ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.309 by root, Sun Jul 26 04:24:17 2009 UTC vs.
Revision 1.479 by root, Sun Dec 20 01:31:17 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
50# endif 52# endif
51 53
52# if HAVE_CLOCK_SYSCALL 54# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL 55# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1 56# define EV_USE_CLOCK_SYSCALL 1
57# endif 59# endif
58# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1 61# define EV_USE_MONOTONIC 1
60# endif 62# endif
61# endif 63# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL) 64# elif !defined EV_USE_CLOCK_SYSCALL
63# define EV_USE_CLOCK_SYSCALL 0 65# define EV_USE_CLOCK_SYSCALL 0
64# endif 66# endif
65 67
66# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
77# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
79# endif 81# endif
80# endif 82# endif
81 83
84# if HAVE_NANOSLEEP
82# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
85# else 88# else
89# undef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
87# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
88# endif 100# endif
89 101
102# if HAVE_POLL && HAVE_POLL_H
90# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
91# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif 105# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else 106# else
107# undef EV_USE_POLL
102# define EV_USE_POLL 0 108# define EV_USE_POLL 0
103# endif
104# endif 109# endif
105 110
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
109# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
110# define EV_USE_EPOLL 0
111# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
112# endif 118# endif
113 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
114# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
120# endif 127# endif
121 128
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
125# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
126# define EV_USE_PORT 0
127# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
128# endif 136# endif
129 137
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
133# else
134# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
136# endif 145# endif
137 146
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H 147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1 148# ifndef EV_USE_SIGNALFD
141# else
142# define EV_USE_SIGNALFD 0 149# define EV_USE_SIGNALFD EV_FEATURE_OS
143# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
144# endif 154# endif
145 155
156# if HAVE_EVENTFD
146# ifndef EV_USE_EVENTFD 157# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1 158# define EV_USE_EVENTFD EV_FEATURE_OS
149# else
150# define EV_USE_EVENTFD 0
151# endif 159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
152# endif 163# endif
153 164
154#endif 165#endif
155 166
156#include <math.h>
157#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
158#include <fcntl.h> 169#include <fcntl.h>
159#include <stddef.h> 170#include <stddef.h>
160 171
161#include <stdio.h> 172#include <stdio.h>
162 173
163#include <assert.h> 174#include <assert.h>
164#include <errno.h> 175#include <errno.h>
165#include <sys/types.h> 176#include <sys/types.h>
166#include <time.h> 177#include <time.h>
178#include <limits.h>
167 179
168#include <signal.h> 180#include <signal.h>
169 181
170#ifdef EV_H 182#ifdef EV_H
171# include EV_H 183# include EV_H
172#else 184#else
173# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
174#endif 197#endif
175 198
176#ifndef _WIN32 199#ifndef _WIN32
177# include <sys/time.h> 200# include <sys/time.h>
178# include <sys/wait.h> 201# include <sys/wait.h>
179# include <unistd.h> 202# include <unistd.h>
180#else 203#else
181# include <io.h> 204# include <io.h>
182# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
183# include <windows.h> 207# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
186# endif 210# endif
211# undef EV_AVOID_STDIO
187#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
188 221
189/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
190 223
191/* try to deduce the maximum number of signals on this platform */ 224/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG) 225#if defined EV_NSIG
193/* use what's provided */ 226/* use what's provided */
194#elif defined (NSIG) 227#elif defined NSIG
195# define EV_NSIG (NSIG) 228# define EV_NSIG (NSIG)
196#elif defined(_NSIG) 229#elif defined _NSIG
197# define EV_NSIG (_NSIG) 230# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX) 231#elif defined SIGMAX
199# define EV_NSIG (SIGMAX+1) 232# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX) 233#elif defined SIG_MAX
201# define EV_NSIG (SIG_MAX+1) 234# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX) 235#elif defined _SIG_MAX
203# define EV_NSIG (_SIG_MAX+1) 236# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG) 237#elif defined MAXSIG
205# define EV_NSIG (MAXSIG+1) 238# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG) 239#elif defined MAX_SIG
207# define EV_NSIG (MAX_SIG+1) 240# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE) 241#elif defined SIGARRAYSIZE
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */ 242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig) 243#elif defined _sys_nsig
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */ 244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else 245#else
213# error "unable to find value for NSIG, please report" 246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
214/* to make it compile regardless, just remove the above line */ 247#endif
215# define EV_NSIG 65 248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
216#endif 251#endif
217 252
218#ifndef EV_USE_CLOCK_SYSCALL 253#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2 254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
220# define EV_USE_CLOCK_SYSCALL 1 255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
221# else 256# else
222# define EV_USE_CLOCK_SYSCALL 0 257# define EV_USE_CLOCK_SYSCALL 0
223# endif 258# endif
224#endif 259#endif
225 260
261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
269
226#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0 271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1 272# define EV_USE_MONOTONIC EV_FEATURE_OS
229# else 273# else
230# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
231# endif 275# endif
232#endif 276#endif
233 277
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif 280#endif
237 281
238#ifndef EV_USE_NANOSLEEP 282#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L 283# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1 284# define EV_USE_NANOSLEEP EV_FEATURE_OS
241# else 285# else
242# define EV_USE_NANOSLEEP 0 286# define EV_USE_NANOSLEEP 0
243# endif 287# endif
244#endif 288#endif
245 289
246#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
247# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
248#endif 292#endif
249 293
250#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
251# ifdef _WIN32 295# ifdef _WIN32
252# define EV_USE_POLL 0 296# define EV_USE_POLL 0
253# else 297# else
254# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
255# endif 299# endif
256#endif 300#endif
257 301
258#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1 304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
261# else 305# else
262# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
263# endif 307# endif
264#endif 308#endif
265 309
271# define EV_USE_PORT 0 315# define EV_USE_PORT 0
272#endif 316#endif
273 317
274#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1 320# define EV_USE_INOTIFY EV_FEATURE_OS
277# else 321# else
278# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
279# endif 323# endif
280#endif 324#endif
281 325
282#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif 328#endif
289 329
290#ifndef EV_INOTIFY_HASHSIZE 330#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL 331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif 332#endif
297 333
298#ifndef EV_USE_EVENTFD 334#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1 336# define EV_USE_EVENTFD EV_FEATURE_OS
301# else 337# else
302# define EV_USE_EVENTFD 0 338# define EV_USE_EVENTFD 0
303# endif 339# endif
304#endif 340#endif
305 341
306#ifndef EV_USE_SIGNALFD 342#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9)) 343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1 344# define EV_USE_SIGNALFD EV_FEATURE_OS
309# else 345# else
310# define EV_USE_SIGNALFD 0 346# define EV_USE_SIGNALFD 0
311# endif 347# endif
312#endif 348#endif
313 349
316# define EV_USE_4HEAP 1 352# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1 353# define EV_HEAP_CACHE_AT 1
318#endif 354#endif
319 355
320#ifndef EV_VERIFY 356#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL 357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
322#endif 358#endif
323 359
324#ifndef EV_USE_4HEAP 360#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL 361# define EV_USE_4HEAP EV_FEATURE_DATA
326#endif 362#endif
327 363
328#ifndef EV_HEAP_CACHE_AT 364#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL 365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
330#endif 382#endif
331 383
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */ 384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */ 385/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL 386#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h> 387# include <sys/syscall.h>
336# ifdef SYS_clock_gettime 388# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts)) 389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC 390# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1 391# define EV_USE_MONOTONIC 1
340# else 392# else
359# undef EV_USE_INOTIFY 411# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
361#endif 413#endif
362 414
363#if !EV_USE_NANOSLEEP 415#if !EV_USE_NANOSLEEP
364# ifndef _WIN32 416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
365# include <sys/select.h> 418# include <sys/select.h>
366# endif 419# endif
367#endif 420#endif
368 421
369#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h> 423# include <sys/statfs.h>
372# include <sys/inotify.h> 424# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */ 425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW 426# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY 427# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0 428# define EV_USE_INOTIFY 0
377# endif 429# endif
378#endif 430#endif
379 431
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD 432#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h> 434# include <stdint.h>
387# ifndef EFD_NONBLOCK 435# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK 436# define EFD_NONBLOCK O_NONBLOCK
389# endif 437# endif
390# ifndef EFD_CLOEXEC 438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC 440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
392# endif 444# endif
393# ifdef __cplusplus 445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
394extern "C" { 446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
395# endif 453# endif
396int eventfd (unsigned int initval, int flags); 454# ifndef SFD_CLOEXEC
397# ifdef __cplusplus 455# ifdef O_CLOEXEC
398} 456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
399# endif 460# endif
400#endif 461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
401 462
402#if EV_USE_SIGNALFD 463struct signalfd_siginfo
403# include <sys/signalfd.h> 464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
404#endif 468#endif
405 469
406/**/ 470/**/
407 471
408#if EV_VERIFY >= 3 472#if EV_VERIFY >= 3
409# define EV_FREQUENT_CHECK ev_loop_verify (EV_A) 473# define EV_FREQUENT_CHECK ev_verify (EV_A)
410#else 474#else
411# define EV_FREQUENT_CHECK do { } while (0) 475# define EV_FREQUENT_CHECK do { } while (0)
412#endif 476#endif
413 477
414/* 478/*
415 * This is used to avoid floating point rounding problems. 479 * This is used to work around floating point rounding problems.
416 * It is added to ev_rt_now when scheduling periodics
417 * to ensure progress, time-wise, even when rounding
418 * errors are against us.
419 * This value is good at least till the year 4000. 480 * This value is good at least till the year 4000.
420 * Better solutions welcome.
421 */ 481 */
422#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
423 484
424#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
425#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
426/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
427 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010005
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
428#if __GNUC__ >= 4 546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654#endif
655
656#ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709#endif
710
711#ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765#endif
766
767#ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783#endif
784
785#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787#endif
788
789#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791#endif
792
793/*****************************************************************************/
794
795#if ECB_CPP
796 #define ecb_inline static inline
797#elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799#elif ECB_C99
800 #define ecb_inline static inline
801#else
802 #define ecb_inline static
803#endif
804
805#if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807#elif ECB_C99
808 #define ecb_restrict restrict
809#else
810 #define ecb_restrict
811#endif
812
813typedef int ecb_bool;
814
815#define ECB_CONCAT_(a, b) a ## b
816#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817#define ECB_STRINGIFY_(a) # a
818#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821#define ecb_function_ ecb_inline
822
823#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825#else
826 #define ecb_attribute(attrlist)
827#endif
828
829#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831#else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837#endif
838
839#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
429# define expect(expr,value) __builtin_expect ((expr),(value)) 840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
430# define noinline __attribute__ ((noinline))
431#else 841#else
432# define expect(expr,value) (expr) 842 #define ecb_expect(expr,value) (expr)
433# define noinline
434# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
435# define inline
436# endif 843#endif
437#endif
438 844
845#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847#else
848 #define ecb_prefetch(addr,rw,locality)
849#endif
850
851/* no emulation for ecb_decltype */
852#if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858#endif
859
860#if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862#else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864#endif
865
866#if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868#elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870#else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872#endif
873
874#if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876#else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878#endif
879
880#define ecb_unused ecb_attribute ((__unused__))
881#define ecb_const ecb_attribute ((__const__))
882#define ecb_pure ecb_attribute ((__pure__))
883
884#if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887#elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889#elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892#else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894#endif
895
896#if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900#else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904#endif
905
906/* put around conditional expressions if you are very sure that the */
907/* expression is mostly true or mostly false. note that these return */
908/* booleans, not the expression. */
439#define expect_false(expr) expect ((expr) != 0, 0) 909#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
440#define expect_true(expr) expect ((expr) != 0, 1) 910#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911/* for compatibility to the rest of the world */
912#define ecb_likely(expr) ecb_expect_true (expr)
913#define ecb_unlikely(expr) ecb_expect_false (expr)
914
915/* count trailing zero bits and count # of one bits */
916#if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927#else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936#else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941#if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947#else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953#endif
954
955 return r;
956#endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967#else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970#endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992#else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012#else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018#endif
1019 }
1020#endif
1021
1022ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029{
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032}
1033
1034ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036{
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043}
1044
1045ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047{
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055}
1056
1057/* popcount64 is only available on 64 bit cpus as gcc builtin */
1058/* so for this version we are lazy */
1059ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060ecb_function_ ecb_const int
1061ecb_popcount64 (uint64_t x)
1062{
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064}
1065
1066ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092#elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097#else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118#endif
1119
1120#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122#else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126#endif
1127
1128/* try to tell the compiler that some condition is definitely true */
1129#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132ecb_inline ecb_const uint32_t
1133ecb_byteorder_helper (void)
1134{
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149#else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156#endif
1157}
1158
1159ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164#if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166#else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168#endif
1169
1170#if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181#else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184#endif
1185
1186#if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193#else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195#endif
1196
1197ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198ecb_function_ ecb_const uint32_t
1199ecb_binary16_to_binary32 (uint32_t x)
1200{
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227}
1228
1229ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230ecb_function_ ecb_const uint16_t
1231ecb_binary32_to_binary16 (uint32_t x)
1232{
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291}
1292
1293/*******************************************************************************/
1294/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296/* basically, everything uses "ieee pure-endian" floating point numbers */
1297/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298#if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315#else
1316 #define ECB_STDFP 0
1317#endif
1318
1319#ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500#endif
1501
1502#endif
1503
1504/* ECB.H END */
1505
1506#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507/* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514# error "memory fences not defined for your architecture, please report"
1515#endif
1516
1517#ifndef ECB_MEMORY_FENCE
1518# define ECB_MEMORY_FENCE do { } while (0)
1519# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521#endif
1522
1523#define expect_false(cond) ecb_expect_false (cond)
1524#define expect_true(cond) ecb_expect_true (cond)
1525#define noinline ecb_noinline
1526
441#define inline_size static inline 1527#define inline_size ecb_inline
442 1528
443#if EV_MINIMAL 1529#if EV_FEATURE_CODE
1530# define inline_speed ecb_inline
1531#else
444# define inline_speed static noinline 1532# define inline_speed static noinline
445#else
446# define inline_speed static inline
447#endif 1533#endif
448 1534
449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1535#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450 1536
451#if EV_MINPRI == EV_MAXPRI 1537#if EV_MINPRI == EV_MAXPRI
464#define ev_active(w) ((W)(w))->active 1550#define ev_active(w) ((W)(w))->active
465#define ev_at(w) ((WT)(w))->at 1551#define ev_at(w) ((WT)(w))->at
466 1552
467#if EV_USE_REALTIME 1553#if EV_USE_REALTIME
468/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 1554/* sig_atomic_t is used to avoid per-thread variables or locking but still */
469/* giving it a reasonably high chance of working on typical architetcures */ 1555/* giving it a reasonably high chance of working on typical architectures */
470static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */ 1556static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
471#endif 1557#endif
472 1558
473#if EV_USE_MONOTONIC 1559#if EV_USE_MONOTONIC
474static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1560static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
475#endif 1561#endif
476 1562
1563#ifndef EV_FD_TO_WIN32_HANDLE
1564# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565#endif
1566#ifndef EV_WIN32_HANDLE_TO_FD
1567# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568#endif
1569#ifndef EV_WIN32_CLOSE_FD
1570# define EV_WIN32_CLOSE_FD(fd) close (fd)
1571#endif
1572
477#ifdef _WIN32 1573#ifdef _WIN32
478# include "ev_win32.c" 1574# include "ev_win32.c"
479#endif 1575#endif
480 1576
481/*****************************************************************************/ 1577/*****************************************************************************/
482 1578
1579/* define a suitable floor function (only used by periodics atm) */
1580
1581#if EV_USE_FLOOR
1582# include <math.h>
1583# define ev_floor(v) floor (v)
1584#else
1585
1586#include <float.h>
1587
1588/* a floor() replacement function, should be independent of ev_tstamp type */
1589static ev_tstamp noinline
1590ev_floor (ev_tstamp v)
1591{
1592 /* the choice of shift factor is not terribly important */
1593#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1594 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1595#else
1596 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1597#endif
1598
1599 /* argument too large for an unsigned long? */
1600 if (expect_false (v >= shift))
1601 {
1602 ev_tstamp f;
1603
1604 if (v == v - 1.)
1605 return v; /* very large number */
1606
1607 f = shift * ev_floor (v * (1. / shift));
1608 return f + ev_floor (v - f);
1609 }
1610
1611 /* special treatment for negative args? */
1612 if (expect_false (v < 0.))
1613 {
1614 ev_tstamp f = -ev_floor (-v);
1615
1616 return f - (f == v ? 0 : 1);
1617 }
1618
1619 /* fits into an unsigned long */
1620 return (unsigned long)v;
1621}
1622
1623#endif
1624
1625/*****************************************************************************/
1626
1627#ifdef __linux
1628# include <sys/utsname.h>
1629#endif
1630
1631static unsigned int noinline ecb_cold
1632ev_linux_version (void)
1633{
1634#ifdef __linux
1635 unsigned int v = 0;
1636 struct utsname buf;
1637 int i;
1638 char *p = buf.release;
1639
1640 if (uname (&buf))
1641 return 0;
1642
1643 for (i = 3+1; --i; )
1644 {
1645 unsigned int c = 0;
1646
1647 for (;;)
1648 {
1649 if (*p >= '0' && *p <= '9')
1650 c = c * 10 + *p++ - '0';
1651 else
1652 {
1653 p += *p == '.';
1654 break;
1655 }
1656 }
1657
1658 v = (v << 8) | c;
1659 }
1660
1661 return v;
1662#else
1663 return 0;
1664#endif
1665}
1666
1667/*****************************************************************************/
1668
1669#if EV_AVOID_STDIO
1670static void noinline ecb_cold
1671ev_printerr (const char *msg)
1672{
1673 write (STDERR_FILENO, msg, strlen (msg));
1674}
1675#endif
1676
483static void (*syserr_cb)(const char *msg); 1677static void (*syserr_cb)(const char *msg) EV_THROW;
484 1678
485void 1679void ecb_cold
486ev_set_syserr_cb (void (*cb)(const char *msg)) 1680ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
487{ 1681{
488 syserr_cb = cb; 1682 syserr_cb = cb;
489} 1683}
490 1684
491static void noinline 1685static void noinline ecb_cold
492ev_syserr (const char *msg) 1686ev_syserr (const char *msg)
493{ 1687{
494 if (!msg) 1688 if (!msg)
495 msg = "(libev) system error"; 1689 msg = "(libev) system error";
496 1690
497 if (syserr_cb) 1691 if (syserr_cb)
498 syserr_cb (msg); 1692 syserr_cb (msg);
499 else 1693 else
500 { 1694 {
1695#if EV_AVOID_STDIO
1696 ev_printerr (msg);
1697 ev_printerr (": ");
1698 ev_printerr (strerror (errno));
1699 ev_printerr ("\n");
1700#else
501 perror (msg); 1701 perror (msg);
1702#endif
502 abort (); 1703 abort ();
503 } 1704 }
504} 1705}
505 1706
506static void * 1707static void *
507ev_realloc_emul (void *ptr, long size) 1708ev_realloc_emul (void *ptr, long size) EV_THROW
508{ 1709{
509 /* some systems, notably openbsd and darwin, fail to properly 1710 /* some systems, notably openbsd and darwin, fail to properly
510 * implement realloc (x, 0) (as required by both ansi c-98 and 1711 * implement realloc (x, 0) (as required by both ansi c-89 and
511 * the single unix specification, so work around them here. 1712 * the single unix specification, so work around them here.
1713 * recently, also (at least) fedora and debian started breaking it,
1714 * despite documenting it otherwise.
512 */ 1715 */
513 1716
514 if (size) 1717 if (size)
515 return realloc (ptr, size); 1718 return realloc (ptr, size);
516 1719
517 free (ptr); 1720 free (ptr);
518 return 0; 1721 return 0;
519} 1722}
520 1723
521static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1724static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
522 1725
523void 1726void ecb_cold
524ev_set_allocator (void *(*cb)(void *ptr, long size)) 1727ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
525{ 1728{
526 alloc = cb; 1729 alloc = cb;
527} 1730}
528 1731
529inline_speed void * 1732inline_speed void *
531{ 1734{
532 ptr = alloc (ptr, size); 1735 ptr = alloc (ptr, size);
533 1736
534 if (!ptr && size) 1737 if (!ptr && size)
535 { 1738 {
1739#if EV_AVOID_STDIO
1740 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1741#else
536 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1742 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1743#endif
537 abort (); 1744 abort ();
538 } 1745 }
539 1746
540 return ptr; 1747 return ptr;
541} 1748}
557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */ 1764 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
558 unsigned char unused; 1765 unsigned char unused;
559#if EV_USE_EPOLL 1766#if EV_USE_EPOLL
560 unsigned int egen; /* generation counter to counter epoll bugs */ 1767 unsigned int egen; /* generation counter to counter epoll bugs */
561#endif 1768#endif
562#if EV_SELECT_IS_WINSOCKET 1769#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
563 SOCKET handle; 1770 SOCKET handle;
1771#endif
1772#if EV_USE_IOCP
1773 OVERLAPPED or, ow;
564#endif 1774#endif
565} ANFD; 1775} ANFD;
566 1776
567/* stores the pending event set for a given watcher */ 1777/* stores the pending event set for a given watcher */
568typedef struct 1778typedef struct
610 #undef VAR 1820 #undef VAR
611 }; 1821 };
612 #include "ev_wrap.h" 1822 #include "ev_wrap.h"
613 1823
614 static struct ev_loop default_loop_struct; 1824 static struct ev_loop default_loop_struct;
615 struct ev_loop *ev_default_loop_ptr; 1825 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
616 1826
617#else 1827#else
618 1828
619 ev_tstamp ev_rt_now; 1829 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
620 #define VAR(name,decl) static decl; 1830 #define VAR(name,decl) static decl;
621 #include "ev_vars.h" 1831 #include "ev_vars.h"
622 #undef VAR 1832 #undef VAR
623 1833
624 static int ev_default_loop_ptr; 1834 static int ev_default_loop_ptr;
625 1835
626#endif 1836#endif
627 1837
628#if EV_MINIMAL < 2 1838#if EV_FEATURE_API
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A) 1839# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A) 1840# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A) 1841# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else 1842#else
633# define EV_RELEASE_CB (void)0 1843# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0 1844# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A) 1845# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif 1846#endif
637 1847
638#define EVUNLOOP_RECURSE 0x80 1848#define EVBREAK_RECURSE 0x80
639 1849
640/*****************************************************************************/ 1850/*****************************************************************************/
641 1851
642#ifndef EV_HAVE_EV_TIME 1852#ifndef EV_HAVE_EV_TIME
643ev_tstamp 1853ev_tstamp
644ev_time (void) 1854ev_time (void) EV_THROW
645{ 1855{
646#if EV_USE_REALTIME 1856#if EV_USE_REALTIME
647 if (expect_true (have_realtime)) 1857 if (expect_true (have_realtime))
648 { 1858 {
649 struct timespec ts; 1859 struct timespec ts;
673 return ev_time (); 1883 return ev_time ();
674} 1884}
675 1885
676#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
677ev_tstamp 1887ev_tstamp
678ev_now (EV_P) 1888ev_now (EV_P) EV_THROW
679{ 1889{
680 return ev_rt_now; 1890 return ev_rt_now;
681} 1891}
682#endif 1892#endif
683 1893
684void 1894void
685ev_sleep (ev_tstamp delay) 1895ev_sleep (ev_tstamp delay) EV_THROW
686{ 1896{
687 if (delay > 0.) 1897 if (delay > 0.)
688 { 1898 {
689#if EV_USE_NANOSLEEP 1899#if EV_USE_NANOSLEEP
690 struct timespec ts; 1900 struct timespec ts;
691 1901
692 ts.tv_sec = (time_t)delay; 1902 EV_TS_SET (ts, delay);
693 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
694
695 nanosleep (&ts, 0); 1903 nanosleep (&ts, 0);
696#elif defined(_WIN32) 1904#elif defined _WIN32
697 Sleep ((unsigned long)(delay * 1e3)); 1905 Sleep ((unsigned long)(delay * 1e3));
698#else 1906#else
699 struct timeval tv; 1907 struct timeval tv;
700
701 tv.tv_sec = (time_t)delay;
702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
703 1908
704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */ 1909 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
705 /* something not guaranteed by newer posix versions, but guaranteed */ 1910 /* something not guaranteed by newer posix versions, but guaranteed */
706 /* by older ones */ 1911 /* by older ones */
1912 EV_TV_SET (tv, delay);
707 select (0, 0, 0, 0, &tv); 1913 select (0, 0, 0, 0, &tv);
708#endif 1914#endif
709 } 1915 }
710} 1916}
711 1917
712/*****************************************************************************/ 1918/*****************************************************************************/
713 1919
714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 1920#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
715 1921
716/* find a suitable new size for the given array, */ 1922/* find a suitable new size for the given array, */
717/* hopefully by rounding to a ncie-to-malloc size */ 1923/* hopefully by rounding to a nice-to-malloc size */
718inline_size int 1924inline_size int
719array_nextsize (int elem, int cur, int cnt) 1925array_nextsize (int elem, int cur, int cnt)
720{ 1926{
721 int ncur = cur + 1; 1927 int ncur = cur + 1;
722 1928
723 do 1929 do
724 ncur <<= 1; 1930 ncur <<= 1;
725 while (cnt > ncur); 1931 while (cnt > ncur);
726 1932
727 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */ 1933 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
728 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4) 1934 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
729 { 1935 {
730 ncur *= elem; 1936 ncur *= elem;
731 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1); 1937 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
732 ncur = ncur - sizeof (void *) * 4; 1938 ncur = ncur - sizeof (void *) * 4;
734 } 1940 }
735 1941
736 return ncur; 1942 return ncur;
737} 1943}
738 1944
739static noinline void * 1945static void * noinline ecb_cold
740array_realloc (int elem, void *base, int *cur, int cnt) 1946array_realloc (int elem, void *base, int *cur, int cnt)
741{ 1947{
742 *cur = array_nextsize (elem, *cur, cnt); 1948 *cur = array_nextsize (elem, *cur, cnt);
743 return ev_realloc (base, elem * *cur); 1949 return ev_realloc (base, elem * *cur);
744} 1950}
747 memset ((void *)(base), 0, sizeof (*(base)) * (count)) 1953 memset ((void *)(base), 0, sizeof (*(base)) * (count))
748 1954
749#define array_needsize(type,base,cur,cnt,init) \ 1955#define array_needsize(type,base,cur,cnt,init) \
750 if (expect_false ((cnt) > (cur))) \ 1956 if (expect_false ((cnt) > (cur))) \
751 { \ 1957 { \
752 int ocur_ = (cur); \ 1958 int ecb_unused ocur_ = (cur); \
753 (base) = (type *)array_realloc \ 1959 (base) = (type *)array_realloc \
754 (sizeof (type), (base), &(cur), (cnt)); \ 1960 (sizeof (type), (base), &(cur), (cnt)); \
755 init ((base) + (ocur_), (cur) - ocur_); \ 1961 init ((base) + (ocur_), (cur) - ocur_); \
756 } 1962 }
757 1963
775pendingcb (EV_P_ ev_prepare *w, int revents) 1981pendingcb (EV_P_ ev_prepare *w, int revents)
776{ 1982{
777} 1983}
778 1984
779void noinline 1985void noinline
780ev_feed_event (EV_P_ void *w, int revents) 1986ev_feed_event (EV_P_ void *w, int revents) EV_THROW
781{ 1987{
782 W w_ = (W)w; 1988 W w_ = (W)w;
783 int pri = ABSPRI (w_); 1989 int pri = ABSPRI (w_);
784 1990
785 if (expect_false (w_->pending)) 1991 if (expect_false (w_->pending))
789 w_->pending = ++pendingcnt [pri]; 1995 w_->pending = ++pendingcnt [pri];
790 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1996 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
791 pendings [pri][w_->pending - 1].w = w_; 1997 pendings [pri][w_->pending - 1].w = w_;
792 pendings [pri][w_->pending - 1].events = revents; 1998 pendings [pri][w_->pending - 1].events = revents;
793 } 1999 }
2000
2001 pendingpri = NUMPRI - 1;
794} 2002}
795 2003
796inline_speed void 2004inline_speed void
797feed_reverse (EV_P_ W w) 2005feed_reverse (EV_P_ W w)
798{ 2006{
818} 2026}
819 2027
820/*****************************************************************************/ 2028/*****************************************************************************/
821 2029
822inline_speed void 2030inline_speed void
823fd_event_nc (EV_P_ int fd, int revents) 2031fd_event_nocheck (EV_P_ int fd, int revents)
824{ 2032{
825 ANFD *anfd = anfds + fd; 2033 ANFD *anfd = anfds + fd;
826 ev_io *w; 2034 ev_io *w;
827 2035
828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2036 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
840fd_event (EV_P_ int fd, int revents) 2048fd_event (EV_P_ int fd, int revents)
841{ 2049{
842 ANFD *anfd = anfds + fd; 2050 ANFD *anfd = anfds + fd;
843 2051
844 if (expect_true (!anfd->reify)) 2052 if (expect_true (!anfd->reify))
845 fd_event_nc (EV_A_ fd, revents); 2053 fd_event_nocheck (EV_A_ fd, revents);
846} 2054}
847 2055
848void 2056void
849ev_feed_fd_event (EV_P_ int fd, int revents) 2057ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
850{ 2058{
851 if (fd >= 0 && fd < anfdmax) 2059 if (fd >= 0 && fd < anfdmax)
852 fd_event_nc (EV_A_ fd, revents); 2060 fd_event_nocheck (EV_A_ fd, revents);
853} 2061}
854 2062
855/* make sure the external fd watch events are in-sync */ 2063/* make sure the external fd watch events are in-sync */
856/* with the kernel/libev internal state */ 2064/* with the kernel/libev internal state */
857inline_size void 2065inline_size void
858fd_reify (EV_P) 2066fd_reify (EV_P)
859{ 2067{
860 int i; 2068 int i;
861 2069
2070#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2071 for (i = 0; i < fdchangecnt; ++i)
2072 {
2073 int fd = fdchanges [i];
2074 ANFD *anfd = anfds + fd;
2075
2076 if (anfd->reify & EV__IOFDSET && anfd->head)
2077 {
2078 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2079
2080 if (handle != anfd->handle)
2081 {
2082 unsigned long arg;
2083
2084 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2085
2086 /* handle changed, but fd didn't - we need to do it in two steps */
2087 backend_modify (EV_A_ fd, anfd->events, 0);
2088 anfd->events = 0;
2089 anfd->handle = handle;
2090 }
2091 }
2092 }
2093#endif
2094
862 for (i = 0; i < fdchangecnt; ++i) 2095 for (i = 0; i < fdchangecnt; ++i)
863 { 2096 {
864 int fd = fdchanges [i]; 2097 int fd = fdchanges [i];
865 ANFD *anfd = anfds + fd; 2098 ANFD *anfd = anfds + fd;
866 ev_io *w; 2099 ev_io *w;
867 2100
868 unsigned char events = 0; 2101 unsigned char o_events = anfd->events;
2102 unsigned char o_reify = anfd->reify;
869 2103
870 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2104 anfd->reify = 0;
871 events |= (unsigned char)w->events;
872 2105
873#if EV_SELECT_IS_WINSOCKET 2106 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
874 if (events)
875 { 2107 {
876 unsigned long arg; 2108 anfd->events = 0;
877 #ifdef EV_FD_TO_WIN32_HANDLE 2109
878 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 2110 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
879 #else 2111 anfd->events |= (unsigned char)w->events;
880 anfd->handle = _get_osfhandle (fd); 2112
881 #endif 2113 if (o_events != anfd->events)
882 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0)); 2114 o_reify = EV__IOFDSET; /* actually |= */
883 } 2115 }
884#endif
885 2116
886 { 2117 if (o_reify & EV__IOFDSET)
887 unsigned char o_events = anfd->events;
888 unsigned char o_reify = anfd->reify;
889
890 anfd->reify = 0;
891 anfd->events = events;
892
893 if (o_events != events || o_reify & EV__IOFDSET)
894 backend_modify (EV_A_ fd, o_events, events); 2118 backend_modify (EV_A_ fd, o_events, anfd->events);
895 }
896 } 2119 }
897 2120
898 fdchangecnt = 0; 2121 fdchangecnt = 0;
899} 2122}
900 2123
912 fdchanges [fdchangecnt - 1] = fd; 2135 fdchanges [fdchangecnt - 1] = fd;
913 } 2136 }
914} 2137}
915 2138
916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */ 2139/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void 2140inline_speed void ecb_cold
918fd_kill (EV_P_ int fd) 2141fd_kill (EV_P_ int fd)
919{ 2142{
920 ev_io *w; 2143 ev_io *w;
921 2144
922 while ((w = (ev_io *)anfds [fd].head)) 2145 while ((w = (ev_io *)anfds [fd].head))
924 ev_io_stop (EV_A_ w); 2147 ev_io_stop (EV_A_ w);
925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2148 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
926 } 2149 }
927} 2150}
928 2151
929/* check whether the given fd is atcually valid, for error recovery */ 2152/* check whether the given fd is actually valid, for error recovery */
930inline_size int 2153inline_size int ecb_cold
931fd_valid (int fd) 2154fd_valid (int fd)
932{ 2155{
933#ifdef _WIN32 2156#ifdef _WIN32
934 return _get_osfhandle (fd) != -1; 2157 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
935#else 2158#else
936 return fcntl (fd, F_GETFD) != -1; 2159 return fcntl (fd, F_GETFD) != -1;
937#endif 2160#endif
938} 2161}
939 2162
940/* called on EBADF to verify fds */ 2163/* called on EBADF to verify fds */
941static void noinline 2164static void noinline ecb_cold
942fd_ebadf (EV_P) 2165fd_ebadf (EV_P)
943{ 2166{
944 int fd; 2167 int fd;
945 2168
946 for (fd = 0; fd < anfdmax; ++fd) 2169 for (fd = 0; fd < anfdmax; ++fd)
948 if (!fd_valid (fd) && errno == EBADF) 2171 if (!fd_valid (fd) && errno == EBADF)
949 fd_kill (EV_A_ fd); 2172 fd_kill (EV_A_ fd);
950} 2173}
951 2174
952/* called on ENOMEM in select/poll to kill some fds and retry */ 2175/* called on ENOMEM in select/poll to kill some fds and retry */
953static void noinline 2176static void noinline ecb_cold
954fd_enomem (EV_P) 2177fd_enomem (EV_P)
955{ 2178{
956 int fd; 2179 int fd;
957 2180
958 for (fd = anfdmax; fd--; ) 2181 for (fd = anfdmax; fd--; )
976 anfds [fd].emask = 0; 2199 anfds [fd].emask = 0;
977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY); 2200 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
978 } 2201 }
979} 2202}
980 2203
2204/* used to prepare libev internal fd's */
2205/* this is not fork-safe */
2206inline_speed void
2207fd_intern (int fd)
2208{
2209#ifdef _WIN32
2210 unsigned long arg = 1;
2211 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2212#else
2213 fcntl (fd, F_SETFD, FD_CLOEXEC);
2214 fcntl (fd, F_SETFL, O_NONBLOCK);
2215#endif
2216}
2217
981/*****************************************************************************/ 2218/*****************************************************************************/
982 2219
983/* 2220/*
984 * the heap functions want a real array index. array index 0 uis guaranteed to not 2221 * the heap functions want a real array index. array index 0 is guaranteed to not
985 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives 2222 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
986 * the branching factor of the d-tree. 2223 * the branching factor of the d-tree.
987 */ 2224 */
988 2225
989/* 2226/*
1103 2340
1104/* move an element suitably so it is in a correct place */ 2341/* move an element suitably so it is in a correct place */
1105inline_size void 2342inline_size void
1106adjustheap (ANHE *heap, int N, int k) 2343adjustheap (ANHE *heap, int N, int k)
1107{ 2344{
1108 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 2345 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1109 upheap (heap, k); 2346 upheap (heap, k);
1110 else 2347 else
1111 downheap (heap, N, k); 2348 downheap (heap, N, k);
1112} 2349}
1113 2350
1137 2374
1138static ANSIG signals [EV_NSIG - 1]; 2375static ANSIG signals [EV_NSIG - 1];
1139 2376
1140/*****************************************************************************/ 2377/*****************************************************************************/
1141 2378
1142/* used to prepare libev internal fd's */ 2379#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1143/* this is not fork-safe */ 2380
2381static void noinline ecb_cold
2382evpipe_init (EV_P)
2383{
2384 if (!ev_is_active (&pipe_w))
2385 {
2386 int fds [2];
2387
2388# if EV_USE_EVENTFD
2389 fds [0] = -1;
2390 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2391 if (fds [1] < 0 && errno == EINVAL)
2392 fds [1] = eventfd (0, 0);
2393
2394 if (fds [1] < 0)
2395# endif
2396 {
2397 while (pipe (fds))
2398 ev_syserr ("(libev) error creating signal/async pipe");
2399
2400 fd_intern (fds [0]);
2401 }
2402
2403 evpipe [0] = fds [0];
2404
2405 if (evpipe [1] < 0)
2406 evpipe [1] = fds [1]; /* first call, set write fd */
2407 else
2408 {
2409 /* on subsequent calls, do not change evpipe [1] */
2410 /* so that evpipe_write can always rely on its value. */
2411 /* this branch does not do anything sensible on windows, */
2412 /* so must not be executed on windows */
2413
2414 dup2 (fds [1], evpipe [1]);
2415 close (fds [1]);
2416 }
2417
2418 fd_intern (evpipe [1]);
2419
2420 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2421 ev_io_start (EV_A_ &pipe_w);
2422 ev_unref (EV_A); /* watcher should not keep loop alive */
2423 }
2424}
2425
1144inline_speed void 2426inline_speed void
1145fd_intern (int fd) 2427evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1146{ 2428{
1147#ifdef _WIN32 2429 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1148 unsigned long arg = 1;
1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1150#else
1151 fcntl (fd, F_SETFD, FD_CLOEXEC);
1152 fcntl (fd, F_SETFL, O_NONBLOCK);
1153#endif
1154}
1155 2430
1156static void noinline 2431 if (expect_true (*flag))
1157evpipe_init (EV_P) 2432 return;
1158{ 2433
1159 if (!ev_is_active (&pipe_w)) 2434 *flag = 1;
2435 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2436
2437 pipe_write_skipped = 1;
2438
2439 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2440
2441 if (pipe_write_wanted)
1160 { 2442 {
2443 int old_errno;
2444
2445 pipe_write_skipped = 0;
2446 ECB_MEMORY_FENCE_RELEASE;
2447
2448 old_errno = errno; /* save errno because write will clobber it */
2449
1161#if EV_USE_EVENTFD 2450#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC); 2451 if (evpipe [0] < 0)
1163 if (evfd < 0 && errno == EINVAL)
1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
1167 { 2452 {
1168 evpipe [0] = -1; 2453 uint64_t counter = 1;
1169 fd_intern (evfd); /* doing it twice doesn't hurt */ 2454 write (evpipe [1], &counter, sizeof (uint64_t));
1170 ev_io_set (&pipe_w, evfd, EV_READ);
1171 } 2455 }
1172 else 2456 else
1173#endif 2457#endif
1174 { 2458 {
1175 while (pipe (evpipe)) 2459#ifdef _WIN32
1176 ev_syserr ("(libev) error creating signal/async pipe"); 2460 WSABUF buf;
1177 2461 DWORD sent;
1178 fd_intern (evpipe [0]); 2462 buf.buf = &buf;
1179 fd_intern (evpipe [1]); 2463 buf.len = 1;
1180 ev_io_set (&pipe_w, evpipe [0], EV_READ); 2464 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2465#else
2466 write (evpipe [1], &(evpipe [1]), 1);
2467#endif
1181 } 2468 }
1182
1183 ev_io_start (EV_A_ &pipe_w);
1184 ev_unref (EV_A); /* watcher should not keep loop alive */
1185 }
1186}
1187
1188inline_size void
1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1190{
1191 if (!*flag)
1192 {
1193 int old_errno = errno; /* save errno because write might clobber it */
1194
1195 *flag = 1;
1196
1197#if EV_USE_EVENTFD
1198 if (evfd >= 0)
1199 {
1200 uint64_t counter = 1;
1201 write (evfd, &counter, sizeof (uint64_t));
1202 }
1203 else
1204#endif
1205 write (evpipe [1], &old_errno, 1);
1206 2469
1207 errno = old_errno; 2470 errno = old_errno;
1208 } 2471 }
1209} 2472}
1210 2473
1213static void 2476static void
1214pipecb (EV_P_ ev_io *iow, int revents) 2477pipecb (EV_P_ ev_io *iow, int revents)
1215{ 2478{
1216 int i; 2479 int i;
1217 2480
2481 if (revents & EV_READ)
2482 {
1218#if EV_USE_EVENTFD 2483#if EV_USE_EVENTFD
1219 if (evfd >= 0) 2484 if (evpipe [0] < 0)
1220 { 2485 {
1221 uint64_t counter; 2486 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t)); 2487 read (evpipe [1], &counter, sizeof (uint64_t));
1223 } 2488 }
1224 else 2489 else
1225#endif 2490#endif
1226 { 2491 {
1227 char dummy; 2492 char dummy[4];
2493#ifdef _WIN32
2494 WSABUF buf;
2495 DWORD recvd;
2496 DWORD flags = 0;
2497 buf.buf = dummy;
2498 buf.len = sizeof (dummy);
2499 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2500#else
1228 read (evpipe [0], &dummy, 1); 2501 read (evpipe [0], &dummy, sizeof (dummy));
2502#endif
2503 }
1229 } 2504 }
1230 2505
2506 pipe_write_skipped = 0;
2507
2508 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2509
2510#if EV_SIGNAL_ENABLE
1231 if (sig_pending) 2511 if (sig_pending)
1232 { 2512 {
1233 sig_pending = 0; 2513 sig_pending = 0;
2514
2515 ECB_MEMORY_FENCE;
1234 2516
1235 for (i = EV_NSIG - 1; i--; ) 2517 for (i = EV_NSIG - 1; i--; )
1236 if (expect_false (signals [i].pending)) 2518 if (expect_false (signals [i].pending))
1237 ev_feed_signal_event (EV_A_ i + 1); 2519 ev_feed_signal_event (EV_A_ i + 1);
1238 } 2520 }
2521#endif
1239 2522
1240#if EV_ASYNC_ENABLE 2523#if EV_ASYNC_ENABLE
1241 if (async_pending) 2524 if (async_pending)
1242 { 2525 {
1243 async_pending = 0; 2526 async_pending = 0;
2527
2528 ECB_MEMORY_FENCE;
1244 2529
1245 for (i = asynccnt; i--; ) 2530 for (i = asynccnt; i--; )
1246 if (asyncs [i]->sent) 2531 if (asyncs [i]->sent)
1247 { 2532 {
1248 asyncs [i]->sent = 0; 2533 asyncs [i]->sent = 0;
2534 ECB_MEMORY_FENCE_RELEASE;
1249 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2535 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1250 } 2536 }
1251 } 2537 }
1252#endif 2538#endif
1253} 2539}
1254 2540
1255/*****************************************************************************/ 2541/*****************************************************************************/
1256 2542
2543void
2544ev_feed_signal (int signum) EV_THROW
2545{
2546#if EV_MULTIPLICITY
2547 EV_P;
2548 ECB_MEMORY_FENCE_ACQUIRE;
2549 EV_A = signals [signum - 1].loop;
2550
2551 if (!EV_A)
2552 return;
2553#endif
2554
2555 signals [signum - 1].pending = 1;
2556 evpipe_write (EV_A_ &sig_pending);
2557}
2558
1257static void 2559static void
1258ev_sighandler (int signum) 2560ev_sighandler (int signum)
1259{ 2561{
1260#if EV_MULTIPLICITY
1261 EV_P = signals [signum - 1].loop;
1262#endif
1263
1264#if _WIN32 2562#ifdef _WIN32
1265 signal (signum, ev_sighandler); 2563 signal (signum, ev_sighandler);
1266#endif 2564#endif
1267 2565
1268 signals [signum - 1].pending = 1; 2566 ev_feed_signal (signum);
1269 evpipe_write (EV_A_ &sig_pending);
1270} 2567}
1271 2568
1272void noinline 2569void noinline
1273ev_feed_signal_event (EV_P_ int signum) 2570ev_feed_signal_event (EV_P_ int signum) EV_THROW
1274{ 2571{
1275 WL w; 2572 WL w;
1276 2573
1277 if (expect_false (signum <= 0 || signum > EV_NSIG)) 2574 if (expect_false (signum <= 0 || signum >= EV_NSIG))
1278 return; 2575 return;
1279 2576
1280 --signum; 2577 --signum;
1281 2578
1282#if EV_MULTIPLICITY 2579#if EV_MULTIPLICITY
1286 if (expect_false (signals [signum].loop != EV_A)) 2583 if (expect_false (signals [signum].loop != EV_A))
1287 return; 2584 return;
1288#endif 2585#endif
1289 2586
1290 signals [signum].pending = 0; 2587 signals [signum].pending = 0;
2588 ECB_MEMORY_FENCE_RELEASE;
1291 2589
1292 for (w = signals [signum].head; w; w = w->next) 2590 for (w = signals [signum].head; w; w = w->next)
1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2591 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1294} 2592}
1295 2593
1311 break; 2609 break;
1312 } 2610 }
1313} 2611}
1314#endif 2612#endif
1315 2613
2614#endif
2615
1316/*****************************************************************************/ 2616/*****************************************************************************/
1317 2617
2618#if EV_CHILD_ENABLE
1318static WL childs [EV_PID_HASHSIZE]; 2619static WL childs [EV_PID_HASHSIZE];
1319
1320#ifndef _WIN32
1321 2620
1322static ev_signal childev; 2621static ev_signal childev;
1323 2622
1324#ifndef WIFCONTINUED 2623#ifndef WIFCONTINUED
1325# define WIFCONTINUED(status) 0 2624# define WIFCONTINUED(status) 0
1330child_reap (EV_P_ int chain, int pid, int status) 2629child_reap (EV_P_ int chain, int pid, int status)
1331{ 2630{
1332 ev_child *w; 2631 ev_child *w;
1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2632 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1334 2633
1335 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2634 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1336 { 2635 {
1337 if ((w->pid == pid || !w->pid) 2636 if ((w->pid == pid || !w->pid)
1338 && (!traced || (w->flags & 1))) 2637 && (!traced || (w->flags & 1)))
1339 { 2638 {
1340 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2639 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1365 /* make sure we are called again until all children have been reaped */ 2664 /* make sure we are called again until all children have been reaped */
1366 /* we need to do it this way so that the callback gets called before we continue */ 2665 /* we need to do it this way so that the callback gets called before we continue */
1367 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2666 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1368 2667
1369 child_reap (EV_A_ pid, pid, status); 2668 child_reap (EV_A_ pid, pid, status);
1370 if (EV_PID_HASHSIZE > 1) 2669 if ((EV_PID_HASHSIZE) > 1)
1371 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2670 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1372} 2671}
1373 2672
1374#endif 2673#endif
1375 2674
1376/*****************************************************************************/ 2675/*****************************************************************************/
1377 2676
2677#if EV_USE_IOCP
2678# include "ev_iocp.c"
2679#endif
1378#if EV_USE_PORT 2680#if EV_USE_PORT
1379# include "ev_port.c" 2681# include "ev_port.c"
1380#endif 2682#endif
1381#if EV_USE_KQUEUE 2683#if EV_USE_KQUEUE
1382# include "ev_kqueue.c" 2684# include "ev_kqueue.c"
1389#endif 2691#endif
1390#if EV_USE_SELECT 2692#if EV_USE_SELECT
1391# include "ev_select.c" 2693# include "ev_select.c"
1392#endif 2694#endif
1393 2695
1394int 2696int ecb_cold
1395ev_version_major (void) 2697ev_version_major (void) EV_THROW
1396{ 2698{
1397 return EV_VERSION_MAJOR; 2699 return EV_VERSION_MAJOR;
1398} 2700}
1399 2701
1400int 2702int ecb_cold
1401ev_version_minor (void) 2703ev_version_minor (void) EV_THROW
1402{ 2704{
1403 return EV_VERSION_MINOR; 2705 return EV_VERSION_MINOR;
1404} 2706}
1405 2707
1406/* return true if we are running with elevated privileges and should ignore env variables */ 2708/* return true if we are running with elevated privileges and should ignore env variables */
1407int inline_size 2709int inline_size ecb_cold
1408enable_secure (void) 2710enable_secure (void)
1409{ 2711{
1410#ifdef _WIN32 2712#ifdef _WIN32
1411 return 0; 2713 return 0;
1412#else 2714#else
1413 return getuid () != geteuid () 2715 return getuid () != geteuid ()
1414 || getgid () != getegid (); 2716 || getgid () != getegid ();
1415#endif 2717#endif
1416} 2718}
1417 2719
1418unsigned int 2720unsigned int ecb_cold
1419ev_supported_backends (void) 2721ev_supported_backends (void) EV_THROW
1420{ 2722{
1421 unsigned int flags = 0; 2723 unsigned int flags = 0;
1422 2724
1423 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2725 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1424 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2726 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1427 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2729 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1428 2730
1429 return flags; 2731 return flags;
1430} 2732}
1431 2733
1432unsigned int 2734unsigned int ecb_cold
1433ev_recommended_backends (void) 2735ev_recommended_backends (void) EV_THROW
1434{ 2736{
1435 unsigned int flags = ev_supported_backends (); 2737 unsigned int flags = ev_supported_backends ();
1436 2738
1437#ifndef __NetBSD__ 2739#ifndef __NetBSD__
1438 /* kqueue is borked on everything but netbsd apparently */ 2740 /* kqueue is borked on everything but netbsd apparently */
1442#ifdef __APPLE__ 2744#ifdef __APPLE__
1443 /* only select works correctly on that "unix-certified" platform */ 2745 /* only select works correctly on that "unix-certified" platform */
1444 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */ 2746 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1445 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */ 2747 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1446#endif 2748#endif
2749#ifdef __FreeBSD__
2750 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2751#endif
1447 2752
1448 return flags; 2753 return flags;
1449} 2754}
1450 2755
2756unsigned int ecb_cold
2757ev_embeddable_backends (void) EV_THROW
2758{
2759 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2760
2761 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2762 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2763 flags &= ~EVBACKEND_EPOLL;
2764
2765 return flags;
2766}
2767
1451unsigned int 2768unsigned int
1452ev_embeddable_backends (void) 2769ev_backend (EV_P) EV_THROW
1453{ 2770{
1454 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2771 return backend;
1455
1456 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1457 /* please fix it and tell me how to detect the fix */
1458 flags &= ~EVBACKEND_EPOLL;
1459
1460 return flags;
1461} 2772}
1462 2773
2774#if EV_FEATURE_API
1463unsigned int 2775unsigned int
1464ev_backend (EV_P) 2776ev_iteration (EV_P) EV_THROW
1465{ 2777{
1466 return backend; 2778 return loop_count;
1467} 2779}
1468 2780
1469#if EV_MINIMAL < 2
1470unsigned int 2781unsigned int
1471ev_loop_count (EV_P) 2782ev_depth (EV_P) EV_THROW
1472{
1473 return loop_count;
1474}
1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{ 2783{
1479 return loop_depth; 2784 return loop_depth;
1480} 2785}
1481 2786
1482void 2787void
1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2788ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1484{ 2789{
1485 io_blocktime = interval; 2790 io_blocktime = interval;
1486} 2791}
1487 2792
1488void 2793void
1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2794ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1490{ 2795{
1491 timeout_blocktime = interval; 2796 timeout_blocktime = interval;
1492} 2797}
1493 2798
1494void 2799void
1495ev_set_userdata (EV_P_ void *data) 2800ev_set_userdata (EV_P_ void *data) EV_THROW
1496{ 2801{
1497 userdata = data; 2802 userdata = data;
1498} 2803}
1499 2804
1500void * 2805void *
1501ev_userdata (EV_P) 2806ev_userdata (EV_P) EV_THROW
1502{ 2807{
1503 return userdata; 2808 return userdata;
1504} 2809}
1505 2810
2811void
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) 2812ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
1507{ 2813{
1508 invoke_cb = invoke_pending_cb; 2814 invoke_cb = invoke_pending_cb;
1509} 2815}
1510 2816
2817void
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P)) 2818ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
1512{ 2819{
1513 release_cb = release; 2820 release_cb = release;
1514 acquire_cb = acquire; 2821 acquire_cb = acquire;
1515} 2822}
1516#endif 2823#endif
1517 2824
1518/* initialise a loop structure, must be zero-initialised */ 2825/* initialise a loop structure, must be zero-initialised */
1519static void noinline 2826static void noinline ecb_cold
1520loop_init (EV_P_ unsigned int flags) 2827loop_init (EV_P_ unsigned int flags) EV_THROW
1521{ 2828{
1522 if (!backend) 2829 if (!backend)
1523 { 2830 {
2831 origflags = flags;
2832
1524#if EV_USE_REALTIME 2833#if EV_USE_REALTIME
1525 if (!have_realtime) 2834 if (!have_realtime)
1526 { 2835 {
1527 struct timespec ts; 2836 struct timespec ts;
1528 2837
1550 if (!(flags & EVFLAG_NOENV) 2859 if (!(flags & EVFLAG_NOENV)
1551 && !enable_secure () 2860 && !enable_secure ()
1552 && getenv ("LIBEV_FLAGS")) 2861 && getenv ("LIBEV_FLAGS"))
1553 flags = atoi (getenv ("LIBEV_FLAGS")); 2862 flags = atoi (getenv ("LIBEV_FLAGS"));
1554 2863
1555 ev_rt_now = ev_time (); 2864 ev_rt_now = ev_time ();
1556 mn_now = get_clock (); 2865 mn_now = get_clock ();
1557 now_floor = mn_now; 2866 now_floor = mn_now;
1558 rtmn_diff = ev_rt_now - mn_now; 2867 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2 2868#if EV_FEATURE_API
1560 invoke_cb = ev_invoke_pending; 2869 invoke_cb = ev_invoke_pending;
1561#endif 2870#endif
1562 2871
1563 io_blocktime = 0.; 2872 io_blocktime = 0.;
1564 timeout_blocktime = 0.; 2873 timeout_blocktime = 0.;
1565 backend = 0; 2874 backend = 0;
1566 backend_fd = -1; 2875 backend_fd = -1;
1567 sig_pending = 0; 2876 sig_pending = 0;
1568#if EV_ASYNC_ENABLE 2877#if EV_ASYNC_ENABLE
1569 async_pending = 0; 2878 async_pending = 0;
1570#endif 2879#endif
2880 pipe_write_skipped = 0;
2881 pipe_write_wanted = 0;
2882 evpipe [0] = -1;
2883 evpipe [1] = -1;
1571#if EV_USE_INOTIFY 2884#if EV_USE_INOTIFY
1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2; 2885 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1573#endif 2886#endif
1574#if EV_USE_SIGNALFD 2887#if EV_USE_SIGNALFD
1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2; 2888 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1576#endif 2889#endif
1577 2890
1578 if (!(flags & 0x0000ffffU)) 2891 if (!(flags & EVBACKEND_MASK))
1579 flags |= ev_recommended_backends (); 2892 flags |= ev_recommended_backends ();
1580 2893
2894#if EV_USE_IOCP
2895 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2896#endif
1581#if EV_USE_PORT 2897#if EV_USE_PORT
1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2898 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1583#endif 2899#endif
1584#if EV_USE_KQUEUE 2900#if EV_USE_KQUEUE
1585 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2901 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2910 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1595#endif 2911#endif
1596 2912
1597 ev_prepare_init (&pending_w, pendingcb); 2913 ev_prepare_init (&pending_w, pendingcb);
1598 2914
2915#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1599 ev_init (&pipe_w, pipecb); 2916 ev_init (&pipe_w, pipecb);
1600 ev_set_priority (&pipe_w, EV_MAXPRI); 2917 ev_set_priority (&pipe_w, EV_MAXPRI);
2918#endif
1601 } 2919 }
1602} 2920}
1603 2921
1604/* free up a loop structure */ 2922/* free up a loop structure */
1605static void noinline 2923void ecb_cold
1606loop_destroy (EV_P) 2924ev_loop_destroy (EV_P)
1607{ 2925{
1608 int i; 2926 int i;
2927
2928#if EV_MULTIPLICITY
2929 /* mimic free (0) */
2930 if (!EV_A)
2931 return;
2932#endif
2933
2934#if EV_CLEANUP_ENABLE
2935 /* queue cleanup watchers (and execute them) */
2936 if (expect_false (cleanupcnt))
2937 {
2938 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2939 EV_INVOKE_PENDING;
2940 }
2941#endif
2942
2943#if EV_CHILD_ENABLE
2944 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2945 {
2946 ev_ref (EV_A); /* child watcher */
2947 ev_signal_stop (EV_A_ &childev);
2948 }
2949#endif
1609 2950
1610 if (ev_is_active (&pipe_w)) 2951 if (ev_is_active (&pipe_w))
1611 { 2952 {
1612 /*ev_ref (EV_A);*/ 2953 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/ 2954 /*ev_io_stop (EV_A_ &pipe_w);*/
1614 2955
1615#if EV_USE_EVENTFD 2956 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
1616 if (evfd >= 0) 2957 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 } 2958 }
1626 2959
1627#if EV_USE_SIGNALFD 2960#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w)) 2961 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd); 2962 close (sigfd);
1634 }
1635#endif 2963#endif
1636 2964
1637#if EV_USE_INOTIFY 2965#if EV_USE_INOTIFY
1638 if (fs_fd >= 0) 2966 if (fs_fd >= 0)
1639 close (fs_fd); 2967 close (fs_fd);
1640#endif 2968#endif
1641 2969
1642 if (backend_fd >= 0) 2970 if (backend_fd >= 0)
1643 close (backend_fd); 2971 close (backend_fd);
1644 2972
2973#if EV_USE_IOCP
2974 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2975#endif
1645#if EV_USE_PORT 2976#if EV_USE_PORT
1646 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2977 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1647#endif 2978#endif
1648#if EV_USE_KQUEUE 2979#if EV_USE_KQUEUE
1649 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2980 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1676 array_free (periodic, EMPTY); 3007 array_free (periodic, EMPTY);
1677#endif 3008#endif
1678#if EV_FORK_ENABLE 3009#if EV_FORK_ENABLE
1679 array_free (fork, EMPTY); 3010 array_free (fork, EMPTY);
1680#endif 3011#endif
3012#if EV_CLEANUP_ENABLE
3013 array_free (cleanup, EMPTY);
3014#endif
1681 array_free (prepare, EMPTY); 3015 array_free (prepare, EMPTY);
1682 array_free (check, EMPTY); 3016 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE 3017#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY); 3018 array_free (async, EMPTY);
1685#endif 3019#endif
1686 3020
1687 backend = 0; 3021 backend = 0;
3022
3023#if EV_MULTIPLICITY
3024 if (ev_is_default_loop (EV_A))
3025#endif
3026 ev_default_loop_ptr = 0;
3027#if EV_MULTIPLICITY
3028 else
3029 ev_free (EV_A);
3030#endif
1688} 3031}
1689 3032
1690#if EV_USE_INOTIFY 3033#if EV_USE_INOTIFY
1691inline_size void infy_fork (EV_P); 3034inline_size void infy_fork (EV_P);
1692#endif 3035#endif
1705#endif 3048#endif
1706#if EV_USE_INOTIFY 3049#if EV_USE_INOTIFY
1707 infy_fork (EV_A); 3050 infy_fork (EV_A);
1708#endif 3051#endif
1709 3052
3053#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1710 if (ev_is_active (&pipe_w)) 3054 if (ev_is_active (&pipe_w) && postfork != 2)
1711 { 3055 {
1712 /* this "locks" the handlers against writing to the pipe */ 3056 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1713 /* while we modify the fd vars */
1714 sig_pending = 1;
1715#if EV_ASYNC_ENABLE
1716 async_pending = 1;
1717#endif
1718 3057
1719 ev_ref (EV_A); 3058 ev_ref (EV_A);
1720 ev_io_stop (EV_A_ &pipe_w); 3059 ev_io_stop (EV_A_ &pipe_w);
1721 3060
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0) 3061 if (evpipe [0] >= 0)
1728 { 3062 EV_WIN32_CLOSE_FD (evpipe [0]);
1729 close (evpipe [0]);
1730 close (evpipe [1]);
1731 }
1732 3063
1733 evpipe_init (EV_A); 3064 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */ 3065 /* iterate over everything, in case we missed something before */
1735 pipecb (EV_A_ &pipe_w, EV_READ); 3066 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1736 } 3067 }
3068#endif
1737 3069
1738 postfork = 0; 3070 postfork = 0;
1739} 3071}
1740 3072
1741#if EV_MULTIPLICITY 3073#if EV_MULTIPLICITY
1742 3074
1743struct ev_loop * 3075struct ev_loop * ecb_cold
1744ev_loop_new (unsigned int flags) 3076ev_loop_new (unsigned int flags) EV_THROW
1745{ 3077{
1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3078 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1747 3079
1748 memset (EV_A, 0, sizeof (struct ev_loop)); 3080 memset (EV_A, 0, sizeof (struct ev_loop));
1749 loop_init (EV_A_ flags); 3081 loop_init (EV_A_ flags);
1750 3082
1751 if (ev_backend (EV_A)) 3083 if (ev_backend (EV_A))
1752 return EV_A; 3084 return EV_A;
1753 3085
3086 ev_free (EV_A);
1754 return 0; 3087 return 0;
1755} 3088}
1756 3089
1757void
1758ev_loop_destroy (EV_P)
1759{
1760 loop_destroy (EV_A);
1761 ev_free (loop);
1762}
1763
1764void
1765ev_loop_fork (EV_P)
1766{
1767 postfork = 1; /* must be in line with ev_default_fork */
1768}
1769#endif /* multiplicity */ 3090#endif /* multiplicity */
1770 3091
1771#if EV_VERIFY 3092#if EV_VERIFY
1772static void noinline 3093static void noinline ecb_cold
1773verify_watcher (EV_P_ W w) 3094verify_watcher (EV_P_ W w)
1774{ 3095{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI)); 3096 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776 3097
1777 if (w->pending) 3098 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w)); 3099 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779} 3100}
1780 3101
1781static void noinline 3102static void noinline ecb_cold
1782verify_heap (EV_P_ ANHE *heap, int N) 3103verify_heap (EV_P_ ANHE *heap, int N)
1783{ 3104{
1784 int i; 3105 int i;
1785 3106
1786 for (i = HEAP0; i < N + HEAP0; ++i) 3107 for (i = HEAP0; i < N + HEAP0; ++i)
1791 3112
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i])); 3113 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 } 3114 }
1794} 3115}
1795 3116
1796static void noinline 3117static void noinline ecb_cold
1797array_verify (EV_P_ W *ws, int cnt) 3118array_verify (EV_P_ W *ws, int cnt)
1798{ 3119{
1799 while (cnt--) 3120 while (cnt--)
1800 { 3121 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1)); 3122 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]); 3123 verify_watcher (EV_A_ ws [cnt]);
1803 } 3124 }
1804} 3125}
1805#endif 3126#endif
1806 3127
1807#if EV_MINIMAL < 2 3128#if EV_FEATURE_API
1808void 3129void ecb_cold
1809ev_loop_verify (EV_P) 3130ev_verify (EV_P) EV_THROW
1810{ 3131{
1811#if EV_VERIFY 3132#if EV_VERIFY
1812 int i; 3133 int i;
1813 WL w; 3134 WL w, w2;
1814 3135
1815 assert (activecnt >= -1); 3136 assert (activecnt >= -1);
1816 3137
1817 assert (fdchangemax >= fdchangecnt); 3138 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i) 3139 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0)); 3140 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820 3141
1821 assert (anfdmax >= 0); 3142 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i) 3143 for (i = 0; i < anfdmax; ++i)
3144 {
3145 int j = 0;
3146
1823 for (w = anfds [i].head; w; w = w->next) 3147 for (w = w2 = anfds [i].head; w; w = w->next)
1824 { 3148 {
1825 verify_watcher (EV_A_ (W)w); 3149 verify_watcher (EV_A_ (W)w);
3150
3151 if (j++ & 1)
3152 {
3153 assert (("libev: io watcher list contains a loop", w != w2));
3154 w2 = w2->next;
3155 }
3156
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1)); 3157 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i)); 3158 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 } 3159 }
3160 }
1829 3161
1830 assert (timermax >= timercnt); 3162 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt); 3163 verify_heap (EV_A_ timers, timercnt);
1832 3164
1833#if EV_PERIODIC_ENABLE 3165#if EV_PERIODIC_ENABLE
1848#if EV_FORK_ENABLE 3180#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt); 3181 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt); 3182 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif 3183#endif
1852 3184
3185#if EV_CLEANUP_ENABLE
3186 assert (cleanupmax >= cleanupcnt);
3187 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3188#endif
3189
1853#if EV_ASYNC_ENABLE 3190#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt); 3191 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt); 3192 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif 3193#endif
1857 3194
3195#if EV_PREPARE_ENABLE
1858 assert (preparemax >= preparecnt); 3196 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt); 3197 array_verify (EV_A_ (W *)prepares, preparecnt);
3198#endif
1860 3199
3200#if EV_CHECK_ENABLE
1861 assert (checkmax >= checkcnt); 3201 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt); 3202 array_verify (EV_A_ (W *)checks, checkcnt);
3203#endif
1863 3204
1864# if 0 3205# if 0
3206#if EV_CHILD_ENABLE
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 3207 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending) 3208 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3209#endif
1867# endif 3210# endif
1868#endif 3211#endif
1869} 3212}
1870#endif 3213#endif
1871 3214
1872#if EV_MULTIPLICITY 3215#if EV_MULTIPLICITY
1873struct ev_loop * 3216struct ev_loop * ecb_cold
1874ev_default_loop_init (unsigned int flags)
1875#else 3217#else
1876int 3218int
3219#endif
1877ev_default_loop (unsigned int flags) 3220ev_default_loop (unsigned int flags) EV_THROW
1878#endif
1879{ 3221{
1880 if (!ev_default_loop_ptr) 3222 if (!ev_default_loop_ptr)
1881 { 3223 {
1882#if EV_MULTIPLICITY 3224#if EV_MULTIPLICITY
1883 EV_P = ev_default_loop_ptr = &default_loop_struct; 3225 EV_P = ev_default_loop_ptr = &default_loop_struct;
1887 3229
1888 loop_init (EV_A_ flags); 3230 loop_init (EV_A_ flags);
1889 3231
1890 if (ev_backend (EV_A)) 3232 if (ev_backend (EV_A))
1891 { 3233 {
1892#ifndef _WIN32 3234#if EV_CHILD_ENABLE
1893 ev_signal_init (&childev, childcb, SIGCHLD); 3235 ev_signal_init (&childev, childcb, SIGCHLD);
1894 ev_set_priority (&childev, EV_MAXPRI); 3236 ev_set_priority (&childev, EV_MAXPRI);
1895 ev_signal_start (EV_A_ &childev); 3237 ev_signal_start (EV_A_ &childev);
1896 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3238 ev_unref (EV_A); /* child watcher should not keep loop alive */
1897#endif 3239#endif
1902 3244
1903 return ev_default_loop_ptr; 3245 return ev_default_loop_ptr;
1904} 3246}
1905 3247
1906void 3248void
1907ev_default_destroy (void) 3249ev_loop_fork (EV_P) EV_THROW
1908{ 3250{
1909#if EV_MULTIPLICITY 3251 postfork = 1;
1910 EV_P = ev_default_loop_ptr;
1911#endif
1912
1913 ev_default_loop_ptr = 0;
1914
1915#ifndef _WIN32
1916 ev_ref (EV_A); /* child watcher */
1917 ev_signal_stop (EV_A_ &childev);
1918#endif
1919
1920 loop_destroy (EV_A);
1921}
1922
1923void
1924ev_default_fork (void)
1925{
1926#if EV_MULTIPLICITY
1927 EV_P = ev_default_loop_ptr;
1928#endif
1929
1930 postfork = 1; /* must be in line with ev_loop_fork */
1931} 3252}
1932 3253
1933/*****************************************************************************/ 3254/*****************************************************************************/
1934 3255
1935void 3256void
1937{ 3258{
1938 EV_CB_INVOKE ((W)w, revents); 3259 EV_CB_INVOKE ((W)w, revents);
1939} 3260}
1940 3261
1941unsigned int 3262unsigned int
1942ev_pending_count (EV_P) 3263ev_pending_count (EV_P) EV_THROW
1943{ 3264{
1944 int pri; 3265 int pri;
1945 unsigned int count = 0; 3266 unsigned int count = 0;
1946 3267
1947 for (pri = NUMPRI; pri--; ) 3268 for (pri = NUMPRI; pri--; )
1951} 3272}
1952 3273
1953void noinline 3274void noinline
1954ev_invoke_pending (EV_P) 3275ev_invoke_pending (EV_P)
1955{ 3276{
1956 int pri; 3277 pendingpri = NUMPRI;
1957 3278
1958 for (pri = NUMPRI; pri--; ) 3279 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3280 {
3281 --pendingpri;
3282
1959 while (pendingcnt [pri]) 3283 while (pendingcnt [pendingpri])
1960 { 3284 {
1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 3285 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1962 3286
1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1965
1966 p->w->pending = 0; 3287 p->w->pending = 0;
1967 EV_CB_INVOKE (p->w, p->events); 3288 EV_CB_INVOKE (p->w, p->events);
1968 EV_FREQUENT_CHECK; 3289 EV_FREQUENT_CHECK;
1969 } 3290 }
3291 }
1970} 3292}
1971 3293
1972#if EV_IDLE_ENABLE 3294#if EV_IDLE_ENABLE
1973/* make idle watchers pending. this handles the "call-idle */ 3295/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */ 3296/* only when higher priorities are idle" logic */
2026 EV_FREQUENT_CHECK; 3348 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w); 3349 feed_reverse (EV_A_ (W)w);
2028 } 3350 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now); 3351 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030 3352
2031 feed_reverse_done (EV_A_ EV_TIMEOUT); 3353 feed_reverse_done (EV_A_ EV_TIMER);
2032 } 3354 }
2033} 3355}
2034 3356
2035#if EV_PERIODIC_ENABLE 3357#if EV_PERIODIC_ENABLE
3358
3359static void noinline
3360periodic_recalc (EV_P_ ev_periodic *w)
3361{
3362 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3363 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3364
3365 /* the above almost always errs on the low side */
3366 while (at <= ev_rt_now)
3367 {
3368 ev_tstamp nat = at + w->interval;
3369
3370 /* when resolution fails us, we use ev_rt_now */
3371 if (expect_false (nat == at))
3372 {
3373 at = ev_rt_now;
3374 break;
3375 }
3376
3377 at = nat;
3378 }
3379
3380 ev_at (w) = at;
3381}
3382
2036/* make periodics pending */ 3383/* make periodics pending */
2037inline_size void 3384inline_size void
2038periodics_reify (EV_P) 3385periodics_reify (EV_P)
2039{ 3386{
2040 EV_FREQUENT_CHECK; 3387 EV_FREQUENT_CHECK;
2041 3388
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 3389 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 { 3390 {
2044 int feed_count = 0;
2045
2046 do 3391 do
2047 { 3392 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 3393 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049 3394
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/ 3395 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2059 ANHE_at_cache (periodics [HEAP0]); 3404 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0); 3405 downheap (periodics, periodiccnt, HEAP0);
2061 } 3406 }
2062 else if (w->interval) 3407 else if (w->interval)
2063 { 3408 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3409 periodic_recalc (EV_A_ w);
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]); 3410 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0); 3411 downheap (periodics, periodiccnt, HEAP0);
2080 } 3412 }
2081 else 3413 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 3414 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2089 feed_reverse_done (EV_A_ EV_PERIODIC); 3421 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 } 3422 }
2091} 3423}
2092 3424
2093/* simply recalculate all periodics */ 3425/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */ 3426/* TODO: maybe ensure that at least one event happens when jumping forward? */
2095static void noinline 3427static void noinline ecb_cold
2096periodics_reschedule (EV_P) 3428periodics_reschedule (EV_P)
2097{ 3429{
2098 int i; 3430 int i;
2099 3431
2100 /* adjust periodics after time jump */ 3432 /* adjust periodics after time jump */
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]); 3435 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104 3436
2105 if (w->reschedule_cb) 3437 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3438 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval) 3439 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 3440 periodic_recalc (EV_A_ w);
2109 3441
2110 ANHE_at_cache (periodics [i]); 3442 ANHE_at_cache (periodics [i]);
2111 } 3443 }
2112 3444
2113 reheap (periodics, periodiccnt); 3445 reheap (periodics, periodiccnt);
2114} 3446}
2115#endif 3447#endif
2116 3448
2117/* adjust all timers by a given offset */ 3449/* adjust all timers by a given offset */
2118static void noinline 3450static void noinline ecb_cold
2119timers_reschedule (EV_P_ ev_tstamp adjust) 3451timers_reschedule (EV_P_ ev_tstamp adjust)
2120{ 3452{
2121 int i; 3453 int i;
2122 3454
2123 for (i = 0; i < timercnt; ++i) 3455 for (i = 0; i < timercnt; ++i)
2127 ANHE_at_cache (*he); 3459 ANHE_at_cache (*he);
2128 } 3460 }
2129} 3461}
2130 3462
2131/* fetch new monotonic and realtime times from the kernel */ 3463/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */ 3464/* also detect if there was a timejump, and act accordingly */
2133inline_speed void 3465inline_speed void
2134time_update (EV_P_ ev_tstamp max_block) 3466time_update (EV_P_ ev_tstamp max_block)
2135{ 3467{
2136#if EV_USE_MONOTONIC 3468#if EV_USE_MONOTONIC
2137 if (expect_true (have_monotonic)) 3469 if (expect_true (have_monotonic))
2160 * doesn't hurt either as we only do this on time-jumps or 3492 * doesn't hurt either as we only do this on time-jumps or
2161 * in the unlikely event of having been preempted here. 3493 * in the unlikely event of having been preempted here.
2162 */ 3494 */
2163 for (i = 4; --i; ) 3495 for (i = 4; --i; )
2164 { 3496 {
3497 ev_tstamp diff;
2165 rtmn_diff = ev_rt_now - mn_now; 3498 rtmn_diff = ev_rt_now - mn_now;
2166 3499
3500 diff = odiff - rtmn_diff;
3501
2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)) 3502 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
2168 return; /* all is well */ 3503 return; /* all is well */
2169 3504
2170 ev_rt_now = ev_time (); 3505 ev_rt_now = ev_time ();
2171 mn_now = get_clock (); 3506 mn_now = get_clock ();
2172 now_floor = mn_now; 3507 now_floor = mn_now;
2194 3529
2195 mn_now = ev_rt_now; 3530 mn_now = ev_rt_now;
2196 } 3531 }
2197} 3532}
2198 3533
2199void 3534int
2200ev_loop (EV_P_ int flags) 3535ev_run (EV_P_ int flags)
2201{ 3536{
2202#if EV_MINIMAL < 2 3537#if EV_FEATURE_API
2203 ++loop_depth; 3538 ++loop_depth;
2204#endif 3539#endif
2205 3540
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE)); 3541 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2207 3542
2208 loop_done = EVUNLOOP_CANCEL; 3543 loop_done = EVBREAK_CANCEL;
2209 3544
2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */ 3545 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2211 3546
2212 do 3547 do
2213 { 3548 {
2214#if EV_VERIFY >= 2 3549#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A); 3550 ev_verify (EV_A);
2216#endif 3551#endif
2217 3552
2218#ifndef _WIN32 3553#ifndef _WIN32
2219 if (expect_false (curpid)) /* penalise the forking check even more */ 3554 if (expect_false (curpid)) /* penalise the forking check even more */
2220 if (expect_false (getpid () != curpid)) 3555 if (expect_false (getpid () != curpid))
2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2233 EV_INVOKE_PENDING; 3568 EV_INVOKE_PENDING;
2234 } 3569 }
2235#endif 3570#endif
2236 3571
3572#if EV_PREPARE_ENABLE
2237 /* queue prepare watchers (and execute them) */ 3573 /* queue prepare watchers (and execute them) */
2238 if (expect_false (preparecnt)) 3574 if (expect_false (preparecnt))
2239 { 3575 {
2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3576 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2241 EV_INVOKE_PENDING; 3577 EV_INVOKE_PENDING;
2242 } 3578 }
3579#endif
2243 3580
2244 if (expect_false (loop_done)) 3581 if (expect_false (loop_done))
2245 break; 3582 break;
2246 3583
2247 /* we might have forked, so reify kernel state if necessary */ 3584 /* we might have forked, so reify kernel state if necessary */
2254 /* calculate blocking time */ 3591 /* calculate blocking time */
2255 { 3592 {
2256 ev_tstamp waittime = 0.; 3593 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.; 3594 ev_tstamp sleeptime = 0.;
2258 3595
3596 /* remember old timestamp for io_blocktime calculation */
3597 ev_tstamp prev_mn_now = mn_now;
3598
3599 /* update time to cancel out callback processing overhead */
3600 time_update (EV_A_ 1e100);
3601
3602 /* from now on, we want a pipe-wake-up */
3603 pipe_write_wanted = 1;
3604
3605 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3606
2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3607 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
2260 { 3608 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
2264 /* update time to cancel out callback processing overhead */
2265 time_update (EV_A_ 1e100);
2266
2267 waittime = MAX_BLOCKTIME; 3609 waittime = MAX_BLOCKTIME;
2268 3610
2269 if (timercnt) 3611 if (timercnt)
2270 { 3612 {
2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge; 3613 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
2272 if (waittime > to) waittime = to; 3614 if (waittime > to) waittime = to;
2273 } 3615 }
2274 3616
2275#if EV_PERIODIC_ENABLE 3617#if EV_PERIODIC_ENABLE
2276 if (periodiccnt) 3618 if (periodiccnt)
2277 { 3619 {
2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 3620 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
2279 if (waittime > to) waittime = to; 3621 if (waittime > to) waittime = to;
2280 } 3622 }
2281#endif 3623#endif
2282 3624
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */ 3625 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime)) 3626 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime; 3627 waittime = timeout_blocktime;
3628
3629 /* at this point, we NEED to wait, so we have to ensure */
3630 /* to pass a minimum nonzero value to the backend */
3631 if (expect_false (waittime < backend_mintime))
3632 waittime = backend_mintime;
2286 3633
2287 /* extra check because io_blocktime is commonly 0 */ 3634 /* extra check because io_blocktime is commonly 0 */
2288 if (expect_false (io_blocktime)) 3635 if (expect_false (io_blocktime))
2289 { 3636 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now); 3637 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291 3638
2292 if (sleeptime > waittime - backend_fudge) 3639 if (sleeptime > waittime - backend_mintime)
2293 sleeptime = waittime - backend_fudge; 3640 sleeptime = waittime - backend_mintime;
2294 3641
2295 if (expect_true (sleeptime > 0.)) 3642 if (expect_true (sleeptime > 0.))
2296 { 3643 {
2297 ev_sleep (sleeptime); 3644 ev_sleep (sleeptime);
2298 waittime -= sleeptime; 3645 waittime -= sleeptime;
2299 } 3646 }
2300 } 3647 }
2301 } 3648 }
2302 3649
2303#if EV_MINIMAL < 2 3650#if EV_FEATURE_API
2304 ++loop_count; 3651 ++loop_count;
2305#endif 3652#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */ 3653 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2307 backend_poll (EV_A_ waittime); 3654 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */ 3655 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3656
3657 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3658
3659 ECB_MEMORY_FENCE_ACQUIRE;
3660 if (pipe_write_skipped)
3661 {
3662 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3663 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3664 }
3665
2309 3666
2310 /* update ev_rt_now, do magic */ 3667 /* update ev_rt_now, do magic */
2311 time_update (EV_A_ waittime + sleeptime); 3668 time_update (EV_A_ waittime + sleeptime);
2312 } 3669 }
2313 3670
2320#if EV_IDLE_ENABLE 3677#if EV_IDLE_ENABLE
2321 /* queue idle watchers unless other events are pending */ 3678 /* queue idle watchers unless other events are pending */
2322 idle_reify (EV_A); 3679 idle_reify (EV_A);
2323#endif 3680#endif
2324 3681
3682#if EV_CHECK_ENABLE
2325 /* queue check watchers, to be executed first */ 3683 /* queue check watchers, to be executed first */
2326 if (expect_false (checkcnt)) 3684 if (expect_false (checkcnt))
2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3685 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3686#endif
2328 3687
2329 EV_INVOKE_PENDING; 3688 EV_INVOKE_PENDING;
2330 } 3689 }
2331 while (expect_true ( 3690 while (expect_true (
2332 activecnt 3691 activecnt
2333 && !loop_done 3692 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3693 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2335 )); 3694 ));
2336 3695
2337 if (loop_done == EVUNLOOP_ONE) 3696 if (loop_done == EVBREAK_ONE)
2338 loop_done = EVUNLOOP_CANCEL; 3697 loop_done = EVBREAK_CANCEL;
2339 3698
2340#if EV_MINIMAL < 2 3699#if EV_FEATURE_API
2341 --loop_depth; 3700 --loop_depth;
2342#endif 3701#endif
3702
3703 return activecnt;
2343} 3704}
2344 3705
2345void 3706void
2346ev_unloop (EV_P_ int how) 3707ev_break (EV_P_ int how) EV_THROW
2347{ 3708{
2348 loop_done = how; 3709 loop_done = how;
2349} 3710}
2350 3711
2351void 3712void
2352ev_ref (EV_P) 3713ev_ref (EV_P) EV_THROW
2353{ 3714{
2354 ++activecnt; 3715 ++activecnt;
2355} 3716}
2356 3717
2357void 3718void
2358ev_unref (EV_P) 3719ev_unref (EV_P) EV_THROW
2359{ 3720{
2360 --activecnt; 3721 --activecnt;
2361} 3722}
2362 3723
2363void 3724void
2364ev_now_update (EV_P) 3725ev_now_update (EV_P) EV_THROW
2365{ 3726{
2366 time_update (EV_A_ 1e100); 3727 time_update (EV_A_ 1e100);
2367} 3728}
2368 3729
2369void 3730void
2370ev_suspend (EV_P) 3731ev_suspend (EV_P) EV_THROW
2371{ 3732{
2372 ev_now_update (EV_A); 3733 ev_now_update (EV_A);
2373} 3734}
2374 3735
2375void 3736void
2376ev_resume (EV_P) 3737ev_resume (EV_P) EV_THROW
2377{ 3738{
2378 ev_tstamp mn_prev = mn_now; 3739 ev_tstamp mn_prev = mn_now;
2379 3740
2380 ev_now_update (EV_A); 3741 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev); 3742 timers_reschedule (EV_A_ mn_now - mn_prev);
2420 w->pending = 0; 3781 w->pending = 0;
2421 } 3782 }
2422} 3783}
2423 3784
2424int 3785int
2425ev_clear_pending (EV_P_ void *w) 3786ev_clear_pending (EV_P_ void *w) EV_THROW
2426{ 3787{
2427 W w_ = (W)w; 3788 W w_ = (W)w;
2428 int pending = w_->pending; 3789 int pending = w_->pending;
2429 3790
2430 if (expect_true (pending)) 3791 if (expect_true (pending))
2463} 3824}
2464 3825
2465/*****************************************************************************/ 3826/*****************************************************************************/
2466 3827
2467void noinline 3828void noinline
2468ev_io_start (EV_P_ ev_io *w) 3829ev_io_start (EV_P_ ev_io *w) EV_THROW
2469{ 3830{
2470 int fd = w->fd; 3831 int fd = w->fd;
2471 3832
2472 if (expect_false (ev_is_active (w))) 3833 if (expect_false (ev_is_active (w)))
2473 return; 3834 return;
2474 3835
2475 assert (("libev: ev_io_start called with negative fd", fd >= 0)); 3836 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE)))); 3837 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477 3838
2478 EV_FREQUENT_CHECK; 3839 EV_FREQUENT_CHECK;
2479 3840
2480 ev_start (EV_A_ (W)w, 1); 3841 ev_start (EV_A_ (W)w, 1);
2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero); 3842 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2482 wlist_add (&anfds[fd].head, (WL)w); 3843 wlist_add (&anfds[fd].head, (WL)w);
2483 3844
3845 /* common bug, apparently */
3846 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3847
2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY); 3848 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2485 w->events &= ~EV__IOFDSET; 3849 w->events &= ~EV__IOFDSET;
2486 3850
2487 EV_FREQUENT_CHECK; 3851 EV_FREQUENT_CHECK;
2488} 3852}
2489 3853
2490void noinline 3854void noinline
2491ev_io_stop (EV_P_ ev_io *w) 3855ev_io_stop (EV_P_ ev_io *w) EV_THROW
2492{ 3856{
2493 clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
2494 if (expect_false (!ev_is_active (w))) 3858 if (expect_false (!ev_is_active (w)))
2495 return; 3859 return;
2496 3860
2499 EV_FREQUENT_CHECK; 3863 EV_FREQUENT_CHECK;
2500 3864
2501 wlist_del (&anfds[w->fd].head, (WL)w); 3865 wlist_del (&anfds[w->fd].head, (WL)w);
2502 ev_stop (EV_A_ (W)w); 3866 ev_stop (EV_A_ (W)w);
2503 3867
2504 fd_change (EV_A_ w->fd, 1); 3868 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2505 3869
2506 EV_FREQUENT_CHECK; 3870 EV_FREQUENT_CHECK;
2507} 3871}
2508 3872
2509void noinline 3873void noinline
2510ev_timer_start (EV_P_ ev_timer *w) 3874ev_timer_start (EV_P_ ev_timer *w) EV_THROW
2511{ 3875{
2512 if (expect_false (ev_is_active (w))) 3876 if (expect_false (ev_is_active (w)))
2513 return; 3877 return;
2514 3878
2515 ev_at (w) += mn_now; 3879 ev_at (w) += mn_now;
2529 3893
2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 3894 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2531} 3895}
2532 3896
2533void noinline 3897void noinline
2534ev_timer_stop (EV_P_ ev_timer *w) 3898ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
2535{ 3899{
2536 clear_pending (EV_A_ (W)w); 3900 clear_pending (EV_A_ (W)w);
2537 if (expect_false (!ev_is_active (w))) 3901 if (expect_false (!ev_is_active (w)))
2538 return; 3902 return;
2539 3903
2551 timers [active] = timers [timercnt + HEAP0]; 3915 timers [active] = timers [timercnt + HEAP0];
2552 adjustheap (timers, timercnt, active); 3916 adjustheap (timers, timercnt, active);
2553 } 3917 }
2554 } 3918 }
2555 3919
2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now; 3920 ev_at (w) -= mn_now;
2559 3921
2560 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
3923
3924 EV_FREQUENT_CHECK;
2561} 3925}
2562 3926
2563void noinline 3927void noinline
2564ev_timer_again (EV_P_ ev_timer *w) 3928ev_timer_again (EV_P_ ev_timer *w) EV_THROW
2565{ 3929{
2566 EV_FREQUENT_CHECK; 3930 EV_FREQUENT_CHECK;
3931
3932 clear_pending (EV_A_ (W)w);
2567 3933
2568 if (ev_is_active (w)) 3934 if (ev_is_active (w))
2569 { 3935 {
2570 if (w->repeat) 3936 if (w->repeat)
2571 { 3937 {
2584 3950
2585 EV_FREQUENT_CHECK; 3951 EV_FREQUENT_CHECK;
2586} 3952}
2587 3953
2588ev_tstamp 3954ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w) 3955ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
2590{ 3956{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.); 3957 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592} 3958}
2593 3959
2594#if EV_PERIODIC_ENABLE 3960#if EV_PERIODIC_ENABLE
2595void noinline 3961void noinline
2596ev_periodic_start (EV_P_ ev_periodic *w) 3962ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
2597{ 3963{
2598 if (expect_false (ev_is_active (w))) 3964 if (expect_false (ev_is_active (w)))
2599 return; 3965 return;
2600 3966
2601 if (w->reschedule_cb) 3967 if (w->reschedule_cb)
2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3968 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2603 else if (w->interval) 3969 else if (w->interval)
2604 { 3970 {
2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.)); 3971 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2606 /* this formula differs from the one in periodic_reify because we do not always round up */ 3972 periodic_recalc (EV_A_ w);
2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2608 } 3973 }
2609 else 3974 else
2610 ev_at (w) = w->offset; 3975 ev_at (w) = w->offset;
2611 3976
2612 EV_FREQUENT_CHECK; 3977 EV_FREQUENT_CHECK;
2622 3987
2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 3988 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2624} 3989}
2625 3990
2626void noinline 3991void noinline
2627ev_periodic_stop (EV_P_ ev_periodic *w) 3992ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
2628{ 3993{
2629 clear_pending (EV_A_ (W)w); 3994 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w))) 3995 if (expect_false (!ev_is_active (w)))
2631 return; 3996 return;
2632 3997
2644 periodics [active] = periodics [periodiccnt + HEAP0]; 4009 periodics [active] = periodics [periodiccnt + HEAP0];
2645 adjustheap (periodics, periodiccnt, active); 4010 adjustheap (periodics, periodiccnt, active);
2646 } 4011 }
2647 } 4012 }
2648 4013
2649 EV_FREQUENT_CHECK;
2650
2651 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
2652} 4017}
2653 4018
2654void noinline 4019void noinline
2655ev_periodic_again (EV_P_ ev_periodic *w) 4020ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2656{ 4021{
2657 /* TODO: use adjustheap and recalculation */ 4022 /* TODO: use adjustheap and recalculation */
2658 ev_periodic_stop (EV_A_ w); 4023 ev_periodic_stop (EV_A_ w);
2659 ev_periodic_start (EV_A_ w); 4024 ev_periodic_start (EV_A_ w);
2660} 4025}
2662 4027
2663#ifndef SA_RESTART 4028#ifndef SA_RESTART
2664# define SA_RESTART 0 4029# define SA_RESTART 0
2665#endif 4030#endif
2666 4031
4032#if EV_SIGNAL_ENABLE
4033
2667void noinline 4034void noinline
2668ev_signal_start (EV_P_ ev_signal *w) 4035ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2669{ 4036{
2670 if (expect_false (ev_is_active (w))) 4037 if (expect_false (ev_is_active (w)))
2671 return; 4038 return;
2672 4039
2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG)); 4040 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2675#if EV_MULTIPLICITY 4042#if EV_MULTIPLICITY
2676 assert (("libev: a signal must not be attached to two different loops", 4043 assert (("libev: a signal must not be attached to two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop)); 4044 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2678 4045
2679 signals [w->signum - 1].loop = EV_A; 4046 signals [w->signum - 1].loop = EV_A;
4047 ECB_MEMORY_FENCE_RELEASE;
2680#endif 4048#endif
2681 4049
2682 EV_FREQUENT_CHECK; 4050 EV_FREQUENT_CHECK;
2683 4051
2684#if EV_USE_SIGNALFD 4052#if EV_USE_SIGNALFD
2717 if (!((WL)w)->next) 4085 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD 4086# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/ 4087 if (sigfd < 0) /*TODO*/
2720# endif 4088# endif
2721 { 4089 {
2722# if _WIN32 4090# ifdef _WIN32
4091 evpipe_init (EV_A);
4092
2723 signal (w->signum, ev_sighandler); 4093 signal (w->signum, ev_sighandler);
2724# else 4094# else
2725 struct sigaction sa; 4095 struct sigaction sa;
2726 4096
2727 evpipe_init (EV_A); 4097 evpipe_init (EV_A);
2729 sa.sa_handler = ev_sighandler; 4099 sa.sa_handler = ev_sighandler;
2730 sigfillset (&sa.sa_mask); 4100 sigfillset (&sa.sa_mask);
2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4101 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2732 sigaction (w->signum, &sa, 0); 4102 sigaction (w->signum, &sa, 0);
2733 4103
4104 if (origflags & EVFLAG_NOSIGMASK)
4105 {
2734 sigemptyset (&sa.sa_mask); 4106 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum); 4107 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0); 4108 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4109 }
2737#endif 4110#endif
2738 } 4111 }
2739 4112
2740 EV_FREQUENT_CHECK; 4113 EV_FREQUENT_CHECK;
2741} 4114}
2742 4115
2743void noinline 4116void noinline
2744ev_signal_stop (EV_P_ ev_signal *w) 4117ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2745{ 4118{
2746 clear_pending (EV_A_ (W)w); 4119 clear_pending (EV_A_ (W)w);
2747 if (expect_false (!ev_is_active (w))) 4120 if (expect_false (!ev_is_active (w)))
2748 return; 4121 return;
2749 4122
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */ 4131 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif 4132#endif
2760#if EV_USE_SIGNALFD 4133#if EV_USE_SIGNALFD
2761 if (sigfd >= 0) 4134 if (sigfd >= 0)
2762 { 4135 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D 4136 sigset_t ss;
4137
4138 sigemptyset (&ss);
4139 sigaddset (&ss, w->signum);
2764 sigdelset (&sigfd_set, w->signum); 4140 sigdelset (&sigfd_set, w->signum);
4141
2765 signalfd (sigfd, &sigfd_set, 0); 4142 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D 4143 sigprocmask (SIG_UNBLOCK, &ss, 0);
2767 /*TODO: maybe unblock signal? */
2768 } 4144 }
2769 else 4145 else
2770#endif 4146#endif
2771 signal (w->signum, SIG_DFL); 4147 signal (w->signum, SIG_DFL);
2772 } 4148 }
2773 4149
2774 EV_FREQUENT_CHECK; 4150 EV_FREQUENT_CHECK;
2775} 4151}
2776 4152
4153#endif
4154
4155#if EV_CHILD_ENABLE
4156
2777void 4157void
2778ev_child_start (EV_P_ ev_child *w) 4158ev_child_start (EV_P_ ev_child *w) EV_THROW
2779{ 4159{
2780#if EV_MULTIPLICITY 4160#if EV_MULTIPLICITY
2781 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4161 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2782#endif 4162#endif
2783 if (expect_false (ev_is_active (w))) 4163 if (expect_false (ev_is_active (w)))
2784 return; 4164 return;
2785 4165
2786 EV_FREQUENT_CHECK; 4166 EV_FREQUENT_CHECK;
2787 4167
2788 ev_start (EV_A_ (W)w, 1); 4168 ev_start (EV_A_ (W)w, 1);
2789 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4169 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2790 4170
2791 EV_FREQUENT_CHECK; 4171 EV_FREQUENT_CHECK;
2792} 4172}
2793 4173
2794void 4174void
2795ev_child_stop (EV_P_ ev_child *w) 4175ev_child_stop (EV_P_ ev_child *w) EV_THROW
2796{ 4176{
2797 clear_pending (EV_A_ (W)w); 4177 clear_pending (EV_A_ (W)w);
2798 if (expect_false (!ev_is_active (w))) 4178 if (expect_false (!ev_is_active (w)))
2799 return; 4179 return;
2800 4180
2801 EV_FREQUENT_CHECK; 4181 EV_FREQUENT_CHECK;
2802 4182
2803 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4183 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2804 ev_stop (EV_A_ (W)w); 4184 ev_stop (EV_A_ (W)w);
2805 4185
2806 EV_FREQUENT_CHECK; 4186 EV_FREQUENT_CHECK;
2807} 4187}
4188
4189#endif
2808 4190
2809#if EV_STAT_ENABLE 4191#if EV_STAT_ENABLE
2810 4192
2811# ifdef _WIN32 4193# ifdef _WIN32
2812# undef lstat 4194# undef lstat
2818#define MIN_STAT_INTERVAL 0.1074891 4200#define MIN_STAT_INTERVAL 0.1074891
2819 4201
2820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4202static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2821 4203
2822#if EV_USE_INOTIFY 4204#if EV_USE_INOTIFY
2823# define EV_INOTIFY_BUFSIZE 8192 4205
4206/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4207# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2824 4208
2825static void noinline 4209static void noinline
2826infy_add (EV_P_ ev_stat *w) 4210infy_add (EV_P_ ev_stat *w)
2827{ 4211{
2828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4212 w->wd = inotify_add_watch (fs_fd, w->path,
4213 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4214 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4215 | IN_DONT_FOLLOW | IN_MASK_ADD);
2829 4216
2830 if (w->wd < 0) 4217 if (w->wd >= 0)
4218 {
4219 struct statfs sfs;
4220
4221 /* now local changes will be tracked by inotify, but remote changes won't */
4222 /* unless the filesystem is known to be local, we therefore still poll */
4223 /* also do poll on <2.6.25, but with normal frequency */
4224
4225 if (!fs_2625)
4226 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4227 else if (!statfs (w->path, &sfs)
4228 && (sfs.f_type == 0x1373 /* devfs */
4229 || sfs.f_type == 0x4006 /* fat */
4230 || sfs.f_type == 0x4d44 /* msdos */
4231 || sfs.f_type == 0xEF53 /* ext2/3 */
4232 || sfs.f_type == 0x72b6 /* jffs2 */
4233 || sfs.f_type == 0x858458f6 /* ramfs */
4234 || sfs.f_type == 0x5346544e /* ntfs */
4235 || sfs.f_type == 0x3153464a /* jfs */
4236 || sfs.f_type == 0x9123683e /* btrfs */
4237 || sfs.f_type == 0x52654973 /* reiser3 */
4238 || sfs.f_type == 0x01021994 /* tmpfs */
4239 || sfs.f_type == 0x58465342 /* xfs */))
4240 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4241 else
4242 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2831 { 4243 }
4244 else
4245 {
4246 /* can't use inotify, continue to stat */
2832 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL; 4247 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2833 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2834 4248
2835 /* monitor some parent directory for speedup hints */ 4249 /* if path is not there, monitor some parent directory for speedup hints */
2836 /* note that exceeding the hardcoded path limit is not a correctness issue, */ 4250 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2837 /* but an efficiency issue only */ 4251 /* but an efficiency issue only */
2838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4252 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2839 { 4253 {
2840 char path [4096]; 4254 char path [4096];
2850 if (!pend || pend == path) 4264 if (!pend || pend == path)
2851 break; 4265 break;
2852 4266
2853 *pend = 0; 4267 *pend = 0;
2854 w->wd = inotify_add_watch (fs_fd, path, mask); 4268 w->wd = inotify_add_watch (fs_fd, path, mask);
2855 } 4269 }
2856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4270 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2857 } 4271 }
2858 } 4272 }
2859 4273
2860 if (w->wd >= 0) 4274 if (w->wd >= 0)
2861 {
2862 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4275 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2863 4276
2864 /* now local changes will be tracked by inotify, but remote changes won't */ 4277 /* now re-arm timer, if required */
2865 /* unless the filesystem it known to be local, we therefore still poll */ 4278 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2866 /* also do poll on <2.6.25, but with normal frequency */
2867 struct statfs sfs;
2868
2869 if (fs_2625 && !statfs (w->path, &sfs))
2870 if (sfs.f_type == 0x1373 /* devfs */
2871 || sfs.f_type == 0xEF53 /* ext2/3 */
2872 || sfs.f_type == 0x3153464a /* jfs */
2873 || sfs.f_type == 0x52654973 /* reiser3 */
2874 || sfs.f_type == 0x01021994 /* tempfs */
2875 || sfs.f_type == 0x58465342 /* xfs */)
2876 return;
2877
2878 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2879 ev_timer_again (EV_A_ &w->timer); 4279 ev_timer_again (EV_A_ &w->timer);
2880 } 4280 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2881} 4281}
2882 4282
2883static void noinline 4283static void noinline
2884infy_del (EV_P_ ev_stat *w) 4284infy_del (EV_P_ ev_stat *w)
2885{ 4285{
2888 4288
2889 if (wd < 0) 4289 if (wd < 0)
2890 return; 4290 return;
2891 4291
2892 w->wd = -2; 4292 w->wd = -2;
2893 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4293 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2894 wlist_del (&fs_hash [slot].head, (WL)w); 4294 wlist_del (&fs_hash [slot].head, (WL)w);
2895 4295
2896 /* remove this watcher, if others are watching it, they will rearm */ 4296 /* remove this watcher, if others are watching it, they will rearm */
2897 inotify_rm_watch (fs_fd, wd); 4297 inotify_rm_watch (fs_fd, wd);
2898} 4298}
2900static void noinline 4300static void noinline
2901infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4301infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2902{ 4302{
2903 if (slot < 0) 4303 if (slot < 0)
2904 /* overflow, need to check for all hash slots */ 4304 /* overflow, need to check for all hash slots */
2905 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4305 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2906 infy_wd (EV_A_ slot, wd, ev); 4306 infy_wd (EV_A_ slot, wd, ev);
2907 else 4307 else
2908 { 4308 {
2909 WL w_; 4309 WL w_;
2910 4310
2911 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4311 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2912 { 4312 {
2913 ev_stat *w = (ev_stat *)w_; 4313 ev_stat *w = (ev_stat *)w_;
2914 w_ = w_->next; /* lets us remove this watcher and all before it */ 4314 w_ = w_->next; /* lets us remove this watcher and all before it */
2915 4315
2916 if (w->wd == wd || wd == -1) 4316 if (w->wd == wd || wd == -1)
2917 { 4317 {
2918 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4318 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2919 { 4319 {
2920 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4320 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2921 w->wd = -1; 4321 w->wd = -1;
2922 infy_add (EV_A_ w); /* re-add, no matter what */ 4322 infy_add (EV_A_ w); /* re-add, no matter what */
2923 } 4323 }
2924 4324
2925 stat_timer_cb (EV_A_ &w->timer, 0); 4325 stat_timer_cb (EV_A_ &w->timer, 0);
2930 4330
2931static void 4331static void
2932infy_cb (EV_P_ ev_io *w, int revents) 4332infy_cb (EV_P_ ev_io *w, int revents)
2933{ 4333{
2934 char buf [EV_INOTIFY_BUFSIZE]; 4334 char buf [EV_INOTIFY_BUFSIZE];
2935 struct inotify_event *ev = (struct inotify_event *)buf;
2936 int ofs; 4335 int ofs;
2937 int len = read (fs_fd, buf, sizeof (buf)); 4336 int len = read (fs_fd, buf, sizeof (buf));
2938 4337
2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4338 for (ofs = 0; ofs < len; )
4339 {
4340 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2940 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4341 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4342 ofs += sizeof (struct inotify_event) + ev->len;
4343 }
2941} 4344}
2942 4345
2943inline_size void 4346inline_size void ecb_cold
2944check_2625 (EV_P) 4347ev_check_2625 (EV_P)
2945{ 4348{
2946 /* kernels < 2.6.25 are borked 4349 /* kernels < 2.6.25 are borked
2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html 4350 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2948 */ 4351 */
2949 struct utsname buf; 4352 if (ev_linux_version () < 0x020619)
2950 int major, minor, micro;
2951
2952 if (uname (&buf))
2953 return; 4353 return;
2954 4354
2955 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2956 return;
2957
2958 if (major < 2
2959 || (major == 2 && minor < 6)
2960 || (major == 2 && minor == 6 && micro < 25))
2961 return;
2962
2963 fs_2625 = 1; 4355 fs_2625 = 1;
4356}
4357
4358inline_size int
4359infy_newfd (void)
4360{
4361#if defined IN_CLOEXEC && defined IN_NONBLOCK
4362 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4363 if (fd >= 0)
4364 return fd;
4365#endif
4366 return inotify_init ();
2964} 4367}
2965 4368
2966inline_size void 4369inline_size void
2967infy_init (EV_P) 4370infy_init (EV_P)
2968{ 4371{
2969 if (fs_fd != -2) 4372 if (fs_fd != -2)
2970 return; 4373 return;
2971 4374
2972 fs_fd = -1; 4375 fs_fd = -1;
2973 4376
2974 check_2625 (EV_A); 4377 ev_check_2625 (EV_A);
2975 4378
2976 fs_fd = inotify_init (); 4379 fs_fd = infy_newfd ();
2977 4380
2978 if (fs_fd >= 0) 4381 if (fs_fd >= 0)
2979 { 4382 {
4383 fd_intern (fs_fd);
2980 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4384 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2981 ev_set_priority (&fs_w, EV_MAXPRI); 4385 ev_set_priority (&fs_w, EV_MAXPRI);
2982 ev_io_start (EV_A_ &fs_w); 4386 ev_io_start (EV_A_ &fs_w);
4387 ev_unref (EV_A);
2983 } 4388 }
2984} 4389}
2985 4390
2986inline_size void 4391inline_size void
2987infy_fork (EV_P) 4392infy_fork (EV_P)
2989 int slot; 4394 int slot;
2990 4395
2991 if (fs_fd < 0) 4396 if (fs_fd < 0)
2992 return; 4397 return;
2993 4398
4399 ev_ref (EV_A);
4400 ev_io_stop (EV_A_ &fs_w);
2994 close (fs_fd); 4401 close (fs_fd);
2995 fs_fd = inotify_init (); 4402 fs_fd = infy_newfd ();
2996 4403
4404 if (fs_fd >= 0)
4405 {
4406 fd_intern (fs_fd);
4407 ev_io_set (&fs_w, fs_fd, EV_READ);
4408 ev_io_start (EV_A_ &fs_w);
4409 ev_unref (EV_A);
4410 }
4411
2997 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4412 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2998 { 4413 {
2999 WL w_ = fs_hash [slot].head; 4414 WL w_ = fs_hash [slot].head;
3000 fs_hash [slot].head = 0; 4415 fs_hash [slot].head = 0;
3001 4416
3002 while (w_) 4417 while (w_)
3007 w->wd = -1; 4422 w->wd = -1;
3008 4423
3009 if (fs_fd >= 0) 4424 if (fs_fd >= 0)
3010 infy_add (EV_A_ w); /* re-add, no matter what */ 4425 infy_add (EV_A_ w); /* re-add, no matter what */
3011 else 4426 else
4427 {
4428 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3012 ev_timer_again (EV_A_ &w->timer); 4430 ev_timer_again (EV_A_ &w->timer);
4431 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4432 }
3013 } 4433 }
3014 } 4434 }
3015} 4435}
3016 4436
3017#endif 4437#endif
3021#else 4441#else
3022# define EV_LSTAT(p,b) lstat (p, b) 4442# define EV_LSTAT(p,b) lstat (p, b)
3023#endif 4443#endif
3024 4444
3025void 4445void
3026ev_stat_stat (EV_P_ ev_stat *w) 4446ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
3027{ 4447{
3028 if (lstat (w->path, &w->attr) < 0) 4448 if (lstat (w->path, &w->attr) < 0)
3029 w->attr.st_nlink = 0; 4449 w->attr.st_nlink = 0;
3030 else if (!w->attr.st_nlink) 4450 else if (!w->attr.st_nlink)
3031 w->attr.st_nlink = 1; 4451 w->attr.st_nlink = 1;
3034static void noinline 4454static void noinline
3035stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4455stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3036{ 4456{
3037 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4457 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3038 4458
3039 /* we copy this here each the time so that */ 4459 ev_statdata prev = w->attr;
3040 /* prev has the old value when the callback gets invoked */
3041 w->prev = w->attr;
3042 ev_stat_stat (EV_A_ w); 4460 ev_stat_stat (EV_A_ w);
3043 4461
3044 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4462 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3045 if ( 4463 if (
3046 w->prev.st_dev != w->attr.st_dev 4464 prev.st_dev != w->attr.st_dev
3047 || w->prev.st_ino != w->attr.st_ino 4465 || prev.st_ino != w->attr.st_ino
3048 || w->prev.st_mode != w->attr.st_mode 4466 || prev.st_mode != w->attr.st_mode
3049 || w->prev.st_nlink != w->attr.st_nlink 4467 || prev.st_nlink != w->attr.st_nlink
3050 || w->prev.st_uid != w->attr.st_uid 4468 || prev.st_uid != w->attr.st_uid
3051 || w->prev.st_gid != w->attr.st_gid 4469 || prev.st_gid != w->attr.st_gid
3052 || w->prev.st_rdev != w->attr.st_rdev 4470 || prev.st_rdev != w->attr.st_rdev
3053 || w->prev.st_size != w->attr.st_size 4471 || prev.st_size != w->attr.st_size
3054 || w->prev.st_atime != w->attr.st_atime 4472 || prev.st_atime != w->attr.st_atime
3055 || w->prev.st_mtime != w->attr.st_mtime 4473 || prev.st_mtime != w->attr.st_mtime
3056 || w->prev.st_ctime != w->attr.st_ctime 4474 || prev.st_ctime != w->attr.st_ctime
3057 ) { 4475 ) {
4476 /* we only update w->prev on actual differences */
4477 /* in case we test more often than invoke the callback, */
4478 /* to ensure that prev is always different to attr */
4479 w->prev = prev;
4480
3058 #if EV_USE_INOTIFY 4481 #if EV_USE_INOTIFY
3059 if (fs_fd >= 0) 4482 if (fs_fd >= 0)
3060 { 4483 {
3061 infy_del (EV_A_ w); 4484 infy_del (EV_A_ w);
3062 infy_add (EV_A_ w); 4485 infy_add (EV_A_ w);
3067 ev_feed_event (EV_A_ w, EV_STAT); 4490 ev_feed_event (EV_A_ w, EV_STAT);
3068 } 4491 }
3069} 4492}
3070 4493
3071void 4494void
3072ev_stat_start (EV_P_ ev_stat *w) 4495ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3073{ 4496{
3074 if (expect_false (ev_is_active (w))) 4497 if (expect_false (ev_is_active (w)))
3075 return; 4498 return;
3076 4499
3077 ev_stat_stat (EV_A_ w); 4500 ev_stat_stat (EV_A_ w);
3087 4510
3088 if (fs_fd >= 0) 4511 if (fs_fd >= 0)
3089 infy_add (EV_A_ w); 4512 infy_add (EV_A_ w);
3090 else 4513 else
3091#endif 4514#endif
4515 {
3092 ev_timer_again (EV_A_ &w->timer); 4516 ev_timer_again (EV_A_ &w->timer);
4517 ev_unref (EV_A);
4518 }
3093 4519
3094 ev_start (EV_A_ (W)w, 1); 4520 ev_start (EV_A_ (W)w, 1);
3095 4521
3096 EV_FREQUENT_CHECK; 4522 EV_FREQUENT_CHECK;
3097} 4523}
3098 4524
3099void 4525void
3100ev_stat_stop (EV_P_ ev_stat *w) 4526ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
3101{ 4527{
3102 clear_pending (EV_A_ (W)w); 4528 clear_pending (EV_A_ (W)w);
3103 if (expect_false (!ev_is_active (w))) 4529 if (expect_false (!ev_is_active (w)))
3104 return; 4530 return;
3105 4531
3106 EV_FREQUENT_CHECK; 4532 EV_FREQUENT_CHECK;
3107 4533
3108#if EV_USE_INOTIFY 4534#if EV_USE_INOTIFY
3109 infy_del (EV_A_ w); 4535 infy_del (EV_A_ w);
3110#endif 4536#endif
4537
4538 if (ev_is_active (&w->timer))
4539 {
4540 ev_ref (EV_A);
3111 ev_timer_stop (EV_A_ &w->timer); 4541 ev_timer_stop (EV_A_ &w->timer);
4542 }
3112 4543
3113 ev_stop (EV_A_ (W)w); 4544 ev_stop (EV_A_ (W)w);
3114 4545
3115 EV_FREQUENT_CHECK; 4546 EV_FREQUENT_CHECK;
3116} 4547}
3117#endif 4548#endif
3118 4549
3119#if EV_IDLE_ENABLE 4550#if EV_IDLE_ENABLE
3120void 4551void
3121ev_idle_start (EV_P_ ev_idle *w) 4552ev_idle_start (EV_P_ ev_idle *w) EV_THROW
3122{ 4553{
3123 if (expect_false (ev_is_active (w))) 4554 if (expect_false (ev_is_active (w)))
3124 return; 4555 return;
3125 4556
3126 pri_adjust (EV_A_ (W)w); 4557 pri_adjust (EV_A_ (W)w);
3139 4570
3140 EV_FREQUENT_CHECK; 4571 EV_FREQUENT_CHECK;
3141} 4572}
3142 4573
3143void 4574void
3144ev_idle_stop (EV_P_ ev_idle *w) 4575ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
3145{ 4576{
3146 clear_pending (EV_A_ (W)w); 4577 clear_pending (EV_A_ (W)w);
3147 if (expect_false (!ev_is_active (w))) 4578 if (expect_false (!ev_is_active (w)))
3148 return; 4579 return;
3149 4580
3161 4592
3162 EV_FREQUENT_CHECK; 4593 EV_FREQUENT_CHECK;
3163} 4594}
3164#endif 4595#endif
3165 4596
4597#if EV_PREPARE_ENABLE
3166void 4598void
3167ev_prepare_start (EV_P_ ev_prepare *w) 4599ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
3168{ 4600{
3169 if (expect_false (ev_is_active (w))) 4601 if (expect_false (ev_is_active (w)))
3170 return; 4602 return;
3171 4603
3172 EV_FREQUENT_CHECK; 4604 EV_FREQUENT_CHECK;
3177 4609
3178 EV_FREQUENT_CHECK; 4610 EV_FREQUENT_CHECK;
3179} 4611}
3180 4612
3181void 4613void
3182ev_prepare_stop (EV_P_ ev_prepare *w) 4614ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
3183{ 4615{
3184 clear_pending (EV_A_ (W)w); 4616 clear_pending (EV_A_ (W)w);
3185 if (expect_false (!ev_is_active (w))) 4617 if (expect_false (!ev_is_active (w)))
3186 return; 4618 return;
3187 4619
3196 4628
3197 ev_stop (EV_A_ (W)w); 4629 ev_stop (EV_A_ (W)w);
3198 4630
3199 EV_FREQUENT_CHECK; 4631 EV_FREQUENT_CHECK;
3200} 4632}
4633#endif
3201 4634
4635#if EV_CHECK_ENABLE
3202void 4636void
3203ev_check_start (EV_P_ ev_check *w) 4637ev_check_start (EV_P_ ev_check *w) EV_THROW
3204{ 4638{
3205 if (expect_false (ev_is_active (w))) 4639 if (expect_false (ev_is_active (w)))
3206 return; 4640 return;
3207 4641
3208 EV_FREQUENT_CHECK; 4642 EV_FREQUENT_CHECK;
3213 4647
3214 EV_FREQUENT_CHECK; 4648 EV_FREQUENT_CHECK;
3215} 4649}
3216 4650
3217void 4651void
3218ev_check_stop (EV_P_ ev_check *w) 4652ev_check_stop (EV_P_ ev_check *w) EV_THROW
3219{ 4653{
3220 clear_pending (EV_A_ (W)w); 4654 clear_pending (EV_A_ (W)w);
3221 if (expect_false (!ev_is_active (w))) 4655 if (expect_false (!ev_is_active (w)))
3222 return; 4656 return;
3223 4657
3232 4666
3233 ev_stop (EV_A_ (W)w); 4667 ev_stop (EV_A_ (W)w);
3234 4668
3235 EV_FREQUENT_CHECK; 4669 EV_FREQUENT_CHECK;
3236} 4670}
4671#endif
3237 4672
3238#if EV_EMBED_ENABLE 4673#if EV_EMBED_ENABLE
3239void noinline 4674void noinline
3240ev_embed_sweep (EV_P_ ev_embed *w) 4675ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
3241{ 4676{
3242 ev_loop (w->other, EVLOOP_NONBLOCK); 4677 ev_run (w->other, EVRUN_NOWAIT);
3243} 4678}
3244 4679
3245static void 4680static void
3246embed_io_cb (EV_P_ ev_io *io, int revents) 4681embed_io_cb (EV_P_ ev_io *io, int revents)
3247{ 4682{
3248 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4683 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3249 4684
3250 if (ev_cb (w)) 4685 if (ev_cb (w))
3251 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4686 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3252 else 4687 else
3253 ev_loop (w->other, EVLOOP_NONBLOCK); 4688 ev_run (w->other, EVRUN_NOWAIT);
3254} 4689}
3255 4690
3256static void 4691static void
3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4692embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3258{ 4693{
3262 EV_P = w->other; 4697 EV_P = w->other;
3263 4698
3264 while (fdchangecnt) 4699 while (fdchangecnt)
3265 { 4700 {
3266 fd_reify (EV_A); 4701 fd_reify (EV_A);
3267 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4702 ev_run (EV_A_ EVRUN_NOWAIT);
3268 } 4703 }
3269 } 4704 }
3270} 4705}
3271 4706
3272static void 4707static void
3278 4713
3279 { 4714 {
3280 EV_P = w->other; 4715 EV_P = w->other;
3281 4716
3282 ev_loop_fork (EV_A); 4717 ev_loop_fork (EV_A);
3283 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4718 ev_run (EV_A_ EVRUN_NOWAIT);
3284 } 4719 }
3285 4720
3286 ev_embed_start (EV_A_ w); 4721 ev_embed_start (EV_A_ w);
3287} 4722}
3288 4723
3293 ev_idle_stop (EV_A_ idle); 4728 ev_idle_stop (EV_A_ idle);
3294} 4729}
3295#endif 4730#endif
3296 4731
3297void 4732void
3298ev_embed_start (EV_P_ ev_embed *w) 4733ev_embed_start (EV_P_ ev_embed *w) EV_THROW
3299{ 4734{
3300 if (expect_false (ev_is_active (w))) 4735 if (expect_false (ev_is_active (w)))
3301 return; 4736 return;
3302 4737
3303 { 4738 {
3324 4759
3325 EV_FREQUENT_CHECK; 4760 EV_FREQUENT_CHECK;
3326} 4761}
3327 4762
3328void 4763void
3329ev_embed_stop (EV_P_ ev_embed *w) 4764ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
3330{ 4765{
3331 clear_pending (EV_A_ (W)w); 4766 clear_pending (EV_A_ (W)w);
3332 if (expect_false (!ev_is_active (w))) 4767 if (expect_false (!ev_is_active (w)))
3333 return; 4768 return;
3334 4769
3336 4771
3337 ev_io_stop (EV_A_ &w->io); 4772 ev_io_stop (EV_A_ &w->io);
3338 ev_prepare_stop (EV_A_ &w->prepare); 4773 ev_prepare_stop (EV_A_ &w->prepare);
3339 ev_fork_stop (EV_A_ &w->fork); 4774 ev_fork_stop (EV_A_ &w->fork);
3340 4775
4776 ev_stop (EV_A_ (W)w);
4777
3341 EV_FREQUENT_CHECK; 4778 EV_FREQUENT_CHECK;
3342} 4779}
3343#endif 4780#endif
3344 4781
3345#if EV_FORK_ENABLE 4782#if EV_FORK_ENABLE
3346void 4783void
3347ev_fork_start (EV_P_ ev_fork *w) 4784ev_fork_start (EV_P_ ev_fork *w) EV_THROW
3348{ 4785{
3349 if (expect_false (ev_is_active (w))) 4786 if (expect_false (ev_is_active (w)))
3350 return; 4787 return;
3351 4788
3352 EV_FREQUENT_CHECK; 4789 EV_FREQUENT_CHECK;
3357 4794
3358 EV_FREQUENT_CHECK; 4795 EV_FREQUENT_CHECK;
3359} 4796}
3360 4797
3361void 4798void
3362ev_fork_stop (EV_P_ ev_fork *w) 4799ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
3363{ 4800{
3364 clear_pending (EV_A_ (W)w); 4801 clear_pending (EV_A_ (W)w);
3365 if (expect_false (!ev_is_active (w))) 4802 if (expect_false (!ev_is_active (w)))
3366 return; 4803 return;
3367 4804
3378 4815
3379 EV_FREQUENT_CHECK; 4816 EV_FREQUENT_CHECK;
3380} 4817}
3381#endif 4818#endif
3382 4819
4820#if EV_CLEANUP_ENABLE
4821void
4822ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4823{
4824 if (expect_false (ev_is_active (w)))
4825 return;
4826
4827 EV_FREQUENT_CHECK;
4828
4829 ev_start (EV_A_ (W)w, ++cleanupcnt);
4830 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4831 cleanups [cleanupcnt - 1] = w;
4832
4833 /* cleanup watchers should never keep a refcount on the loop */
4834 ev_unref (EV_A);
4835 EV_FREQUENT_CHECK;
4836}
4837
4838void
4839ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4840{
4841 clear_pending (EV_A_ (W)w);
4842 if (expect_false (!ev_is_active (w)))
4843 return;
4844
4845 EV_FREQUENT_CHECK;
4846 ev_ref (EV_A);
4847
4848 {
4849 int active = ev_active (w);
4850
4851 cleanups [active - 1] = cleanups [--cleanupcnt];
4852 ev_active (cleanups [active - 1]) = active;
4853 }
4854
4855 ev_stop (EV_A_ (W)w);
4856
4857 EV_FREQUENT_CHECK;
4858}
4859#endif
4860
3383#if EV_ASYNC_ENABLE 4861#if EV_ASYNC_ENABLE
3384void 4862void
3385ev_async_start (EV_P_ ev_async *w) 4863ev_async_start (EV_P_ ev_async *w) EV_THROW
3386{ 4864{
3387 if (expect_false (ev_is_active (w))) 4865 if (expect_false (ev_is_active (w)))
3388 return; 4866 return;
4867
4868 w->sent = 0;
3389 4869
3390 evpipe_init (EV_A); 4870 evpipe_init (EV_A);
3391 4871
3392 EV_FREQUENT_CHECK; 4872 EV_FREQUENT_CHECK;
3393 4873
3397 4877
3398 EV_FREQUENT_CHECK; 4878 EV_FREQUENT_CHECK;
3399} 4879}
3400 4880
3401void 4881void
3402ev_async_stop (EV_P_ ev_async *w) 4882ev_async_stop (EV_P_ ev_async *w) EV_THROW
3403{ 4883{
3404 clear_pending (EV_A_ (W)w); 4884 clear_pending (EV_A_ (W)w);
3405 if (expect_false (!ev_is_active (w))) 4885 if (expect_false (!ev_is_active (w)))
3406 return; 4886 return;
3407 4887
3418 4898
3419 EV_FREQUENT_CHECK; 4899 EV_FREQUENT_CHECK;
3420} 4900}
3421 4901
3422void 4902void
3423ev_async_send (EV_P_ ev_async *w) 4903ev_async_send (EV_P_ ev_async *w) EV_THROW
3424{ 4904{
3425 w->sent = 1; 4905 w->sent = 1;
3426 evpipe_write (EV_A_ &async_pending); 4906 evpipe_write (EV_A_ &async_pending);
3427} 4907}
3428#endif 4908#endif
3465 4945
3466 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io)); 4946 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3467} 4947}
3468 4948
3469void 4949void
3470ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4950ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
3471{ 4951{
3472 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4952 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
3473 4953
3474 if (expect_false (!once)) 4954 if (expect_false (!once))
3475 { 4955 {
3476 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4956 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
3477 return; 4957 return;
3478 } 4958 }
3479 4959
3480 once->cb = cb; 4960 once->cb = cb;
3481 once->arg = arg; 4961 once->arg = arg;
3496} 4976}
3497 4977
3498/*****************************************************************************/ 4978/*****************************************************************************/
3499 4979
3500#if EV_WALK_ENABLE 4980#if EV_WALK_ENABLE
3501void 4981void ecb_cold
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) 4982ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
3503{ 4983{
3504 int i, j; 4984 int i, j;
3505 ev_watcher_list *wl, *wn; 4985 ev_watcher_list *wl, *wn;
3506 4986
3507 if (types & (EV_IO | EV_EMBED)) 4987 if (types & (EV_IO | EV_EMBED))
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i])); 5030 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif 5031#endif
3552 5032
3553#if EV_IDLE_ENABLE 5033#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE) 5034 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; ) 5035 for (j = NUMPRI; j--; )
3556 for (i = idlecnt [j]; i--; ) 5036 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]); 5037 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif 5038#endif
3559 5039
3560#if EV_FORK_ENABLE 5040#if EV_FORK_ENABLE
3568 if (types & EV_ASYNC) 5048 if (types & EV_ASYNC)
3569 for (i = asynccnt; i--; ) 5049 for (i = asynccnt; i--; )
3570 cb (EV_A_ EV_ASYNC, asyncs [i]); 5050 cb (EV_A_ EV_ASYNC, asyncs [i]);
3571#endif 5051#endif
3572 5052
5053#if EV_PREPARE_ENABLE
3573 if (types & EV_PREPARE) 5054 if (types & EV_PREPARE)
3574 for (i = preparecnt; i--; ) 5055 for (i = preparecnt; i--; )
3575#if EV_EMBED_ENABLE 5056# if EV_EMBED_ENABLE
3576 if (ev_cb (prepares [i]) != embed_prepare_cb) 5057 if (ev_cb (prepares [i]) != embed_prepare_cb)
3577#endif 5058# endif
3578 cb (EV_A_ EV_PREPARE, prepares [i]); 5059 cb (EV_A_ EV_PREPARE, prepares [i]);
5060#endif
3579 5061
5062#if EV_CHECK_ENABLE
3580 if (types & EV_CHECK) 5063 if (types & EV_CHECK)
3581 for (i = checkcnt; i--; ) 5064 for (i = checkcnt; i--; )
3582 cb (EV_A_ EV_CHECK, checks [i]); 5065 cb (EV_A_ EV_CHECK, checks [i]);
5066#endif
3583 5067
5068#if EV_SIGNAL_ENABLE
3584 if (types & EV_SIGNAL) 5069 if (types & EV_SIGNAL)
3585 for (i = 0; i < EV_NSIG - 1; ++i) 5070 for (i = 0; i < EV_NSIG - 1; ++i)
3586 for (wl = signals [i].head; wl; ) 5071 for (wl = signals [i].head; wl; )
3587 { 5072 {
3588 wn = wl->next; 5073 wn = wl->next;
3589 cb (EV_A_ EV_SIGNAL, wl); 5074 cb (EV_A_ EV_SIGNAL, wl);
3590 wl = wn; 5075 wl = wn;
3591 } 5076 }
5077#endif
3592 5078
5079#if EV_CHILD_ENABLE
3593 if (types & EV_CHILD) 5080 if (types & EV_CHILD)
3594 for (i = EV_PID_HASHSIZE; i--; ) 5081 for (i = (EV_PID_HASHSIZE); i--; )
3595 for (wl = childs [i]; wl; ) 5082 for (wl = childs [i]; wl; )
3596 { 5083 {
3597 wn = wl->next; 5084 wn = wl->next;
3598 cb (EV_A_ EV_CHILD, wl); 5085 cb (EV_A_ EV_CHILD, wl);
3599 wl = wn; 5086 wl = wn;
3600 } 5087 }
5088#endif
3601/* EV_STAT 0x00001000 /* stat data changed */ 5089/* EV_STAT 0x00001000 /* stat data changed */
3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */ 5090/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3603} 5091}
3604#endif 5092#endif
3605 5093
3606#if EV_MULTIPLICITY 5094#if EV_MULTIPLICITY
3607 #include "ev_wrap.h" 5095 #include "ev_wrap.h"
3608#endif 5096#endif
3609 5097
3610#ifdef __cplusplus
3611}
3612#endif
3613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines