975 3229
3230 EV_FREQUENT_CHECK;
3231
3232 {
3233 int active = ev_active (w);
3234
976 checks [w->active - 1] = checks [--checkcnt]; 3235 checks [active - 1] = checks [--checkcnt];
3236 ev_active (checks [active - 1]) = active;
3237 }
3238
977 ev_stop ((W)w); 3239 ev_stop (EV_A_ (W)w);
978}
979 3240
980void 3241 EV_FREQUENT_CHECK;
981ev_child_start (struct ev_child *w) 3242}
3243
3244#if EV_EMBED_ENABLE
3245void noinline
3246ev_embed_sweep (EV_P_ ev_embed *w)
982{ 3247{
3248 ev_loop (w->other, EVLOOP_NONBLOCK);
3249}
3250
3251static void
3252embed_io_cb (EV_P_ ev_io *io, int revents)
3253{
3254 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3255
983 if (ev_is_active (w)) 3256 if (ev_cb (w))
3257 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3258 else
3259 ev_loop (w->other, EVLOOP_NONBLOCK);
3260}
3261
3262static void
3263embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3264{
3265 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3266
3267 {
3268 struct ev_loop *loop = w->other;
3269
3270 while (fdchangecnt)
3271 {
3272 fd_reify (EV_A);
3273 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3274 }
3275 }
3276}
3277
3278static void
3279embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3280{
3281 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3282
3283 ev_embed_stop (EV_A_ w);
3284
3285 {
3286 struct ev_loop *loop = w->other;
3287
3288 ev_loop_fork (EV_A);
3289 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3290 }
3291
3292 ev_embed_start (EV_A_ w);
3293}
3294
3295#if 0
3296static void
3297embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3298{
3299 ev_idle_stop (EV_A_ idle);
3300}
3301#endif
3302
3303void
3304ev_embed_start (EV_P_ ev_embed *w)
3305{
3306 if (expect_false (ev_is_active (w)))
984 return; 3307 return;
985 3308
3309 {
3310 struct ev_loop *loop = w->other;
3311 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3312 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3313 }
3314
3315 EV_FREQUENT_CHECK;
3316
3317 ev_set_priority (&w->io, ev_priority (w));
3318 ev_io_start (EV_A_ &w->io);
3319
3320 ev_prepare_init (&w->prepare, embed_prepare_cb);
3321 ev_set_priority (&w->prepare, EV_MINPRI);
3322 ev_prepare_start (EV_A_ &w->prepare);
3323
3324 ev_fork_init (&w->fork, embed_fork_cb);
3325 ev_fork_start (EV_A_ &w->fork);
3326
3327 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3328
986 ev_start ((W)w, 1); 3329 ev_start (EV_A_ (W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989 3330
3331 EV_FREQUENT_CHECK;
3332}
3333
990void 3334void
991ev_child_stop (struct ev_child *w) 3335ev_embed_stop (EV_P_ ev_embed *w)
992{ 3336{
993 ev_clear_pending ((W)w); 3337 clear_pending (EV_A_ (W)w);
994 if (ev_is_active (w)) 3338 if (expect_false (!ev_is_active (w)))
995 return; 3339 return;
996 3340
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3341 EV_FREQUENT_CHECK;
3342
3343 ev_io_stop (EV_A_ &w->io);
3344 ev_prepare_stop (EV_A_ &w->prepare);
3345 ev_fork_stop (EV_A_ &w->fork);
3346
3347 EV_FREQUENT_CHECK;
3348}
3349#endif
3350
3351#if EV_FORK_ENABLE
3352void
3353ev_fork_start (EV_P_ ev_fork *w)
3354{
3355 if (expect_false (ev_is_active (w)))
3356 return;
3357
3358 EV_FREQUENT_CHECK;
3359
3360 ev_start (EV_A_ (W)w, ++forkcnt);
3361 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3362 forks [forkcnt - 1] = w;
3363
3364 EV_FREQUENT_CHECK;
3365}
3366
3367void
3368ev_fork_stop (EV_P_ ev_fork *w)
3369{
3370 clear_pending (EV_A_ (W)w);
3371 if (expect_false (!ev_is_active (w)))
3372 return;
3373
3374 EV_FREQUENT_CHECK;
3375
3376 {
3377 int active = ev_active (w);
3378
3379 forks [active - 1] = forks [--forkcnt];
3380 ev_active (forks [active - 1]) = active;
3381 }
3382
998 ev_stop ((W)w); 3383 ev_stop (EV_A_ (W)w);
3384
3385 EV_FREQUENT_CHECK;
999} 3386}
3387#endif
3388
3389#if EV_ASYNC_ENABLE
3390void
3391ev_async_start (EV_P_ ev_async *w)
3392{
3393 if (expect_false (ev_is_active (w)))
3394 return;
3395
3396 evpipe_init (EV_A);
3397
3398 EV_FREQUENT_CHECK;
3399
3400 ev_start (EV_A_ (W)w, ++asynccnt);
3401 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3402 asyncs [asynccnt - 1] = w;
3403
3404 EV_FREQUENT_CHECK;
3405}
3406
3407void
3408ev_async_stop (EV_P_ ev_async *w)
3409{
3410 clear_pending (EV_A_ (W)w);
3411 if (expect_false (!ev_is_active (w)))
3412 return;
3413
3414 EV_FREQUENT_CHECK;
3415
3416 {
3417 int active = ev_active (w);
3418
3419 asyncs [active - 1] = asyncs [--asynccnt];
3420 ev_active (asyncs [active - 1]) = active;
3421 }
3422
3423 ev_stop (EV_A_ (W)w);
3424
3425 EV_FREQUENT_CHECK;
3426}
3427
3428void
3429ev_async_send (EV_P_ ev_async *w)
3430{
3431 w->sent = 1;
3432 evpipe_write (EV_A_ &gotasync);
3433}
3434#endif
1000 3435
1001/*****************************************************************************/ 3436/*****************************************************************************/
1002 3437
1003struct ev_once 3438struct ev_once
1004{ 3439{
1005 struct ev_io io; 3440 ev_io io;
1006 struct ev_timer to; 3441 ev_timer to;
1007 void (*cb)(int revents, void *arg); 3442 void (*cb)(int revents, void *arg);
1008 void *arg; 3443 void *arg;
1009}; 3444};
1010 3445
1011static void 3446static void
1012once_cb (struct ev_once *once, int revents) 3447once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 3448{
1014 void (*cb)(int revents, void *arg) = once->cb; 3449 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 3450 void *arg = once->arg;
1016 3451
1017 ev_io_stop (&once->io); 3452 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 3453 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 3454 ev_free (once);
1020 3455
1021 cb (revents, arg); 3456 cb (revents, arg);
1022} 3457}
1023 3458
1024static void 3459static void
1025once_cb_io (struct ev_io *w, int revents) 3460once_cb_io (EV_P_ ev_io *w, int revents)
1026{ 3461{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3462 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3463
3464 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1028} 3465}
1029 3466
1030static void 3467static void
1031once_cb_to (struct ev_timer *w, int revents) 3468once_cb_to (EV_P_ ev_timer *w, int revents)
1032{ 3469{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3470 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1034}
1035 3471
3472 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3473}
3474
1036void 3475void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3476ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 3477{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 3478 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1040 3479
1041 if (!once) 3480 if (expect_false (!once))
3481 {
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3482 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1043 else 3483 return;
1044 { 3484 }
3485
1045 once->cb = cb; 3486 once->cb = cb;
1046 once->arg = arg; 3487 once->arg = arg;
1047 3488
1048 ev_watcher_init (&once->io, once_cb_io); 3489 ev_init (&once->io, once_cb_io);
1049 if (fd >= 0) 3490 if (fd >= 0)
3491 {
3492 ev_io_set (&once->io, fd, events);
3493 ev_io_start (EV_A_ &once->io);
3494 }
3495
3496 ev_init (&once->to, once_cb_to);
3497 if (timeout >= 0.)
3498 {
3499 ev_timer_set (&once->to, timeout, 0.);
3500 ev_timer_start (EV_A_ &once->to);
3501 }
3502}
3503
3504/*****************************************************************************/
3505
3506#if EV_WALK_ENABLE
3507void
3508ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3509{
3510 int i, j;
3511 ev_watcher_list *wl, *wn;
3512
3513 if (types & (EV_IO | EV_EMBED))
3514 for (i = 0; i < anfdmax; ++i)
3515 for (wl = anfds [i].head; wl; )
1050 { 3516 {
1051 ev_io_set (&once->io, fd, events); 3517 wn = wl->next;
1052 ev_io_start (&once->io); 3518
3519#if EV_EMBED_ENABLE
3520 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3521 {
3522 if (types & EV_EMBED)
3523 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3524 }
3525 else
3526#endif
3527#if EV_USE_INOTIFY
3528 if (ev_cb ((ev_io *)wl) == infy_cb)
3529 ;
3530 else
3531#endif
3532 if ((ev_io *)wl != &pipe_w)
3533 if (types & EV_IO)
3534 cb (EV_A_ EV_IO, wl);
3535
3536 wl = wn;
1053 } 3537 }
1054 3538
1055 ev_watcher_init (&once->to, once_cb_to); 3539 if (types & (EV_TIMER | EV_STAT))
1056 if (timeout >= 0.) 3540 for (i = timercnt + HEAP0; i-- > HEAP0; )
3541#if EV_STAT_ENABLE
3542 /*TODO: timer is not always active*/
3543 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1057 { 3544 {
1058 ev_timer_set (&once->to, timeout, 0.); 3545 if (types & EV_STAT)
1059 ev_timer_start (&once->to); 3546 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1060 } 3547 }
1061 } 3548 else
1062} 3549#endif
3550 if (types & EV_TIMER)
3551 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1063 3552
1064/*****************************************************************************/ 3553#if EV_PERIODIC_ENABLE
3554 if (types & EV_PERIODIC)
3555 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3556 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3557#endif
1065 3558
1066#if 0 3559#if EV_IDLE_ENABLE
3560 if (types & EV_IDLE)
3561 for (j = NUMPRI; i--; )
3562 for (i = idlecnt [j]; i--; )
3563 cb (EV_A_ EV_IDLE, idles [j][i]);
3564#endif
1067 3565
1068struct ev_io wio; 3566#if EV_FORK_ENABLE
3567 if (types & EV_FORK)
3568 for (i = forkcnt; i--; )
3569 if (ev_cb (forks [i]) != embed_fork_cb)
3570 cb (EV_A_ EV_FORK, forks [i]);
3571#endif
1069 3572
1070static void 3573#if EV_ASYNC_ENABLE
1071sin_cb (struct ev_io *w, int revents) 3574 if (types & EV_ASYNC)
1072{ 3575 for (i = asynccnt; i--; )
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3576 cb (EV_A_ EV_ASYNC, asyncs [i]);
1074} 3577#endif
1075 3578
1076static void 3579 if (types & EV_PREPARE)
1077ocb (struct ev_timer *w, int revents) 3580 for (i = preparecnt; i--; )
1078{ 3581#if EV_EMBED_ENABLE
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3582 if (ev_cb (prepares [i]) != embed_prepare_cb)
1080 ev_timer_stop (w); 3583#endif
1081 ev_timer_start (w); 3584 cb (EV_A_ EV_PREPARE, prepares [i]);
1082}
1083 3585
1084static void 3586 if (types & EV_CHECK)
1085scb (struct ev_signal *w, int revents) 3587 for (i = checkcnt; i--; )
1086{ 3588 cb (EV_A_ EV_CHECK, checks [i]);
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091 3589
1092static void 3590 if (types & EV_SIGNAL)
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i) 3591 for (i = 0; i < signalmax; ++i)
1111 { 3592 for (wl = signals [i].head; wl; )
1112 struct ev_timer *w = t + i; 3593 {
1113 ev_watcher_init (w, ocb, i); 3594 wn = wl->next;
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3595 cb (EV_A_ EV_SIGNAL, wl);
1115 ev_timer_start (w); 3596 wl = wn;
1116 if (drand48 () < 0.5) 3597 }
1117 ev_timer_stop (w);
1118 }
1119#endif
1120 3598
1121 struct ev_timer t1; 3599 if (types & EV_CHILD)
1122 ev_timer_init (&t1, ocb, 5, 10); 3600 for (i = EV_PID_HASHSIZE; i--; )
1123 ev_timer_start (&t1); 3601 for (wl = childs [i]; wl; )
1124 3602 {
1125 struct ev_signal sig; 3603 wn = wl->next;
1126 ev_signal_init (&sig, scb, SIGQUIT); 3604 cb (EV_A_ EV_CHILD, wl);
1127 ev_signal_start (&sig); 3605 wl = wn;
1128 3606 }
1129 struct ev_check cw; 3607/* EV_STAT 0x00001000 /* stat data changed */
1130 ev_check_init (&cw, gcb); 3608/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140} 3609}
1141
1142#endif 3610#endif
1143 3611
3612#if EV_MULTIPLICITY
3613 #include "ev_wrap.h"
3614#endif
1144 3615
3616#ifdef __cplusplus
3617}
3618#endif
1145 3619
1146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines