ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.31 by root, Thu Nov 1 09:05:33 2007 UTC vs.
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h>
36#include <fcntl.h> 59#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 60#include <stddef.h>
39 61
40#include <stdio.h> 62#include <stdio.h>
41 63
42#include <assert.h> 64#include <assert.h>
43#include <errno.h> 65#include <errno.h>
44#include <sys/types.h> 66#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 67#include <time.h>
48 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
49#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
52# endif
53#endif 80#endif
54 81
55#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
57#endif 84#endif
58 85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
59#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
61#endif 92#endif
62 93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
63#ifndef CLOCK_REALTIME 119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 121# define EV_USE_REALTIME 0
65#endif 122#endif
66#ifndef EV_USE_REALTIME 123
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 124/**/
68#endif
69 125
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 130
75#include "ev.h" 131#include "ev.h"
132
133#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline
136#else
137# define expect(expr,value) (expr)
138# define inline static
139#endif
140
141#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1)
143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
76 146
77typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
80 150
81static ev_tstamp now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82ev_tstamp ev_now;
83int ev_method;
84 152
85static int have_monotonic; /* runtime */ 153#if WIN32
154/* note: the comment below could not be substantiated, but what would I care */
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
86 157
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 158static int
88static void (*method_modify)(int fd, int oev, int nev); 159ev_socketpair_tcp (int filedes [2])
89static void (*method_poll)(ev_tstamp timeout); 160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif
90 211
91/*****************************************************************************/ 212/*****************************************************************************/
92 213
93ev_tstamp 214static void (*syserr_cb)(const char *msg);
215
216void ev_set_syserr_cb (void (*cb)(const char *msg))
217{
218 syserr_cb = cb;
219}
220
221static void
222syserr (const char *msg)
223{
224 if (!msg)
225 msg = "(libev) system error";
226
227 if (syserr_cb)
228 syserr_cb (msg);
229 else
230 {
231 perror (msg);
232 abort ();
233 }
234}
235
236static void *(*alloc)(void *ptr, long size);
237
238void ev_set_allocator (void *(*cb)(void *ptr, long size))
239{
240 alloc = cb;
241}
242
243static void *
244ev_realloc (void *ptr, long size)
245{
246 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
247
248 if (!ptr && size)
249 {
250 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
251 abort ();
252 }
253
254 return ptr;
255}
256
257#define ev_malloc(size) ev_realloc (0, (size))
258#define ev_free(ptr) ev_realloc ((ptr), 0)
259
260/*****************************************************************************/
261
262typedef struct
263{
264 WL head;
265 unsigned char events;
266 unsigned char reify;
267} ANFD;
268
269typedef struct
270{
271 W w;
272 int events;
273} ANPENDING;
274
275#if EV_MULTIPLICITY
276
277struct ev_loop
278{
279# define VAR(name,decl) decl;
280# include "ev_vars.h"
281};
282# undef VAR
283# include "ev_wrap.h"
284
285#else
286
287# define VAR(name,decl) static decl;
288# include "ev_vars.h"
289# undef VAR
290
291#endif
292
293/*****************************************************************************/
294
295inline ev_tstamp
94ev_time (void) 296ev_time (void)
95{ 297{
96#if EV_USE_REALTIME 298#if EV_USE_REALTIME
97 struct timespec ts; 299 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 300 clock_gettime (CLOCK_REALTIME, &ts);
102 gettimeofday (&tv, 0); 304 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 305 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 306#endif
105} 307}
106 308
107static ev_tstamp 309inline ev_tstamp
108get_clock (void) 310get_clock (void)
109{ 311{
110#if EV_USE_MONOTONIC 312#if EV_USE_MONOTONIC
111 if (have_monotonic) 313 if (expect_true (have_monotonic))
112 { 314 {
113 struct timespec ts; 315 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 316 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 317 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 318 }
117#endif 319#endif
118 320
119 return ev_time (); 321 return ev_time ();
120} 322}
121 323
324ev_tstamp
325ev_now (EV_P)
326{
327 return rt_now;
328}
329
122#define array_roundsize(base,n) ((n) | 4 & ~3) 330#define array_roundsize(base,n) ((n) | 4 & ~3)
123 331
124#define array_needsize(base,cur,cnt,init) \ 332#define array_needsize(base,cur,cnt,init) \
125 if ((cnt) > cur) \ 333 if (expect_false ((cnt) > cur)) \
126 { \ 334 { \
127 int newcnt = cur; \ 335 int newcnt = cur; \
128 do \ 336 do \
129 { \ 337 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 338 newcnt = array_roundsize (base, newcnt << 1); \
131 } \ 339 } \
132 while ((cnt) > newcnt); \ 340 while ((cnt) > newcnt); \
133 \ 341 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \ 342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \ 343 init (base + cur, newcnt - cur); \
136 cur = newcnt; \ 344 cur = newcnt; \
137 } 345 }
346
347#define array_slim(stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 }
354
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
357#define array_free_microshit(stem) \
358 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
359
360#define array_free(stem, idx) \
361 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
138 362
139/*****************************************************************************/ 363/*****************************************************************************/
140
141typedef struct
142{
143 struct ev_io *head;
144 int events;
145} ANFD;
146
147static ANFD *anfds;
148static int anfdmax;
149 364
150static void 365static void
151anfds_init (ANFD *base, int count) 366anfds_init (ANFD *base, int count)
152{ 367{
153 while (count--) 368 while (count--)
154 { 369 {
155 base->head = 0; 370 base->head = 0;
156 base->events = EV_NONE; 371 base->events = EV_NONE;
372 base->reify = 0;
373
157 ++base; 374 ++base;
158 } 375 }
159} 376}
160 377
161typedef struct
162{
163 W w;
164 int events;
165} ANPENDING;
166
167static ANPENDING *pendings;
168static int pendingmax, pendingcnt;
169
170static void 378static void
171event (W w, int events) 379event (EV_P_ W w, int events)
172{ 380{
381 if (w->pending)
382 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events;
384 return;
385 }
386
173 w->pending = ++pendingcnt; 387 w->pending = ++pendingcnt [ABSPRI (w)];
174 array_needsize (pendings, pendingmax, pendingcnt, ); 388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void));
175 pendings [pendingcnt - 1].w = w; 389 pendings [ABSPRI (w)][w->pending - 1].w = w;
176 pendings [pendingcnt - 1].events = events; 390 pendings [ABSPRI (w)][w->pending - 1].events = events;
177} 391}
178 392
179static void 393static void
180queue_events (W *events, int eventcnt, int type) 394queue_events (EV_P_ W *events, int eventcnt, int type)
181{ 395{
182 int i; 396 int i;
183 397
184 for (i = 0; i < eventcnt; ++i) 398 for (i = 0; i < eventcnt; ++i)
185 event (events [i], type); 399 event (EV_A_ events [i], type);
186} 400}
187 401
188static void 402static void
189fd_event (int fd, int events) 403fd_event (EV_P_ int fd, int events)
190{ 404{
191 ANFD *anfd = anfds + fd; 405 ANFD *anfd = anfds + fd;
192 struct ev_io *w; 406 struct ev_io *w;
193 407
194 for (w = anfd->head; w; w = w->next) 408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
195 { 409 {
196 int ev = w->events & events; 410 int ev = w->events & events;
197 411
198 if (ev) 412 if (ev)
199 event ((W)w, ev); 413 event (EV_A_ (W)w, ev);
200 } 414 }
201} 415}
202 416
203/*****************************************************************************/ 417/*****************************************************************************/
204 418
205static int *fdchanges;
206static int fdchangemax, fdchangecnt;
207
208static void 419static void
209fd_reify (void) 420fd_reify (EV_P)
210{ 421{
211 int i; 422 int i;
212 423
213 for (i = 0; i < fdchangecnt; ++i) 424 for (i = 0; i < fdchangecnt; ++i)
214 { 425 {
216 ANFD *anfd = anfds + fd; 427 ANFD *anfd = anfds + fd;
217 struct ev_io *w; 428 struct ev_io *w;
218 429
219 int events = 0; 430 int events = 0;
220 431
221 for (w = anfd->head; w; w = w->next) 432 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
222 events |= w->events; 433 events |= w->events;
223 434
224 anfd->events &= ~EV_REIFY; 435 anfd->reify = 0;
225 436
226 if (anfd->events != events)
227 {
228 method_modify (fd, anfd->events, events); 437 method_modify (EV_A_ fd, anfd->events, events);
229 anfd->events = events; 438 anfd->events = events;
230 }
231 } 439 }
232 440
233 fdchangecnt = 0; 441 fdchangecnt = 0;
234} 442}
235 443
236static void 444static void
237fd_change (int fd) 445fd_change (EV_P_ int fd)
238{ 446{
239 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 447 if (anfds [fd].reify)
240 return; 448 return;
241 449
242 anfds [fd].events |= EV_REIFY; 450 anfds [fd].reify = 1;
243 451
244 ++fdchangecnt; 452 ++fdchangecnt;
245 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void));
246 fdchanges [fdchangecnt - 1] = fd; 454 fdchanges [fdchangecnt - 1] = fd;
247} 455}
248 456
457static void
458fd_kill (EV_P_ int fd)
459{
460 struct ev_io *w;
461
462 while ((w = (struct ev_io *)anfds [fd].head))
463 {
464 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 }
467}
468
469static int
470fd_valid (int fd)
471{
472#ifdef WIN32
473 return !!win32_get_osfhandle (fd);
474#else
475 return fcntl (fd, F_GETFD) != -1;
476#endif
477}
478
249/* called on EBADF to verify fds */ 479/* called on EBADF to verify fds */
250static void 480static void
251fd_recheck (void) 481fd_ebadf (EV_P)
252{ 482{
253 int fd; 483 int fd;
254 484
255 for (fd = 0; fd < anfdmax; ++fd) 485 for (fd = 0; fd < anfdmax; ++fd)
256 if (anfds [fd].events) 486 if (anfds [fd].events)
257 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 487 if (!fd_valid (fd) == -1 && errno == EBADF)
258 while (anfds [fd].head) 488 fd_kill (EV_A_ fd);
489}
490
491/* called on ENOMEM in select/poll to kill some fds and retry */
492static void
493fd_enomem (EV_P)
494{
495 int fd;
496
497 for (fd = anfdmax; fd--; )
498 if (anfds [fd].events)
259 { 499 {
260 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 500 fd_kill (EV_A_ fd);
261 ev_io_stop (anfds [fd].head); 501 return;
262 } 502 }
503}
504
505/* usually called after fork if method needs to re-arm all fds from scratch */
506static void
507fd_rearm_all (EV_P)
508{
509 int fd;
510
511 /* this should be highly optimised to not do anything but set a flag */
512 for (fd = 0; fd < anfdmax; ++fd)
513 if (anfds [fd].events)
514 {
515 anfds [fd].events = 0;
516 fd_change (EV_A_ fd);
517 }
263} 518}
264 519
265/*****************************************************************************/ 520/*****************************************************************************/
266 521
267static struct ev_timer **timers;
268static int timermax, timercnt;
269
270static struct ev_periodic **periodics;
271static int periodicmax, periodiccnt;
272
273static void 522static void
274upheap (WT *timers, int k) 523upheap (WT *heap, int k)
275{ 524{
276 WT w = timers [k]; 525 WT w = heap [k];
277 526
278 while (k && timers [k >> 1]->at > w->at) 527 while (k && heap [k >> 1]->at > w->at)
279 { 528 {
280 timers [k] = timers [k >> 1]; 529 heap [k] = heap [k >> 1];
281 timers [k]->active = k + 1; 530 ((W)heap [k])->active = k + 1;
282 k >>= 1; 531 k >>= 1;
283 } 532 }
284 533
285 timers [k] = w; 534 heap [k] = w;
286 timers [k]->active = k + 1; 535 ((W)heap [k])->active = k + 1;
287 536
288} 537}
289 538
290static void 539static void
291downheap (WT *timers, int N, int k) 540downheap (WT *heap, int N, int k)
292{ 541{
293 WT w = timers [k]; 542 WT w = heap [k];
294 543
295 while (k < (N >> 1)) 544 while (k < (N >> 1))
296 { 545 {
297 int j = k << 1; 546 int j = k << 1;
298 547
299 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 548 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
300 ++j; 549 ++j;
301 550
302 if (w->at <= timers [j]->at) 551 if (w->at <= heap [j]->at)
303 break; 552 break;
304 553
305 timers [k] = timers [j]; 554 heap [k] = heap [j];
306 timers [k]->active = k + 1; 555 ((W)heap [k])->active = k + 1;
307 k = j; 556 k = j;
308 } 557 }
309 558
310 timers [k] = w; 559 heap [k] = w;
311 timers [k]->active = k + 1; 560 ((W)heap [k])->active = k + 1;
312} 561}
313 562
314/*****************************************************************************/ 563/*****************************************************************************/
315 564
316typedef struct 565typedef struct
317{ 566{
318 struct ev_signal *head; 567 WL head;
319 sig_atomic_t gotsig; 568 sig_atomic_t volatile gotsig;
320} ANSIG; 569} ANSIG;
321 570
322static ANSIG *signals; 571static ANSIG *signals;
323static int signalmax; 572static int signalmax;
324 573
325static int sigpipe [2]; 574static int sigpipe [2];
326static sig_atomic_t gotsig; 575static sig_atomic_t volatile gotsig;
327static struct ev_io sigev; 576static struct ev_io sigev;
328 577
329static void 578static void
330signals_init (ANSIG *base, int count) 579signals_init (ANSIG *base, int count)
331{ 580{
332 while (count--) 581 while (count--)
333 { 582 {
334 base->head = 0; 583 base->head = 0;
335 base->gotsig = 0; 584 base->gotsig = 0;
585
336 ++base; 586 ++base;
337 } 587 }
338} 588}
339 589
340static void 590static void
341sighandler (int signum) 591sighandler (int signum)
342{ 592{
593#if WIN32
594 signal (signum, sighandler);
595#endif
596
343 signals [signum - 1].gotsig = 1; 597 signals [signum - 1].gotsig = 1;
344 598
345 if (!gotsig) 599 if (!gotsig)
346 { 600 {
601 int old_errno = errno;
347 gotsig = 1; 602 gotsig = 1;
348 write (sigpipe [1], &gotsig, 1); 603 write (sigpipe [1], &signum, 1);
604 errno = old_errno;
349 } 605 }
350} 606}
351 607
352static void 608static void
353sigcb (struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
354{ 610{
355 struct ev_signal *w; 611 WL w;
356 int sig; 612 int signum;
357 613
614 read (sigpipe [0], &revents, 1);
358 gotsig = 0; 615 gotsig = 0;
359 read (sigpipe [0], &revents, 1);
360 616
361 for (sig = signalmax; sig--; ) 617 for (signum = signalmax; signum--; )
362 if (signals [sig].gotsig) 618 if (signals [signum].gotsig)
363 { 619 {
364 signals [sig].gotsig = 0; 620 signals [signum].gotsig = 0;
365 621
366 for (w = signals [sig].head; w; w = w->next) 622 for (w = signals [signum].head; w; w = w->next)
367 event ((W)w, EV_SIGNAL); 623 event (EV_A_ (W)w, EV_SIGNAL);
368 } 624 }
369} 625}
370 626
371static void 627static void
372siginit (void) 628siginit (EV_P)
373{ 629{
630#ifndef WIN32
374 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 631 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
375 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 632 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
376 633
377 /* rather than sort out wether we really need nb, set it */ 634 /* rather than sort out wether we really need nb, set it */
378 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 635 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
379 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 636 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
637#endif
380 638
381 ev_io_set (&sigev, sigpipe [0], EV_READ); 639 ev_io_set (&sigev, sigpipe [0], EV_READ);
382 ev_io_start (&sigev); 640 ev_io_start (EV_A_ &sigev);
641 ev_unref (EV_A); /* child watcher should not keep loop alive */
383} 642}
384 643
385/*****************************************************************************/ 644/*****************************************************************************/
386 645
387static struct ev_idle **idles;
388static int idlemax, idlecnt;
389
390static struct ev_prepare **prepares;
391static int preparemax, preparecnt;
392
393static struct ev_check **checks;
394static int checkmax, checkcnt;
395
396/*****************************************************************************/
397
398static struct ev_child *childs [PID_HASHSIZE]; 646static struct ev_child *childs [PID_HASHSIZE];
647
648#ifndef WIN32
649
399static struct ev_signal childev; 650static struct ev_signal childev;
400 651
401#ifndef WCONTINUED 652#ifndef WCONTINUED
402# define WCONTINUED 0 653# define WCONTINUED 0
403#endif 654#endif
404 655
405static void 656static void
406childcb (struct ev_signal *sw, int revents) 657child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
407{ 658{
408 struct ev_child *w; 659 struct ev_child *w;
660
661 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
662 if (w->pid == pid || !w->pid)
663 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid;
666 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD);
668 }
669}
670
671static void
672childcb (EV_P_ struct ev_signal *sw, int revents)
673{
409 int pid, status; 674 int pid, status;
410 675
411 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
412 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 677 {
413 if (w->pid == pid || w->pid == -1) 678 /* make sure we are called again until all childs have been reaped */
414 { 679 event (EV_A_ (W)sw, EV_SIGNAL);
415 w->status = status; 680
416 event ((W)w, EV_CHILD); 681 child_reap (EV_A_ sw, pid, pid, status);
417 } 682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 }
418} 684}
685
686#endif
419 687
420/*****************************************************************************/ 688/*****************************************************************************/
421 689
690#if EV_USE_KQUEUE
691# include "ev_kqueue.c"
692#endif
422#if EV_USE_EPOLL 693#if EV_USE_EPOLL
423# include "ev_epoll.c" 694# include "ev_epoll.c"
424#endif 695#endif
696#if EV_USE_POLL
697# include "ev_poll.c"
698#endif
425#if EV_USE_SELECT 699#if EV_USE_SELECT
426# include "ev_select.c" 700# include "ev_select.c"
427#endif 701#endif
428 702
429int 703int
436ev_version_minor (void) 710ev_version_minor (void)
437{ 711{
438 return EV_VERSION_MINOR; 712 return EV_VERSION_MINOR;
439} 713}
440 714
441int ev_init (int flags) 715/* return true if we are running with elevated privileges and should ignore env variables */
716static int
717enable_secure (void)
442{ 718{
719#ifdef WIN32
720 return 0;
721#else
722 return getuid () != geteuid ()
723 || getgid () != getegid ();
724#endif
725}
726
727int
728ev_method (EV_P)
729{
730 return method;
731}
732
733static void
734loop_init (EV_P_ int methods)
735{
443 if (!ev_method) 736 if (!method)
444 { 737 {
445#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
446 { 739 {
447 struct timespec ts; 740 struct timespec ts;
448 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 741 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
449 have_monotonic = 1; 742 have_monotonic = 1;
450 } 743 }
451#endif 744#endif
452 745
453 ev_now = ev_time (); 746 rt_now = ev_time ();
454 now = get_clock (); 747 mn_now = get_clock ();
748 now_floor = mn_now;
455 diff = ev_now - now; 749 rtmn_diff = rt_now - mn_now;
456 750
457 if (pipe (sigpipe)) 751 if (methods == EVMETHOD_AUTO)
458 return 0; 752 if (!enable_secure () && getenv ("LIBEV_METHODS"))
459 753 methods = atoi (getenv ("LIBEV_METHODS"));
754 else
460 ev_method = EVMETHOD_NONE; 755 methods = EVMETHOD_ANY;
756
757 method = 0;
758#if EV_USE_WIN32
759 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
760#endif
761#if EV_USE_KQUEUE
762 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
763#endif
461#if EV_USE_EPOLL 764#if EV_USE_EPOLL
462 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 765 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
766#endif
767#if EV_USE_POLL
768 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
463#endif 769#endif
464#if EV_USE_SELECT 770#if EV_USE_SELECT
465 if (ev_method == EVMETHOD_NONE) select_init (flags); 771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
466#endif 772#endif
467 773
774 ev_watcher_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI);
776 }
777}
778
779void
780loop_destroy (EV_P)
781{
782 int i;
783
784#if EV_USE_WIN32
785 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
786#endif
787#if EV_USE_KQUEUE
788 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
789#endif
790#if EV_USE_EPOLL
791 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
792#endif
793#if EV_USE_POLL
794 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
795#endif
796#if EV_USE_SELECT
797 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
798#endif
799
800 for (i = NUMPRI; i--; )
801 array_free (pending, [i]);
802
803 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange);
805 array_free_microshit (timer);
806 array_free_microshit (periodic);
807 array_free_microshit (idle);
808 array_free_microshit (prepare);
809 array_free_microshit (check);
810
811 method = 0;
812}
813
814static void
815loop_fork (EV_P)
816{
817#if EV_USE_EPOLL
818 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
819#endif
820#if EV_USE_KQUEUE
821 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
822#endif
823
824 if (ev_is_active (&sigev))
825 {
826 /* default loop */
827
828 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]);
831 close (sigpipe [1]);
832
833 while (ev_pipe (sigpipe))
834 syserr ("(libev) error creating pipe");
835
836 siginit (EV_A);
837 }
838
839 postfork = 0;
840}
841
842#if EV_MULTIPLICITY
843struct ev_loop *
844ev_loop_new (int methods)
845{
846 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
847
848 memset (loop, 0, sizeof (struct ev_loop));
849
850 loop_init (EV_A_ methods);
851
852 if (ev_method (EV_A))
853 return loop;
854
855 return 0;
856}
857
858void
859ev_loop_destroy (EV_P)
860{
861 loop_destroy (EV_A);
862 ev_free (loop);
863}
864
865void
866ev_loop_fork (EV_P)
867{
868 postfork = 1;
869}
870
871#endif
872
873#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop *
878#else
879static int default_loop;
880
881int
882#endif
883ev_default_loop (int methods)
884{
885 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe))
887 return 0;
888
889 if (!default_loop)
890 {
891#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct;
893#else
894 default_loop = 1;
895#endif
896
897 loop_init (EV_A_ methods);
898
468 if (ev_method) 899 if (ev_method (EV_A))
469 { 900 {
470 ev_watcher_init (&sigev, sigcb);
471 siginit (); 901 siginit (EV_A);
472 902
903#ifndef WIN32
473 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI);
474 ev_signal_start (&childev); 906 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif
475 } 909 }
910 else
911 default_loop = 0;
476 } 912 }
477 913
478 return ev_method; 914 return default_loop;
915}
916
917void
918ev_default_destroy (void)
919{
920#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop;
922#endif
923
924#ifndef WIN32
925 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev);
927#endif
928
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A);
936}
937
938void
939ev_default_fork (void)
940{
941#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop;
943#endif
944
945 if (method)
946 postfork = 1;
479} 947}
480 948
481/*****************************************************************************/ 949/*****************************************************************************/
482 950
483void
484ev_prefork (void)
485{
486 /* nop */
487}
488
489void
490ev_postfork_parent (void)
491{
492 /* nop */
493}
494
495void
496ev_postfork_child (void)
497{
498#if EV_USE_EPOLL
499 if (ev_method == EVMETHOD_EPOLL)
500 epoll_postfork_child ();
501#endif
502
503 ev_io_stop (&sigev);
504 close (sigpipe [0]);
505 close (sigpipe [1]);
506 pipe (sigpipe);
507 siginit ();
508}
509
510/*****************************************************************************/
511
512static void 951static void
513call_pending (void) 952call_pending (EV_P)
514{ 953{
954 int pri;
955
956 for (pri = NUMPRI; pri--; )
515 while (pendingcnt) 957 while (pendingcnt [pri])
516 { 958 {
517 ANPENDING *p = pendings + --pendingcnt; 959 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
518 960
519 if (p->w) 961 if (p->w)
520 { 962 {
521 p->w->pending = 0; 963 p->w->pending = 0;
522 p->w->cb (p->w, p->events); 964 p->w->cb (EV_A_ p->w, p->events);
523 } 965 }
524 } 966 }
525} 967}
526 968
527static void 969static void
528timers_reify (void) 970timers_reify (EV_P)
529{ 971{
530 while (timercnt && timers [0]->at <= now) 972 while (timercnt && ((WT)timers [0])->at <= mn_now)
531 { 973 {
532 struct ev_timer *w = timers [0]; 974 struct ev_timer *w = timers [0];
975
976 assert (("inactive timer on timer heap detected", ev_is_active (w)));
533 977
534 /* first reschedule or stop timer */ 978 /* first reschedule or stop timer */
535 if (w->repeat) 979 if (w->repeat)
536 { 980 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
537 w->at = now + w->repeat; 982 ((WT)w)->at = mn_now + w->repeat;
538 assert (("timer timeout in the past, negative repeat?", w->at > now));
539 downheap ((WT *)timers, timercnt, 0); 983 downheap ((WT *)timers, timercnt, 0);
540 } 984 }
541 else 985 else
542 ev_timer_stop (w); /* nonrepeating: stop timer */ 986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
543 987
544 event ((W)w, EV_TIMEOUT); 988 event (EV_A_ (W)w, EV_TIMEOUT);
545 } 989 }
546} 990}
547 991
548static void 992static void
549periodics_reify (void) 993periodics_reify (EV_P)
550{ 994{
551 while (periodiccnt && periodics [0]->at <= ev_now) 995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
552 { 996 {
553 struct ev_periodic *w = periodics [0]; 997 struct ev_periodic *w = periodics [0];
998
999 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
554 1000
555 /* first reschedule or stop timer */ 1001 /* first reschedule or stop timer */
556 if (w->interval) 1002 if (w->interval)
557 { 1003 {
558 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
559 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
560 downheap ((WT *)periodics, periodiccnt, 0); 1006 downheap ((WT *)periodics, periodiccnt, 0);
561 } 1007 }
562 else 1008 else
563 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
564 1010
565 event ((W)w, EV_TIMEOUT); 1011 event (EV_A_ (W)w, EV_PERIODIC);
566 } 1012 }
567} 1013}
568 1014
569static void 1015static void
570periodics_reschedule (ev_tstamp diff) 1016periodics_reschedule (EV_P)
571{ 1017{
572 int i; 1018 int i;
573 1019
574 /* adjust periodics after time jump */ 1020 /* adjust periodics after time jump */
575 for (i = 0; i < periodiccnt; ++i) 1021 for (i = 0; i < periodiccnt; ++i)
576 { 1022 {
577 struct ev_periodic *w = periodics [i]; 1023 struct ev_periodic *w = periodics [i];
578 1024
579 if (w->interval) 1025 if (w->interval)
580 { 1026 {
581 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
582 1028
583 if (fabs (diff) >= 1e-4) 1029 if (fabs (diff) >= 1e-4)
584 { 1030 {
585 ev_periodic_stop (w); 1031 ev_periodic_stop (EV_A_ w);
586 ev_periodic_start (w); 1032 ev_periodic_start (EV_A_ w);
587 1033
588 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
589 } 1035 }
590 } 1036 }
591 } 1037 }
592} 1038}
593 1039
1040inline int
1041time_update_monotonic (EV_P)
1042{
1043 mn_now = get_clock ();
1044
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 {
1047 rt_now = rtmn_diff + mn_now;
1048 return 0;
1049 }
1050 else
1051 {
1052 now_floor = mn_now;
1053 rt_now = ev_time ();
1054 return 1;
1055 }
1056}
1057
594static void 1058static void
595time_update (void) 1059time_update (EV_P)
596{ 1060{
597 int i; 1061 int i;
598 1062
599 ev_now = ev_time (); 1063#if EV_USE_MONOTONIC
600
601 if (have_monotonic) 1064 if (expect_true (have_monotonic))
602 { 1065 {
603 ev_tstamp odiff = diff; 1066 if (time_update_monotonic (EV_A))
604
605 for (i = 4; --i; ) /* loop a few times, before making important decisions */
606 { 1067 {
607 now = get_clock (); 1068 ev_tstamp odiff = rtmn_diff;
1069
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 {
608 diff = ev_now - now; 1072 rtmn_diff = rt_now - mn_now;
609 1073
610 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
611 return; /* all is well */ 1075 return; /* all is well */
612 1076
613 ev_now = ev_time (); 1077 rt_now = ev_time ();
1078 mn_now = get_clock ();
1079 now_floor = mn_now;
1080 }
1081
1082 periodics_reschedule (EV_A);
1083 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
614 } 1085 }
615
616 periodics_reschedule (diff - odiff);
617 /* no timer adjustment, as the monotonic clock doesn't jump */
618 } 1086 }
619 else 1087 else
1088#endif
620 { 1089 {
621 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 1090 rt_now = ev_time ();
1091
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
622 { 1093 {
623 periodics_reschedule (ev_now - now); 1094 periodics_reschedule (EV_A);
624 1095
625 /* adjust timers. this is easy, as the offset is the same for all */ 1096 /* adjust timers. this is easy, as the offset is the same for all */
626 for (i = 0; i < timercnt; ++i) 1097 for (i = 0; i < timercnt; ++i)
627 timers [i]->at += diff; 1098 ((WT)timers [i])->at += rt_now - mn_now;
628 } 1099 }
629 1100
630 now = ev_now; 1101 mn_now = rt_now;
631 } 1102 }
632} 1103}
633 1104
634int ev_loop_done; 1105void
1106ev_ref (EV_P)
1107{
1108 ++activecnt;
1109}
635 1110
1111void
1112ev_unref (EV_P)
1113{
1114 --activecnt;
1115}
1116
1117static int loop_done;
1118
1119void
636void ev_loop (int flags) 1120ev_loop (EV_P_ int flags)
637{ 1121{
638 double block; 1122 double block;
639 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1123 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
640 1124
641 do 1125 do
642 { 1126 {
643 /* queue check watchers (and execute them) */ 1127 /* queue check watchers (and execute them) */
644 if (preparecnt) 1128 if (expect_false (preparecnt))
645 { 1129 {
646 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1130 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
647 call_pending (); 1131 call_pending (EV_A);
648 } 1132 }
649 1133
1134 /* we might have forked, so reify kernel state if necessary */
1135 if (expect_false (postfork))
1136 loop_fork (EV_A);
1137
650 /* update fd-related kernel structures */ 1138 /* update fd-related kernel structures */
651 fd_reify (); 1139 fd_reify (EV_A);
652 1140
653 /* calculate blocking time */ 1141 /* calculate blocking time */
654 1142
655 /* we only need this for !monotonic clockor timers, but as we basically 1143 /* we only need this for !monotonic clockor timers, but as we basically
656 always have timers, we just calculate it always */ 1144 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A);
1148 else
1149#endif
1150 {
657 ev_now = ev_time (); 1151 rt_now = ev_time ();
1152 mn_now = rt_now;
1153 }
658 1154
659 if (flags & EVLOOP_NONBLOCK || idlecnt) 1155 if (flags & EVLOOP_NONBLOCK || idlecnt)
660 block = 0.; 1156 block = 0.;
661 else 1157 else
662 { 1158 {
663 block = MAX_BLOCKTIME; 1159 block = MAX_BLOCKTIME;
664 1160
665 if (timercnt) 1161 if (timercnt)
666 { 1162 {
667 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
668 if (block > to) block = to; 1164 if (block > to) block = to;
669 } 1165 }
670 1166
671 if (periodiccnt) 1167 if (periodiccnt)
672 { 1168 {
673 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
674 if (block > to) block = to; 1170 if (block > to) block = to;
675 } 1171 }
676 1172
677 if (block < 0.) block = 0.; 1173 if (block < 0.) block = 0.;
678 } 1174 }
679 1175
680 method_poll (block); 1176 method_poll (EV_A_ block);
681 1177
682 /* update ev_now, do magic */ 1178 /* update rt_now, do magic */
683 time_update (); 1179 time_update (EV_A);
684 1180
685 /* queue pending timers and reschedule them */ 1181 /* queue pending timers and reschedule them */
686 timers_reify (); /* relative timers called last */ 1182 timers_reify (EV_A); /* relative timers called last */
687 periodics_reify (); /* absolute timers called first */ 1183 periodics_reify (EV_A); /* absolute timers called first */
688 1184
689 /* queue idle watchers unless io or timers are pending */ 1185 /* queue idle watchers unless io or timers are pending */
690 if (!pendingcnt) 1186 if (!pendingcnt)
691 queue_events ((W *)idles, idlecnt, EV_IDLE); 1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
692 1188
693 /* queue check watchers, to be executed first */ 1189 /* queue check watchers, to be executed first */
694 if (checkcnt) 1190 if (checkcnt)
695 queue_events ((W *)checks, checkcnt, EV_CHECK); 1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
696 1192
697 call_pending (); 1193 call_pending (EV_A);
698 } 1194 }
699 while (!ev_loop_done); 1195 while (activecnt && !loop_done);
700 1196
701 if (ev_loop_done != 2) 1197 if (loop_done != 2)
702 ev_loop_done = 0; 1198 loop_done = 0;
1199}
1200
1201void
1202ev_unloop (EV_P_ int how)
1203{
1204 loop_done = how;
703} 1205}
704 1206
705/*****************************************************************************/ 1207/*****************************************************************************/
706 1208
707static void 1209inline void
708wlist_add (WL *head, WL elem) 1210wlist_add (WL *head, WL elem)
709{ 1211{
710 elem->next = *head; 1212 elem->next = *head;
711 *head = elem; 1213 *head = elem;
712} 1214}
713 1215
714static void 1216inline void
715wlist_del (WL *head, WL elem) 1217wlist_del (WL *head, WL elem)
716{ 1218{
717 while (*head) 1219 while (*head)
718 { 1220 {
719 if (*head == elem) 1221 if (*head == elem)
724 1226
725 head = &(*head)->next; 1227 head = &(*head)->next;
726 } 1228 }
727} 1229}
728 1230
729static void 1231inline void
730ev_clear (W w) 1232ev_clear_pending (EV_P_ W w)
731{ 1233{
732 if (w->pending) 1234 if (w->pending)
733 { 1235 {
734 pendings [w->pending - 1].w = 0; 1236 pendings [ABSPRI (w)][w->pending - 1].w = 0;
735 w->pending = 0; 1237 w->pending = 0;
736 } 1238 }
737} 1239}
738 1240
739static void 1241inline void
740ev_start (W w, int active) 1242ev_start (EV_P_ W w, int active)
741{ 1243{
1244 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1245 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1246
742 w->active = active; 1247 w->active = active;
1248 ev_ref (EV_A);
743} 1249}
744 1250
745static void 1251inline void
746ev_stop (W w) 1252ev_stop (EV_P_ W w)
747{ 1253{
1254 ev_unref (EV_A);
748 w->active = 0; 1255 w->active = 0;
749} 1256}
750 1257
751/*****************************************************************************/ 1258/*****************************************************************************/
752 1259
753void 1260void
754ev_io_start (struct ev_io *w) 1261ev_io_start (EV_P_ struct ev_io *w)
755{ 1262{
1263 int fd = w->fd;
1264
756 if (ev_is_active (w)) 1265 if (ev_is_active (w))
757 return; 1266 return;
758 1267
759 int fd = w->fd; 1268 assert (("ev_io_start called with negative fd", fd >= 0));
760 1269
761 ev_start ((W)w, 1); 1270 ev_start (EV_A_ (W)w, 1);
762 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
763 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1272 wlist_add ((WL *)&anfds[fd].head, (WL)w);
764 1273
765 fd_change (fd); 1274 fd_change (EV_A_ fd);
766} 1275}
767 1276
768void 1277void
769ev_io_stop (struct ev_io *w) 1278ev_io_stop (EV_P_ struct ev_io *w)
770{ 1279{
771 ev_clear ((W)w); 1280 ev_clear_pending (EV_A_ (W)w);
772 if (!ev_is_active (w)) 1281 if (!ev_is_active (w))
773 return; 1282 return;
774 1283
775 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
776 ev_stop ((W)w); 1285 ev_stop (EV_A_ (W)w);
777 1286
778 fd_change (w->fd); 1287 fd_change (EV_A_ w->fd);
779} 1288}
780 1289
781void 1290void
782ev_timer_start (struct ev_timer *w) 1291ev_timer_start (EV_P_ struct ev_timer *w)
783{ 1292{
784 if (ev_is_active (w)) 1293 if (ev_is_active (w))
785 return; 1294 return;
786 1295
787 w->at += now; 1296 ((WT)w)->at += mn_now;
788 1297
789 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
790 1299
791 ev_start ((W)w, ++timercnt); 1300 ev_start (EV_A_ (W)w, ++timercnt);
792 array_needsize (timers, timermax, timercnt, ); 1301 array_needsize (timers, timermax, timercnt, (void));
793 timers [timercnt - 1] = w; 1302 timers [timercnt - 1] = w;
794 upheap ((WT *)timers, timercnt - 1); 1303 upheap ((WT *)timers, timercnt - 1);
795}
796 1304
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306}
1307
797void 1308void
798ev_timer_stop (struct ev_timer *w) 1309ev_timer_stop (EV_P_ struct ev_timer *w)
799{ 1310{
800 ev_clear ((W)w); 1311 ev_clear_pending (EV_A_ (W)w);
801 if (!ev_is_active (w)) 1312 if (!ev_is_active (w))
802 return; 1313 return;
803 1314
1315 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1316
804 if (w->active < timercnt--) 1317 if (((W)w)->active < timercnt--)
805 { 1318 {
806 timers [w->active - 1] = timers [timercnt]; 1319 timers [((W)w)->active - 1] = timers [timercnt];
807 downheap ((WT *)timers, timercnt, w->active - 1); 1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
808 } 1321 }
809 1322
810 w->at = w->repeat; 1323 ((WT)w)->at = w->repeat;
811 1324
812 ev_stop ((W)w); 1325 ev_stop (EV_A_ (W)w);
813} 1326}
814 1327
815void 1328void
816ev_timer_again (struct ev_timer *w) 1329ev_timer_again (EV_P_ struct ev_timer *w)
817{ 1330{
818 if (ev_is_active (w)) 1331 if (ev_is_active (w))
819 { 1332 {
820 if (w->repeat) 1333 if (w->repeat)
821 { 1334 {
822 w->at = now + w->repeat; 1335 ((WT)w)->at = mn_now + w->repeat;
823 downheap ((WT *)timers, timercnt, w->active - 1); 1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
824 } 1337 }
825 else 1338 else
826 ev_timer_stop (w); 1339 ev_timer_stop (EV_A_ w);
827 } 1340 }
828 else if (w->repeat) 1341 else if (w->repeat)
829 ev_timer_start (w); 1342 ev_timer_start (EV_A_ w);
830} 1343}
831 1344
832void 1345void
833ev_periodic_start (struct ev_periodic *w) 1346ev_periodic_start (EV_P_ struct ev_periodic *w)
834{ 1347{
835 if (ev_is_active (w)) 1348 if (ev_is_active (w))
836 return; 1349 return;
837 1350
838 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
839 1352
840 /* this formula differs from the one in periodic_reify because we do not always round up */ 1353 /* this formula differs from the one in periodic_reify because we do not always round up */
841 if (w->interval) 1354 if (w->interval)
842 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
843 1356
844 ev_start ((W)w, ++periodiccnt); 1357 ev_start (EV_A_ (W)w, ++periodiccnt);
845 array_needsize (periodics, periodicmax, periodiccnt, ); 1358 array_needsize (periodics, periodicmax, periodiccnt, (void));
846 periodics [periodiccnt - 1] = w; 1359 periodics [periodiccnt - 1] = w;
847 upheap ((WT *)periodics, periodiccnt - 1); 1360 upheap ((WT *)periodics, periodiccnt - 1);
848}
849 1361
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363}
1364
850void 1365void
851ev_periodic_stop (struct ev_periodic *w) 1366ev_periodic_stop (EV_P_ struct ev_periodic *w)
852{ 1367{
853 ev_clear ((W)w); 1368 ev_clear_pending (EV_A_ (W)w);
854 if (!ev_is_active (w)) 1369 if (!ev_is_active (w))
855 return; 1370 return;
856 1371
1372 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1373
857 if (w->active < periodiccnt--) 1374 if (((W)w)->active < periodiccnt--)
858 { 1375 {
859 periodics [w->active - 1] = periodics [periodiccnt]; 1376 periodics [((W)w)->active - 1] = periodics [periodiccnt];
860 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1377 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
861 } 1378 }
862 1379
863 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
864} 1381}
865 1382
866void 1383void
867ev_signal_start (struct ev_signal *w) 1384ev_idle_start (EV_P_ struct ev_idle *w)
868{ 1385{
869 if (ev_is_active (w)) 1386 if (ev_is_active (w))
870 return; 1387 return;
871 1388
1389 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w;
1392}
1393
1394void
1395ev_idle_stop (EV_P_ struct ev_idle *w)
1396{
1397 ev_clear_pending (EV_A_ (W)w);
1398 if (ev_is_active (w))
1399 return;
1400
1401 idles [((W)w)->active - 1] = idles [--idlecnt];
1402 ev_stop (EV_A_ (W)w);
1403}
1404
1405void
1406ev_prepare_start (EV_P_ struct ev_prepare *w)
1407{
1408 if (ev_is_active (w))
1409 return;
1410
1411 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w;
1414}
1415
1416void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w)
1418{
1419 ev_clear_pending (EV_A_ (W)w);
1420 if (ev_is_active (w))
1421 return;
1422
1423 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1424 ev_stop (EV_A_ (W)w);
1425}
1426
1427void
1428ev_check_start (EV_P_ struct ev_check *w)
1429{
1430 if (ev_is_active (w))
1431 return;
1432
1433 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w;
1436}
1437
1438void
1439ev_check_stop (EV_P_ struct ev_check *w)
1440{
1441 ev_clear_pending (EV_A_ (W)w);
1442 if (ev_is_active (w))
1443 return;
1444
1445 checks [((W)w)->active - 1] = checks [--checkcnt];
1446 ev_stop (EV_A_ (W)w);
1447}
1448
1449#ifndef SA_RESTART
1450# define SA_RESTART 0
1451#endif
1452
1453void
1454ev_signal_start (EV_P_ struct ev_signal *w)
1455{
1456#if EV_MULTIPLICITY
1457 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1458#endif
1459 if (ev_is_active (w))
1460 return;
1461
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463
872 ev_start ((W)w, 1); 1464 ev_start (EV_A_ (W)w, 1);
873 array_needsize (signals, signalmax, w->signum, signals_init); 1465 array_needsize (signals, signalmax, w->signum, signals_init);
874 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
875 1467
876 if (!w->next) 1468 if (!((WL)w)->next)
877 { 1469 {
1470#if WIN32
1471 signal (w->signum, sighandler);
1472#else
878 struct sigaction sa; 1473 struct sigaction sa;
879 sa.sa_handler = sighandler; 1474 sa.sa_handler = sighandler;
880 sigfillset (&sa.sa_mask); 1475 sigfillset (&sa.sa_mask);
881 sa.sa_flags = 0; 1476 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
882 sigaction (w->signum, &sa, 0); 1477 sigaction (w->signum, &sa, 0);
1478#endif
883 } 1479 }
884} 1480}
885 1481
886void 1482void
887ev_signal_stop (struct ev_signal *w) 1483ev_signal_stop (EV_P_ struct ev_signal *w)
888{ 1484{
889 ev_clear ((W)w); 1485 ev_clear_pending (EV_A_ (W)w);
890 if (!ev_is_active (w)) 1486 if (!ev_is_active (w))
891 return; 1487 return;
892 1488
893 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1489 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
894 ev_stop ((W)w); 1490 ev_stop (EV_A_ (W)w);
895 1491
896 if (!signals [w->signum - 1].head) 1492 if (!signals [w->signum - 1].head)
897 signal (w->signum, SIG_DFL); 1493 signal (w->signum, SIG_DFL);
898} 1494}
899 1495
900void 1496void
901ev_idle_start (struct ev_idle *w) 1497ev_child_start (EV_P_ struct ev_child *w)
902{ 1498{
1499#if EV_MULTIPLICITY
1500 assert (("child watchers are only supported in the default loop", loop == default_loop));
1501#endif
903 if (ev_is_active (w)) 1502 if (ev_is_active (w))
904 return; 1503 return;
905 1504
906 ev_start ((W)w, ++idlecnt); 1505 ev_start (EV_A_ (W)w, 1);
907 array_needsize (idles, idlemax, idlecnt, ); 1506 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
908 idles [idlecnt - 1] = w;
909} 1507}
910 1508
911void 1509void
912ev_idle_stop (struct ev_idle *w) 1510ev_child_stop (EV_P_ struct ev_child *w)
913{ 1511{
914 ev_clear ((W)w); 1512 ev_clear_pending (EV_A_ (W)w);
915 if (ev_is_active (w)) 1513 if (ev_is_active (w))
916 return; 1514 return;
917 1515
918 idles [w->active - 1] = idles [--idlecnt];
919 ev_stop ((W)w);
920}
921
922void
923ev_prepare_start (struct ev_prepare *w)
924{
925 if (ev_is_active (w))
926 return;
927
928 ev_start ((W)w, ++preparecnt);
929 array_needsize (prepares, preparemax, preparecnt, );
930 prepares [preparecnt - 1] = w;
931}
932
933void
934ev_prepare_stop (struct ev_prepare *w)
935{
936 ev_clear ((W)w);
937 if (ev_is_active (w))
938 return;
939
940 prepares [w->active - 1] = prepares [--preparecnt];
941 ev_stop ((W)w);
942}
943
944void
945ev_check_start (struct ev_check *w)
946{
947 if (ev_is_active (w))
948 return;
949
950 ev_start ((W)w, ++checkcnt);
951 array_needsize (checks, checkmax, checkcnt, );
952 checks [checkcnt - 1] = w;
953}
954
955void
956ev_check_stop (struct ev_check *w)
957{
958 ev_clear ((W)w);
959 if (ev_is_active (w))
960 return;
961
962 checks [w->active - 1] = checks [--checkcnt];
963 ev_stop ((W)w);
964}
965
966void
967ev_child_start (struct ev_child *w)
968{
969 if (ev_is_active (w))
970 return;
971
972 ev_start ((W)w, 1);
973 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
974}
975
976void
977ev_child_stop (struct ev_child *w)
978{
979 ev_clear ((W)w);
980 if (ev_is_active (w))
981 return;
982
983 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1516 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
984 ev_stop ((W)w); 1517 ev_stop (EV_A_ (W)w);
985} 1518}
986 1519
987/*****************************************************************************/ 1520/*****************************************************************************/
988 1521
989struct ev_once 1522struct ev_once
993 void (*cb)(int revents, void *arg); 1526 void (*cb)(int revents, void *arg);
994 void *arg; 1527 void *arg;
995}; 1528};
996 1529
997static void 1530static void
998once_cb (struct ev_once *once, int revents) 1531once_cb (EV_P_ struct ev_once *once, int revents)
999{ 1532{
1000 void (*cb)(int revents, void *arg) = once->cb; 1533 void (*cb)(int revents, void *arg) = once->cb;
1001 void *arg = once->arg; 1534 void *arg = once->arg;
1002 1535
1003 ev_io_stop (&once->io); 1536 ev_io_stop (EV_A_ &once->io);
1004 ev_timer_stop (&once->to); 1537 ev_timer_stop (EV_A_ &once->to);
1005 free (once); 1538 ev_free (once);
1006 1539
1007 cb (revents, arg); 1540 cb (revents, arg);
1008} 1541}
1009 1542
1010static void 1543static void
1011once_cb_io (struct ev_io *w, int revents) 1544once_cb_io (EV_P_ struct ev_io *w, int revents)
1012{ 1545{
1013 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1546 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1014} 1547}
1015 1548
1016static void 1549static void
1017once_cb_to (struct ev_timer *w, int revents) 1550once_cb_to (EV_P_ struct ev_timer *w, int revents)
1018{ 1551{
1019 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1552 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1020} 1553}
1021 1554
1022void 1555void
1023ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1024{ 1557{
1025 struct ev_once *once = malloc (sizeof (struct ev_once)); 1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once));
1026 1559
1027 if (!once) 1560 if (!once)
1028 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1029 else 1562 else
1030 { 1563 {
1033 1566
1034 ev_watcher_init (&once->io, once_cb_io); 1567 ev_watcher_init (&once->io, once_cb_io);
1035 if (fd >= 0) 1568 if (fd >= 0)
1036 { 1569 {
1037 ev_io_set (&once->io, fd, events); 1570 ev_io_set (&once->io, fd, events);
1038 ev_io_start (&once->io); 1571 ev_io_start (EV_A_ &once->io);
1039 } 1572 }
1040 1573
1041 ev_watcher_init (&once->to, once_cb_to); 1574 ev_watcher_init (&once->to, once_cb_to);
1042 if (timeout >= 0.) 1575 if (timeout >= 0.)
1043 { 1576 {
1044 ev_timer_set (&once->to, timeout, 0.); 1577 ev_timer_set (&once->to, timeout, 0.);
1045 ev_timer_start (&once->to); 1578 ev_timer_start (EV_A_ &once->to);
1046 } 1579 }
1047 } 1580 }
1048} 1581}
1049 1582
1050/*****************************************************************************/
1051
1052#if 0
1053
1054struct ev_io wio;
1055
1056static void
1057sin_cb (struct ev_io *w, int revents)
1058{
1059 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1060}
1061
1062static void
1063ocb (struct ev_timer *w, int revents)
1064{
1065 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1066 ev_timer_stop (w);
1067 ev_timer_start (w);
1068}
1069
1070static void
1071scb (struct ev_signal *w, int revents)
1072{
1073 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1074 ev_io_stop (&wio);
1075 ev_io_start (&wio);
1076}
1077
1078static void
1079gcb (struct ev_signal *w, int revents)
1080{
1081 fprintf (stderr, "generic %x\n", revents);
1082
1083}
1084
1085int main (void)
1086{
1087 ev_init (0);
1088
1089 ev_io_init (&wio, sin_cb, 0, EV_READ);
1090 ev_io_start (&wio);
1091
1092 struct ev_timer t[10000];
1093
1094#if 0
1095 int i;
1096 for (i = 0; i < 10000; ++i)
1097 {
1098 struct ev_timer *w = t + i;
1099 ev_watcher_init (w, ocb, i);
1100 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1101 ev_timer_start (w);
1102 if (drand48 () < 0.5)
1103 ev_timer_stop (w);
1104 }
1105#endif
1106
1107 struct ev_timer t1;
1108 ev_timer_init (&t1, ocb, 5, 10);
1109 ev_timer_start (&t1);
1110
1111 struct ev_signal sig;
1112 ev_signal_init (&sig, scb, SIGQUIT);
1113 ev_signal_start (&sig);
1114
1115 struct ev_check cw;
1116 ev_check_init (&cw, gcb);
1117 ev_check_start (&cw);
1118
1119 struct ev_idle iw;
1120 ev_idle_init (&iw, gcb);
1121 ev_idle_start (&iw);
1122
1123 ev_loop (0);
1124
1125 return 0;
1126}
1127
1128#endif
1129
1130
1131
1132

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines