ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.167 by root, Sat Dec 8 04:02:31 2007 UTC vs.
Revision 1.306 by root, Sun Jul 19 06:35:25 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192/* one some platforms, NSIG is one too large. we do not bother */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
142 226
143#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
144# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
145#endif 233#endif
146 234
147#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
149#endif 245#endif
150 246
151#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
153#endif 249#endif
159# define EV_USE_POLL 1 255# define EV_USE_POLL 1
160# endif 256# endif
161#endif 257#endif
162 258
163#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
164# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
165#endif 265#endif
166 266
167#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
169#endif 269#endif
171#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 272# define EV_USE_PORT 0
173#endif 273#endif
174 274
175#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
176# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
177#endif 281#endif
178 282
179#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 284# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
190# else 294# else
191# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
192# endif 296# endif
193#endif 297#endif
194 298
195/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 348
197#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
200#endif 352#endif
202#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
205#endif 357#endif
206 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
207#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 382# include <winsock.h>
209#endif 383#endif
210 384
211#if !EV_STAT_ENABLE 385#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
213#endif 390# endif
391# ifndef EFD_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# endif
394# ifdef __cplusplus
395extern "C" {
396# endif
397int eventfd (unsigned int initval, int flags);
398# ifdef __cplusplus
399}
400# endif
401#endif
214 402
215#if EV_USE_INOTIFY 403#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 404# include <sys/signalfd.h>
217#endif 405#endif
218 406
219/**/ 407/**/
408
409#if EV_VERIFY >= 3
410# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
411#else
412# define EV_FREQUENT_CHECK do { } while (0)
413#endif
414
415/*
416 * This is used to avoid floating point rounding problems.
417 * It is added to ev_rt_now when scheduling periodics
418 * to ensure progress, time-wise, even when rounding
419 * errors are against us.
420 * This value is good at least till the year 4000.
421 * Better solutions welcome.
422 */
423#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 424
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 425#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 426#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 427/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 428
225#if __GNUC__ >= 3 429#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 430# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 431# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 432#else
236# define expect(expr,value) (expr) 433# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 434# define noinline
435# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
436# define inline
437# endif
240#endif 438#endif
241 439
242#define expect_false(expr) expect ((expr) != 0, 0) 440#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 441#define expect_true(expr) expect ((expr) != 0, 1)
442#define inline_size static inline
244 443
444#if EV_MINIMAL
445# define inline_speed static noinline
446#else
447# define inline_speed static inline
448#endif
449
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 450#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
451
452#if EV_MINPRI == EV_MAXPRI
453# define ABSPRI(w) (((W)w), 0)
454#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 455# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
456#endif
247 457
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 458#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 459#define EMPTY2(a,b) /* used to suppress some warnings */
250 460
251typedef ev_watcher *W; 461typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 462typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 463typedef ev_watcher_time *WT;
254 464
465#define ev_active(w) ((W)(w))->active
466#define ev_at(w) ((WT)(w))->at
467
468#if EV_USE_REALTIME
469/* sig_atomic_t is used to avoid per-thread variables or locking but still */
470/* giving it a reasonably high chance of working on typical architetcures */
471static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
472#endif
473
474#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 475static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
476#endif
256 477
257#ifdef _WIN32 478#ifdef _WIN32
258# include "ev_win32.c" 479# include "ev_win32.c"
259#endif 480#endif
260 481
267{ 488{
268 syserr_cb = cb; 489 syserr_cb = cb;
269} 490}
270 491
271static void noinline 492static void noinline
272syserr (const char *msg) 493ev_syserr (const char *msg)
273{ 494{
274 if (!msg) 495 if (!msg)
275 msg = "(libev) system error"; 496 msg = "(libev) system error";
276 497
277 if (syserr_cb) 498 if (syserr_cb)
281 perror (msg); 502 perror (msg);
282 abort (); 503 abort ();
283 } 504 }
284} 505}
285 506
507static void *
508ev_realloc_emul (void *ptr, long size)
509{
510 /* some systems, notably openbsd and darwin, fail to properly
511 * implement realloc (x, 0) (as required by both ansi c-98 and
512 * the single unix specification, so work around them here.
513 */
514
515 if (size)
516 return realloc (ptr, size);
517
518 free (ptr);
519 return 0;
520}
521
286static void *(*alloc)(void *ptr, long size); 522static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 523
288void 524void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 525ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 526{
291 alloc = cb; 527 alloc = cb;
292} 528}
293 529
294inline_speed void * 530inline_speed void *
295ev_realloc (void *ptr, long size) 531ev_realloc (void *ptr, long size)
296{ 532{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 533 ptr = alloc (ptr, size);
298 534
299 if (!ptr && size) 535 if (!ptr && size)
300 { 536 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 537 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 538 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 544#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 545#define ev_free(ptr) ev_realloc ((ptr), 0)
310 546
311/*****************************************************************************/ 547/*****************************************************************************/
312 548
549/* set in reify when reification needed */
550#define EV_ANFD_REIFY 1
551
552/* file descriptor info structure */
313typedef struct 553typedef struct
314{ 554{
315 WL head; 555 WL head;
316 unsigned char events; 556 unsigned char events; /* the events watched for */
557 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
558 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 559 unsigned char unused;
560#if EV_USE_EPOLL
561 unsigned int egen; /* generation counter to counter epoll bugs */
562#endif
318#if EV_SELECT_IS_WINSOCKET 563#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 564 SOCKET handle;
320#endif 565#endif
321} ANFD; 566} ANFD;
322 567
568/* stores the pending event set for a given watcher */
323typedef struct 569typedef struct
324{ 570{
325 W w; 571 W w;
326 int events; 572 int events; /* the pending event set for the given watcher */
327} ANPENDING; 573} ANPENDING;
328 574
329#if EV_USE_INOTIFY 575#if EV_USE_INOTIFY
576/* hash table entry per inotify-id */
330typedef struct 577typedef struct
331{ 578{
332 WL head; 579 WL head;
333} ANFS; 580} ANFS;
581#endif
582
583/* Heap Entry */
584#if EV_HEAP_CACHE_AT
585 /* a heap element */
586 typedef struct {
587 ev_tstamp at;
588 WT w;
589 } ANHE;
590
591 #define ANHE_w(he) (he).w /* access watcher, read-write */
592 #define ANHE_at(he) (he).at /* access cached at, read-only */
593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
594#else
595 /* a heap element */
596 typedef WT ANHE;
597
598 #define ANHE_w(he) (he)
599 #define ANHE_at(he) (he)->at
600 #define ANHE_at_cache(he)
334#endif 601#endif
335 602
336#if EV_MULTIPLICITY 603#if EV_MULTIPLICITY
337 604
338 struct ev_loop 605 struct ev_loop
357 624
358 static int ev_default_loop_ptr; 625 static int ev_default_loop_ptr;
359 626
360#endif 627#endif
361 628
629#if EV_MINIMAL < 2
630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
632# define EV_INVOKE_PENDING invoke_cb (EV_A)
633#else
634# define EV_RELEASE_CB (void)0
635# define EV_ACQUIRE_CB (void)0
636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
637#endif
638
639#define EVUNLOOP_RECURSE 0x80
640
362/*****************************************************************************/ 641/*****************************************************************************/
363 642
643#ifndef EV_HAVE_EV_TIME
364ev_tstamp 644ev_tstamp
365ev_time (void) 645ev_time (void)
366{ 646{
367#if EV_USE_REALTIME 647#if EV_USE_REALTIME
648 if (expect_true (have_realtime))
649 {
368 struct timespec ts; 650 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 651 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 652 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 653 }
654#endif
655
372 struct timeval tv; 656 struct timeval tv;
373 gettimeofday (&tv, 0); 657 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 658 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 659}
660#endif
377 661
378ev_tstamp inline_size 662inline_size ev_tstamp
379get_clock (void) 663get_clock (void)
380{ 664{
381#if EV_USE_MONOTONIC 665#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 666 if (expect_true (have_monotonic))
383 { 667 {
396{ 680{
397 return ev_rt_now; 681 return ev_rt_now;
398} 682}
399#endif 683#endif
400 684
401int inline_size 685void
686ev_sleep (ev_tstamp delay)
687{
688 if (delay > 0.)
689 {
690#if EV_USE_NANOSLEEP
691 struct timespec ts;
692
693 ts.tv_sec = (time_t)delay;
694 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
695
696 nanosleep (&ts, 0);
697#elif defined(_WIN32)
698 Sleep ((unsigned long)(delay * 1e3));
699#else
700 struct timeval tv;
701
702 tv.tv_sec = (time_t)delay;
703 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
704
705 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
706 /* something not guaranteed by newer posix versions, but guaranteed */
707 /* by older ones */
708 select (0, 0, 0, 0, &tv);
709#endif
710 }
711}
712
713/*****************************************************************************/
714
715#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
716
717/* find a suitable new size for the given array, */
718/* hopefully by rounding to a ncie-to-malloc size */
719inline_size int
402array_nextsize (int elem, int cur, int cnt) 720array_nextsize (int elem, int cur, int cnt)
403{ 721{
404 int ncur = cur + 1; 722 int ncur = cur + 1;
405 723
406 do 724 do
407 ncur <<= 1; 725 ncur <<= 1;
408 while (cnt > ncur); 726 while (cnt > ncur);
409 727
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 728 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 729 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 730 {
413 ncur *= elem; 731 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 732 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 733 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 734 ncur /= elem;
417 } 735 }
418 736
419 return ncur; 737 return ncur;
420} 738}
421 739
422inline_speed void * 740static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 741array_realloc (int elem, void *base, int *cur, int cnt)
424{ 742{
425 *cur = array_nextsize (elem, *cur, cnt); 743 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 744 return ev_realloc (base, elem * *cur);
427} 745}
746
747#define array_init_zero(base,count) \
748 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 749
429#define array_needsize(type,base,cur,cnt,init) \ 750#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 751 if (expect_false ((cnt) > (cur))) \
431 { \ 752 { \
432 int ocur_ = (cur); \ 753 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 765 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 766 }
446#endif 767#endif
447 768
448#define array_free(stem, idx) \ 769#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 770 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 771
451/*****************************************************************************/ 772/*****************************************************************************/
773
774/* dummy callback for pending events */
775static void noinline
776pendingcb (EV_P_ ev_prepare *w, int revents)
777{
778}
452 779
453void noinline 780void noinline
454ev_feed_event (EV_P_ void *w, int revents) 781ev_feed_event (EV_P_ void *w, int revents)
455{ 782{
456 W w_ = (W)w; 783 W w_ = (W)w;
784 int pri = ABSPRI (w_);
457 785
458 if (expect_false (w_->pending)) 786 if (expect_false (w_->pending))
787 pendings [pri][w_->pending - 1].events |= revents;
788 else
459 { 789 {
790 w_->pending = ++pendingcnt [pri];
791 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
792 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 793 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 794 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 795}
469 796
470void inline_size 797inline_speed void
798feed_reverse (EV_P_ W w)
799{
800 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
801 rfeeds [rfeedcnt++] = w;
802}
803
804inline_size void
805feed_reverse_done (EV_P_ int revents)
806{
807 do
808 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
809 while (rfeedcnt);
810}
811
812inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 813queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 814{
473 int i; 815 int i;
474 816
475 for (i = 0; i < eventcnt; ++i) 817 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 818 ev_feed_event (EV_A_ events [i], type);
477} 819}
478 820
479/*****************************************************************************/ 821/*****************************************************************************/
480 822
481void inline_size 823inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 824fd_event_nc (EV_P_ int fd, int revents)
496{ 825{
497 ANFD *anfd = anfds + fd; 826 ANFD *anfd = anfds + fd;
498 ev_io *w; 827 ev_io *w;
499 828
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 829 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 833 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 834 ev_feed_event (EV_A_ (W)w, ev);
506 } 835 }
507} 836}
508 837
838/* do not submit kernel events for fds that have reify set */
839/* because that means they changed while we were polling for new events */
840inline_speed void
841fd_event (EV_P_ int fd, int revents)
842{
843 ANFD *anfd = anfds + fd;
844
845 if (expect_true (!anfd->reify))
846 fd_event_nc (EV_A_ fd, revents);
847}
848
509void 849void
510ev_feed_fd_event (EV_P_ int fd, int revents) 850ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 851{
852 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 853 fd_event_nc (EV_A_ fd, revents);
513} 854}
514 855
515void inline_size 856/* make sure the external fd watch events are in-sync */
857/* with the kernel/libev internal state */
858inline_size void
516fd_reify (EV_P) 859fd_reify (EV_P)
517{ 860{
518 int i; 861 int i;
519 862
520 for (i = 0; i < fdchangecnt; ++i) 863 for (i = 0; i < fdchangecnt; ++i)
521 { 864 {
522 int fd = fdchanges [i]; 865 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 866 ANFD *anfd = anfds + fd;
524 ev_io *w; 867 ev_io *w;
525 868
526 int events = 0; 869 unsigned char events = 0;
527 870
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 871 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 872 events |= (unsigned char)w->events;
530 873
531#if EV_SELECT_IS_WINSOCKET 874#if EV_SELECT_IS_WINSOCKET
532 if (events) 875 if (events)
533 { 876 {
534 unsigned long argp; 877 unsigned long arg;
878 #ifdef EV_FD_TO_WIN32_HANDLE
879 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
880 #else
535 anfd->handle = _get_osfhandle (fd); 881 anfd->handle = _get_osfhandle (fd);
882 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 883 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
537 } 884 }
538#endif 885#endif
539 886
887 {
888 unsigned char o_events = anfd->events;
889 unsigned char o_reify = anfd->reify;
890
540 anfd->reify = 0; 891 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 892 anfd->events = events;
893
894 if (o_events != events || o_reify & EV__IOFDSET)
895 backend_modify (EV_A_ fd, o_events, events);
896 }
544 } 897 }
545 898
546 fdchangecnt = 0; 899 fdchangecnt = 0;
547} 900}
548 901
549void inline_size 902/* something about the given fd changed */
903inline_size void
550fd_change (EV_P_ int fd) 904fd_change (EV_P_ int fd, int flags)
551{ 905{
552 if (expect_false (anfds [fd].reify)) 906 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 907 anfds [fd].reify |= flags;
556 908
909 if (expect_true (!reify))
910 {
557 ++fdchangecnt; 911 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 912 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 913 fdchanges [fdchangecnt - 1] = fd;
914 }
560} 915}
561 916
562void inline_speed 917/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
918inline_speed void
563fd_kill (EV_P_ int fd) 919fd_kill (EV_P_ int fd)
564{ 920{
565 ev_io *w; 921 ev_io *w;
566 922
567 while ((w = (ev_io *)anfds [fd].head)) 923 while ((w = (ev_io *)anfds [fd].head))
569 ev_io_stop (EV_A_ w); 925 ev_io_stop (EV_A_ w);
570 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 926 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
571 } 927 }
572} 928}
573 929
574int inline_size 930/* check whether the given fd is atcually valid, for error recovery */
931inline_size int
575fd_valid (int fd) 932fd_valid (int fd)
576{ 933{
577#ifdef _WIN32 934#ifdef _WIN32
578 return _get_osfhandle (fd) != -1; 935 return _get_osfhandle (fd) != -1;
579#else 936#else
587{ 944{
588 int fd; 945 int fd;
589 946
590 for (fd = 0; fd < anfdmax; ++fd) 947 for (fd = 0; fd < anfdmax; ++fd)
591 if (anfds [fd].events) 948 if (anfds [fd].events)
592 if (!fd_valid (fd) == -1 && errno == EBADF) 949 if (!fd_valid (fd) && errno == EBADF)
593 fd_kill (EV_A_ fd); 950 fd_kill (EV_A_ fd);
594} 951}
595 952
596/* called on ENOMEM in select/poll to kill some fds and retry */ 953/* called on ENOMEM in select/poll to kill some fds and retry */
597static void noinline 954static void noinline
615 972
616 for (fd = 0; fd < anfdmax; ++fd) 973 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 974 if (anfds [fd].events)
618 { 975 {
619 anfds [fd].events = 0; 976 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 977 anfds [fd].emask = 0;
978 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
621 } 979 }
622} 980}
623 981
624/*****************************************************************************/ 982/*****************************************************************************/
625 983
626void inline_speed 984/*
627upheap (WT *heap, int k) 985 * the heap functions want a real array index. array index 0 uis guaranteed to not
628{ 986 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
629 WT w = heap [k]; 987 * the branching factor of the d-tree.
988 */
630 989
631 while (k && heap [k >> 1]->at > w->at) 990/*
632 { 991 * at the moment we allow libev the luxury of two heaps,
633 heap [k] = heap [k >> 1]; 992 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
634 ((W)heap [k])->active = k + 1; 993 * which is more cache-efficient.
635 k >>= 1; 994 * the difference is about 5% with 50000+ watchers.
636 } 995 */
996#if EV_USE_4HEAP
637 997
638 heap [k] = w; 998#define DHEAP 4
639 ((W)heap [k])->active = k + 1; 999#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1000#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1001#define UPHEAP_DONE(p,k) ((p) == (k))
640 1002
641} 1003/* away from the root */
642 1004inline_speed void
643void inline_speed
644downheap (WT *heap, int N, int k) 1005downheap (ANHE *heap, int N, int k)
645{ 1006{
646 WT w = heap [k]; 1007 ANHE he = heap [k];
1008 ANHE *E = heap + N + HEAP0;
647 1009
648 while (k < (N >> 1)) 1010 for (;;)
649 { 1011 {
650 int j = k << 1; 1012 ev_tstamp minat;
1013 ANHE *minpos;
1014 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
651 1015
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1016 /* find minimum child */
1017 if (expect_true (pos + DHEAP - 1 < E))
653 ++j; 1018 {
654 1019 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
655 if (w->at <= heap [j]->at) 1020 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1022 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1023 }
1024 else if (pos < E)
1025 {
1026 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1027 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1028 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1029 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1030 }
1031 else
656 break; 1032 break;
657 1033
1034 if (ANHE_at (he) <= minat)
1035 break;
1036
1037 heap [k] = *minpos;
1038 ev_active (ANHE_w (*minpos)) = k;
1039
1040 k = minpos - heap;
1041 }
1042
1043 heap [k] = he;
1044 ev_active (ANHE_w (he)) = k;
1045}
1046
1047#else /* 4HEAP */
1048
1049#define HEAP0 1
1050#define HPARENT(k) ((k) >> 1)
1051#define UPHEAP_DONE(p,k) (!(p))
1052
1053/* away from the root */
1054inline_speed void
1055downheap (ANHE *heap, int N, int k)
1056{
1057 ANHE he = heap [k];
1058
1059 for (;;)
1060 {
1061 int c = k << 1;
1062
1063 if (c > N + HEAP0 - 1)
1064 break;
1065
1066 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1067 ? 1 : 0;
1068
1069 if (ANHE_at (he) <= ANHE_at (heap [c]))
1070 break;
1071
658 heap [k] = heap [j]; 1072 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 1073 ev_active (ANHE_w (heap [k])) = k;
1074
660 k = j; 1075 k = c;
661 } 1076 }
662 1077
663 heap [k] = w; 1078 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1079 ev_active (ANHE_w (he)) = k;
665} 1080}
1081#endif
666 1082
667void inline_size 1083/* towards the root */
1084inline_speed void
1085upheap (ANHE *heap, int k)
1086{
1087 ANHE he = heap [k];
1088
1089 for (;;)
1090 {
1091 int p = HPARENT (k);
1092
1093 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1094 break;
1095
1096 heap [k] = heap [p];
1097 ev_active (ANHE_w (heap [k])) = k;
1098 k = p;
1099 }
1100
1101 heap [k] = he;
1102 ev_active (ANHE_w (he)) = k;
1103}
1104
1105/* move an element suitably so it is in a correct place */
1106inline_size void
668adjustheap (WT *heap, int N, int k) 1107adjustheap (ANHE *heap, int N, int k)
669{ 1108{
1109 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
670 upheap (heap, k); 1110 upheap (heap, k);
1111 else
671 downheap (heap, N, k); 1112 downheap (heap, N, k);
1113}
1114
1115/* rebuild the heap: this function is used only once and executed rarely */
1116inline_size void
1117reheap (ANHE *heap, int N)
1118{
1119 int i;
1120
1121 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1122 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1123 for (i = 0; i < N; ++i)
1124 upheap (heap, i + HEAP0);
672} 1125}
673 1126
674/*****************************************************************************/ 1127/*****************************************************************************/
675 1128
1129/* associate signal watchers to a signal signal */
676typedef struct 1130typedef struct
677{ 1131{
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
678 WL head; 1135 WL head;
679 sig_atomic_t volatile gotsig; 1136 EV_ATOMIC_T gotsig;
680} ANSIG; 1137} ANSIG;
681 1138
682static ANSIG *signals; 1139static ANSIG signals [EV_NSIG - 1];
683static int signalmax; 1140static EV_ATOMIC_T gotsig;
684 1141
685static int sigpipe [2]; 1142/*****************************************************************************/
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 1143
689void inline_size 1144/* used to prepare libev internal fd's */
690signals_init (ANSIG *base, int count) 1145/* this is not fork-safe */
691{ 1146inline_speed void
692 while (count--)
693 {
694 base->head = 0;
695 base->gotsig = 0;
696
697 ++base;
698 }
699}
700
701static void
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size
753fd_intern (int fd) 1147fd_intern (int fd)
754{ 1148{
755#ifdef _WIN32 1149#ifdef _WIN32
756 int arg = 1; 1150 unsigned long arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1151 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
758#else 1152#else
759 fcntl (fd, F_SETFD, FD_CLOEXEC); 1153 fcntl (fd, F_SETFD, FD_CLOEXEC);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 1154 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 1155#endif
762} 1156}
763 1157
764static void noinline 1158static void noinline
765siginit (EV_P) 1159evpipe_init (EV_P)
766{ 1160{
1161 if (!ev_is_active (&pipe_w))
1162 {
1163#if EV_USE_EVENTFD
1164 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1165 if (evfd < 0 && errno == EINVAL)
1166 evfd = eventfd (0, 0);
1167
1168 if (evfd >= 0)
1169 {
1170 evpipe [0] = -1;
1171 fd_intern (evfd); /* doing it twice doesn't hurt */
1172 ev_io_set (&pipe_w, evfd, EV_READ);
1173 }
1174 else
1175#endif
1176 {
1177 while (pipe (evpipe))
1178 ev_syserr ("(libev) error creating signal/async pipe");
1179
767 fd_intern (sigpipe [0]); 1180 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 1181 fd_intern (evpipe [1]);
1182 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1183 }
769 1184
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 1185 ev_io_start (EV_A_ &pipe_w);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1186 ev_unref (EV_A); /* watcher should not keep loop alive */
1187 }
1188}
1189
1190inline_size void
1191evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1192{
1193 if (!*flag)
1194 {
1195 int old_errno = errno; /* save errno because write might clobber it */
1196
1197 *flag = 1;
1198
1199#if EV_USE_EVENTFD
1200 if (evfd >= 0)
1201 {
1202 uint64_t counter = 1;
1203 write (evfd, &counter, sizeof (uint64_t));
1204 }
1205 else
1206#endif
1207 write (evpipe [1], &old_errno, 1);
1208
1209 errno = old_errno;
1210 }
1211}
1212
1213/* called whenever the libev signal pipe */
1214/* got some events (signal, async) */
1215static void
1216pipecb (EV_P_ ev_io *iow, int revents)
1217{
1218#if EV_USE_EVENTFD
1219 if (evfd >= 0)
1220 {
1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
1223 }
1224 else
1225#endif
1226 {
1227 char dummy;
1228 read (evpipe [0], &dummy, 1);
1229 }
1230
1231 if (gotsig && ev_is_default_loop (EV_A))
1232 {
1233 int signum;
1234 gotsig = 0;
1235
1236 for (signum = EV_NSIG - 1; signum--; )
1237 if (signals [signum].gotsig)
1238 ev_feed_signal_event (EV_A_ signum + 1);
1239 }
1240
1241#if EV_ASYNC_ENABLE
1242 if (gotasync)
1243 {
1244 int i;
1245 gotasync = 0;
1246
1247 for (i = asynccnt; i--; )
1248 if (asyncs [i]->sent)
1249 {
1250 asyncs [i]->sent = 0;
1251 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1252 }
1253 }
1254#endif
773} 1255}
774 1256
775/*****************************************************************************/ 1257/*****************************************************************************/
776 1258
1259static void
1260ev_sighandler (int signum)
1261{
1262#if EV_MULTIPLICITY
1263 EV_P = signals [signum - 1].loop;
1264#endif
1265
1266#if _WIN32
1267 signal (signum, ev_sighandler);
1268#endif
1269
1270 signals [signum - 1].gotsig = 1;
1271 evpipe_write (EV_A_ &gotsig);
1272}
1273
1274void noinline
1275ev_feed_signal_event (EV_P_ int signum)
1276{
1277 WL w;
1278
1279#if EV_MULTIPLICITY
1280 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1281#endif
1282
1283 if (signum <= 0 || signum > EV_NSIG)
1284 return;
1285
1286 --signum;
1287
1288 signals [signum].gotsig = 0;
1289
1290 for (w = signals [signum].head; w; w = w->next)
1291 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1292}
1293
1294#if EV_USE_SIGNALFD
1295static void
1296sigfdcb (EV_P_ ev_io *iow, int revents)
1297{
1298 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1299
1300 for (;;)
1301 {
1302 ssize_t res = read (sigfd, si, sizeof (si));
1303
1304 /* not ISO-C, as res might be -1, but works with SuS */
1305 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1306 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1307
1308 if (res < (ssize_t)sizeof (si))
1309 break;
1310 }
1311}
1312#endif
1313
1314/*****************************************************************************/
1315
777static ev_child *childs [EV_PID_HASHSIZE]; 1316static WL childs [EV_PID_HASHSIZE];
778 1317
779#ifndef _WIN32 1318#ifndef _WIN32
780 1319
781static ev_signal childev; 1320static ev_signal childev;
782 1321
783void inline_speed 1322#ifndef WIFCONTINUED
1323# define WIFCONTINUED(status) 0
1324#endif
1325
1326/* handle a single child status event */
1327inline_speed void
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1328child_reap (EV_P_ int chain, int pid, int status)
785{ 1329{
786 ev_child *w; 1330 ev_child *w;
1331 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1332
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1333 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1334 {
789 if (w->pid == pid || !w->pid) 1335 if ((w->pid == pid || !w->pid)
1336 && (!traced || (w->flags & 1)))
790 { 1337 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1338 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1339 w->rpid = pid;
793 w->rstatus = status; 1340 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1341 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1342 }
1343 }
796} 1344}
797 1345
798#ifndef WCONTINUED 1346#ifndef WCONTINUED
799# define WCONTINUED 0 1347# define WCONTINUED 0
800#endif 1348#endif
801 1349
1350/* called on sigchld etc., calls waitpid */
802static void 1351static void
803childcb (EV_P_ ev_signal *sw, int revents) 1352childcb (EV_P_ ev_signal *sw, int revents)
804{ 1353{
805 int pid, status; 1354 int pid, status;
806 1355
809 if (!WCONTINUED 1358 if (!WCONTINUED
810 || errno != EINVAL 1359 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1360 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1361 return;
813 1362
814 /* make sure we are called again until all childs have been reaped */ 1363 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1364 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1365 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1366
818 child_reap (EV_A_ sw, pid, pid, status); 1367 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1368 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1369 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1370}
822 1371
823#endif 1372#endif
824 1373
825/*****************************************************************************/ 1374/*****************************************************************************/
887 /* kqueue is borked on everything but netbsd apparently */ 1436 /* kqueue is borked on everything but netbsd apparently */
888 /* it usually doesn't work correctly on anything but sockets and pipes */ 1437 /* it usually doesn't work correctly on anything but sockets and pipes */
889 flags &= ~EVBACKEND_KQUEUE; 1438 flags &= ~EVBACKEND_KQUEUE;
890#endif 1439#endif
891#ifdef __APPLE__ 1440#ifdef __APPLE__
892 // flags &= ~EVBACKEND_KQUEUE; for documentation 1441 /* only select works correctly on that "unix-certified" platform */
893 flags &= ~EVBACKEND_POLL; 1442 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1443 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
894#endif 1444#endif
895 1445
896 return flags; 1446 return flags;
897} 1447}
898 1448
899unsigned int 1449unsigned int
900ev_embeddable_backends (void) 1450ev_embeddable_backends (void)
901{ 1451{
902 return EVBACKEND_EPOLL 1452 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1453
904 | EVBACKEND_PORT; 1454 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1455 /* please fix it and tell me how to detect the fix */
1456 flags &= ~EVBACKEND_EPOLL;
1457
1458 return flags;
905} 1459}
906 1460
907unsigned int 1461unsigned int
908ev_backend (EV_P) 1462ev_backend (EV_P)
909{ 1463{
910 return backend; 1464 return backend;
911} 1465}
912 1466
1467#if EV_MINIMAL < 2
913unsigned int 1468unsigned int
914ev_loop_count (EV_P) 1469ev_loop_count (EV_P)
915{ 1470{
916 return loop_count; 1471 return loop_count;
917} 1472}
918 1473
1474unsigned int
1475ev_loop_depth (EV_P)
1476{
1477 return loop_depth;
1478}
1479
1480void
1481ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1482{
1483 io_blocktime = interval;
1484}
1485
1486void
1487ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 timeout_blocktime = interval;
1490}
1491
1492void
1493ev_set_userdata (EV_P_ void *data)
1494{
1495 userdata = data;
1496}
1497
1498void *
1499ev_userdata (EV_P)
1500{
1501 return userdata;
1502}
1503
1504void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1505{
1506 invoke_cb = invoke_pending_cb;
1507}
1508
1509void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1510{
1511 release_cb = release;
1512 acquire_cb = acquire;
1513}
1514#endif
1515
1516/* initialise a loop structure, must be zero-initialised */
919static void noinline 1517static void noinline
920loop_init (EV_P_ unsigned int flags) 1518loop_init (EV_P_ unsigned int flags)
921{ 1519{
922 if (!backend) 1520 if (!backend)
923 { 1521 {
1522#if EV_USE_REALTIME
1523 if (!have_realtime)
1524 {
1525 struct timespec ts;
1526
1527 if (!clock_gettime (CLOCK_REALTIME, &ts))
1528 have_realtime = 1;
1529 }
1530#endif
1531
924#if EV_USE_MONOTONIC 1532#if EV_USE_MONOTONIC
1533 if (!have_monotonic)
925 { 1534 {
926 struct timespec ts; 1535 struct timespec ts;
1536
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1537 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1538 have_monotonic = 1;
929 } 1539 }
930#endif 1540#endif
931
932 ev_rt_now = ev_time ();
933 mn_now = get_clock ();
934 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now;
936 1541
937 /* pid check not overridable via env */ 1542 /* pid check not overridable via env */
938#ifndef _WIN32 1543#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1544 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1545 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1548 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1549 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1550 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1551 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1552
1553 ev_rt_now = ev_time ();
1554 mn_now = get_clock ();
1555 now_floor = mn_now;
1556 rtmn_diff = ev_rt_now - mn_now;
1557#if EV_MINIMAL < 2
1558 invoke_cb = ev_invoke_pending;
1559#endif
1560
1561 io_blocktime = 0.;
1562 timeout_blocktime = 0.;
1563 backend = 0;
1564 backend_fd = -1;
1565 gotasync = 0;
1566#if EV_USE_INOTIFY
1567 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1568#endif
1569#if EV_USE_SIGNALFD
1570 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1571#endif
1572
948 if (!(flags & 0x0000ffffUL)) 1573 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1574 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1575
957#if EV_USE_PORT 1576#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1577 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1578#endif
960#if EV_USE_KQUEUE 1579#if EV_USE_KQUEUE
968#endif 1587#endif
969#if EV_USE_SELECT 1588#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1589 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1590#endif
972 1591
1592 ev_prepare_init (&pending_w, pendingcb);
1593
973 ev_init (&sigev, sigcb); 1594 ev_init (&pipe_w, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1595 ev_set_priority (&pipe_w, EV_MAXPRI);
975 } 1596 }
976} 1597}
977 1598
1599/* free up a loop structure */
978static void noinline 1600static void noinline
979loop_destroy (EV_P) 1601loop_destroy (EV_P)
980{ 1602{
981 int i; 1603 int i;
1604
1605 if (ev_is_active (&pipe_w))
1606 {
1607 /*ev_ref (EV_A);*/
1608 /*ev_io_stop (EV_A_ &pipe_w);*/
1609
1610#if EV_USE_EVENTFD
1611 if (evfd >= 0)
1612 close (evfd);
1613#endif
1614
1615 if (evpipe [0] >= 0)
1616 {
1617 close (evpipe [0]);
1618 close (evpipe [1]);
1619 }
1620 }
1621
1622#if EV_USE_SIGNALFD
1623 if (ev_is_active (&sigfd_w))
1624 {
1625 /*ev_ref (EV_A);*/
1626 /*ev_io_stop (EV_A_ &sigfd_w);*/
1627
1628 close (sigfd);
1629 }
1630#endif
982 1631
983#if EV_USE_INOTIFY 1632#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1633 if (fs_fd >= 0)
985 close (fs_fd); 1634 close (fs_fd);
986#endif 1635#endif
1010#if EV_IDLE_ENABLE 1659#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1660 array_free (idle, [i]);
1012#endif 1661#endif
1013 } 1662 }
1014 1663
1664 ev_free (anfds); anfds = 0; anfdmax = 0;
1665
1015 /* have to use the microsoft-never-gets-it-right macro */ 1666 /* have to use the microsoft-never-gets-it-right macro */
1667 array_free (rfeed, EMPTY);
1016 array_free (fdchange, EMPTY); 1668 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1669 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1670#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1671 array_free (periodic, EMPTY);
1020#endif 1672#endif
1673#if EV_FORK_ENABLE
1674 array_free (fork, EMPTY);
1675#endif
1021 array_free (prepare, EMPTY); 1676 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1677 array_free (check, EMPTY);
1678#if EV_ASYNC_ENABLE
1679 array_free (async, EMPTY);
1680#endif
1023 1681
1024 backend = 0; 1682 backend = 0;
1025} 1683}
1026 1684
1685#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1686inline_size void infy_fork (EV_P);
1687#endif
1028 1688
1029void inline_size 1689inline_size void
1030loop_fork (EV_P) 1690loop_fork (EV_P)
1031{ 1691{
1032#if EV_USE_PORT 1692#if EV_USE_PORT
1033 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1693 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1034#endif 1694#endif
1040#endif 1700#endif
1041#if EV_USE_INOTIFY 1701#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1702 infy_fork (EV_A);
1043#endif 1703#endif
1044 1704
1045 if (ev_is_active (&sigev)) 1705 if (ev_is_active (&pipe_w))
1046 { 1706 {
1047 /* default loop */ 1707 /* this "locks" the handlers against writing to the pipe */
1708 /* while we modify the fd vars */
1709 gotsig = 1;
1710#if EV_ASYNC_ENABLE
1711 gotasync = 1;
1712#endif
1048 1713
1049 ev_ref (EV_A); 1714 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1715 ev_io_stop (EV_A_ &pipe_w);
1716
1717#if EV_USE_EVENTFD
1718 if (evfd >= 0)
1719 close (evfd);
1720#endif
1721
1722 if (evpipe [0] >= 0)
1723 {
1051 close (sigpipe [0]); 1724 close (evpipe [0]);
1052 close (sigpipe [1]); 1725 close (evpipe [1]);
1726 }
1053 1727
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1728 evpipe_init (EV_A);
1729 /* now iterate over everything, in case we missed something */
1730 pipecb (EV_A_ &pipe_w, EV_READ);
1058 } 1731 }
1059 1732
1060 postfork = 0; 1733 postfork = 0;
1061} 1734}
1062 1735
1063#if EV_MULTIPLICITY 1736#if EV_MULTIPLICITY
1737
1064struct ev_loop * 1738struct ev_loop *
1065ev_loop_new (unsigned int flags) 1739ev_loop_new (unsigned int flags)
1066{ 1740{
1067 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1741 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1068 1742
1069 memset (loop, 0, sizeof (struct ev_loop)); 1743 memset (EV_A, 0, sizeof (struct ev_loop));
1070
1071 loop_init (EV_A_ flags); 1744 loop_init (EV_A_ flags);
1072 1745
1073 if (ev_backend (EV_A)) 1746 if (ev_backend (EV_A))
1074 return loop; 1747 return EV_A;
1075 1748
1076 return 0; 1749 return 0;
1077} 1750}
1078 1751
1079void 1752void
1084} 1757}
1085 1758
1086void 1759void
1087ev_loop_fork (EV_P) 1760ev_loop_fork (EV_P)
1088{ 1761{
1089 postfork = 1; 1762 postfork = 1; /* must be in line with ev_default_fork */
1090} 1763}
1764#endif /* multiplicity */
1091 1765
1766#if EV_VERIFY
1767static void noinline
1768verify_watcher (EV_P_ W w)
1769{
1770 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1771
1772 if (w->pending)
1773 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1774}
1775
1776static void noinline
1777verify_heap (EV_P_ ANHE *heap, int N)
1778{
1779 int i;
1780
1781 for (i = HEAP0; i < N + HEAP0; ++i)
1782 {
1783 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1784 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1785 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1786
1787 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1788 }
1789}
1790
1791static void noinline
1792array_verify (EV_P_ W *ws, int cnt)
1793{
1794 while (cnt--)
1795 {
1796 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1797 verify_watcher (EV_A_ ws [cnt]);
1798 }
1799}
1800#endif
1801
1802#if EV_MINIMAL < 2
1803void
1804ev_loop_verify (EV_P)
1805{
1806#if EV_VERIFY
1807 int i;
1808 WL w;
1809
1810 assert (activecnt >= -1);
1811
1812 assert (fdchangemax >= fdchangecnt);
1813 for (i = 0; i < fdchangecnt; ++i)
1814 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1815
1816 assert (anfdmax >= 0);
1817 for (i = 0; i < anfdmax; ++i)
1818 for (w = anfds [i].head; w; w = w->next)
1819 {
1820 verify_watcher (EV_A_ (W)w);
1821 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1822 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1823 }
1824
1825 assert (timermax >= timercnt);
1826 verify_heap (EV_A_ timers, timercnt);
1827
1828#if EV_PERIODIC_ENABLE
1829 assert (periodicmax >= periodiccnt);
1830 verify_heap (EV_A_ periodics, periodiccnt);
1831#endif
1832
1833 for (i = NUMPRI; i--; )
1834 {
1835 assert (pendingmax [i] >= pendingcnt [i]);
1836#if EV_IDLE_ENABLE
1837 assert (idleall >= 0);
1838 assert (idlemax [i] >= idlecnt [i]);
1839 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1840#endif
1841 }
1842
1843#if EV_FORK_ENABLE
1844 assert (forkmax >= forkcnt);
1845 array_verify (EV_A_ (W *)forks, forkcnt);
1846#endif
1847
1848#if EV_ASYNC_ENABLE
1849 assert (asyncmax >= asynccnt);
1850 array_verify (EV_A_ (W *)asyncs, asynccnt);
1851#endif
1852
1853 assert (preparemax >= preparecnt);
1854 array_verify (EV_A_ (W *)prepares, preparecnt);
1855
1856 assert (checkmax >= checkcnt);
1857 array_verify (EV_A_ (W *)checks, checkcnt);
1858
1859# if 0
1860 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1861 for (signum = EV_NSIG; signum--; ) if (signals [signum].gotsig)
1862# endif
1863#endif
1864}
1092#endif 1865#endif
1093 1866
1094#if EV_MULTIPLICITY 1867#if EV_MULTIPLICITY
1095struct ev_loop * 1868struct ev_loop *
1096ev_default_loop_init (unsigned int flags) 1869ev_default_loop_init (unsigned int flags)
1097#else 1870#else
1098int 1871int
1099ev_default_loop (unsigned int flags) 1872ev_default_loop (unsigned int flags)
1100#endif 1873#endif
1101{ 1874{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1875 if (!ev_default_loop_ptr)
1107 { 1876 {
1108#if EV_MULTIPLICITY 1877#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1878 EV_P = ev_default_loop_ptr = &default_loop_struct;
1110#else 1879#else
1111 ev_default_loop_ptr = 1; 1880 ev_default_loop_ptr = 1;
1112#endif 1881#endif
1113 1882
1114 loop_init (EV_A_ flags); 1883 loop_init (EV_A_ flags);
1115 1884
1116 if (ev_backend (EV_A)) 1885 if (ev_backend (EV_A))
1117 { 1886 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1887#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1888 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1889 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1890 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1891 ev_unref (EV_A); /* child watcher should not keep loop alive */
1133 1900
1134void 1901void
1135ev_default_destroy (void) 1902ev_default_destroy (void)
1136{ 1903{
1137#if EV_MULTIPLICITY 1904#if EV_MULTIPLICITY
1138 struct ev_loop *loop = ev_default_loop_ptr; 1905 EV_P = ev_default_loop_ptr;
1139#endif 1906#endif
1907
1908 ev_default_loop_ptr = 0;
1140 1909
1141#ifndef _WIN32 1910#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1911 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1912 ev_signal_stop (EV_A_ &childev);
1144#endif 1913#endif
1145 1914
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1915 loop_destroy (EV_A);
1153} 1916}
1154 1917
1155void 1918void
1156ev_default_fork (void) 1919ev_default_fork (void)
1157{ 1920{
1158#if EV_MULTIPLICITY 1921#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1922 EV_P = ev_default_loop_ptr;
1160#endif 1923#endif
1161 1924
1162 if (backend) 1925 postfork = 1; /* must be in line with ev_loop_fork */
1163 postfork = 1;
1164} 1926}
1165 1927
1166/*****************************************************************************/ 1928/*****************************************************************************/
1167 1929
1168void inline_speed 1930void
1169call_pending (EV_P) 1931ev_invoke (EV_P_ void *w, int revents)
1932{
1933 EV_CB_INVOKE ((W)w, revents);
1934}
1935
1936unsigned int
1937ev_pending_count (EV_P)
1938{
1939 int pri;
1940 unsigned int count = 0;
1941
1942 for (pri = NUMPRI; pri--; )
1943 count += pendingcnt [pri];
1944
1945 return count;
1946}
1947
1948void noinline
1949ev_invoke_pending (EV_P)
1170{ 1950{
1171 int pri; 1951 int pri;
1172 1952
1173 for (pri = NUMPRI; pri--; ) 1953 for (pri = NUMPRI; pri--; )
1174 while (pendingcnt [pri]) 1954 while (pendingcnt [pri])
1175 { 1955 {
1176 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1956 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1177 1957
1178 if (expect_true (p->w))
1179 {
1180 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1958 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1959 /* ^ this is no longer true, as pending_w could be here */
1181 1960
1182 p->w->pending = 0; 1961 p->w->pending = 0;
1183 EV_CB_INVOKE (p->w, p->events); 1962 EV_CB_INVOKE (p->w, p->events);
1184 } 1963 EV_FREQUENT_CHECK;
1185 } 1964 }
1186} 1965}
1187 1966
1188void inline_size
1189timers_reify (EV_P)
1190{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now)
1192 {
1193 ev_timer *w = timers [0];
1194
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196
1197 /* first reschedule or stop timer */
1198 if (w->repeat)
1199 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201
1202 ((WT)w)->at += w->repeat;
1203 if (((WT)w)->at < mn_now)
1204 ((WT)w)->at = mn_now;
1205
1206 downheap ((WT *)timers, timercnt, 0);
1207 }
1208 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1212 }
1213}
1214
1215#if EV_PERIODIC_ENABLE
1216void inline_size
1217periodics_reify (EV_P)
1218{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1220 {
1221 ev_periodic *w = periodics [0];
1222
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224
1225 /* first reschedule or stop timer */
1226 if (w->reschedule_cb)
1227 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0);
1231 }
1232 else if (w->interval)
1233 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0);
1237 }
1238 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1242 }
1243}
1244
1245static void noinline
1246periodics_reschedule (EV_P)
1247{
1248 int i;
1249
1250 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i)
1252 {
1253 ev_periodic *w = periodics [i];
1254
1255 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1259 }
1260
1261 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i);
1264}
1265#endif
1266
1267#if EV_IDLE_ENABLE 1967#if EV_IDLE_ENABLE
1268void inline_size 1968/* make idle watchers pending. this handles the "call-idle */
1969/* only when higher priorities are idle" logic */
1970inline_size void
1269idle_reify (EV_P) 1971idle_reify (EV_P)
1270{ 1972{
1271 if (expect_false (idleall)) 1973 if (expect_false (idleall))
1272 { 1974 {
1273 int pri; 1975 int pri;
1285 } 1987 }
1286 } 1988 }
1287} 1989}
1288#endif 1990#endif
1289 1991
1290int inline_size 1992/* make timers pending */
1291time_update_monotonic (EV_P) 1993inline_size void
1994timers_reify (EV_P)
1292{ 1995{
1996 EV_FREQUENT_CHECK;
1997
1998 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1999 {
2000 do
2001 {
2002 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2003
2004 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2005
2006 /* first reschedule or stop timer */
2007 if (w->repeat)
2008 {
2009 ev_at (w) += w->repeat;
2010 if (ev_at (w) < mn_now)
2011 ev_at (w) = mn_now;
2012
2013 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2014
2015 ANHE_at_cache (timers [HEAP0]);
2016 downheap (timers, timercnt, HEAP0);
2017 }
2018 else
2019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2020
2021 EV_FREQUENT_CHECK;
2022 feed_reverse (EV_A_ (W)w);
2023 }
2024 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2025
2026 feed_reverse_done (EV_A_ EV_TIMEOUT);
2027 }
2028}
2029
2030#if EV_PERIODIC_ENABLE
2031/* make periodics pending */
2032inline_size void
2033periodics_reify (EV_P)
2034{
2035 EV_FREQUENT_CHECK;
2036
2037 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2038 {
2039 int feed_count = 0;
2040
2041 do
2042 {
2043 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->reschedule_cb)
2049 {
2050 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2051
2052 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2053
2054 ANHE_at_cache (periodics [HEAP0]);
2055 downheap (periodics, periodiccnt, HEAP0);
2056 }
2057 else if (w->interval)
2058 {
2059 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2060 /* if next trigger time is not sufficiently in the future, put it there */
2061 /* this might happen because of floating point inexactness */
2062 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2063 {
2064 ev_at (w) += w->interval;
2065
2066 /* if interval is unreasonably low we might still have a time in the past */
2067 /* so correct this. this will make the periodic very inexact, but the user */
2068 /* has effectively asked to get triggered more often than possible */
2069 if (ev_at (w) < ev_rt_now)
2070 ev_at (w) = ev_rt_now;
2071 }
2072
2073 ANHE_at_cache (periodics [HEAP0]);
2074 downheap (periodics, periodiccnt, HEAP0);
2075 }
2076 else
2077 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2078
2079 EV_FREQUENT_CHECK;
2080 feed_reverse (EV_A_ (W)w);
2081 }
2082 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2083
2084 feed_reverse_done (EV_A_ EV_PERIODIC);
2085 }
2086}
2087
2088/* simply recalculate all periodics */
2089/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2090static void noinline
2091periodics_reschedule (EV_P)
2092{
2093 int i;
2094
2095 /* adjust periodics after time jump */
2096 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2099
2100 if (w->reschedule_cb)
2101 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2102 else if (w->interval)
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104
2105 ANHE_at_cache (periodics [i]);
2106 }
2107
2108 reheap (periodics, periodiccnt);
2109}
2110#endif
2111
2112/* adjust all timers by a given offset */
2113static void noinline
2114timers_reschedule (EV_P_ ev_tstamp adjust)
2115{
2116 int i;
2117
2118 for (i = 0; i < timercnt; ++i)
2119 {
2120 ANHE *he = timers + i + HEAP0;
2121 ANHE_w (*he)->at += adjust;
2122 ANHE_at_cache (*he);
2123 }
2124}
2125
2126/* fetch new monotonic and realtime times from the kernel */
2127/* also detetc if there was a timejump, and act accordingly */
2128inline_speed void
2129time_update (EV_P_ ev_tstamp max_block)
2130{
2131#if EV_USE_MONOTONIC
2132 if (expect_true (have_monotonic))
2133 {
2134 int i;
2135 ev_tstamp odiff = rtmn_diff;
2136
1293 mn_now = get_clock (); 2137 mn_now = get_clock ();
1294 2138
2139 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2140 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2141 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 2142 {
1297 ev_rt_now = rtmn_diff + mn_now; 2143 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 2144 return;
1299 } 2145 }
1300 else 2146
1301 {
1302 now_floor = mn_now; 2147 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 2148 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 2149
1308void inline_size 2150 /* loop a few times, before making important decisions.
1309time_update (EV_P) 2151 * on the choice of "4": one iteration isn't enough,
1310{ 2152 * in case we get preempted during the calls to
1311 int i; 2153 * ev_time and get_clock. a second call is almost guaranteed
1312 2154 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 2155 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 2156 * in the unlikely event of having been preempted here.
1315 { 2157 */
1316 if (time_update_monotonic (EV_A)) 2158 for (i = 4; --i; )
1317 { 2159 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 2160 rtmn_diff = ev_rt_now - mn_now;
1331 2161
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2162 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1333 return; /* all is well */ 2163 return; /* all is well */
1334 2164
1335 ev_rt_now = ev_time (); 2165 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 2166 mn_now = get_clock ();
1337 now_floor = mn_now; 2167 now_floor = mn_now;
1338 } 2168 }
1339 2169
2170 /* no timer adjustment, as the monotonic clock doesn't jump */
2171 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1340# if EV_PERIODIC_ENABLE 2172# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 2173 periodics_reschedule (EV_A);
1342# endif 2174# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 2175 }
1347 else 2176 else
1348#endif 2177#endif
1349 { 2178 {
1350 ev_rt_now = ev_time (); 2179 ev_rt_now = ev_time ();
1351 2180
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2181 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 2182 {
2183 /* adjust timers. this is easy, as the offset is the same for all of them */
2184 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1354#if EV_PERIODIC_ENABLE 2185#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 2186 periodics_reschedule (EV_A);
1356#endif 2187#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 2188 }
1362 2189
1363 mn_now = ev_rt_now; 2190 mn_now = ev_rt_now;
1364 } 2191 }
1365} 2192}
1366 2193
1367void 2194void
1368ev_ref (EV_P)
1369{
1370 ++activecnt;
1371}
1372
1373void
1374ev_unref (EV_P)
1375{
1376 --activecnt;
1377}
1378
1379static int loop_done;
1380
1381void
1382ev_loop (EV_P_ int flags) 2195ev_loop (EV_P_ int flags)
1383{ 2196{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2197#if EV_MINIMAL < 2
1385 ? EVUNLOOP_ONE 2198 ++loop_depth;
1386 : EVUNLOOP_CANCEL; 2199#endif
1387 2200
2201 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2202
2203 loop_done = EVUNLOOP_CANCEL;
2204
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2205 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1389 2206
1390 do 2207 do
1391 { 2208 {
2209#if EV_VERIFY >= 2
2210 ev_loop_verify (EV_A);
2211#endif
2212
1392#ifndef _WIN32 2213#ifndef _WIN32
1393 if (expect_false (curpid)) /* penalise the forking check even more */ 2214 if (expect_false (curpid)) /* penalise the forking check even more */
1394 if (expect_false (getpid () != curpid)) 2215 if (expect_false (getpid () != curpid))
1395 { 2216 {
1396 curpid = getpid (); 2217 curpid = getpid ();
1402 /* we might have forked, so queue fork handlers */ 2223 /* we might have forked, so queue fork handlers */
1403 if (expect_false (postfork)) 2224 if (expect_false (postfork))
1404 if (forkcnt) 2225 if (forkcnt)
1405 { 2226 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2227 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 2228 EV_INVOKE_PENDING;
1408 } 2229 }
1409#endif 2230#endif
1410 2231
1411 /* queue check watchers (and execute them) */ 2232 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 2233 if (expect_false (preparecnt))
1413 { 2234 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2235 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 2236 EV_INVOKE_PENDING;
1416 } 2237 }
1417 2238
1418 if (expect_false (!activecnt)) 2239 if (expect_false (loop_done))
1419 break; 2240 break;
1420 2241
1421 /* we might have forked, so reify kernel state if necessary */ 2242 /* we might have forked, so reify kernel state if necessary */
1422 if (expect_false (postfork)) 2243 if (expect_false (postfork))
1423 loop_fork (EV_A); 2244 loop_fork (EV_A);
1425 /* update fd-related kernel structures */ 2246 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 2247 fd_reify (EV_A);
1427 2248
1428 /* calculate blocking time */ 2249 /* calculate blocking time */
1429 { 2250 {
1430 ev_tstamp block; 2251 ev_tstamp waittime = 0.;
2252 ev_tstamp sleeptime = 0.;
1431 2253
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2254 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 2255 {
2256 /* remember old timestamp for io_blocktime calculation */
2257 ev_tstamp prev_mn_now = mn_now;
2258
1436 /* update time to cancel out callback processing overhead */ 2259 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 2260 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 2261
1447 block = MAX_BLOCKTIME; 2262 waittime = MAX_BLOCKTIME;
1448 2263
1449 if (timercnt) 2264 if (timercnt)
1450 { 2265 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2266 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 2267 if (waittime > to) waittime = to;
1453 } 2268 }
1454 2269
1455#if EV_PERIODIC_ENABLE 2270#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 2271 if (periodiccnt)
1457 { 2272 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2273 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 2274 if (waittime > to) waittime = to;
1460 } 2275 }
1461#endif 2276#endif
1462 2277
2278 /* don't let timeouts decrease the waittime below timeout_blocktime */
2279 if (expect_false (waittime < timeout_blocktime))
2280 waittime = timeout_blocktime;
2281
2282 /* extra check because io_blocktime is commonly 0 */
1463 if (expect_false (block < 0.)) block = 0.; 2283 if (expect_false (io_blocktime))
2284 {
2285 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2286
2287 if (sleeptime > waittime - backend_fudge)
2288 sleeptime = waittime - backend_fudge;
2289
2290 if (expect_true (sleeptime > 0.))
2291 {
2292 ev_sleep (sleeptime);
2293 waittime -= sleeptime;
2294 }
2295 }
1464 } 2296 }
1465 2297
2298#if EV_MINIMAL < 2
1466 ++loop_count; 2299 ++loop_count;
2300#endif
2301 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1467 backend_poll (EV_A_ block); 2302 backend_poll (EV_A_ waittime);
2303 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2304
2305 /* update ev_rt_now, do magic */
2306 time_update (EV_A_ waittime + sleeptime);
1468 } 2307 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 2308
1473 /* queue pending timers and reschedule them */ 2309 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 2310 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 2312 periodics_reify (EV_A); /* absolute timers called first */
1483 2319
1484 /* queue check watchers, to be executed first */ 2320 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 2321 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2322 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 2323
1488 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1489
1490 } 2325 }
1491 while (expect_true (activecnt && !loop_done)); 2326 while (expect_true (
2327 activecnt
2328 && !loop_done
2329 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2330 ));
1492 2331
1493 if (loop_done == EVUNLOOP_ONE) 2332 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 2333 loop_done = EVUNLOOP_CANCEL;
2334
2335#if EV_MINIMAL < 2
2336 --loop_depth;
2337#endif
1495} 2338}
1496 2339
1497void 2340void
1498ev_unloop (EV_P_ int how) 2341ev_unloop (EV_P_ int how)
1499{ 2342{
1500 loop_done = how; 2343 loop_done = how;
1501} 2344}
1502 2345
2346void
2347ev_ref (EV_P)
2348{
2349 ++activecnt;
2350}
2351
2352void
2353ev_unref (EV_P)
2354{
2355 --activecnt;
2356}
2357
2358void
2359ev_now_update (EV_P)
2360{
2361 time_update (EV_A_ 1e100);
2362}
2363
2364void
2365ev_suspend (EV_P)
2366{
2367 ev_now_update (EV_A);
2368}
2369
2370void
2371ev_resume (EV_P)
2372{
2373 ev_tstamp mn_prev = mn_now;
2374
2375 ev_now_update (EV_A);
2376 timers_reschedule (EV_A_ mn_now - mn_prev);
2377#if EV_PERIODIC_ENABLE
2378 /* TODO: really do this? */
2379 periodics_reschedule (EV_A);
2380#endif
2381}
2382
1503/*****************************************************************************/ 2383/*****************************************************************************/
2384/* singly-linked list management, used when the expected list length is short */
1504 2385
1505void inline_size 2386inline_size void
1506wlist_add (WL *head, WL elem) 2387wlist_add (WL *head, WL elem)
1507{ 2388{
1508 elem->next = *head; 2389 elem->next = *head;
1509 *head = elem; 2390 *head = elem;
1510} 2391}
1511 2392
1512void inline_size 2393inline_size void
1513wlist_del (WL *head, WL elem) 2394wlist_del (WL *head, WL elem)
1514{ 2395{
1515 while (*head) 2396 while (*head)
1516 { 2397 {
1517 if (*head == elem) 2398 if (*head == elem)
1522 2403
1523 head = &(*head)->next; 2404 head = &(*head)->next;
1524 } 2405 }
1525} 2406}
1526 2407
1527void inline_speed 2408/* internal, faster, version of ev_clear_pending */
2409inline_speed void
1528clear_pending (EV_P_ W w) 2410clear_pending (EV_P_ W w)
1529{ 2411{
1530 if (w->pending) 2412 if (w->pending)
1531 { 2413 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2414 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1533 w->pending = 0; 2415 w->pending = 0;
1534 } 2416 }
1535} 2417}
1536 2418
1537int 2419int
1538ev_clear_pending (EV_P_ void *w) 2420ev_clear_pending (EV_P_ void *w)
1539{ 2421{
1540 W w_ = (W)w; 2422 W w_ = (W)w;
1541 int pending = w_->pending; 2423 int pending = w_->pending;
1542 2424
1543 if (!pending) 2425 if (expect_true (pending))
2426 {
2427 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2428 p->w = (W)&pending_w;
2429 w_->pending = 0;
2430 return p->events;
2431 }
2432 else
1544 return 0; 2433 return 0;
1545
1546 w_->pending = 0;
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 p->w = 0;
1549
1550 return p->events;
1551} 2434}
1552 2435
1553void inline_size 2436inline_size void
1554pri_adjust (EV_P_ W w) 2437pri_adjust (EV_P_ W w)
1555{ 2438{
1556 int pri = w->priority; 2439 int pri = ev_priority (w);
1557 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2440 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1558 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2441 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1559 w->priority = pri; 2442 ev_set_priority (w, pri);
1560} 2443}
1561 2444
1562void inline_speed 2445inline_speed void
1563ev_start (EV_P_ W w, int active) 2446ev_start (EV_P_ W w, int active)
1564{ 2447{
1565 pri_adjust (EV_A_ w); 2448 pri_adjust (EV_A_ w);
1566 w->active = active; 2449 w->active = active;
1567 ev_ref (EV_A); 2450 ev_ref (EV_A);
1568} 2451}
1569 2452
1570void inline_size 2453inline_size void
1571ev_stop (EV_P_ W w) 2454ev_stop (EV_P_ W w)
1572{ 2455{
1573 ev_unref (EV_A); 2456 ev_unref (EV_A);
1574 w->active = 0; 2457 w->active = 0;
1575} 2458}
1576 2459
1577/*****************************************************************************/ 2460/*****************************************************************************/
1578 2461
1579void 2462void noinline
1580ev_io_start (EV_P_ ev_io *w) 2463ev_io_start (EV_P_ ev_io *w)
1581{ 2464{
1582 int fd = w->fd; 2465 int fd = w->fd;
1583 2466
1584 if (expect_false (ev_is_active (w))) 2467 if (expect_false (ev_is_active (w)))
1585 return; 2468 return;
1586 2469
1587 assert (("ev_io_start called with negative fd", fd >= 0)); 2470 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2471 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2472
2473 EV_FREQUENT_CHECK;
1588 2474
1589 ev_start (EV_A_ (W)w, 1); 2475 ev_start (EV_A_ (W)w, 1);
1590 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2476 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1591 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2477 wlist_add (&anfds[fd].head, (WL)w);
1592 2478
1593 fd_change (EV_A_ fd); 2479 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1594} 2480 w->events &= ~EV__IOFDSET;
1595 2481
1596void 2482 EV_FREQUENT_CHECK;
2483}
2484
2485void noinline
1597ev_io_stop (EV_P_ ev_io *w) 2486ev_io_stop (EV_P_ ev_io *w)
1598{ 2487{
1599 clear_pending (EV_A_ (W)w); 2488 clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w))) 2489 if (expect_false (!ev_is_active (w)))
1601 return; 2490 return;
1602 2491
1603 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2492 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1604 2493
2494 EV_FREQUENT_CHECK;
2495
1605 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2496 wlist_del (&anfds[w->fd].head, (WL)w);
1606 ev_stop (EV_A_ (W)w); 2497 ev_stop (EV_A_ (W)w);
1607 2498
1608 fd_change (EV_A_ w->fd); 2499 fd_change (EV_A_ w->fd, 1);
1609}
1610 2500
1611void 2501 EV_FREQUENT_CHECK;
2502}
2503
2504void noinline
1612ev_timer_start (EV_P_ ev_timer *w) 2505ev_timer_start (EV_P_ ev_timer *w)
1613{ 2506{
1614 if (expect_false (ev_is_active (w))) 2507 if (expect_false (ev_is_active (w)))
1615 return; 2508 return;
1616 2509
1617 ((WT)w)->at += mn_now; 2510 ev_at (w) += mn_now;
1618 2511
1619 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2512 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1620 2513
2514 EV_FREQUENT_CHECK;
2515
2516 ++timercnt;
1621 ev_start (EV_A_ (W)w, ++timercnt); 2517 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1622 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2518 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1623 timers [timercnt - 1] = w; 2519 ANHE_w (timers [ev_active (w)]) = (WT)w;
1624 upheap ((WT *)timers, timercnt - 1); 2520 ANHE_at_cache (timers [ev_active (w)]);
2521 upheap (timers, ev_active (w));
1625 2522
2523 EV_FREQUENT_CHECK;
2524
1626 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2525 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1627} 2526}
1628 2527
1629void 2528void noinline
1630ev_timer_stop (EV_P_ ev_timer *w) 2529ev_timer_stop (EV_P_ ev_timer *w)
1631{ 2530{
1632 clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
1634 return; 2533 return;
1635 2534
1636 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2535 EV_FREQUENT_CHECK;
1637 2536
1638 { 2537 {
1639 int active = ((W)w)->active; 2538 int active = ev_active (w);
1640 2539
2540 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2541
2542 --timercnt;
2543
1641 if (expect_true (--active < --timercnt)) 2544 if (expect_true (active < timercnt + HEAP0))
1642 { 2545 {
1643 timers [active] = timers [timercnt]; 2546 timers [active] = timers [timercnt + HEAP0];
1644 adjustheap ((WT *)timers, timercnt, active); 2547 adjustheap (timers, timercnt, active);
1645 } 2548 }
1646 } 2549 }
1647 2550
1648 ((WT)w)->at -= mn_now; 2551 EV_FREQUENT_CHECK;
2552
2553 ev_at (w) -= mn_now;
1649 2554
1650 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1651} 2556}
1652 2557
1653void 2558void noinline
1654ev_timer_again (EV_P_ ev_timer *w) 2559ev_timer_again (EV_P_ ev_timer *w)
1655{ 2560{
2561 EV_FREQUENT_CHECK;
2562
1656 if (ev_is_active (w)) 2563 if (ev_is_active (w))
1657 { 2564 {
1658 if (w->repeat) 2565 if (w->repeat)
1659 { 2566 {
1660 ((WT)w)->at = mn_now + w->repeat; 2567 ev_at (w) = mn_now + w->repeat;
2568 ANHE_at_cache (timers [ev_active (w)]);
1661 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2569 adjustheap (timers, timercnt, ev_active (w));
1662 } 2570 }
1663 else 2571 else
1664 ev_timer_stop (EV_A_ w); 2572 ev_timer_stop (EV_A_ w);
1665 } 2573 }
1666 else if (w->repeat) 2574 else if (w->repeat)
1667 { 2575 {
1668 w->at = w->repeat; 2576 ev_at (w) = w->repeat;
1669 ev_timer_start (EV_A_ w); 2577 ev_timer_start (EV_A_ w);
1670 } 2578 }
2579
2580 EV_FREQUENT_CHECK;
2581}
2582
2583ev_tstamp
2584ev_timer_remaining (EV_P_ ev_timer *w)
2585{
2586 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1671} 2587}
1672 2588
1673#if EV_PERIODIC_ENABLE 2589#if EV_PERIODIC_ENABLE
1674void 2590void noinline
1675ev_periodic_start (EV_P_ ev_periodic *w) 2591ev_periodic_start (EV_P_ ev_periodic *w)
1676{ 2592{
1677 if (expect_false (ev_is_active (w))) 2593 if (expect_false (ev_is_active (w)))
1678 return; 2594 return;
1679 2595
1680 if (w->reschedule_cb) 2596 if (w->reschedule_cb)
1681 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2597 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1682 else if (w->interval) 2598 else if (w->interval)
1683 { 2599 {
1684 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2600 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1685 /* this formula differs from the one in periodic_reify because we do not always round up */ 2601 /* this formula differs from the one in periodic_reify because we do not always round up */
1686 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2602 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1687 } 2603 }
2604 else
2605 ev_at (w) = w->offset;
1688 2606
2607 EV_FREQUENT_CHECK;
2608
2609 ++periodiccnt;
1689 ev_start (EV_A_ (W)w, ++periodiccnt); 2610 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1690 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2611 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1691 periodics [periodiccnt - 1] = w; 2612 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1692 upheap ((WT *)periodics, periodiccnt - 1); 2613 ANHE_at_cache (periodics [ev_active (w)]);
2614 upheap (periodics, ev_active (w));
1693 2615
2616 EV_FREQUENT_CHECK;
2617
1694 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2618 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1695} 2619}
1696 2620
1697void 2621void noinline
1698ev_periodic_stop (EV_P_ ev_periodic *w) 2622ev_periodic_stop (EV_P_ ev_periodic *w)
1699{ 2623{
1700 clear_pending (EV_A_ (W)w); 2624 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 2625 if (expect_false (!ev_is_active (w)))
1702 return; 2626 return;
1703 2627
1704 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2628 EV_FREQUENT_CHECK;
1705 2629
1706 { 2630 {
1707 int active = ((W)w)->active; 2631 int active = ev_active (w);
1708 2632
2633 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2634
2635 --periodiccnt;
2636
1709 if (expect_true (--active < --periodiccnt)) 2637 if (expect_true (active < periodiccnt + HEAP0))
1710 { 2638 {
1711 periodics [active] = periodics [periodiccnt]; 2639 periodics [active] = periodics [periodiccnt + HEAP0];
1712 adjustheap ((WT *)periodics, periodiccnt, active); 2640 adjustheap (periodics, periodiccnt, active);
1713 } 2641 }
1714 } 2642 }
1715 2643
2644 EV_FREQUENT_CHECK;
2645
1716 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
1717} 2647}
1718 2648
1719void 2649void noinline
1720ev_periodic_again (EV_P_ ev_periodic *w) 2650ev_periodic_again (EV_P_ ev_periodic *w)
1721{ 2651{
1722 /* TODO: use adjustheap and recalculation */ 2652 /* TODO: use adjustheap and recalculation */
1723 ev_periodic_stop (EV_A_ w); 2653 ev_periodic_stop (EV_A_ w);
1724 ev_periodic_start (EV_A_ w); 2654 ev_periodic_start (EV_A_ w);
1727 2657
1728#ifndef SA_RESTART 2658#ifndef SA_RESTART
1729# define SA_RESTART 0 2659# define SA_RESTART 0
1730#endif 2660#endif
1731 2661
1732void 2662void noinline
1733ev_signal_start (EV_P_ ev_signal *w) 2663ev_signal_start (EV_P_ ev_signal *w)
1734{ 2664{
1735#if EV_MULTIPLICITY
1736 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1737#endif
1738 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
1739 return; 2666 return;
1740 2667
1741 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2668 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2669
2670#if EV_MULTIPLICITY
2671 assert (("libev: tried to attach to a signal from two different loops",
2672 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2673
2674 signals [w->signum - 1].loop = EV_A;
2675#endif
2676
2677 EV_FREQUENT_CHECK;
2678
2679#if EV_USE_SIGNALFD
2680 if (sigfd == -2)
2681 {
2682 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2683 if (sigfd < 0 && errno == EINVAL)
2684 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2685
2686 if (sigfd >= 0)
2687 {
2688 fd_intern (sigfd); /* doing it twice will not hurt */
2689
2690 sigemptyset (&sigfd_set);
2691
2692 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2693 ev_set_priority (&sigfd_w, EV_MAXPRI);
2694 ev_io_start (EV_A_ &sigfd_w);
2695 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2696 }
2697 }
2698
2699 if (sigfd >= 0)
2700 {
2701 /* TODO: check .head */
2702 sigaddset (&sigfd_set, w->signum);
2703 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2704
2705 signalfd (sigfd, &sigfd_set, 0);
2706 }
2707#endif
1742 2708
1743 ev_start (EV_A_ (W)w, 1); 2709 ev_start (EV_A_ (W)w, 1);
1744 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1745 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2710 wlist_add (&signals [w->signum - 1].head, (WL)w);
1746 2711
1747 if (!((WL)w)->next) 2712 if (!((WL)w)->next)
2713# if EV_USE_SIGNALFD
2714 if (sigfd < 0) /*TODO*/
2715# endif
1748 { 2716 {
1749#if _WIN32 2717# if _WIN32
1750 signal (w->signum, sighandler); 2718 signal (w->signum, ev_sighandler);
1751#else 2719# else
1752 struct sigaction sa; 2720 struct sigaction sa;
2721
2722 evpipe_init (EV_A);
2723
1753 sa.sa_handler = sighandler; 2724 sa.sa_handler = ev_sighandler;
1754 sigfillset (&sa.sa_mask); 2725 sigfillset (&sa.sa_mask);
1755 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2726 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1756 sigaction (w->signum, &sa, 0); 2727 sigaction (w->signum, &sa, 0);
2728
2729 sigemptyset (&sa.sa_mask);
2730 sigaddset (&sa.sa_mask, w->signum);
2731 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1757#endif 2732#endif
1758 } 2733 }
1759}
1760 2734
1761void 2735 EV_FREQUENT_CHECK;
2736}
2737
2738void noinline
1762ev_signal_stop (EV_P_ ev_signal *w) 2739ev_signal_stop (EV_P_ ev_signal *w)
1763{ 2740{
1764 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
1765 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
1766 return; 2743 return;
1767 2744
2745 EV_FREQUENT_CHECK;
2746
1768 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2747 wlist_del (&signals [w->signum - 1].head, (WL)w);
1769 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
1770 2749
1771 if (!signals [w->signum - 1].head) 2750 if (!signals [w->signum - 1].head)
2751 {
2752 #if EV_MULTIPLICITY
2753 signals [w->signum - 1].loop = 0; /* unattach from signal */
2754 #endif
2755 #if EV_USE_SIGNALFD
2756 if (sigfd >= 0)
2757 {
2758 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2759 sigdelset (&sigfd_set, w->signum);
2760 signalfd (sigfd, &sigfd_set, 0);
2761 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2762 /*TODO: maybe unblock signal? */
2763 }
2764 else
2765 #endif
1772 signal (w->signum, SIG_DFL); 2766 signal (w->signum, SIG_DFL);
2767 }
2768
2769 EV_FREQUENT_CHECK;
1773} 2770}
1774 2771
1775void 2772void
1776ev_child_start (EV_P_ ev_child *w) 2773ev_child_start (EV_P_ ev_child *w)
1777{ 2774{
1778#if EV_MULTIPLICITY 2775#if EV_MULTIPLICITY
1779 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2776 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1780#endif 2777#endif
1781 if (expect_false (ev_is_active (w))) 2778 if (expect_false (ev_is_active (w)))
1782 return; 2779 return;
1783 2780
2781 EV_FREQUENT_CHECK;
2782
1784 ev_start (EV_A_ (W)w, 1); 2783 ev_start (EV_A_ (W)w, 1);
1785 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2784 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2785
2786 EV_FREQUENT_CHECK;
1786} 2787}
1787 2788
1788void 2789void
1789ev_child_stop (EV_P_ ev_child *w) 2790ev_child_stop (EV_P_ ev_child *w)
1790{ 2791{
1791 clear_pending (EV_A_ (W)w); 2792 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 2793 if (expect_false (!ev_is_active (w)))
1793 return; 2794 return;
1794 2795
2796 EV_FREQUENT_CHECK;
2797
1795 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2798 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1796 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
1797} 2802}
1798 2803
1799#if EV_STAT_ENABLE 2804#if EV_STAT_ENABLE
1800 2805
1801# ifdef _WIN32 2806# ifdef _WIN32
1802# undef lstat 2807# undef lstat
1803# define lstat(a,b) _stati64 (a,b) 2808# define lstat(a,b) _stati64 (a,b)
1804# endif 2809# endif
1805 2810
1806#define DEF_STAT_INTERVAL 5.0074891 2811#define DEF_STAT_INTERVAL 5.0074891
2812#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1807#define MIN_STAT_INTERVAL 0.1074891 2813#define MIN_STAT_INTERVAL 0.1074891
1808 2814
1809static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2815static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1810 2816
1811#if EV_USE_INOTIFY 2817#if EV_USE_INOTIFY
1812# define EV_INOTIFY_BUFSIZE 8192 2818# define EV_INOTIFY_BUFSIZE 8192
1816{ 2822{
1817 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2823 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1818 2824
1819 if (w->wd < 0) 2825 if (w->wd < 0)
1820 { 2826 {
2827 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1821 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2828 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1822 2829
1823 /* monitor some parent directory for speedup hints */ 2830 /* monitor some parent directory for speedup hints */
2831 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2832 /* but an efficiency issue only */
1824 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2833 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1825 { 2834 {
1826 char path [4096]; 2835 char path [4096];
1827 strcpy (path, w->path); 2836 strcpy (path, w->path);
1828 2837
1831 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2840 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1832 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2841 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1833 2842
1834 char *pend = strrchr (path, '/'); 2843 char *pend = strrchr (path, '/');
1835 2844
1836 if (!pend) 2845 if (!pend || pend == path)
1837 break; /* whoops, no '/', complain to your admin */ 2846 break;
1838 2847
1839 *pend = 0; 2848 *pend = 0;
1840 w->wd = inotify_add_watch (fs_fd, path, mask); 2849 w->wd = inotify_add_watch (fs_fd, path, mask);
1841 } 2850 }
1842 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2851 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1843 } 2852 }
1844 } 2853 }
1845 else
1846 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1847 2854
1848 if (w->wd >= 0) 2855 if (w->wd >= 0)
2856 {
1849 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2858
2859 /* now local changes will be tracked by inotify, but remote changes won't */
2860 /* unless the filesystem it known to be local, we therefore still poll */
2861 /* also do poll on <2.6.25, but with normal frequency */
2862 struct statfs sfs;
2863
2864 if (fs_2625 && !statfs (w->path, &sfs))
2865 if (sfs.f_type == 0x1373 /* devfs */
2866 || sfs.f_type == 0xEF53 /* ext2/3 */
2867 || sfs.f_type == 0x3153464a /* jfs */
2868 || sfs.f_type == 0x52654973 /* reiser3 */
2869 || sfs.f_type == 0x01021994 /* tempfs */
2870 || sfs.f_type == 0x58465342 /* xfs */)
2871 return;
2872
2873 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2874 ev_timer_again (EV_A_ &w->timer);
2875 }
1850} 2876}
1851 2877
1852static void noinline 2878static void noinline
1853infy_del (EV_P_ ev_stat *w) 2879infy_del (EV_P_ ev_stat *w)
1854{ 2880{
1868 2894
1869static void noinline 2895static void noinline
1870infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1871{ 2897{
1872 if (slot < 0) 2898 if (slot < 0)
1873 /* overflow, need to check for all hahs slots */ 2899 /* overflow, need to check for all hash slots */
1874 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1875 infy_wd (EV_A_ slot, wd, ev); 2901 infy_wd (EV_A_ slot, wd, ev);
1876 else 2902 else
1877 { 2903 {
1878 WL w_; 2904 WL w_;
1884 2910
1885 if (w->wd == wd || wd == -1) 2911 if (w->wd == wd || wd == -1)
1886 { 2912 {
1887 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1888 { 2914 {
2915 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1889 w->wd = -1; 2916 w->wd = -1;
1890 infy_add (EV_A_ w); /* re-add, no matter what */ 2917 infy_add (EV_A_ w); /* re-add, no matter what */
1891 } 2918 }
1892 2919
1893 stat_timer_cb (EV_A_ &w->timer, 0); 2920 stat_timer_cb (EV_A_ &w->timer, 0);
1906 2933
1907 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2934 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1908 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2935 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1909} 2936}
1910 2937
1911void inline_size 2938inline_size void
2939check_2625 (EV_P)
2940{
2941 /* kernels < 2.6.25 are borked
2942 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2943 */
2944 struct utsname buf;
2945 int major, minor, micro;
2946
2947 if (uname (&buf))
2948 return;
2949
2950 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2951 return;
2952
2953 if (major < 2
2954 || (major == 2 && minor < 6)
2955 || (major == 2 && minor == 6 && micro < 25))
2956 return;
2957
2958 fs_2625 = 1;
2959}
2960
2961inline_size void
1912infy_init (EV_P) 2962infy_init (EV_P)
1913{ 2963{
1914 if (fs_fd != -2) 2964 if (fs_fd != -2)
1915 return; 2965 return;
2966
2967 fs_fd = -1;
2968
2969 check_2625 (EV_A);
1916 2970
1917 fs_fd = inotify_init (); 2971 fs_fd = inotify_init ();
1918 2972
1919 if (fs_fd >= 0) 2973 if (fs_fd >= 0)
1920 { 2974 {
1922 ev_set_priority (&fs_w, EV_MAXPRI); 2976 ev_set_priority (&fs_w, EV_MAXPRI);
1923 ev_io_start (EV_A_ &fs_w); 2977 ev_io_start (EV_A_ &fs_w);
1924 } 2978 }
1925} 2979}
1926 2980
1927void inline_size 2981inline_size void
1928infy_fork (EV_P) 2982infy_fork (EV_P)
1929{ 2983{
1930 int slot; 2984 int slot;
1931 2985
1932 if (fs_fd < 0) 2986 if (fs_fd < 0)
1948 w->wd = -1; 3002 w->wd = -1;
1949 3003
1950 if (fs_fd >= 0) 3004 if (fs_fd >= 0)
1951 infy_add (EV_A_ w); /* re-add, no matter what */ 3005 infy_add (EV_A_ w); /* re-add, no matter what */
1952 else 3006 else
1953 ev_timer_start (EV_A_ &w->timer); 3007 ev_timer_again (EV_A_ &w->timer);
1954 } 3008 }
1955
1956 } 3009 }
1957} 3010}
1958 3011
3012#endif
3013
3014#ifdef _WIN32
3015# define EV_LSTAT(p,b) _stati64 (p, b)
3016#else
3017# define EV_LSTAT(p,b) lstat (p, b)
1959#endif 3018#endif
1960 3019
1961void 3020void
1962ev_stat_stat (EV_P_ ev_stat *w) 3021ev_stat_stat (EV_P_ ev_stat *w)
1963{ 3022{
1990 || w->prev.st_atime != w->attr.st_atime 3049 || w->prev.st_atime != w->attr.st_atime
1991 || w->prev.st_mtime != w->attr.st_mtime 3050 || w->prev.st_mtime != w->attr.st_mtime
1992 || w->prev.st_ctime != w->attr.st_ctime 3051 || w->prev.st_ctime != w->attr.st_ctime
1993 ) { 3052 ) {
1994 #if EV_USE_INOTIFY 3053 #if EV_USE_INOTIFY
3054 if (fs_fd >= 0)
3055 {
1995 infy_del (EV_A_ w); 3056 infy_del (EV_A_ w);
1996 infy_add (EV_A_ w); 3057 infy_add (EV_A_ w);
1997 ev_stat_stat (EV_A_ w); /* avoid race... */ 3058 ev_stat_stat (EV_A_ w); /* avoid race... */
3059 }
1998 #endif 3060 #endif
1999 3061
2000 ev_feed_event (EV_A_ w, EV_STAT); 3062 ev_feed_event (EV_A_ w, EV_STAT);
2001 } 3063 }
2002} 3064}
2005ev_stat_start (EV_P_ ev_stat *w) 3067ev_stat_start (EV_P_ ev_stat *w)
2006{ 3068{
2007 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2008 return; 3070 return;
2009 3071
2010 /* since we use memcmp, we need to clear any padding data etc. */
2011 memset (&w->prev, 0, sizeof (ev_statdata));
2012 memset (&w->attr, 0, sizeof (ev_statdata));
2013
2014 ev_stat_stat (EV_A_ w); 3072 ev_stat_stat (EV_A_ w);
2015 3073
3074 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2016 if (w->interval < MIN_STAT_INTERVAL) 3075 w->interval = MIN_STAT_INTERVAL;
2017 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2018 3076
2019 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3077 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2020 ev_set_priority (&w->timer, ev_priority (w)); 3078 ev_set_priority (&w->timer, ev_priority (w));
2021 3079
2022#if EV_USE_INOTIFY 3080#if EV_USE_INOTIFY
2023 infy_init (EV_A); 3081 infy_init (EV_A);
2024 3082
2025 if (fs_fd >= 0) 3083 if (fs_fd >= 0)
2026 infy_add (EV_A_ w); 3084 infy_add (EV_A_ w);
2027 else 3085 else
2028#endif 3086#endif
2029 ev_timer_start (EV_A_ &w->timer); 3087 ev_timer_again (EV_A_ &w->timer);
2030 3088
2031 ev_start (EV_A_ (W)w, 1); 3089 ev_start (EV_A_ (W)w, 1);
3090
3091 EV_FREQUENT_CHECK;
2032} 3092}
2033 3093
2034void 3094void
2035ev_stat_stop (EV_P_ ev_stat *w) 3095ev_stat_stop (EV_P_ ev_stat *w)
2036{ 3096{
2037 clear_pending (EV_A_ (W)w); 3097 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 3098 if (expect_false (!ev_is_active (w)))
2039 return; 3099 return;
2040 3100
3101 EV_FREQUENT_CHECK;
3102
2041#if EV_USE_INOTIFY 3103#if EV_USE_INOTIFY
2042 infy_del (EV_A_ w); 3104 infy_del (EV_A_ w);
2043#endif 3105#endif
2044 ev_timer_stop (EV_A_ &w->timer); 3106 ev_timer_stop (EV_A_ &w->timer);
2045 3107
2046 ev_stop (EV_A_ (W)w); 3108 ev_stop (EV_A_ (W)w);
3109
3110 EV_FREQUENT_CHECK;
2047} 3111}
2048#endif 3112#endif
2049 3113
2050#if EV_IDLE_ENABLE 3114#if EV_IDLE_ENABLE
2051void 3115void
2053{ 3117{
2054 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
2055 return; 3119 return;
2056 3120
2057 pri_adjust (EV_A_ (W)w); 3121 pri_adjust (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
2058 3124
2059 { 3125 {
2060 int active = ++idlecnt [ABSPRI (w)]; 3126 int active = ++idlecnt [ABSPRI (w)];
2061 3127
2062 ++idleall; 3128 ++idleall;
2063 ev_start (EV_A_ (W)w, active); 3129 ev_start (EV_A_ (W)w, active);
2064 3130
2065 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3131 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2066 idles [ABSPRI (w)][active - 1] = w; 3132 idles [ABSPRI (w)][active - 1] = w;
2067 } 3133 }
3134
3135 EV_FREQUENT_CHECK;
2068} 3136}
2069 3137
2070void 3138void
2071ev_idle_stop (EV_P_ ev_idle *w) 3139ev_idle_stop (EV_P_ ev_idle *w)
2072{ 3140{
2073 clear_pending (EV_A_ (W)w); 3141 clear_pending (EV_A_ (W)w);
2074 if (expect_false (!ev_is_active (w))) 3142 if (expect_false (!ev_is_active (w)))
2075 return; 3143 return;
2076 3144
3145 EV_FREQUENT_CHECK;
3146
2077 { 3147 {
2078 int active = ((W)w)->active; 3148 int active = ev_active (w);
2079 3149
2080 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3150 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2081 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3151 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2082 3152
2083 ev_stop (EV_A_ (W)w); 3153 ev_stop (EV_A_ (W)w);
2084 --idleall; 3154 --idleall;
2085 } 3155 }
3156
3157 EV_FREQUENT_CHECK;
2086} 3158}
2087#endif 3159#endif
2088 3160
2089void 3161void
2090ev_prepare_start (EV_P_ ev_prepare *w) 3162ev_prepare_start (EV_P_ ev_prepare *w)
2091{ 3163{
2092 if (expect_false (ev_is_active (w))) 3164 if (expect_false (ev_is_active (w)))
2093 return; 3165 return;
3166
3167 EV_FREQUENT_CHECK;
2094 3168
2095 ev_start (EV_A_ (W)w, ++preparecnt); 3169 ev_start (EV_A_ (W)w, ++preparecnt);
2096 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3170 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2097 prepares [preparecnt - 1] = w; 3171 prepares [preparecnt - 1] = w;
3172
3173 EV_FREQUENT_CHECK;
2098} 3174}
2099 3175
2100void 3176void
2101ev_prepare_stop (EV_P_ ev_prepare *w) 3177ev_prepare_stop (EV_P_ ev_prepare *w)
2102{ 3178{
2103 clear_pending (EV_A_ (W)w); 3179 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 3180 if (expect_false (!ev_is_active (w)))
2105 return; 3181 return;
2106 3182
3183 EV_FREQUENT_CHECK;
3184
2107 { 3185 {
2108 int active = ((W)w)->active; 3186 int active = ev_active (w);
3187
2109 prepares [active - 1] = prepares [--preparecnt]; 3188 prepares [active - 1] = prepares [--preparecnt];
2110 ((W)prepares [active - 1])->active = active; 3189 ev_active (prepares [active - 1]) = active;
2111 } 3190 }
2112 3191
2113 ev_stop (EV_A_ (W)w); 3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
2114} 3195}
2115 3196
2116void 3197void
2117ev_check_start (EV_P_ ev_check *w) 3198ev_check_start (EV_P_ ev_check *w)
2118{ 3199{
2119 if (expect_false (ev_is_active (w))) 3200 if (expect_false (ev_is_active (w)))
2120 return; 3201 return;
3202
3203 EV_FREQUENT_CHECK;
2121 3204
2122 ev_start (EV_A_ (W)w, ++checkcnt); 3205 ev_start (EV_A_ (W)w, ++checkcnt);
2123 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3206 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2124 checks [checkcnt - 1] = w; 3207 checks [checkcnt - 1] = w;
3208
3209 EV_FREQUENT_CHECK;
2125} 3210}
2126 3211
2127void 3212void
2128ev_check_stop (EV_P_ ev_check *w) 3213ev_check_stop (EV_P_ ev_check *w)
2129{ 3214{
2130 clear_pending (EV_A_ (W)w); 3215 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w))) 3216 if (expect_false (!ev_is_active (w)))
2132 return; 3217 return;
2133 3218
3219 EV_FREQUENT_CHECK;
3220
2134 { 3221 {
2135 int active = ((W)w)->active; 3222 int active = ev_active (w);
3223
2136 checks [active - 1] = checks [--checkcnt]; 3224 checks [active - 1] = checks [--checkcnt];
2137 ((W)checks [active - 1])->active = active; 3225 ev_active (checks [active - 1]) = active;
2138 } 3226 }
2139 3227
2140 ev_stop (EV_A_ (W)w); 3228 ev_stop (EV_A_ (W)w);
3229
3230 EV_FREQUENT_CHECK;
2141} 3231}
2142 3232
2143#if EV_EMBED_ENABLE 3233#if EV_EMBED_ENABLE
2144void noinline 3234void noinline
2145ev_embed_sweep (EV_P_ ev_embed *w) 3235ev_embed_sweep (EV_P_ ev_embed *w)
2146{ 3236{
2147 ev_loop (w->loop, EVLOOP_NONBLOCK); 3237 ev_loop (w->other, EVLOOP_NONBLOCK);
2148} 3238}
2149 3239
2150static void 3240static void
2151embed_cb (EV_P_ ev_io *io, int revents) 3241embed_io_cb (EV_P_ ev_io *io, int revents)
2152{ 3242{
2153 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3243 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2154 3244
2155 if (ev_cb (w)) 3245 if (ev_cb (w))
2156 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3246 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2157 else 3247 else
2158 ev_embed_sweep (loop, w); 3248 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 3249}
3250
3251static void
3252embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3253{
3254 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3255
3256 {
3257 EV_P = w->other;
3258
3259 while (fdchangecnt)
3260 {
3261 fd_reify (EV_A);
3262 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3263 }
3264 }
3265}
3266
3267static void
3268embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3269{
3270 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3271
3272 ev_embed_stop (EV_A_ w);
3273
3274 {
3275 EV_P = w->other;
3276
3277 ev_loop_fork (EV_A);
3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3279 }
3280
3281 ev_embed_start (EV_A_ w);
3282}
3283
3284#if 0
3285static void
3286embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3287{
3288 ev_idle_stop (EV_A_ idle);
3289}
3290#endif
2160 3291
2161void 3292void
2162ev_embed_start (EV_P_ ev_embed *w) 3293ev_embed_start (EV_P_ ev_embed *w)
2163{ 3294{
2164 if (expect_false (ev_is_active (w))) 3295 if (expect_false (ev_is_active (w)))
2165 return; 3296 return;
2166 3297
2167 { 3298 {
2168 struct ev_loop *loop = w->loop; 3299 EV_P = w->other;
2169 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3300 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2170 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3301 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2171 } 3302 }
3303
3304 EV_FREQUENT_CHECK;
2172 3305
2173 ev_set_priority (&w->io, ev_priority (w)); 3306 ev_set_priority (&w->io, ev_priority (w));
2174 ev_io_start (EV_A_ &w->io); 3307 ev_io_start (EV_A_ &w->io);
2175 3308
3309 ev_prepare_init (&w->prepare, embed_prepare_cb);
3310 ev_set_priority (&w->prepare, EV_MINPRI);
3311 ev_prepare_start (EV_A_ &w->prepare);
3312
3313 ev_fork_init (&w->fork, embed_fork_cb);
3314 ev_fork_start (EV_A_ &w->fork);
3315
3316 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3317
2176 ev_start (EV_A_ (W)w, 1); 3318 ev_start (EV_A_ (W)w, 1);
3319
3320 EV_FREQUENT_CHECK;
2177} 3321}
2178 3322
2179void 3323void
2180ev_embed_stop (EV_P_ ev_embed *w) 3324ev_embed_stop (EV_P_ ev_embed *w)
2181{ 3325{
2182 clear_pending (EV_A_ (W)w); 3326 clear_pending (EV_A_ (W)w);
2183 if (expect_false (!ev_is_active (w))) 3327 if (expect_false (!ev_is_active (w)))
2184 return; 3328 return;
2185 3329
3330 EV_FREQUENT_CHECK;
3331
2186 ev_io_stop (EV_A_ &w->io); 3332 ev_io_stop (EV_A_ &w->io);
3333 ev_prepare_stop (EV_A_ &w->prepare);
3334 ev_fork_stop (EV_A_ &w->fork);
2187 3335
2188 ev_stop (EV_A_ (W)w); 3336 EV_FREQUENT_CHECK;
2189} 3337}
2190#endif 3338#endif
2191 3339
2192#if EV_FORK_ENABLE 3340#if EV_FORK_ENABLE
2193void 3341void
2194ev_fork_start (EV_P_ ev_fork *w) 3342ev_fork_start (EV_P_ ev_fork *w)
2195{ 3343{
2196 if (expect_false (ev_is_active (w))) 3344 if (expect_false (ev_is_active (w)))
2197 return; 3345 return;
3346
3347 EV_FREQUENT_CHECK;
2198 3348
2199 ev_start (EV_A_ (W)w, ++forkcnt); 3349 ev_start (EV_A_ (W)w, ++forkcnt);
2200 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2201 forks [forkcnt - 1] = w; 3351 forks [forkcnt - 1] = w;
3352
3353 EV_FREQUENT_CHECK;
2202} 3354}
2203 3355
2204void 3356void
2205ev_fork_stop (EV_P_ ev_fork *w) 3357ev_fork_stop (EV_P_ ev_fork *w)
2206{ 3358{
2207 clear_pending (EV_A_ (W)w); 3359 clear_pending (EV_A_ (W)w);
2208 if (expect_false (!ev_is_active (w))) 3360 if (expect_false (!ev_is_active (w)))
2209 return; 3361 return;
2210 3362
3363 EV_FREQUENT_CHECK;
3364
2211 { 3365 {
2212 int active = ((W)w)->active; 3366 int active = ev_active (w);
3367
2213 forks [active - 1] = forks [--forkcnt]; 3368 forks [active - 1] = forks [--forkcnt];
2214 ((W)forks [active - 1])->active = active; 3369 ev_active (forks [active - 1]) = active;
2215 } 3370 }
2216 3371
2217 ev_stop (EV_A_ (W)w); 3372 ev_stop (EV_A_ (W)w);
3373
3374 EV_FREQUENT_CHECK;
3375}
3376#endif
3377
3378#if EV_ASYNC_ENABLE
3379void
3380ev_async_start (EV_P_ ev_async *w)
3381{
3382 if (expect_false (ev_is_active (w)))
3383 return;
3384
3385 evpipe_init (EV_A);
3386
3387 EV_FREQUENT_CHECK;
3388
3389 ev_start (EV_A_ (W)w, ++asynccnt);
3390 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3391 asyncs [asynccnt - 1] = w;
3392
3393 EV_FREQUENT_CHECK;
3394}
3395
3396void
3397ev_async_stop (EV_P_ ev_async *w)
3398{
3399 clear_pending (EV_A_ (W)w);
3400 if (expect_false (!ev_is_active (w)))
3401 return;
3402
3403 EV_FREQUENT_CHECK;
3404
3405 {
3406 int active = ev_active (w);
3407
3408 asyncs [active - 1] = asyncs [--asynccnt];
3409 ev_active (asyncs [active - 1]) = active;
3410 }
3411
3412 ev_stop (EV_A_ (W)w);
3413
3414 EV_FREQUENT_CHECK;
3415}
3416
3417void
3418ev_async_send (EV_P_ ev_async *w)
3419{
3420 w->sent = 1;
3421 evpipe_write (EV_A_ &gotasync);
2218} 3422}
2219#endif 3423#endif
2220 3424
2221/*****************************************************************************/ 3425/*****************************************************************************/
2222 3426
2232once_cb (EV_P_ struct ev_once *once, int revents) 3436once_cb (EV_P_ struct ev_once *once, int revents)
2233{ 3437{
2234 void (*cb)(int revents, void *arg) = once->cb; 3438 void (*cb)(int revents, void *arg) = once->cb;
2235 void *arg = once->arg; 3439 void *arg = once->arg;
2236 3440
2237 ev_io_stop (EV_A_ &once->io); 3441 ev_io_stop (EV_A_ &once->io);
2238 ev_timer_stop (EV_A_ &once->to); 3442 ev_timer_stop (EV_A_ &once->to);
2239 ev_free (once); 3443 ev_free (once);
2240 3444
2241 cb (revents, arg); 3445 cb (revents, arg);
2242} 3446}
2243 3447
2244static void 3448static void
2245once_cb_io (EV_P_ ev_io *w, int revents) 3449once_cb_io (EV_P_ ev_io *w, int revents)
2246{ 3450{
2247 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3451 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3452
3453 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2248} 3454}
2249 3455
2250static void 3456static void
2251once_cb_to (EV_P_ ev_timer *w, int revents) 3457once_cb_to (EV_P_ ev_timer *w, int revents)
2252{ 3458{
2253 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3459 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3460
3461 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2254} 3462}
2255 3463
2256void 3464void
2257ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2258{ 3466{
2280 ev_timer_set (&once->to, timeout, 0.); 3488 ev_timer_set (&once->to, timeout, 0.);
2281 ev_timer_start (EV_A_ &once->to); 3489 ev_timer_start (EV_A_ &once->to);
2282 } 3490 }
2283} 3491}
2284 3492
3493/*****************************************************************************/
3494
3495#if EV_WALK_ENABLE
3496void
3497ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3498{
3499 int i, j;
3500 ev_watcher_list *wl, *wn;
3501
3502 if (types & (EV_IO | EV_EMBED))
3503 for (i = 0; i < anfdmax; ++i)
3504 for (wl = anfds [i].head; wl; )
3505 {
3506 wn = wl->next;
3507
3508#if EV_EMBED_ENABLE
3509 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3510 {
3511 if (types & EV_EMBED)
3512 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3513 }
3514 else
3515#endif
3516#if EV_USE_INOTIFY
3517 if (ev_cb ((ev_io *)wl) == infy_cb)
3518 ;
3519 else
3520#endif
3521 if ((ev_io *)wl != &pipe_w)
3522 if (types & EV_IO)
3523 cb (EV_A_ EV_IO, wl);
3524
3525 wl = wn;
3526 }
3527
3528 if (types & (EV_TIMER | EV_STAT))
3529 for (i = timercnt + HEAP0; i-- > HEAP0; )
3530#if EV_STAT_ENABLE
3531 /*TODO: timer is not always active*/
3532 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3533 {
3534 if (types & EV_STAT)
3535 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3536 }
3537 else
3538#endif
3539 if (types & EV_TIMER)
3540 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3541
3542#if EV_PERIODIC_ENABLE
3543 if (types & EV_PERIODIC)
3544 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3545 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3546#endif
3547
3548#if EV_IDLE_ENABLE
3549 if (types & EV_IDLE)
3550 for (j = NUMPRI; i--; )
3551 for (i = idlecnt [j]; i--; )
3552 cb (EV_A_ EV_IDLE, idles [j][i]);
3553#endif
3554
3555#if EV_FORK_ENABLE
3556 if (types & EV_FORK)
3557 for (i = forkcnt; i--; )
3558 if (ev_cb (forks [i]) != embed_fork_cb)
3559 cb (EV_A_ EV_FORK, forks [i]);
3560#endif
3561
3562#if EV_ASYNC_ENABLE
3563 if (types & EV_ASYNC)
3564 for (i = asynccnt; i--; )
3565 cb (EV_A_ EV_ASYNC, asyncs [i]);
3566#endif
3567
3568 if (types & EV_PREPARE)
3569 for (i = preparecnt; i--; )
3570#if EV_EMBED_ENABLE
3571 if (ev_cb (prepares [i]) != embed_prepare_cb)
3572#endif
3573 cb (EV_A_ EV_PREPARE, prepares [i]);
3574
3575 if (types & EV_CHECK)
3576 for (i = checkcnt; i--; )
3577 cb (EV_A_ EV_CHECK, checks [i]);
3578
3579 if (types & EV_SIGNAL)
3580 for (i = 0; i < EV_NSIG - 1; ++i)
3581 for (wl = signals [i].head; wl; )
3582 {
3583 wn = wl->next;
3584 cb (EV_A_ EV_SIGNAL, wl);
3585 wl = wn;
3586 }
3587
3588 if (types & EV_CHILD)
3589 for (i = EV_PID_HASHSIZE; i--; )
3590 for (wl = childs [i]; wl; )
3591 {
3592 wn = wl->next;
3593 cb (EV_A_ EV_CHILD, wl);
3594 wl = wn;
3595 }
3596/* EV_STAT 0x00001000 /* stat data changed */
3597/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3598}
3599#endif
3600
3601#if EV_MULTIPLICITY
3602 #include "ev_wrap.h"
3603#endif
3604
2285#ifdef __cplusplus 3605#ifdef __cplusplus
2286} 3606}
2287#endif 3607#endif
2288 3608

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines