ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.154 by root, Wed Nov 28 11:53:37 2007 UTC vs.
Revision 1.306 by root, Sun Jul 19 06:35:25 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192/* one some platforms, NSIG is one too large. we do not bother */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
142 226
143#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
144# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
145#endif 233#endif
146 234
147#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
149#endif 245#endif
150 246
151#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
153#endif 249#endif
159# define EV_USE_POLL 1 255# define EV_USE_POLL 1
160# endif 256# endif
161#endif 257#endif
162 258
163#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
164# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
165#endif 265#endif
166 266
167#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
169#endif 269#endif
171#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 272# define EV_USE_PORT 0
173#endif 273#endif
174 274
175#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
176# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
177#endif 281#endif
178 282
179#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 284# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
190# else 294# else
191# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
192# endif 296# endif
193#endif 297#endif
194 298
195/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 348
197#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
200#endif 352#endif
202#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
205#endif 357#endif
206 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
207#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 382# include <winsock.h>
209#endif 383#endif
210 384
211#if !EV_STAT_ENABLE 385#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
213#endif 390# endif
391# ifndef EFD_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# endif
394# ifdef __cplusplus
395extern "C" {
396# endif
397int eventfd (unsigned int initval, int flags);
398# ifdef __cplusplus
399}
400# endif
401#endif
214 402
215#if EV_USE_INOTIFY 403#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 404# include <sys/signalfd.h>
217#endif 405#endif
218 406
219/**/ 407/**/
408
409#if EV_VERIFY >= 3
410# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
411#else
412# define EV_FREQUENT_CHECK do { } while (0)
413#endif
414
415/*
416 * This is used to avoid floating point rounding problems.
417 * It is added to ev_rt_now when scheduling periodics
418 * to ensure progress, time-wise, even when rounding
419 * errors are against us.
420 * This value is good at least till the year 4000.
421 * Better solutions welcome.
422 */
423#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 424
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 425#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 426#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 427/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 428
225#if __GNUC__ >= 3 429#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 430# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 431# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 432#else
236# define expect(expr,value) (expr) 433# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 434# define noinline
435# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
436# define inline
437# endif
240#endif 438#endif
241 439
242#define expect_false(expr) expect ((expr) != 0, 0) 440#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 441#define expect_true(expr) expect ((expr) != 0, 1)
442#define inline_size static inline
244 443
444#if EV_MINIMAL
445# define inline_speed static noinline
446#else
447# define inline_speed static inline
448#endif
449
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 450#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
451
452#if EV_MINPRI == EV_MAXPRI
453# define ABSPRI(w) (((W)w), 0)
454#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 455# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
456#endif
247 457
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 458#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 459#define EMPTY2(a,b) /* used to suppress some warnings */
250 460
251typedef ev_watcher *W; 461typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 462typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 463typedef ev_watcher_time *WT;
254 464
465#define ev_active(w) ((W)(w))->active
466#define ev_at(w) ((WT)(w))->at
467
468#if EV_USE_REALTIME
469/* sig_atomic_t is used to avoid per-thread variables or locking but still */
470/* giving it a reasonably high chance of working on typical architetcures */
471static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
472#endif
473
474#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 475static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
476#endif
256 477
257#ifdef _WIN32 478#ifdef _WIN32
258# include "ev_win32.c" 479# include "ev_win32.c"
259#endif 480#endif
260 481
267{ 488{
268 syserr_cb = cb; 489 syserr_cb = cb;
269} 490}
270 491
271static void noinline 492static void noinline
272syserr (const char *msg) 493ev_syserr (const char *msg)
273{ 494{
274 if (!msg) 495 if (!msg)
275 msg = "(libev) system error"; 496 msg = "(libev) system error";
276 497
277 if (syserr_cb) 498 if (syserr_cb)
281 perror (msg); 502 perror (msg);
282 abort (); 503 abort ();
283 } 504 }
284} 505}
285 506
507static void *
508ev_realloc_emul (void *ptr, long size)
509{
510 /* some systems, notably openbsd and darwin, fail to properly
511 * implement realloc (x, 0) (as required by both ansi c-98 and
512 * the single unix specification, so work around them here.
513 */
514
515 if (size)
516 return realloc (ptr, size);
517
518 free (ptr);
519 return 0;
520}
521
286static void *(*alloc)(void *ptr, size_t size) = realloc; 522static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 523
288void 524void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 525ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 526{
291 alloc = cb; 527 alloc = cb;
292} 528}
293 529
294inline_speed void * 530inline_speed void *
295ev_realloc (void *ptr, size_t size) 531ev_realloc (void *ptr, long size)
296{ 532{
297 ptr = alloc (ptr, size); 533 ptr = alloc (ptr, size);
298 534
299 if (!ptr && size) 535 if (!ptr && size)
300 { 536 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 537 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 538 abort ();
303 } 539 }
304 540
305 return ptr; 541 return ptr;
306} 542}
308#define ev_malloc(size) ev_realloc (0, (size)) 544#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 545#define ev_free(ptr) ev_realloc ((ptr), 0)
310 546
311/*****************************************************************************/ 547/*****************************************************************************/
312 548
549/* set in reify when reification needed */
550#define EV_ANFD_REIFY 1
551
552/* file descriptor info structure */
313typedef struct 553typedef struct
314{ 554{
315 WL head; 555 WL head;
316 unsigned char events; 556 unsigned char events; /* the events watched for */
557 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
558 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 559 unsigned char unused;
560#if EV_USE_EPOLL
561 unsigned int egen; /* generation counter to counter epoll bugs */
562#endif
318#if EV_SELECT_IS_WINSOCKET 563#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 564 SOCKET handle;
320#endif 565#endif
321} ANFD; 566} ANFD;
322 567
568/* stores the pending event set for a given watcher */
323typedef struct 569typedef struct
324{ 570{
325 W w; 571 W w;
326 int events; 572 int events; /* the pending event set for the given watcher */
327} ANPENDING; 573} ANPENDING;
328 574
575#if EV_USE_INOTIFY
576/* hash table entry per inotify-id */
329typedef struct 577typedef struct
330{ 578{
331#if EV_USE_INOTIFY
332 WL head; 579 WL head;
333#endif
334} ANFS; 580} ANFS;
581#endif
582
583/* Heap Entry */
584#if EV_HEAP_CACHE_AT
585 /* a heap element */
586 typedef struct {
587 ev_tstamp at;
588 WT w;
589 } ANHE;
590
591 #define ANHE_w(he) (he).w /* access watcher, read-write */
592 #define ANHE_at(he) (he).at /* access cached at, read-only */
593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
594#else
595 /* a heap element */
596 typedef WT ANHE;
597
598 #define ANHE_w(he) (he)
599 #define ANHE_at(he) (he)->at
600 #define ANHE_at_cache(he)
601#endif
335 602
336#if EV_MULTIPLICITY 603#if EV_MULTIPLICITY
337 604
338 struct ev_loop 605 struct ev_loop
339 { 606 {
357 624
358 static int ev_default_loop_ptr; 625 static int ev_default_loop_ptr;
359 626
360#endif 627#endif
361 628
629#if EV_MINIMAL < 2
630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
632# define EV_INVOKE_PENDING invoke_cb (EV_A)
633#else
634# define EV_RELEASE_CB (void)0
635# define EV_ACQUIRE_CB (void)0
636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
637#endif
638
639#define EVUNLOOP_RECURSE 0x80
640
362/*****************************************************************************/ 641/*****************************************************************************/
363 642
643#ifndef EV_HAVE_EV_TIME
364ev_tstamp 644ev_tstamp
365ev_time (void) 645ev_time (void)
366{ 646{
367#if EV_USE_REALTIME 647#if EV_USE_REALTIME
648 if (expect_true (have_realtime))
649 {
368 struct timespec ts; 650 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 651 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 652 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 653 }
654#endif
655
372 struct timeval tv; 656 struct timeval tv;
373 gettimeofday (&tv, 0); 657 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 658 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 659}
660#endif
377 661
378ev_tstamp inline_size 662inline_size ev_tstamp
379get_clock (void) 663get_clock (void)
380{ 664{
381#if EV_USE_MONOTONIC 665#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 666 if (expect_true (have_monotonic))
383 { 667 {
396{ 680{
397 return ev_rt_now; 681 return ev_rt_now;
398} 682}
399#endif 683#endif
400 684
401#define array_roundsize(type,n) (((n) | 4) & ~3) 685void
686ev_sleep (ev_tstamp delay)
687{
688 if (delay > 0.)
689 {
690#if EV_USE_NANOSLEEP
691 struct timespec ts;
692
693 ts.tv_sec = (time_t)delay;
694 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
695
696 nanosleep (&ts, 0);
697#elif defined(_WIN32)
698 Sleep ((unsigned long)(delay * 1e3));
699#else
700 struct timeval tv;
701
702 tv.tv_sec = (time_t)delay;
703 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
704
705 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
706 /* something not guaranteed by newer posix versions, but guaranteed */
707 /* by older ones */
708 select (0, 0, 0, 0, &tv);
709#endif
710 }
711}
712
713/*****************************************************************************/
714
715#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
716
717/* find a suitable new size for the given array, */
718/* hopefully by rounding to a ncie-to-malloc size */
719inline_size int
720array_nextsize (int elem, int cur, int cnt)
721{
722 int ncur = cur + 1;
723
724 do
725 ncur <<= 1;
726 while (cnt > ncur);
727
728 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
729 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
730 {
731 ncur *= elem;
732 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
733 ncur = ncur - sizeof (void *) * 4;
734 ncur /= elem;
735 }
736
737 return ncur;
738}
739
740static noinline void *
741array_realloc (int elem, void *base, int *cur, int cnt)
742{
743 *cur = array_nextsize (elem, *cur, cnt);
744 return ev_realloc (base, elem * *cur);
745}
746
747#define array_init_zero(base,count) \
748 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 749
403#define array_needsize(type,base,cur,cnt,init) \ 750#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 751 if (expect_false ((cnt) > (cur))) \
405 { \ 752 { \
406 int newcnt = cur; \ 753 int ocur_ = (cur); \
407 do \ 754 (base) = (type *)array_realloc \
408 { \ 755 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 756 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 757 }
417 758
759#if 0
418#define array_slim(type,stem) \ 760#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 761 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 762 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 763 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 764 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 765 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 766 }
767#endif
425 768
426#define array_free(stem, idx) \ 769#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 770 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 771
429/*****************************************************************************/ 772/*****************************************************************************/
773
774/* dummy callback for pending events */
775static void noinline
776pendingcb (EV_P_ ev_prepare *w, int revents)
777{
778}
430 779
431void noinline 780void noinline
432ev_feed_event (EV_P_ void *w, int revents) 781ev_feed_event (EV_P_ void *w, int revents)
433{ 782{
434 W w_ = (W)w; 783 W w_ = (W)w;
784 int pri = ABSPRI (w_);
435 785
436 if (expect_false (w_->pending)) 786 if (expect_false (w_->pending))
787 pendings [pri][w_->pending - 1].events |= revents;
788 else
437 { 789 {
790 w_->pending = ++pendingcnt [pri];
791 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
792 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 793 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 794 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 795}
447 796
448void inline_size 797inline_speed void
798feed_reverse (EV_P_ W w)
799{
800 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
801 rfeeds [rfeedcnt++] = w;
802}
803
804inline_size void
805feed_reverse_done (EV_P_ int revents)
806{
807 do
808 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
809 while (rfeedcnt);
810}
811
812inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 813queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 814{
451 int i; 815 int i;
452 816
453 for (i = 0; i < eventcnt; ++i) 817 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 818 ev_feed_event (EV_A_ events [i], type);
455} 819}
456 820
457/*****************************************************************************/ 821/*****************************************************************************/
458 822
459void inline_size 823inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 824fd_event_nc (EV_P_ int fd, int revents)
474{ 825{
475 ANFD *anfd = anfds + fd; 826 ANFD *anfd = anfds + fd;
476 ev_io *w; 827 ev_io *w;
477 828
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 829 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 833 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 834 ev_feed_event (EV_A_ (W)w, ev);
484 } 835 }
485} 836}
486 837
838/* do not submit kernel events for fds that have reify set */
839/* because that means they changed while we were polling for new events */
840inline_speed void
841fd_event (EV_P_ int fd, int revents)
842{
843 ANFD *anfd = anfds + fd;
844
845 if (expect_true (!anfd->reify))
846 fd_event_nc (EV_A_ fd, revents);
847}
848
487void 849void
488ev_feed_fd_event (EV_P_ int fd, int revents) 850ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 851{
852 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 853 fd_event_nc (EV_A_ fd, revents);
491} 854}
492 855
493void inline_size 856/* make sure the external fd watch events are in-sync */
857/* with the kernel/libev internal state */
858inline_size void
494fd_reify (EV_P) 859fd_reify (EV_P)
495{ 860{
496 int i; 861 int i;
497 862
498 for (i = 0; i < fdchangecnt; ++i) 863 for (i = 0; i < fdchangecnt; ++i)
499 { 864 {
500 int fd = fdchanges [i]; 865 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 866 ANFD *anfd = anfds + fd;
502 ev_io *w; 867 ev_io *w;
503 868
504 int events = 0; 869 unsigned char events = 0;
505 870
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 871 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 872 events |= (unsigned char)w->events;
508 873
509#if EV_SELECT_IS_WINSOCKET 874#if EV_SELECT_IS_WINSOCKET
510 if (events) 875 if (events)
511 { 876 {
512 unsigned long argp; 877 unsigned long arg;
878 #ifdef EV_FD_TO_WIN32_HANDLE
879 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
880 #else
513 anfd->handle = _get_osfhandle (fd); 881 anfd->handle = _get_osfhandle (fd);
882 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 883 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 884 }
516#endif 885#endif
517 886
887 {
888 unsigned char o_events = anfd->events;
889 unsigned char o_reify = anfd->reify;
890
518 anfd->reify = 0; 891 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 892 anfd->events = events;
893
894 if (o_events != events || o_reify & EV__IOFDSET)
895 backend_modify (EV_A_ fd, o_events, events);
896 }
522 } 897 }
523 898
524 fdchangecnt = 0; 899 fdchangecnt = 0;
525} 900}
526 901
527void inline_size 902/* something about the given fd changed */
903inline_size void
528fd_change (EV_P_ int fd) 904fd_change (EV_P_ int fd, int flags)
529{ 905{
530 if (expect_false (anfds [fd].reify)) 906 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 907 anfds [fd].reify |= flags;
534 908
909 if (expect_true (!reify))
910 {
535 ++fdchangecnt; 911 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 912 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 913 fdchanges [fdchangecnt - 1] = fd;
914 }
538} 915}
539 916
540void inline_speed 917/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
918inline_speed void
541fd_kill (EV_P_ int fd) 919fd_kill (EV_P_ int fd)
542{ 920{
543 ev_io *w; 921 ev_io *w;
544 922
545 while ((w = (ev_io *)anfds [fd].head)) 923 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 925 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 926 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 927 }
550} 928}
551 929
552int inline_size 930/* check whether the given fd is atcually valid, for error recovery */
931inline_size int
553fd_valid (int fd) 932fd_valid (int fd)
554{ 933{
555#ifdef _WIN32 934#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 935 return _get_osfhandle (fd) != -1;
557#else 936#else
565{ 944{
566 int fd; 945 int fd;
567 946
568 for (fd = 0; fd < anfdmax; ++fd) 947 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 948 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 949 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 950 fd_kill (EV_A_ fd);
572} 951}
573 952
574/* called on ENOMEM in select/poll to kill some fds and retry */ 953/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 954static void noinline
589static void noinline 968static void noinline
590fd_rearm_all (EV_P) 969fd_rearm_all (EV_P)
591{ 970{
592 int fd; 971 int fd;
593 972
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 973 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 974 if (anfds [fd].events)
597 { 975 {
598 anfds [fd].events = 0; 976 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 977 anfds [fd].emask = 0;
978 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
600 } 979 }
601} 980}
602 981
603/*****************************************************************************/ 982/*****************************************************************************/
604 983
605void inline_speed 984/*
606upheap (WT *heap, int k) 985 * the heap functions want a real array index. array index 0 uis guaranteed to not
607{ 986 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
608 WT w = heap [k]; 987 * the branching factor of the d-tree.
988 */
609 989
610 while (k && heap [k >> 1]->at > w->at) 990/*
611 { 991 * at the moment we allow libev the luxury of two heaps,
612 heap [k] = heap [k >> 1]; 992 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
613 ((W)heap [k])->active = k + 1; 993 * which is more cache-efficient.
614 k >>= 1; 994 * the difference is about 5% with 50000+ watchers.
615 } 995 */
996#if EV_USE_4HEAP
616 997
617 heap [k] = w; 998#define DHEAP 4
618 ((W)heap [k])->active = k + 1; 999#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1000#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1001#define UPHEAP_DONE(p,k) ((p) == (k))
619 1002
620} 1003/* away from the root */
621 1004inline_speed void
622void inline_speed
623downheap (WT *heap, int N, int k) 1005downheap (ANHE *heap, int N, int k)
624{ 1006{
625 WT w = heap [k]; 1007 ANHE he = heap [k];
1008 ANHE *E = heap + N + HEAP0;
626 1009
627 while (k < (N >> 1)) 1010 for (;;)
628 { 1011 {
629 int j = k << 1; 1012 ev_tstamp minat;
1013 ANHE *minpos;
1014 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
630 1015
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1016 /* find minimum child */
1017 if (expect_true (pos + DHEAP - 1 < E))
632 ++j; 1018 {
633 1019 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
634 if (w->at <= heap [j]->at) 1020 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1022 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1023 }
1024 else if (pos < E)
1025 {
1026 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1027 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1028 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1029 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1030 }
1031 else
635 break; 1032 break;
636 1033
1034 if (ANHE_at (he) <= minat)
1035 break;
1036
1037 heap [k] = *minpos;
1038 ev_active (ANHE_w (*minpos)) = k;
1039
1040 k = minpos - heap;
1041 }
1042
1043 heap [k] = he;
1044 ev_active (ANHE_w (he)) = k;
1045}
1046
1047#else /* 4HEAP */
1048
1049#define HEAP0 1
1050#define HPARENT(k) ((k) >> 1)
1051#define UPHEAP_DONE(p,k) (!(p))
1052
1053/* away from the root */
1054inline_speed void
1055downheap (ANHE *heap, int N, int k)
1056{
1057 ANHE he = heap [k];
1058
1059 for (;;)
1060 {
1061 int c = k << 1;
1062
1063 if (c > N + HEAP0 - 1)
1064 break;
1065
1066 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1067 ? 1 : 0;
1068
1069 if (ANHE_at (he) <= ANHE_at (heap [c]))
1070 break;
1071
637 heap [k] = heap [j]; 1072 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 1073 ev_active (ANHE_w (heap [k])) = k;
1074
639 k = j; 1075 k = c;
640 } 1076 }
641 1077
642 heap [k] = w; 1078 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 1079 ev_active (ANHE_w (he)) = k;
644} 1080}
1081#endif
645 1082
646void inline_size 1083/* towards the root */
1084inline_speed void
1085upheap (ANHE *heap, int k)
1086{
1087 ANHE he = heap [k];
1088
1089 for (;;)
1090 {
1091 int p = HPARENT (k);
1092
1093 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1094 break;
1095
1096 heap [k] = heap [p];
1097 ev_active (ANHE_w (heap [k])) = k;
1098 k = p;
1099 }
1100
1101 heap [k] = he;
1102 ev_active (ANHE_w (he)) = k;
1103}
1104
1105/* move an element suitably so it is in a correct place */
1106inline_size void
647adjustheap (WT *heap, int N, int k) 1107adjustheap (ANHE *heap, int N, int k)
648{ 1108{
1109 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
649 upheap (heap, k); 1110 upheap (heap, k);
1111 else
650 downheap (heap, N, k); 1112 downheap (heap, N, k);
1113}
1114
1115/* rebuild the heap: this function is used only once and executed rarely */
1116inline_size void
1117reheap (ANHE *heap, int N)
1118{
1119 int i;
1120
1121 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1122 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1123 for (i = 0; i < N; ++i)
1124 upheap (heap, i + HEAP0);
651} 1125}
652 1126
653/*****************************************************************************/ 1127/*****************************************************************************/
654 1128
1129/* associate signal watchers to a signal signal */
655typedef struct 1130typedef struct
656{ 1131{
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
657 WL head; 1135 WL head;
658 sig_atomic_t volatile gotsig; 1136 EV_ATOMIC_T gotsig;
659} ANSIG; 1137} ANSIG;
660 1138
661static ANSIG *signals; 1139static ANSIG signals [EV_NSIG - 1];
662static int signalmax; 1140static EV_ATOMIC_T gotsig;
663 1141
664static int sigpipe [2]; 1142/*****************************************************************************/
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 1143
668void inline_size 1144/* used to prepare libev internal fd's */
669signals_init (ANSIG *base, int count) 1145/* this is not fork-safe */
670{ 1146inline_speed void
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1147fd_intern (int fd)
733{ 1148{
734#ifdef _WIN32 1149#ifdef _WIN32
735 int arg = 1; 1150 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1151 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
737#else 1152#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1153 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1154 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1155#endif
741} 1156}
742 1157
743static void noinline 1158static void noinline
744siginit (EV_P) 1159evpipe_init (EV_P)
745{ 1160{
1161 if (!ev_is_active (&pipe_w))
1162 {
1163#if EV_USE_EVENTFD
1164 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1165 if (evfd < 0 && errno == EINVAL)
1166 evfd = eventfd (0, 0);
1167
1168 if (evfd >= 0)
1169 {
1170 evpipe [0] = -1;
1171 fd_intern (evfd); /* doing it twice doesn't hurt */
1172 ev_io_set (&pipe_w, evfd, EV_READ);
1173 }
1174 else
1175#endif
1176 {
1177 while (pipe (evpipe))
1178 ev_syserr ("(libev) error creating signal/async pipe");
1179
746 fd_intern (sigpipe [0]); 1180 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1181 fd_intern (evpipe [1]);
1182 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1183 }
748 1184
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1185 ev_io_start (EV_A_ &pipe_w);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1186 ev_unref (EV_A); /* watcher should not keep loop alive */
1187 }
1188}
1189
1190inline_size void
1191evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1192{
1193 if (!*flag)
1194 {
1195 int old_errno = errno; /* save errno because write might clobber it */
1196
1197 *flag = 1;
1198
1199#if EV_USE_EVENTFD
1200 if (evfd >= 0)
1201 {
1202 uint64_t counter = 1;
1203 write (evfd, &counter, sizeof (uint64_t));
1204 }
1205 else
1206#endif
1207 write (evpipe [1], &old_errno, 1);
1208
1209 errno = old_errno;
1210 }
1211}
1212
1213/* called whenever the libev signal pipe */
1214/* got some events (signal, async) */
1215static void
1216pipecb (EV_P_ ev_io *iow, int revents)
1217{
1218#if EV_USE_EVENTFD
1219 if (evfd >= 0)
1220 {
1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
1223 }
1224 else
1225#endif
1226 {
1227 char dummy;
1228 read (evpipe [0], &dummy, 1);
1229 }
1230
1231 if (gotsig && ev_is_default_loop (EV_A))
1232 {
1233 int signum;
1234 gotsig = 0;
1235
1236 for (signum = EV_NSIG - 1; signum--; )
1237 if (signals [signum].gotsig)
1238 ev_feed_signal_event (EV_A_ signum + 1);
1239 }
1240
1241#if EV_ASYNC_ENABLE
1242 if (gotasync)
1243 {
1244 int i;
1245 gotasync = 0;
1246
1247 for (i = asynccnt; i--; )
1248 if (asyncs [i]->sent)
1249 {
1250 asyncs [i]->sent = 0;
1251 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1252 }
1253 }
1254#endif
752} 1255}
753 1256
754/*****************************************************************************/ 1257/*****************************************************************************/
755 1258
1259static void
1260ev_sighandler (int signum)
1261{
1262#if EV_MULTIPLICITY
1263 EV_P = signals [signum - 1].loop;
1264#endif
1265
1266#if _WIN32
1267 signal (signum, ev_sighandler);
1268#endif
1269
1270 signals [signum - 1].gotsig = 1;
1271 evpipe_write (EV_A_ &gotsig);
1272}
1273
1274void noinline
1275ev_feed_signal_event (EV_P_ int signum)
1276{
1277 WL w;
1278
1279#if EV_MULTIPLICITY
1280 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1281#endif
1282
1283 if (signum <= 0 || signum > EV_NSIG)
1284 return;
1285
1286 --signum;
1287
1288 signals [signum].gotsig = 0;
1289
1290 for (w = signals [signum].head; w; w = w->next)
1291 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1292}
1293
1294#if EV_USE_SIGNALFD
1295static void
1296sigfdcb (EV_P_ ev_io *iow, int revents)
1297{
1298 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1299
1300 for (;;)
1301 {
1302 ssize_t res = read (sigfd, si, sizeof (si));
1303
1304 /* not ISO-C, as res might be -1, but works with SuS */
1305 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1306 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1307
1308 if (res < (ssize_t)sizeof (si))
1309 break;
1310 }
1311}
1312#endif
1313
1314/*****************************************************************************/
1315
756static ev_child *childs [EV_PID_HASHSIZE]; 1316static WL childs [EV_PID_HASHSIZE];
757 1317
758#ifndef _WIN32 1318#ifndef _WIN32
759 1319
760static ev_signal childev; 1320static ev_signal childev;
761 1321
762void inline_speed 1322#ifndef WIFCONTINUED
1323# define WIFCONTINUED(status) 0
1324#endif
1325
1326/* handle a single child status event */
1327inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1328child_reap (EV_P_ int chain, int pid, int status)
764{ 1329{
765 ev_child *w; 1330 ev_child *w;
1331 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1332
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1333 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1334 {
768 if (w->pid == pid || !w->pid) 1335 if ((w->pid == pid || !w->pid)
1336 && (!traced || (w->flags & 1)))
769 { 1337 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1338 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1339 w->rpid = pid;
772 w->rstatus = status; 1340 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1341 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1342 }
1343 }
775} 1344}
776 1345
777#ifndef WCONTINUED 1346#ifndef WCONTINUED
778# define WCONTINUED 0 1347# define WCONTINUED 0
779#endif 1348#endif
780 1349
1350/* called on sigchld etc., calls waitpid */
781static void 1351static void
782childcb (EV_P_ ev_signal *sw, int revents) 1352childcb (EV_P_ ev_signal *sw, int revents)
783{ 1353{
784 int pid, status; 1354 int pid, status;
785 1355
788 if (!WCONTINUED 1358 if (!WCONTINUED
789 || errno != EINVAL 1359 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1360 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1361 return;
792 1362
793 /* make sure we are called again until all childs have been reaped */ 1363 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1364 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1365 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1366
797 child_reap (EV_A_ sw, pid, pid, status); 1367 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1368 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1369 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1370}
801 1371
802#endif 1372#endif
803 1373
804/*****************************************************************************/ 1374/*****************************************************************************/
866 /* kqueue is borked on everything but netbsd apparently */ 1436 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1437 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1438 flags &= ~EVBACKEND_KQUEUE;
869#endif 1439#endif
870#ifdef __APPLE__ 1440#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1441 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1442 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1443 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
873#endif 1444#endif
874 1445
875 return flags; 1446 return flags;
876} 1447}
877 1448
878unsigned int 1449unsigned int
879ev_embeddable_backends (void) 1450ev_embeddable_backends (void)
880{ 1451{
881 return EVBACKEND_EPOLL 1452 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1453
883 | EVBACKEND_PORT; 1454 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1455 /* please fix it and tell me how to detect the fix */
1456 flags &= ~EVBACKEND_EPOLL;
1457
1458 return flags;
884} 1459}
885 1460
886unsigned int 1461unsigned int
887ev_backend (EV_P) 1462ev_backend (EV_P)
888{ 1463{
889 return backend; 1464 return backend;
890} 1465}
891 1466
1467#if EV_MINIMAL < 2
1468unsigned int
1469ev_loop_count (EV_P)
1470{
1471 return loop_count;
1472}
1473
1474unsigned int
1475ev_loop_depth (EV_P)
1476{
1477 return loop_depth;
1478}
1479
1480void
1481ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1482{
1483 io_blocktime = interval;
1484}
1485
1486void
1487ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 timeout_blocktime = interval;
1490}
1491
1492void
1493ev_set_userdata (EV_P_ void *data)
1494{
1495 userdata = data;
1496}
1497
1498void *
1499ev_userdata (EV_P)
1500{
1501 return userdata;
1502}
1503
1504void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1505{
1506 invoke_cb = invoke_pending_cb;
1507}
1508
1509void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1510{
1511 release_cb = release;
1512 acquire_cb = acquire;
1513}
1514#endif
1515
1516/* initialise a loop structure, must be zero-initialised */
892static void noinline 1517static void noinline
893loop_init (EV_P_ unsigned int flags) 1518loop_init (EV_P_ unsigned int flags)
894{ 1519{
895 if (!backend) 1520 if (!backend)
896 { 1521 {
1522#if EV_USE_REALTIME
1523 if (!have_realtime)
1524 {
1525 struct timespec ts;
1526
1527 if (!clock_gettime (CLOCK_REALTIME, &ts))
1528 have_realtime = 1;
1529 }
1530#endif
1531
897#if EV_USE_MONOTONIC 1532#if EV_USE_MONOTONIC
1533 if (!have_monotonic)
898 { 1534 {
899 struct timespec ts; 1535 struct timespec ts;
1536
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1537 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1538 have_monotonic = 1;
902 } 1539 }
903#endif 1540#endif
904 1541
905 ev_rt_now = ev_time (); 1542 /* pid check not overridable via env */
906 mn_now = get_clock (); 1543#ifndef _WIN32
907 now_floor = mn_now; 1544 if (flags & EVFLAG_FORKCHECK)
908 rtmn_diff = ev_rt_now - mn_now; 1545 curpid = getpid ();
1546#endif
909 1547
910 if (!(flags & EVFLAG_NOENV) 1548 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1549 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1550 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1551 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1552
1553 ev_rt_now = ev_time ();
1554 mn_now = get_clock ();
1555 now_floor = mn_now;
1556 rtmn_diff = ev_rt_now - mn_now;
1557#if EV_MINIMAL < 2
1558 invoke_cb = ev_invoke_pending;
1559#endif
1560
1561 io_blocktime = 0.;
1562 timeout_blocktime = 0.;
1563 backend = 0;
1564 backend_fd = -1;
1565 gotasync = 0;
1566#if EV_USE_INOTIFY
1567 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1568#endif
1569#if EV_USE_SIGNALFD
1570 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1571#endif
1572
915 if (!(flags & 0x0000ffffUL)) 1573 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1574 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1575
924#if EV_USE_PORT 1576#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1577 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1578#endif
927#if EV_USE_KQUEUE 1579#if EV_USE_KQUEUE
935#endif 1587#endif
936#if EV_USE_SELECT 1588#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1589 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1590#endif
939 1591
1592 ev_prepare_init (&pending_w, pendingcb);
1593
940 ev_init (&sigev, sigcb); 1594 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1595 ev_set_priority (&pipe_w, EV_MAXPRI);
942 } 1596 }
943} 1597}
944 1598
1599/* free up a loop structure */
945static void noinline 1600static void noinline
946loop_destroy (EV_P) 1601loop_destroy (EV_P)
947{ 1602{
948 int i; 1603 int i;
1604
1605 if (ev_is_active (&pipe_w))
1606 {
1607 /*ev_ref (EV_A);*/
1608 /*ev_io_stop (EV_A_ &pipe_w);*/
1609
1610#if EV_USE_EVENTFD
1611 if (evfd >= 0)
1612 close (evfd);
1613#endif
1614
1615 if (evpipe [0] >= 0)
1616 {
1617 close (evpipe [0]);
1618 close (evpipe [1]);
1619 }
1620 }
1621
1622#if EV_USE_SIGNALFD
1623 if (ev_is_active (&sigfd_w))
1624 {
1625 /*ev_ref (EV_A);*/
1626 /*ev_io_stop (EV_A_ &sigfd_w);*/
1627
1628 close (sigfd);
1629 }
1630#endif
949 1631
950#if EV_USE_INOTIFY 1632#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1633 if (fs_fd >= 0)
952 close (fs_fd); 1634 close (fs_fd);
953#endif 1635#endif
970#if EV_USE_SELECT 1652#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1653 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1654#endif
973 1655
974 for (i = NUMPRI; i--; ) 1656 for (i = NUMPRI; i--; )
1657 {
975 array_free (pending, [i]); 1658 array_free (pending, [i]);
1659#if EV_IDLE_ENABLE
1660 array_free (idle, [i]);
1661#endif
1662 }
1663
1664 ev_free (anfds); anfds = 0; anfdmax = 0;
976 1665
977 /* have to use the microsoft-never-gets-it-right macro */ 1666 /* have to use the microsoft-never-gets-it-right macro */
1667 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 1668 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1669 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1670#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1671 array_free (periodic, EMPTY);
982#endif 1672#endif
1673#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1674 array_free (fork, EMPTY);
1675#endif
984 array_free (prepare, EMPTY0); 1676 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1677 array_free (check, EMPTY);
1678#if EV_ASYNC_ENABLE
1679 array_free (async, EMPTY);
1680#endif
986 1681
987 backend = 0; 1682 backend = 0;
988} 1683}
989 1684
1685#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1686inline_size void infy_fork (EV_P);
1687#endif
991 1688
992void inline_size 1689inline_size void
993loop_fork (EV_P) 1690loop_fork (EV_P)
994{ 1691{
995#if EV_USE_PORT 1692#if EV_USE_PORT
996 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1693 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
997#endif 1694#endif
1003#endif 1700#endif
1004#if EV_USE_INOTIFY 1701#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1702 infy_fork (EV_A);
1006#endif 1703#endif
1007 1704
1008 if (ev_is_active (&sigev)) 1705 if (ev_is_active (&pipe_w))
1009 { 1706 {
1010 /* default loop */ 1707 /* this "locks" the handlers against writing to the pipe */
1708 /* while we modify the fd vars */
1709 gotsig = 1;
1710#if EV_ASYNC_ENABLE
1711 gotasync = 1;
1712#endif
1011 1713
1012 ev_ref (EV_A); 1714 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1715 ev_io_stop (EV_A_ &pipe_w);
1716
1717#if EV_USE_EVENTFD
1718 if (evfd >= 0)
1719 close (evfd);
1720#endif
1721
1722 if (evpipe [0] >= 0)
1723 {
1014 close (sigpipe [0]); 1724 close (evpipe [0]);
1015 close (sigpipe [1]); 1725 close (evpipe [1]);
1726 }
1016 1727
1017 while (pipe (sigpipe))
1018 syserr ("(libev) error creating pipe");
1019
1020 siginit (EV_A); 1728 evpipe_init (EV_A);
1729 /* now iterate over everything, in case we missed something */
1730 pipecb (EV_A_ &pipe_w, EV_READ);
1021 } 1731 }
1022 1732
1023 postfork = 0; 1733 postfork = 0;
1024} 1734}
1025 1735
1026#if EV_MULTIPLICITY 1736#if EV_MULTIPLICITY
1737
1027struct ev_loop * 1738struct ev_loop *
1028ev_loop_new (unsigned int flags) 1739ev_loop_new (unsigned int flags)
1029{ 1740{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1741 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1742
1032 memset (loop, 0, sizeof (struct ev_loop)); 1743 memset (EV_A, 0, sizeof (struct ev_loop));
1033
1034 loop_init (EV_A_ flags); 1744 loop_init (EV_A_ flags);
1035 1745
1036 if (ev_backend (EV_A)) 1746 if (ev_backend (EV_A))
1037 return loop; 1747 return EV_A;
1038 1748
1039 return 0; 1749 return 0;
1040} 1750}
1041 1751
1042void 1752void
1047} 1757}
1048 1758
1049void 1759void
1050ev_loop_fork (EV_P) 1760ev_loop_fork (EV_P)
1051{ 1761{
1052 postfork = 1; 1762 postfork = 1; /* must be in line with ev_default_fork */
1053} 1763}
1764#endif /* multiplicity */
1054 1765
1766#if EV_VERIFY
1767static void noinline
1768verify_watcher (EV_P_ W w)
1769{
1770 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1771
1772 if (w->pending)
1773 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1774}
1775
1776static void noinline
1777verify_heap (EV_P_ ANHE *heap, int N)
1778{
1779 int i;
1780
1781 for (i = HEAP0; i < N + HEAP0; ++i)
1782 {
1783 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1784 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1785 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1786
1787 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1788 }
1789}
1790
1791static void noinline
1792array_verify (EV_P_ W *ws, int cnt)
1793{
1794 while (cnt--)
1795 {
1796 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1797 verify_watcher (EV_A_ ws [cnt]);
1798 }
1799}
1800#endif
1801
1802#if EV_MINIMAL < 2
1803void
1804ev_loop_verify (EV_P)
1805{
1806#if EV_VERIFY
1807 int i;
1808 WL w;
1809
1810 assert (activecnt >= -1);
1811
1812 assert (fdchangemax >= fdchangecnt);
1813 for (i = 0; i < fdchangecnt; ++i)
1814 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1815
1816 assert (anfdmax >= 0);
1817 for (i = 0; i < anfdmax; ++i)
1818 for (w = anfds [i].head; w; w = w->next)
1819 {
1820 verify_watcher (EV_A_ (W)w);
1821 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1822 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1823 }
1824
1825 assert (timermax >= timercnt);
1826 verify_heap (EV_A_ timers, timercnt);
1827
1828#if EV_PERIODIC_ENABLE
1829 assert (periodicmax >= periodiccnt);
1830 verify_heap (EV_A_ periodics, periodiccnt);
1831#endif
1832
1833 for (i = NUMPRI; i--; )
1834 {
1835 assert (pendingmax [i] >= pendingcnt [i]);
1836#if EV_IDLE_ENABLE
1837 assert (idleall >= 0);
1838 assert (idlemax [i] >= idlecnt [i]);
1839 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1840#endif
1841 }
1842
1843#if EV_FORK_ENABLE
1844 assert (forkmax >= forkcnt);
1845 array_verify (EV_A_ (W *)forks, forkcnt);
1846#endif
1847
1848#if EV_ASYNC_ENABLE
1849 assert (asyncmax >= asynccnt);
1850 array_verify (EV_A_ (W *)asyncs, asynccnt);
1851#endif
1852
1853 assert (preparemax >= preparecnt);
1854 array_verify (EV_A_ (W *)prepares, preparecnt);
1855
1856 assert (checkmax >= checkcnt);
1857 array_verify (EV_A_ (W *)checks, checkcnt);
1858
1859# if 0
1860 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1861 for (signum = EV_NSIG; signum--; ) if (signals [signum].gotsig)
1862# endif
1863#endif
1864}
1055#endif 1865#endif
1056 1866
1057#if EV_MULTIPLICITY 1867#if EV_MULTIPLICITY
1058struct ev_loop * 1868struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1869ev_default_loop_init (unsigned int flags)
1060#else 1870#else
1061int 1871int
1062ev_default_loop (unsigned int flags) 1872ev_default_loop (unsigned int flags)
1063#endif 1873#endif
1064{ 1874{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1875 if (!ev_default_loop_ptr)
1070 { 1876 {
1071#if EV_MULTIPLICITY 1877#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1878 EV_P = ev_default_loop_ptr = &default_loop_struct;
1073#else 1879#else
1074 ev_default_loop_ptr = 1; 1880 ev_default_loop_ptr = 1;
1075#endif 1881#endif
1076 1882
1077 loop_init (EV_A_ flags); 1883 loop_init (EV_A_ flags);
1078 1884
1079 if (ev_backend (EV_A)) 1885 if (ev_backend (EV_A))
1080 { 1886 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1887#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1888 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1889 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1890 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1891 ev_unref (EV_A); /* child watcher should not keep loop alive */
1096 1900
1097void 1901void
1098ev_default_destroy (void) 1902ev_default_destroy (void)
1099{ 1903{
1100#if EV_MULTIPLICITY 1904#if EV_MULTIPLICITY
1101 struct ev_loop *loop = ev_default_loop_ptr; 1905 EV_P = ev_default_loop_ptr;
1102#endif 1906#endif
1907
1908 ev_default_loop_ptr = 0;
1103 1909
1104#ifndef _WIN32 1910#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1911 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1912 ev_signal_stop (EV_A_ &childev);
1107#endif 1913#endif
1108 1914
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1915 loop_destroy (EV_A);
1116} 1916}
1117 1917
1118void 1918void
1119ev_default_fork (void) 1919ev_default_fork (void)
1120{ 1920{
1121#if EV_MULTIPLICITY 1921#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1922 EV_P = ev_default_loop_ptr;
1123#endif 1923#endif
1124 1924
1125 if (backend) 1925 postfork = 1; /* must be in line with ev_loop_fork */
1126 postfork = 1;
1127} 1926}
1128 1927
1129/*****************************************************************************/ 1928/*****************************************************************************/
1130 1929
1131int inline_size 1930void
1132any_pending (EV_P) 1931ev_invoke (EV_P_ void *w, int revents)
1932{
1933 EV_CB_INVOKE ((W)w, revents);
1934}
1935
1936unsigned int
1937ev_pending_count (EV_P)
1133{ 1938{
1134 int pri; 1939 int pri;
1940 unsigned int count = 0;
1135 1941
1136 for (pri = NUMPRI; pri--; ) 1942 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri]) 1943 count += pendingcnt [pri];
1138 return 1;
1139 1944
1140 return 0; 1945 return count;
1141} 1946}
1142 1947
1143void inline_speed 1948void noinline
1144call_pending (EV_P) 1949ev_invoke_pending (EV_P)
1145{ 1950{
1146 int pri; 1951 int pri;
1147 1952
1148 for (pri = NUMPRI; pri--; ) 1953 for (pri = NUMPRI; pri--; )
1149 while (pendingcnt [pri]) 1954 while (pendingcnt [pri])
1150 { 1955 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1956 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152 1957
1153 if (expect_true (p->w))
1154 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1958 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1959 /* ^ this is no longer true, as pending_w could be here */
1156 1960
1157 p->w->pending = 0; 1961 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 1962 EV_CB_INVOKE (p->w, p->events);
1159 } 1963 EV_FREQUENT_CHECK;
1160 } 1964 }
1161} 1965}
1162 1966
1163void inline_size 1967#if EV_IDLE_ENABLE
1968/* make idle watchers pending. this handles the "call-idle */
1969/* only when higher priorities are idle" logic */
1970inline_size void
1971idle_reify (EV_P)
1972{
1973 if (expect_false (idleall))
1974 {
1975 int pri;
1976
1977 for (pri = NUMPRI; pri--; )
1978 {
1979 if (pendingcnt [pri])
1980 break;
1981
1982 if (idlecnt [pri])
1983 {
1984 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1985 break;
1986 }
1987 }
1988 }
1989}
1990#endif
1991
1992/* make timers pending */
1993inline_size void
1164timers_reify (EV_P) 1994timers_reify (EV_P)
1165{ 1995{
1996 EV_FREQUENT_CHECK;
1997
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1998 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 1999 {
1168 ev_timer *w = timers [0]; 2000 do
1169
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171
1172 /* first reschedule or stop timer */
1173 if (w->repeat)
1174 { 2001 {
2002 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2003
2004 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2005
2006 /* first reschedule or stop timer */
2007 if (w->repeat)
2008 {
2009 ev_at (w) += w->repeat;
2010 if (ev_at (w) < mn_now)
2011 ev_at (w) = mn_now;
2012
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2013 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 2014
1177 ((WT)w)->at += w->repeat; 2015 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 2016 downheap (timers, timercnt, HEAP0);
2017 }
2018 else
2019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2020
2021 EV_FREQUENT_CHECK;
2022 feed_reverse (EV_A_ (W)w);
1182 } 2023 }
1183 else 2024 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 2025
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2026 feed_reverse_done (EV_A_ EV_TIMEOUT);
1187 } 2027 }
1188} 2028}
1189 2029
1190#if EV_PERIODIC_ENABLE 2030#if EV_PERIODIC_ENABLE
1191void inline_size 2031/* make periodics pending */
2032inline_size void
1192periodics_reify (EV_P) 2033periodics_reify (EV_P)
1193{ 2034{
2035 EV_FREQUENT_CHECK;
2036
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2037 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 2038 {
1196 ev_periodic *w = periodics [0]; 2039 int feed_count = 0;
1197 2040
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2041 do
1199
1200 /* first reschedule or stop timer */
1201 if (w->reschedule_cb)
1202 { 2042 {
2043 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->reschedule_cb)
2049 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2050 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2051
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2052 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2053
2054 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 2055 downheap (periodics, periodiccnt, HEAP0);
2056 }
2057 else if (w->interval)
2058 {
2059 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2060 /* if next trigger time is not sufficiently in the future, put it there */
2061 /* this might happen because of floating point inexactness */
2062 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2063 {
2064 ev_at (w) += w->interval;
2065
2066 /* if interval is unreasonably low we might still have a time in the past */
2067 /* so correct this. this will make the periodic very inexact, but the user */
2068 /* has effectively asked to get triggered more often than possible */
2069 if (ev_at (w) < ev_rt_now)
2070 ev_at (w) = ev_rt_now;
2071 }
2072
2073 ANHE_at_cache (periodics [HEAP0]);
2074 downheap (periodics, periodiccnt, HEAP0);
2075 }
2076 else
2077 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2078
2079 EV_FREQUENT_CHECK;
2080 feed_reverse (EV_A_ (W)w);
1206 } 2081 }
1207 else if (w->interval) 2082 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1208 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0);
1212 }
1213 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 2083
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2084 feed_reverse_done (EV_A_ EV_PERIODIC);
1217 } 2085 }
1218} 2086}
1219 2087
2088/* simply recalculate all periodics */
2089/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1220static void noinline 2090static void noinline
1221periodics_reschedule (EV_P) 2091periodics_reschedule (EV_P)
1222{ 2092{
1223 int i; 2093 int i;
1224 2094
1225 /* adjust periodics after time jump */ 2095 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 2096 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 2097 {
1228 ev_periodic *w = periodics [i]; 2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 2099
1230 if (w->reschedule_cb) 2100 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2101 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 2102 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104
2105 ANHE_at_cache (periodics [i]);
2106 }
2107
2108 reheap (periodics, periodiccnt);
2109}
2110#endif
2111
2112/* adjust all timers by a given offset */
2113static void noinline
2114timers_reschedule (EV_P_ ev_tstamp adjust)
2115{
2116 int i;
2117
2118 for (i = 0; i < timercnt; ++i)
1234 } 2119 {
1235 2120 ANHE *he = timers + i + HEAP0;
1236 /* now rebuild the heap */ 2121 ANHE_w (*he)->at += adjust;
1237 for (i = periodiccnt >> 1; i--; ) 2122 ANHE_at_cache (*he);
1238 downheap ((WT *)periodics, periodiccnt, i); 2123 }
1239} 2124}
1240#endif
1241 2125
1242int inline_size 2126/* fetch new monotonic and realtime times from the kernel */
1243time_update_monotonic (EV_P) 2127/* also detetc if there was a timejump, and act accordingly */
2128inline_speed void
2129time_update (EV_P_ ev_tstamp max_block)
1244{ 2130{
2131#if EV_USE_MONOTONIC
2132 if (expect_true (have_monotonic))
2133 {
2134 int i;
2135 ev_tstamp odiff = rtmn_diff;
2136
1245 mn_now = get_clock (); 2137 mn_now = get_clock ();
1246 2138
2139 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2140 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2141 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 2142 {
1249 ev_rt_now = rtmn_diff + mn_now; 2143 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 2144 return;
1251 } 2145 }
1252 else 2146
1253 {
1254 now_floor = mn_now; 2147 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 2148 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 2149
1260void inline_size 2150 /* loop a few times, before making important decisions.
1261time_update (EV_P) 2151 * on the choice of "4": one iteration isn't enough,
1262{ 2152 * in case we get preempted during the calls to
1263 int i; 2153 * ev_time and get_clock. a second call is almost guaranteed
1264 2154 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 2155 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 2156 * in the unlikely event of having been preempted here.
1267 { 2157 */
1268 if (time_update_monotonic (EV_A)) 2158 for (i = 4; --i; )
1269 { 2159 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 2160 rtmn_diff = ev_rt_now - mn_now;
1283 2161
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2162 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 2163 return; /* all is well */
1286 2164
1287 ev_rt_now = ev_time (); 2165 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 2166 mn_now = get_clock ();
1289 now_floor = mn_now; 2167 now_floor = mn_now;
1290 } 2168 }
1291 2169
2170 /* no timer adjustment, as the monotonic clock doesn't jump */
2171 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292# if EV_PERIODIC_ENABLE 2172# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 2173 periodics_reschedule (EV_A);
1294# endif 2174# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 2175 }
1299 else 2176 else
1300#endif 2177#endif
1301 { 2178 {
1302 ev_rt_now = ev_time (); 2179 ev_rt_now = ev_time ();
1303 2180
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2181 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 2182 {
2183 /* adjust timers. this is easy, as the offset is the same for all of them */
2184 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1306#if EV_PERIODIC_ENABLE 2185#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 2186 periodics_reschedule (EV_A);
1308#endif 2187#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */
1311 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 2188 }
1314 2189
1315 mn_now = ev_rt_now; 2190 mn_now = ev_rt_now;
1316 } 2191 }
1317} 2192}
1318 2193
1319void 2194void
1320ev_ref (EV_P)
1321{
1322 ++activecnt;
1323}
1324
1325void
1326ev_unref (EV_P)
1327{
1328 --activecnt;
1329}
1330
1331static int loop_done;
1332
1333void
1334ev_loop (EV_P_ int flags) 2195ev_loop (EV_P_ int flags)
1335{ 2196{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2197#if EV_MINIMAL < 2
1337 ? EVUNLOOP_ONE 2198 ++loop_depth;
1338 : EVUNLOOP_CANCEL; 2199#endif
1339 2200
1340 while (activecnt) 2201 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2202
2203 loop_done = EVUNLOOP_CANCEL;
2204
2205 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2206
2207 do
1341 { 2208 {
1342 /* we might have forked, so reify kernel state if necessary */ 2209#if EV_VERIFY >= 2
2210 ev_loop_verify (EV_A);
2211#endif
2212
2213#ifndef _WIN32
2214 if (expect_false (curpid)) /* penalise the forking check even more */
2215 if (expect_false (getpid () != curpid))
2216 {
2217 curpid = getpid ();
2218 postfork = 1;
2219 }
2220#endif
2221
1343 #if EV_FORK_ENABLE 2222#if EV_FORK_ENABLE
2223 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 2224 if (expect_false (postfork))
1345 if (forkcnt) 2225 if (forkcnt)
1346 { 2226 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2227 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 2228 EV_INVOKE_PENDING;
1349 } 2229 }
1350 #endif 2230#endif
1351 2231
1352 /* queue check watchers (and execute them) */ 2232 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 2233 if (expect_false (preparecnt))
1354 { 2234 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2235 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 2236 EV_INVOKE_PENDING;
1357 } 2237 }
2238
2239 if (expect_false (loop_done))
2240 break;
1358 2241
1359 /* we might have forked, so reify kernel state if necessary */ 2242 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 2243 if (expect_false (postfork))
1361 loop_fork (EV_A); 2244 loop_fork (EV_A);
1362 2245
1363 /* update fd-related kernel structures */ 2246 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 2247 fd_reify (EV_A);
1365 2248
1366 /* calculate blocking time */ 2249 /* calculate blocking time */
1367 { 2250 {
1368 double block; 2251 ev_tstamp waittime = 0.;
2252 ev_tstamp sleeptime = 0.;
1369 2253
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 2254 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 2255 {
2256 /* remember old timestamp for io_blocktime calculation */
2257 ev_tstamp prev_mn_now = mn_now;
2258
1374 /* update time to cancel out callback processing overhead */ 2259 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 2260 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 2261
1385 block = MAX_BLOCKTIME; 2262 waittime = MAX_BLOCKTIME;
1386 2263
1387 if (timercnt) 2264 if (timercnt)
1388 { 2265 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2266 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 2267 if (waittime > to) waittime = to;
1391 } 2268 }
1392 2269
1393#if EV_PERIODIC_ENABLE 2270#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 2271 if (periodiccnt)
1395 { 2272 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2273 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 2274 if (waittime > to) waittime = to;
1398 } 2275 }
1399#endif 2276#endif
1400 2277
2278 /* don't let timeouts decrease the waittime below timeout_blocktime */
2279 if (expect_false (waittime < timeout_blocktime))
2280 waittime = timeout_blocktime;
2281
2282 /* extra check because io_blocktime is commonly 0 */
1401 if (expect_false (block < 0.)) block = 0.; 2283 if (expect_false (io_blocktime))
2284 {
2285 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2286
2287 if (sleeptime > waittime - backend_fudge)
2288 sleeptime = waittime - backend_fudge;
2289
2290 if (expect_true (sleeptime > 0.))
2291 {
2292 ev_sleep (sleeptime);
2293 waittime -= sleeptime;
2294 }
2295 }
1402 } 2296 }
1403 2297
2298#if EV_MINIMAL < 2
2299 ++loop_count;
2300#endif
2301 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1404 backend_poll (EV_A_ block); 2302 backend_poll (EV_A_ waittime);
2303 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2304
2305 /* update ev_rt_now, do magic */
2306 time_update (EV_A_ waittime + sleeptime);
1405 } 2307 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2308
1410 /* queue pending timers and reschedule them */ 2309 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2310 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2312 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2313#endif
1415 2314
2315#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2316 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2317 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2318#endif
1419 2319
1420 /* queue check watchers, to be executed first */ 2320 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2321 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2322 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 2323
1424 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2325 }
2326 while (expect_true (
2327 activecnt
2328 && !loop_done
2329 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2330 ));
1429 2331
1430 if (loop_done == EVUNLOOP_ONE) 2332 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2333 loop_done = EVUNLOOP_CANCEL;
2334
2335#if EV_MINIMAL < 2
2336 --loop_depth;
2337#endif
1432} 2338}
1433 2339
1434void 2340void
1435ev_unloop (EV_P_ int how) 2341ev_unloop (EV_P_ int how)
1436{ 2342{
1437 loop_done = how; 2343 loop_done = how;
1438} 2344}
1439 2345
2346void
2347ev_ref (EV_P)
2348{
2349 ++activecnt;
2350}
2351
2352void
2353ev_unref (EV_P)
2354{
2355 --activecnt;
2356}
2357
2358void
2359ev_now_update (EV_P)
2360{
2361 time_update (EV_A_ 1e100);
2362}
2363
2364void
2365ev_suspend (EV_P)
2366{
2367 ev_now_update (EV_A);
2368}
2369
2370void
2371ev_resume (EV_P)
2372{
2373 ev_tstamp mn_prev = mn_now;
2374
2375 ev_now_update (EV_A);
2376 timers_reschedule (EV_A_ mn_now - mn_prev);
2377#if EV_PERIODIC_ENABLE
2378 /* TODO: really do this? */
2379 periodics_reschedule (EV_A);
2380#endif
2381}
2382
1440/*****************************************************************************/ 2383/*****************************************************************************/
2384/* singly-linked list management, used when the expected list length is short */
1441 2385
1442void inline_size 2386inline_size void
1443wlist_add (WL *head, WL elem) 2387wlist_add (WL *head, WL elem)
1444{ 2388{
1445 elem->next = *head; 2389 elem->next = *head;
1446 *head = elem; 2390 *head = elem;
1447} 2391}
1448 2392
1449void inline_size 2393inline_size void
1450wlist_del (WL *head, WL elem) 2394wlist_del (WL *head, WL elem)
1451{ 2395{
1452 while (*head) 2396 while (*head)
1453 { 2397 {
1454 if (*head == elem) 2398 if (*head == elem)
1459 2403
1460 head = &(*head)->next; 2404 head = &(*head)->next;
1461 } 2405 }
1462} 2406}
1463 2407
1464void inline_speed 2408/* internal, faster, version of ev_clear_pending */
2409inline_speed void
1465ev_clear_pending (EV_P_ W w) 2410clear_pending (EV_P_ W w)
1466{ 2411{
1467 if (w->pending) 2412 if (w->pending)
1468 { 2413 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2414 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1470 w->pending = 0; 2415 w->pending = 0;
1471 } 2416 }
1472} 2417}
1473 2418
1474void inline_speed 2419int
2420ev_clear_pending (EV_P_ void *w)
2421{
2422 W w_ = (W)w;
2423 int pending = w_->pending;
2424
2425 if (expect_true (pending))
2426 {
2427 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2428 p->w = (W)&pending_w;
2429 w_->pending = 0;
2430 return p->events;
2431 }
2432 else
2433 return 0;
2434}
2435
2436inline_size void
2437pri_adjust (EV_P_ W w)
2438{
2439 int pri = ev_priority (w);
2440 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2441 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2442 ev_set_priority (w, pri);
2443}
2444
2445inline_speed void
1475ev_start (EV_P_ W w, int active) 2446ev_start (EV_P_ W w, int active)
1476{ 2447{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2448 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2449 w->active = active;
1481 ev_ref (EV_A); 2450 ev_ref (EV_A);
1482} 2451}
1483 2452
1484void inline_size 2453inline_size void
1485ev_stop (EV_P_ W w) 2454ev_stop (EV_P_ W w)
1486{ 2455{
1487 ev_unref (EV_A); 2456 ev_unref (EV_A);
1488 w->active = 0; 2457 w->active = 0;
1489} 2458}
1490 2459
1491/*****************************************************************************/ 2460/*****************************************************************************/
1492 2461
1493void 2462void noinline
1494ev_io_start (EV_P_ ev_io *w) 2463ev_io_start (EV_P_ ev_io *w)
1495{ 2464{
1496 int fd = w->fd; 2465 int fd = w->fd;
1497 2466
1498 if (expect_false (ev_is_active (w))) 2467 if (expect_false (ev_is_active (w)))
1499 return; 2468 return;
1500 2469
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2470 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2471 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2472
2473 EV_FREQUENT_CHECK;
1502 2474
1503 ev_start (EV_A_ (W)w, 1); 2475 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2476 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2477 wlist_add (&anfds[fd].head, (WL)w);
1506 2478
1507 fd_change (EV_A_ fd); 2479 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1508} 2480 w->events &= ~EV__IOFDSET;
1509 2481
1510void 2482 EV_FREQUENT_CHECK;
2483}
2484
2485void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2486ev_io_stop (EV_P_ ev_io *w)
1512{ 2487{
1513 ev_clear_pending (EV_A_ (W)w); 2488 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2489 if (expect_false (!ev_is_active (w)))
1515 return; 2490 return;
1516 2491
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2492 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2493
2494 EV_FREQUENT_CHECK;
2495
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2496 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2497 ev_stop (EV_A_ (W)w);
1521 2498
1522 fd_change (EV_A_ w->fd); 2499 fd_change (EV_A_ w->fd, 1);
1523}
1524 2500
1525void 2501 EV_FREQUENT_CHECK;
2502}
2503
2504void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2505ev_timer_start (EV_P_ ev_timer *w)
1527{ 2506{
1528 if (expect_false (ev_is_active (w))) 2507 if (expect_false (ev_is_active (w)))
1529 return; 2508 return;
1530 2509
1531 ((WT)w)->at += mn_now; 2510 ev_at (w) += mn_now;
1532 2511
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2512 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2513
2514 EV_FREQUENT_CHECK;
2515
2516 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2517 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2518 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2519 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2520 ANHE_at_cache (timers [ev_active (w)]);
2521 upheap (timers, ev_active (w));
1539 2522
2523 EV_FREQUENT_CHECK;
2524
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2525 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2526}
1542 2527
1543void 2528void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2529ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2530{
1546 ev_clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
1548 return; 2533 return;
1549 2534
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2535 EV_FREQUENT_CHECK;
1551 2536
1552 { 2537 {
1553 int active = ((W)w)->active; 2538 int active = ev_active (w);
1554 2539
2540 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2541
2542 --timercnt;
2543
1555 if (expect_true (--active < --timercnt)) 2544 if (expect_true (active < timercnt + HEAP0))
1556 { 2545 {
1557 timers [active] = timers [timercnt]; 2546 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2547 adjustheap (timers, timercnt, active);
1559 } 2548 }
1560 } 2549 }
1561 2550
1562 ((WT)w)->at -= mn_now; 2551 EV_FREQUENT_CHECK;
2552
2553 ev_at (w) -= mn_now;
1563 2554
1564 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1565} 2556}
1566 2557
1567void 2558void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2559ev_timer_again (EV_P_ ev_timer *w)
1569{ 2560{
2561 EV_FREQUENT_CHECK;
2562
1570 if (ev_is_active (w)) 2563 if (ev_is_active (w))
1571 { 2564 {
1572 if (w->repeat) 2565 if (w->repeat)
1573 { 2566 {
1574 ((WT)w)->at = mn_now + w->repeat; 2567 ev_at (w) = mn_now + w->repeat;
2568 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2569 adjustheap (timers, timercnt, ev_active (w));
1576 } 2570 }
1577 else 2571 else
1578 ev_timer_stop (EV_A_ w); 2572 ev_timer_stop (EV_A_ w);
1579 } 2573 }
1580 else if (w->repeat) 2574 else if (w->repeat)
1581 { 2575 {
1582 w->at = w->repeat; 2576 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2577 ev_timer_start (EV_A_ w);
1584 } 2578 }
2579
2580 EV_FREQUENT_CHECK;
2581}
2582
2583ev_tstamp
2584ev_timer_remaining (EV_P_ ev_timer *w)
2585{
2586 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1585} 2587}
1586 2588
1587#if EV_PERIODIC_ENABLE 2589#if EV_PERIODIC_ENABLE
1588void 2590void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2591ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2592{
1591 if (expect_false (ev_is_active (w))) 2593 if (expect_false (ev_is_active (w)))
1592 return; 2594 return;
1593 2595
1594 if (w->reschedule_cb) 2596 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2597 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2598 else if (w->interval)
1597 { 2599 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2600 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2601 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2602 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2603 }
2604 else
2605 ev_at (w) = w->offset;
1602 2606
2607 EV_FREQUENT_CHECK;
2608
2609 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2610 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2611 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2612 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2613 ANHE_at_cache (periodics [ev_active (w)]);
2614 upheap (periodics, ev_active (w));
1607 2615
2616 EV_FREQUENT_CHECK;
2617
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2618 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2619}
1610 2620
1611void 2621void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2622ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2623{
1614 ev_clear_pending (EV_A_ (W)w); 2624 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2625 if (expect_false (!ev_is_active (w)))
1616 return; 2626 return;
1617 2627
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2628 EV_FREQUENT_CHECK;
1619 2629
1620 { 2630 {
1621 int active = ((W)w)->active; 2631 int active = ev_active (w);
1622 2632
2633 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2634
2635 --periodiccnt;
2636
1623 if (expect_true (--active < --periodiccnt)) 2637 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2638 {
1625 periodics [active] = periodics [periodiccnt]; 2639 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2640 adjustheap (periodics, periodiccnt, active);
1627 } 2641 }
1628 } 2642 }
1629 2643
2644 EV_FREQUENT_CHECK;
2645
1630 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
1631} 2647}
1632 2648
1633void 2649void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2650ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2651{
1636 /* TODO: use adjustheap and recalculation */ 2652 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2653 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2654 ev_periodic_start (EV_A_ w);
1641 2657
1642#ifndef SA_RESTART 2658#ifndef SA_RESTART
1643# define SA_RESTART 0 2659# define SA_RESTART 0
1644#endif 2660#endif
1645 2661
1646void 2662void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2663ev_signal_start (EV_P_ ev_signal *w)
1648{ 2664{
1649#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif
1652 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
1653 return; 2666 return;
1654 2667
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2668 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2669
2670#if EV_MULTIPLICITY
2671 assert (("libev: tried to attach to a signal from two different loops",
2672 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2673
2674 signals [w->signum - 1].loop = EV_A;
2675#endif
2676
2677 EV_FREQUENT_CHECK;
2678
2679#if EV_USE_SIGNALFD
2680 if (sigfd == -2)
2681 {
2682 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2683 if (sigfd < 0 && errno == EINVAL)
2684 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2685
2686 if (sigfd >= 0)
2687 {
2688 fd_intern (sigfd); /* doing it twice will not hurt */
2689
2690 sigemptyset (&sigfd_set);
2691
2692 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2693 ev_set_priority (&sigfd_w, EV_MAXPRI);
2694 ev_io_start (EV_A_ &sigfd_w);
2695 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2696 }
2697 }
2698
2699 if (sigfd >= 0)
2700 {
2701 /* TODO: check .head */
2702 sigaddset (&sigfd_set, w->signum);
2703 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2704
2705 signalfd (sigfd, &sigfd_set, 0);
2706 }
2707#endif
1656 2708
1657 ev_start (EV_A_ (W)w, 1); 2709 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2710 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2711
1661 if (!((WL)w)->next) 2712 if (!((WL)w)->next)
2713# if EV_USE_SIGNALFD
2714 if (sigfd < 0) /*TODO*/
2715# endif
1662 { 2716 {
1663#if _WIN32 2717# if _WIN32
1664 signal (w->signum, sighandler); 2718 signal (w->signum, ev_sighandler);
1665#else 2719# else
1666 struct sigaction sa; 2720 struct sigaction sa;
2721
2722 evpipe_init (EV_A);
2723
1667 sa.sa_handler = sighandler; 2724 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2725 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2726 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2727 sigaction (w->signum, &sa, 0);
2728
2729 sigemptyset (&sa.sa_mask);
2730 sigaddset (&sa.sa_mask, w->signum);
2731 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1671#endif 2732#endif
1672 } 2733 }
1673}
1674 2734
1675void 2735 EV_FREQUENT_CHECK;
2736}
2737
2738void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2739ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2740{
1678 ev_clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
1680 return; 2743 return;
1681 2744
2745 EV_FREQUENT_CHECK;
2746
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2747 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
1684 2749
1685 if (!signals [w->signum - 1].head) 2750 if (!signals [w->signum - 1].head)
2751 {
2752 #if EV_MULTIPLICITY
2753 signals [w->signum - 1].loop = 0; /* unattach from signal */
2754 #endif
2755 #if EV_USE_SIGNALFD
2756 if (sigfd >= 0)
2757 {
2758 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2759 sigdelset (&sigfd_set, w->signum);
2760 signalfd (sigfd, &sigfd_set, 0);
2761 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2762 /*TODO: maybe unblock signal? */
2763 }
2764 else
2765 #endif
1686 signal (w->signum, SIG_DFL); 2766 signal (w->signum, SIG_DFL);
2767 }
2768
2769 EV_FREQUENT_CHECK;
1687} 2770}
1688 2771
1689void 2772void
1690ev_child_start (EV_P_ ev_child *w) 2773ev_child_start (EV_P_ ev_child *w)
1691{ 2774{
1692#if EV_MULTIPLICITY 2775#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2776 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2777#endif
1695 if (expect_false (ev_is_active (w))) 2778 if (expect_false (ev_is_active (w)))
1696 return; 2779 return;
1697 2780
2781 EV_FREQUENT_CHECK;
2782
1698 ev_start (EV_A_ (W)w, 1); 2783 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2784 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2785
2786 EV_FREQUENT_CHECK;
1700} 2787}
1701 2788
1702void 2789void
1703ev_child_stop (EV_P_ ev_child *w) 2790ev_child_stop (EV_P_ ev_child *w)
1704{ 2791{
1705 ev_clear_pending (EV_A_ (W)w); 2792 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2793 if (expect_false (!ev_is_active (w)))
1707 return; 2794 return;
1708 2795
2796 EV_FREQUENT_CHECK;
2797
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2798 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
1711} 2802}
1712 2803
1713#if EV_STAT_ENABLE 2804#if EV_STAT_ENABLE
1714 2805
1715# ifdef _WIN32 2806# ifdef _WIN32
1716# undef lstat 2807# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 2808# define lstat(a,b) _stati64 (a,b)
1718# endif 2809# endif
1719 2810
1720#define DEF_STAT_INTERVAL 5.0074891 2811#define DEF_STAT_INTERVAL 5.0074891
2812#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 2813#define MIN_STAT_INTERVAL 0.1074891
1722 2814
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2815static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2816
1725#if EV_USE_INOTIFY 2817#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2818# define EV_INOTIFY_BUFSIZE 8192
1727 2819
1728static void noinline 2820static void noinline
1730{ 2822{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2823 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 2824
1733 if (w->wd < 0) 2825 if (w->wd < 0)
1734 { 2826 {
2827 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2828 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2829
1737 /* monitor some parent directory for speedup hints */ 2830 /* monitor some parent directory for speedup hints */
2831 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2832 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2833 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2834 {
1740 char path [4096]; 2835 char path [4096];
1741 strcpy (path, w->path); 2836 strcpy (path, w->path);
1742 2837
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2840 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2841 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 2842
1748 char *pend = strrchr (path, '/'); 2843 char *pend = strrchr (path, '/');
1749 2844
1750 if (!pend) 2845 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 2846 break;
1752 2847
1753 *pend = 0; 2848 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 2849 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 2850 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2851 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 2852 }
1758 } 2853 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 2854
1762 if (w->wd >= 0) 2855 if (w->wd >= 0)
2856 {
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2858
2859 /* now local changes will be tracked by inotify, but remote changes won't */
2860 /* unless the filesystem it known to be local, we therefore still poll */
2861 /* also do poll on <2.6.25, but with normal frequency */
2862 struct statfs sfs;
2863
2864 if (fs_2625 && !statfs (w->path, &sfs))
2865 if (sfs.f_type == 0x1373 /* devfs */
2866 || sfs.f_type == 0xEF53 /* ext2/3 */
2867 || sfs.f_type == 0x3153464a /* jfs */
2868 || sfs.f_type == 0x52654973 /* reiser3 */
2869 || sfs.f_type == 0x01021994 /* tempfs */
2870 || sfs.f_type == 0x58465342 /* xfs */)
2871 return;
2872
2873 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2874 ev_timer_again (EV_A_ &w->timer);
2875 }
1764} 2876}
1765 2877
1766static void noinline 2878static void noinline
1767infy_del (EV_P_ ev_stat *w) 2879infy_del (EV_P_ ev_stat *w)
1768{ 2880{
1782 2894
1783static void noinline 2895static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 2897{
1786 if (slot < 0) 2898 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 2899 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 2901 infy_wd (EV_A_ slot, wd, ev);
1790 else 2902 else
1791 { 2903 {
1792 WL w_; 2904 WL w_;
1798 2910
1799 if (w->wd == wd || wd == -1) 2911 if (w->wd == wd || wd == -1)
1800 { 2912 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 2914 {
2915 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1803 w->wd = -1; 2916 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 2917 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 2918 }
1806 2919
1807 stat_timer_cb (EV_A_ &w->timer, 0); 2920 stat_timer_cb (EV_A_ &w->timer, 0);
1820 2933
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2934 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2935 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1823} 2936}
1824 2937
1825void inline_size 2938inline_size void
2939check_2625 (EV_P)
2940{
2941 /* kernels < 2.6.25 are borked
2942 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2943 */
2944 struct utsname buf;
2945 int major, minor, micro;
2946
2947 if (uname (&buf))
2948 return;
2949
2950 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2951 return;
2952
2953 if (major < 2
2954 || (major == 2 && minor < 6)
2955 || (major == 2 && minor == 6 && micro < 25))
2956 return;
2957
2958 fs_2625 = 1;
2959}
2960
2961inline_size void
1826infy_init (EV_P) 2962infy_init (EV_P)
1827{ 2963{
1828 if (fs_fd != -2) 2964 if (fs_fd != -2)
1829 return; 2965 return;
2966
2967 fs_fd = -1;
2968
2969 check_2625 (EV_A);
1830 2970
1831 fs_fd = inotify_init (); 2971 fs_fd = inotify_init ();
1832 2972
1833 if (fs_fd >= 0) 2973 if (fs_fd >= 0)
1834 { 2974 {
1836 ev_set_priority (&fs_w, EV_MAXPRI); 2976 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w); 2977 ev_io_start (EV_A_ &fs_w);
1838 } 2978 }
1839} 2979}
1840 2980
1841void inline_size 2981inline_size void
1842infy_fork (EV_P) 2982infy_fork (EV_P)
1843{ 2983{
1844 int slot; 2984 int slot;
1845 2985
1846 if (fs_fd < 0) 2986 if (fs_fd < 0)
1862 w->wd = -1; 3002 w->wd = -1;
1863 3003
1864 if (fs_fd >= 0) 3004 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 3005 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 3006 else
1867 ev_timer_start (EV_A_ &w->timer); 3007 ev_timer_again (EV_A_ &w->timer);
1868 } 3008 }
1869
1870 } 3009 }
1871} 3010}
1872 3011
3012#endif
3013
3014#ifdef _WIN32
3015# define EV_LSTAT(p,b) _stati64 (p, b)
3016#else
3017# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 3018#endif
1874 3019
1875void 3020void
1876ev_stat_stat (EV_P_ ev_stat *w) 3021ev_stat_stat (EV_P_ ev_stat *w)
1877{ 3022{
1879 w->attr.st_nlink = 0; 3024 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 3025 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 3026 w->attr.st_nlink = 1;
1882} 3027}
1883 3028
1884void noinline 3029static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3030stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 3031{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3032 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 3033
1889 /* we copy this here each the time so that */ 3034 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 3035 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 3036 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 3037 ev_stat_stat (EV_A_ w);
1893 3038
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3039 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3040 if (
3041 w->prev.st_dev != w->attr.st_dev
3042 || w->prev.st_ino != w->attr.st_ino
3043 || w->prev.st_mode != w->attr.st_mode
3044 || w->prev.st_nlink != w->attr.st_nlink
3045 || w->prev.st_uid != w->attr.st_uid
3046 || w->prev.st_gid != w->attr.st_gid
3047 || w->prev.st_rdev != w->attr.st_rdev
3048 || w->prev.st_size != w->attr.st_size
3049 || w->prev.st_atime != w->attr.st_atime
3050 || w->prev.st_mtime != w->attr.st_mtime
3051 || w->prev.st_ctime != w->attr.st_ctime
1895 { 3052 ) {
1896 #if EV_USE_INOTIFY 3053 #if EV_USE_INOTIFY
3054 if (fs_fd >= 0)
3055 {
1897 infy_del (EV_A_ w); 3056 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 3057 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 3058 ev_stat_stat (EV_A_ w); /* avoid race... */
3059 }
1900 #endif 3060 #endif
1901 3061
1902 ev_feed_event (EV_A_ w, EV_STAT); 3062 ev_feed_event (EV_A_ w, EV_STAT);
1903 } 3063 }
1904} 3064}
1907ev_stat_start (EV_P_ ev_stat *w) 3067ev_stat_start (EV_P_ ev_stat *w)
1908{ 3068{
1909 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
1910 return; 3070 return;
1911 3071
1912 /* since we use memcmp, we need to clear any padding data etc. */
1913 memset (&w->prev, 0, sizeof (ev_statdata));
1914 memset (&w->attr, 0, sizeof (ev_statdata));
1915
1916 ev_stat_stat (EV_A_ w); 3072 ev_stat_stat (EV_A_ w);
1917 3073
3074 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1918 if (w->interval < MIN_STAT_INTERVAL) 3075 w->interval = MIN_STAT_INTERVAL;
1919 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1920 3076
1921 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3077 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1922 ev_set_priority (&w->timer, ev_priority (w)); 3078 ev_set_priority (&w->timer, ev_priority (w));
1923 3079
1924#if EV_USE_INOTIFY 3080#if EV_USE_INOTIFY
1925 infy_init (EV_A); 3081 infy_init (EV_A);
1926 3082
1927 if (fs_fd >= 0) 3083 if (fs_fd >= 0)
1928 infy_add (EV_A_ w); 3084 infy_add (EV_A_ w);
1929 else 3085 else
1930#endif 3086#endif
1931 ev_timer_start (EV_A_ &w->timer); 3087 ev_timer_again (EV_A_ &w->timer);
1932 3088
1933 ev_start (EV_A_ (W)w, 1); 3089 ev_start (EV_A_ (W)w, 1);
3090
3091 EV_FREQUENT_CHECK;
1934} 3092}
1935 3093
1936void 3094void
1937ev_stat_stop (EV_P_ ev_stat *w) 3095ev_stat_stop (EV_P_ ev_stat *w)
1938{ 3096{
1939 ev_clear_pending (EV_A_ (W)w); 3097 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 3098 if (expect_false (!ev_is_active (w)))
1941 return; 3099 return;
1942 3100
3101 EV_FREQUENT_CHECK;
3102
1943#if EV_USE_INOTIFY 3103#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 3104 infy_del (EV_A_ w);
1945#endif 3105#endif
1946 ev_timer_stop (EV_A_ &w->timer); 3106 ev_timer_stop (EV_A_ &w->timer);
1947 3107
1948 ev_stop (EV_A_ (W)w); 3108 ev_stop (EV_A_ (W)w);
1949}
1950#endif
1951 3109
3110 EV_FREQUENT_CHECK;
3111}
3112#endif
3113
3114#if EV_IDLE_ENABLE
1952void 3115void
1953ev_idle_start (EV_P_ ev_idle *w) 3116ev_idle_start (EV_P_ ev_idle *w)
1954{ 3117{
1955 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
1956 return; 3119 return;
1957 3120
3121 pri_adjust (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
3124
3125 {
3126 int active = ++idlecnt [ABSPRI (w)];
3127
3128 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 3129 ev_start (EV_A_ (W)w, active);
3130
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3131 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 3132 idles [ABSPRI (w)][active - 1] = w;
3133 }
3134
3135 EV_FREQUENT_CHECK;
1961} 3136}
1962 3137
1963void 3138void
1964ev_idle_stop (EV_P_ ev_idle *w) 3139ev_idle_stop (EV_P_ ev_idle *w)
1965{ 3140{
1966 ev_clear_pending (EV_A_ (W)w); 3141 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 3142 if (expect_false (!ev_is_active (w)))
1968 return; 3143 return;
1969 3144
3145 EV_FREQUENT_CHECK;
3146
1970 { 3147 {
1971 int active = ((W)w)->active; 3148 int active = ev_active (w);
1972 idles [active - 1] = idles [--idlecnt]; 3149
1973 ((W)idles [active - 1])->active = active; 3150 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3151 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3152
3153 ev_stop (EV_A_ (W)w);
3154 --idleall;
1974 } 3155 }
1975 3156
1976 ev_stop (EV_A_ (W)w); 3157 EV_FREQUENT_CHECK;
1977} 3158}
3159#endif
1978 3160
1979void 3161void
1980ev_prepare_start (EV_P_ ev_prepare *w) 3162ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 3163{
1982 if (expect_false (ev_is_active (w))) 3164 if (expect_false (ev_is_active (w)))
1983 return; 3165 return;
3166
3167 EV_FREQUENT_CHECK;
1984 3168
1985 ev_start (EV_A_ (W)w, ++preparecnt); 3169 ev_start (EV_A_ (W)w, ++preparecnt);
1986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3170 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1987 prepares [preparecnt - 1] = w; 3171 prepares [preparecnt - 1] = w;
3172
3173 EV_FREQUENT_CHECK;
1988} 3174}
1989 3175
1990void 3176void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 3177ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 3178{
1993 ev_clear_pending (EV_A_ (W)w); 3179 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 3180 if (expect_false (!ev_is_active (w)))
1995 return; 3181 return;
1996 3182
3183 EV_FREQUENT_CHECK;
3184
1997 { 3185 {
1998 int active = ((W)w)->active; 3186 int active = ev_active (w);
3187
1999 prepares [active - 1] = prepares [--preparecnt]; 3188 prepares [active - 1] = prepares [--preparecnt];
2000 ((W)prepares [active - 1])->active = active; 3189 ev_active (prepares [active - 1]) = active;
2001 } 3190 }
2002 3191
2003 ev_stop (EV_A_ (W)w); 3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
2004} 3195}
2005 3196
2006void 3197void
2007ev_check_start (EV_P_ ev_check *w) 3198ev_check_start (EV_P_ ev_check *w)
2008{ 3199{
2009 if (expect_false (ev_is_active (w))) 3200 if (expect_false (ev_is_active (w)))
2010 return; 3201 return;
3202
3203 EV_FREQUENT_CHECK;
2011 3204
2012 ev_start (EV_A_ (W)w, ++checkcnt); 3205 ev_start (EV_A_ (W)w, ++checkcnt);
2013 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3206 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2014 checks [checkcnt - 1] = w; 3207 checks [checkcnt - 1] = w;
3208
3209 EV_FREQUENT_CHECK;
2015} 3210}
2016 3211
2017void 3212void
2018ev_check_stop (EV_P_ ev_check *w) 3213ev_check_stop (EV_P_ ev_check *w)
2019{ 3214{
2020 ev_clear_pending (EV_A_ (W)w); 3215 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 3216 if (expect_false (!ev_is_active (w)))
2022 return; 3217 return;
2023 3218
3219 EV_FREQUENT_CHECK;
3220
2024 { 3221 {
2025 int active = ((W)w)->active; 3222 int active = ev_active (w);
3223
2026 checks [active - 1] = checks [--checkcnt]; 3224 checks [active - 1] = checks [--checkcnt];
2027 ((W)checks [active - 1])->active = active; 3225 ev_active (checks [active - 1]) = active;
2028 } 3226 }
2029 3227
2030 ev_stop (EV_A_ (W)w); 3228 ev_stop (EV_A_ (W)w);
3229
3230 EV_FREQUENT_CHECK;
2031} 3231}
2032 3232
2033#if EV_EMBED_ENABLE 3233#if EV_EMBED_ENABLE
2034void noinline 3234void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 3235ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 3236{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 3237 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 3238}
2039 3239
2040static void 3240static void
2041embed_cb (EV_P_ ev_io *io, int revents) 3241embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 3242{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3243 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 3244
2045 if (ev_cb (w)) 3245 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3246 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 3247 else
2048 ev_embed_sweep (loop, w); 3248 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 3249}
3250
3251static void
3252embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3253{
3254 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3255
3256 {
3257 EV_P = w->other;
3258
3259 while (fdchangecnt)
3260 {
3261 fd_reify (EV_A);
3262 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3263 }
3264 }
3265}
3266
3267static void
3268embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3269{
3270 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3271
3272 ev_embed_stop (EV_A_ w);
3273
3274 {
3275 EV_P = w->other;
3276
3277 ev_loop_fork (EV_A);
3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3279 }
3280
3281 ev_embed_start (EV_A_ w);
3282}
3283
3284#if 0
3285static void
3286embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3287{
3288 ev_idle_stop (EV_A_ idle);
3289}
3290#endif
2050 3291
2051void 3292void
2052ev_embed_start (EV_P_ ev_embed *w) 3293ev_embed_start (EV_P_ ev_embed *w)
2053{ 3294{
2054 if (expect_false (ev_is_active (w))) 3295 if (expect_false (ev_is_active (w)))
2055 return; 3296 return;
2056 3297
2057 { 3298 {
2058 struct ev_loop *loop = w->loop; 3299 EV_P = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3300 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3301 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 3302 }
3303
3304 EV_FREQUENT_CHECK;
2062 3305
2063 ev_set_priority (&w->io, ev_priority (w)); 3306 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 3307 ev_io_start (EV_A_ &w->io);
2065 3308
3309 ev_prepare_init (&w->prepare, embed_prepare_cb);
3310 ev_set_priority (&w->prepare, EV_MINPRI);
3311 ev_prepare_start (EV_A_ &w->prepare);
3312
3313 ev_fork_init (&w->fork, embed_fork_cb);
3314 ev_fork_start (EV_A_ &w->fork);
3315
3316 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3317
2066 ev_start (EV_A_ (W)w, 1); 3318 ev_start (EV_A_ (W)w, 1);
3319
3320 EV_FREQUENT_CHECK;
2067} 3321}
2068 3322
2069void 3323void
2070ev_embed_stop (EV_P_ ev_embed *w) 3324ev_embed_stop (EV_P_ ev_embed *w)
2071{ 3325{
2072 ev_clear_pending (EV_A_ (W)w); 3326 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 3327 if (expect_false (!ev_is_active (w)))
2074 return; 3328 return;
2075 3329
3330 EV_FREQUENT_CHECK;
3331
2076 ev_io_stop (EV_A_ &w->io); 3332 ev_io_stop (EV_A_ &w->io);
3333 ev_prepare_stop (EV_A_ &w->prepare);
3334 ev_fork_stop (EV_A_ &w->fork);
2077 3335
2078 ev_stop (EV_A_ (W)w); 3336 EV_FREQUENT_CHECK;
2079} 3337}
2080#endif 3338#endif
2081 3339
2082#if EV_FORK_ENABLE 3340#if EV_FORK_ENABLE
2083void 3341void
2084ev_fork_start (EV_P_ ev_fork *w) 3342ev_fork_start (EV_P_ ev_fork *w)
2085{ 3343{
2086 if (expect_false (ev_is_active (w))) 3344 if (expect_false (ev_is_active (w)))
2087 return; 3345 return;
3346
3347 EV_FREQUENT_CHECK;
2088 3348
2089 ev_start (EV_A_ (W)w, ++forkcnt); 3349 ev_start (EV_A_ (W)w, ++forkcnt);
2090 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2091 forks [forkcnt - 1] = w; 3351 forks [forkcnt - 1] = w;
3352
3353 EV_FREQUENT_CHECK;
2092} 3354}
2093 3355
2094void 3356void
2095ev_fork_stop (EV_P_ ev_fork *w) 3357ev_fork_stop (EV_P_ ev_fork *w)
2096{ 3358{
2097 ev_clear_pending (EV_A_ (W)w); 3359 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 3360 if (expect_false (!ev_is_active (w)))
2099 return; 3361 return;
2100 3362
3363 EV_FREQUENT_CHECK;
3364
2101 { 3365 {
2102 int active = ((W)w)->active; 3366 int active = ev_active (w);
3367
2103 forks [active - 1] = forks [--forkcnt]; 3368 forks [active - 1] = forks [--forkcnt];
2104 ((W)forks [active - 1])->active = active; 3369 ev_active (forks [active - 1]) = active;
2105 } 3370 }
2106 3371
2107 ev_stop (EV_A_ (W)w); 3372 ev_stop (EV_A_ (W)w);
3373
3374 EV_FREQUENT_CHECK;
3375}
3376#endif
3377
3378#if EV_ASYNC_ENABLE
3379void
3380ev_async_start (EV_P_ ev_async *w)
3381{
3382 if (expect_false (ev_is_active (w)))
3383 return;
3384
3385 evpipe_init (EV_A);
3386
3387 EV_FREQUENT_CHECK;
3388
3389 ev_start (EV_A_ (W)w, ++asynccnt);
3390 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3391 asyncs [asynccnt - 1] = w;
3392
3393 EV_FREQUENT_CHECK;
3394}
3395
3396void
3397ev_async_stop (EV_P_ ev_async *w)
3398{
3399 clear_pending (EV_A_ (W)w);
3400 if (expect_false (!ev_is_active (w)))
3401 return;
3402
3403 EV_FREQUENT_CHECK;
3404
3405 {
3406 int active = ev_active (w);
3407
3408 asyncs [active - 1] = asyncs [--asynccnt];
3409 ev_active (asyncs [active - 1]) = active;
3410 }
3411
3412 ev_stop (EV_A_ (W)w);
3413
3414 EV_FREQUENT_CHECK;
3415}
3416
3417void
3418ev_async_send (EV_P_ ev_async *w)
3419{
3420 w->sent = 1;
3421 evpipe_write (EV_A_ &gotasync);
2108} 3422}
2109#endif 3423#endif
2110 3424
2111/*****************************************************************************/ 3425/*****************************************************************************/
2112 3426
2122once_cb (EV_P_ struct ev_once *once, int revents) 3436once_cb (EV_P_ struct ev_once *once, int revents)
2123{ 3437{
2124 void (*cb)(int revents, void *arg) = once->cb; 3438 void (*cb)(int revents, void *arg) = once->cb;
2125 void *arg = once->arg; 3439 void *arg = once->arg;
2126 3440
2127 ev_io_stop (EV_A_ &once->io); 3441 ev_io_stop (EV_A_ &once->io);
2128 ev_timer_stop (EV_A_ &once->to); 3442 ev_timer_stop (EV_A_ &once->to);
2129 ev_free (once); 3443 ev_free (once);
2130 3444
2131 cb (revents, arg); 3445 cb (revents, arg);
2132} 3446}
2133 3447
2134static void 3448static void
2135once_cb_io (EV_P_ ev_io *w, int revents) 3449once_cb_io (EV_P_ ev_io *w, int revents)
2136{ 3450{
2137 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3451 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3452
3453 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2138} 3454}
2139 3455
2140static void 3456static void
2141once_cb_to (EV_P_ ev_timer *w, int revents) 3457once_cb_to (EV_P_ ev_timer *w, int revents)
2142{ 3458{
2143 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3459 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3460
3461 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2144} 3462}
2145 3463
2146void 3464void
2147ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2148{ 3466{
2170 ev_timer_set (&once->to, timeout, 0.); 3488 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 3489 ev_timer_start (EV_A_ &once->to);
2172 } 3490 }
2173} 3491}
2174 3492
3493/*****************************************************************************/
3494
3495#if EV_WALK_ENABLE
3496void
3497ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3498{
3499 int i, j;
3500 ev_watcher_list *wl, *wn;
3501
3502 if (types & (EV_IO | EV_EMBED))
3503 for (i = 0; i < anfdmax; ++i)
3504 for (wl = anfds [i].head; wl; )
3505 {
3506 wn = wl->next;
3507
3508#if EV_EMBED_ENABLE
3509 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3510 {
3511 if (types & EV_EMBED)
3512 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3513 }
3514 else
3515#endif
3516#if EV_USE_INOTIFY
3517 if (ev_cb ((ev_io *)wl) == infy_cb)
3518 ;
3519 else
3520#endif
3521 if ((ev_io *)wl != &pipe_w)
3522 if (types & EV_IO)
3523 cb (EV_A_ EV_IO, wl);
3524
3525 wl = wn;
3526 }
3527
3528 if (types & (EV_TIMER | EV_STAT))
3529 for (i = timercnt + HEAP0; i-- > HEAP0; )
3530#if EV_STAT_ENABLE
3531 /*TODO: timer is not always active*/
3532 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3533 {
3534 if (types & EV_STAT)
3535 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3536 }
3537 else
3538#endif
3539 if (types & EV_TIMER)
3540 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3541
3542#if EV_PERIODIC_ENABLE
3543 if (types & EV_PERIODIC)
3544 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3545 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3546#endif
3547
3548#if EV_IDLE_ENABLE
3549 if (types & EV_IDLE)
3550 for (j = NUMPRI; i--; )
3551 for (i = idlecnt [j]; i--; )
3552 cb (EV_A_ EV_IDLE, idles [j][i]);
3553#endif
3554
3555#if EV_FORK_ENABLE
3556 if (types & EV_FORK)
3557 for (i = forkcnt; i--; )
3558 if (ev_cb (forks [i]) != embed_fork_cb)
3559 cb (EV_A_ EV_FORK, forks [i]);
3560#endif
3561
3562#if EV_ASYNC_ENABLE
3563 if (types & EV_ASYNC)
3564 for (i = asynccnt; i--; )
3565 cb (EV_A_ EV_ASYNC, asyncs [i]);
3566#endif
3567
3568 if (types & EV_PREPARE)
3569 for (i = preparecnt; i--; )
3570#if EV_EMBED_ENABLE
3571 if (ev_cb (prepares [i]) != embed_prepare_cb)
3572#endif
3573 cb (EV_A_ EV_PREPARE, prepares [i]);
3574
3575 if (types & EV_CHECK)
3576 for (i = checkcnt; i--; )
3577 cb (EV_A_ EV_CHECK, checks [i]);
3578
3579 if (types & EV_SIGNAL)
3580 for (i = 0; i < EV_NSIG - 1; ++i)
3581 for (wl = signals [i].head; wl; )
3582 {
3583 wn = wl->next;
3584 cb (EV_A_ EV_SIGNAL, wl);
3585 wl = wn;
3586 }
3587
3588 if (types & EV_CHILD)
3589 for (i = EV_PID_HASHSIZE; i--; )
3590 for (wl = childs [i]; wl; )
3591 {
3592 wn = wl->next;
3593 cb (EV_A_ EV_CHILD, wl);
3594 wl = wn;
3595 }
3596/* EV_STAT 0x00001000 /* stat data changed */
3597/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3598}
3599#endif
3600
3601#if EV_MULTIPLICITY
3602 #include "ev_wrap.h"
3603#endif
3604
2175#ifdef __cplusplus 3605#ifdef __cplusplus
2176} 3606}
2177#endif 3607#endif
2178 3608

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines