ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.108 by root, Mon Nov 12 05:40:55 2007 UTC vs.
Revision 1.310 by root, Sun Jul 26 04:43:03 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
50# endif 88# endif
51 89
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
54# endif 96# endif
55 97
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
58# endif 104# endif
59 105
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
62# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
64#endif 154#endif
65 155
66#include <math.h> 156#include <math.h>
67#include <stdlib.h> 157#include <stdlib.h>
68#include <fcntl.h> 158#include <fcntl.h>
75#include <sys/types.h> 165#include <sys/types.h>
76#include <time.h> 166#include <time.h>
77 167
78#include <signal.h> 168#include <signal.h>
79 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
80#ifndef _WIN32 176#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 177# include <sys/time.h>
83# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
84#else 180#else
181# include <io.h>
85# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 183# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
89# endif 186# endif
90#endif 187#endif
91 188
92/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
93 225
94#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
232#endif
233
234#ifndef EV_USE_REALTIME
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
96#endif 244#endif
97 245
98#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 248#endif
102 249
103#ifndef EV_USE_POLL 250#ifndef EV_USE_POLL
104# ifdef _WIN32 251# ifdef _WIN32
105# define EV_USE_POLL 0 252# define EV_USE_POLL 0
107# define EV_USE_POLL 1 254# define EV_USE_POLL 1
108# endif 255# endif
109#endif 256#endif
110 257
111#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
112# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
113#endif 264#endif
114 265
115#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
117#endif 268#endif
118 269
119#ifndef EV_USE_REALTIME 270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
121#endif 279# endif
280#endif
122 281
123/**/ 282#ifndef EV_PID_HASHSIZE
124 283# if EV_MINIMAL
125/* darwin simply cannot be helped */ 284# define EV_PID_HASHSIZE 1
126#ifdef __APPLE__ 285# else
127# undef EV_USE_POLL 286# define EV_PID_HASHSIZE 16
128# undef EV_USE_KQUEUE
129#endif 287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
130 347
131#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
134#endif 351#endif
136#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
137# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
138# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
139#endif 356#endif
140 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
141#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 381# include <winsock.h>
143#endif 382#endif
144 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC
392# endif
393# ifdef __cplusplus
394extern "C" {
395# endif
396int eventfd (unsigned int initval, int flags);
397# ifdef __cplusplus
398}
399# endif
400#endif
401
402#if EV_USE_SIGNALFD
403# include <sys/signalfd.h>
404#endif
405
145/**/ 406/**/
146 407
408#if EV_VERIFY >= 3
409# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
410#else
411# define EV_FREQUENT_CHECK do { } while (0)
412#endif
413
414/*
415 * This is used to avoid floating point rounding problems.
416 * It is added to ev_rt_now when scheduling periodics
417 * to ensure progress, time-wise, even when rounding
418 * errors are against us.
419 * This value is good at least till the year 4000.
420 * Better solutions welcome.
421 */
422#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
423
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 424#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 425#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 426/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151 427
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157
158#if __GNUC__ >= 3 428#if __GNUC__ >= 4
159# define expect(expr,value) __builtin_expect ((expr),(value)) 429# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 430# define noinline __attribute__ ((noinline))
161#else 431#else
162# define expect(expr,value) (expr) 432# define expect(expr,value) (expr)
163# define inline static 433# define noinline
434# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
435# define inline
436# endif
164#endif 437#endif
165 438
166#define expect_false(expr) expect ((expr) != 0, 0) 439#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 440#define expect_true(expr) expect ((expr) != 0, 1)
441#define inline_size static inline
168 442
443#if EV_MINIMAL
444# define inline_speed static noinline
445#else
446# define inline_speed static inline
447#endif
448
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450
451#if EV_MINPRI == EV_MAXPRI
452# define ABSPRI(w) (((W)w), 0)
453#else
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 454# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
455#endif
171 456
172#define EMPTY /* required for microsofts broken pseudo-c compiler */ 457#define EMPTY /* required for microsofts broken pseudo-c compiler */
458#define EMPTY2(a,b) /* used to suppress some warnings */
173 459
174typedef struct ev_watcher *W; 460typedef ev_watcher *W;
175typedef struct ev_watcher_list *WL; 461typedef ev_watcher_list *WL;
176typedef struct ev_watcher_time *WT; 462typedef ev_watcher_time *WT;
177 463
464#define ev_active(w) ((W)(w))->active
465#define ev_at(w) ((WT)(w))->at
466
467#if EV_USE_REALTIME
468/* sig_atomic_t is used to avoid per-thread variables or locking but still */
469/* giving it a reasonably high chance of working on typical architetcures */
470static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
471#endif
472
473#if EV_USE_MONOTONIC
178static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 474static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
475#endif
179 476
180#ifdef _WIN32 477#ifdef _WIN32
181# include "ev_win32.c" 478# include "ev_win32.c"
182#endif 479#endif
183 480
184/*****************************************************************************/ 481/*****************************************************************************/
185 482
186static void (*syserr_cb)(const char *msg); 483static void (*syserr_cb)(const char *msg);
187 484
485void
188void ev_set_syserr_cb (void (*cb)(const char *msg)) 486ev_set_syserr_cb (void (*cb)(const char *msg))
189{ 487{
190 syserr_cb = cb; 488 syserr_cb = cb;
191} 489}
192 490
193static void 491static void noinline
194syserr (const char *msg) 492ev_syserr (const char *msg)
195{ 493{
196 if (!msg) 494 if (!msg)
197 msg = "(libev) system error"; 495 msg = "(libev) system error";
198 496
199 if (syserr_cb) 497 if (syserr_cb)
203 perror (msg); 501 perror (msg);
204 abort (); 502 abort ();
205 } 503 }
206} 504}
207 505
506static void *
507ev_realloc_emul (void *ptr, long size)
508{
509 /* some systems, notably openbsd and darwin, fail to properly
510 * implement realloc (x, 0) (as required by both ansi c-98 and
511 * the single unix specification, so work around them here.
512 */
513
514 if (size)
515 return realloc (ptr, size);
516
517 free (ptr);
518 return 0;
519}
520
208static void *(*alloc)(void *ptr, long size); 521static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
209 522
523void
210void ev_set_allocator (void *(*cb)(void *ptr, long size)) 524ev_set_allocator (void *(*cb)(void *ptr, long size))
211{ 525{
212 alloc = cb; 526 alloc = cb;
213} 527}
214 528
215static void * 529inline_speed void *
216ev_realloc (void *ptr, long size) 530ev_realloc (void *ptr, long size)
217{ 531{
218 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 532 ptr = alloc (ptr, size);
219 533
220 if (!ptr && size) 534 if (!ptr && size)
221 { 535 {
222 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 536 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
223 abort (); 537 abort ();
229#define ev_malloc(size) ev_realloc (0, (size)) 543#define ev_malloc(size) ev_realloc (0, (size))
230#define ev_free(ptr) ev_realloc ((ptr), 0) 544#define ev_free(ptr) ev_realloc ((ptr), 0)
231 545
232/*****************************************************************************/ 546/*****************************************************************************/
233 547
548/* set in reify when reification needed */
549#define EV_ANFD_REIFY 1
550
551/* file descriptor info structure */
234typedef struct 552typedef struct
235{ 553{
236 WL head; 554 WL head;
237 unsigned char events; 555 unsigned char events; /* the events watched for */
556 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
238 unsigned char reify; 558 unsigned char unused;
559#if EV_USE_EPOLL
560 unsigned int egen; /* generation counter to counter epoll bugs */
561#endif
239#if EV_SELECT_IS_WINSOCKET 562#if EV_SELECT_IS_WINSOCKET
240 SOCKET handle; 563 SOCKET handle;
241#endif 564#endif
242} ANFD; 565} ANFD;
243 566
567/* stores the pending event set for a given watcher */
244typedef struct 568typedef struct
245{ 569{
246 W w; 570 W w;
247 int events; 571 int events; /* the pending event set for the given watcher */
248} ANPENDING; 572} ANPENDING;
573
574#if EV_USE_INOTIFY
575/* hash table entry per inotify-id */
576typedef struct
577{
578 WL head;
579} ANFS;
580#endif
581
582/* Heap Entry */
583#if EV_HEAP_CACHE_AT
584 /* a heap element */
585 typedef struct {
586 ev_tstamp at;
587 WT w;
588 } ANHE;
589
590 #define ANHE_w(he) (he).w /* access watcher, read-write */
591 #define ANHE_at(he) (he).at /* access cached at, read-only */
592 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
593#else
594 /* a heap element */
595 typedef WT ANHE;
596
597 #define ANHE_w(he) (he)
598 #define ANHE_at(he) (he)->at
599 #define ANHE_at_cache(he)
600#endif
249 601
250#if EV_MULTIPLICITY 602#if EV_MULTIPLICITY
251 603
252 struct ev_loop 604 struct ev_loop
253 { 605 {
257 #include "ev_vars.h" 609 #include "ev_vars.h"
258 #undef VAR 610 #undef VAR
259 }; 611 };
260 #include "ev_wrap.h" 612 #include "ev_wrap.h"
261 613
262 struct ev_loop default_loop_struct; 614 static struct ev_loop default_loop_struct;
263 static struct ev_loop *default_loop; 615 struct ev_loop *ev_default_loop_ptr;
264 616
265#else 617#else
266 618
267 ev_tstamp ev_rt_now; 619 ev_tstamp ev_rt_now;
268 #define VAR(name,decl) static decl; 620 #define VAR(name,decl) static decl;
269 #include "ev_vars.h" 621 #include "ev_vars.h"
270 #undef VAR 622 #undef VAR
271 623
272 static int default_loop; 624 static int ev_default_loop_ptr;
273 625
274#endif 626#endif
627
628#if EV_MINIMAL < 2
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else
633# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif
637
638#define EVUNLOOP_RECURSE 0x80
275 639
276/*****************************************************************************/ 640/*****************************************************************************/
277 641
642#ifndef EV_HAVE_EV_TIME
278ev_tstamp 643ev_tstamp
279ev_time (void) 644ev_time (void)
280{ 645{
281#if EV_USE_REALTIME 646#if EV_USE_REALTIME
647 if (expect_true (have_realtime))
648 {
282 struct timespec ts; 649 struct timespec ts;
283 clock_gettime (CLOCK_REALTIME, &ts); 650 clock_gettime (CLOCK_REALTIME, &ts);
284 return ts.tv_sec + ts.tv_nsec * 1e-9; 651 return ts.tv_sec + ts.tv_nsec * 1e-9;
285#else 652 }
653#endif
654
286 struct timeval tv; 655 struct timeval tv;
287 gettimeofday (&tv, 0); 656 gettimeofday (&tv, 0);
288 return tv.tv_sec + tv.tv_usec * 1e-6; 657 return tv.tv_sec + tv.tv_usec * 1e-6;
289#endif
290} 658}
659#endif
291 660
292inline ev_tstamp 661inline_size ev_tstamp
293get_clock (void) 662get_clock (void)
294{ 663{
295#if EV_USE_MONOTONIC 664#if EV_USE_MONOTONIC
296 if (expect_true (have_monotonic)) 665 if (expect_true (have_monotonic))
297 { 666 {
310{ 679{
311 return ev_rt_now; 680 return ev_rt_now;
312} 681}
313#endif 682#endif
314 683
315#define array_roundsize(type,n) (((n) | 4) & ~3) 684void
685ev_sleep (ev_tstamp delay)
686{
687 if (delay > 0.)
688 {
689#if EV_USE_NANOSLEEP
690 struct timespec ts;
691
692 ts.tv_sec = (time_t)delay;
693 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
694
695 nanosleep (&ts, 0);
696#elif defined(_WIN32)
697 Sleep ((unsigned long)(delay * 1e3));
698#else
699 struct timeval tv;
700
701 tv.tv_sec = (time_t)delay;
702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
703
704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
705 /* something not guaranteed by newer posix versions, but guaranteed */
706 /* by older ones */
707 select (0, 0, 0, 0, &tv);
708#endif
709 }
710}
711
712/*****************************************************************************/
713
714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
715
716/* find a suitable new size for the given array, */
717/* hopefully by rounding to a ncie-to-malloc size */
718inline_size int
719array_nextsize (int elem, int cur, int cnt)
720{
721 int ncur = cur + 1;
722
723 do
724 ncur <<= 1;
725 while (cnt > ncur);
726
727 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
728 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
729 {
730 ncur *= elem;
731 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
732 ncur = ncur - sizeof (void *) * 4;
733 ncur /= elem;
734 }
735
736 return ncur;
737}
738
739static noinline void *
740array_realloc (int elem, void *base, int *cur, int cnt)
741{
742 *cur = array_nextsize (elem, *cur, cnt);
743 return ev_realloc (base, elem * *cur);
744}
745
746#define array_init_zero(base,count) \
747 memset ((void *)(base), 0, sizeof (*(base)) * (count))
316 748
317#define array_needsize(type,base,cur,cnt,init) \ 749#define array_needsize(type,base,cur,cnt,init) \
318 if (expect_false ((cnt) > cur)) \ 750 if (expect_false ((cnt) > (cur))) \
319 { \ 751 { \
320 int newcnt = cur; \ 752 int ocur_ = (cur); \
321 do \ 753 (base) = (type *)array_realloc \
322 { \ 754 (sizeof (type), (base), &(cur), (cnt)); \
323 newcnt = array_roundsize (type, newcnt << 1); \ 755 init ((base) + (ocur_), (cur) - ocur_); \
324 } \
325 while ((cnt) > newcnt); \
326 \
327 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
328 init (base + cur, newcnt - cur); \
329 cur = newcnt; \
330 } 756 }
331 757
758#if 0
332#define array_slim(type,stem) \ 759#define array_slim(type,stem) \
333 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 760 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
334 { \ 761 { \
335 stem ## max = array_roundsize (stem ## cnt >> 1); \ 762 stem ## max = array_roundsize (stem ## cnt >> 1); \
336 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 763 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
337 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 764 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
338 } 765 }
766#endif
339 767
340#define array_free(stem, idx) \ 768#define array_free(stem, idx) \
341 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 769 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
342 770
343/*****************************************************************************/ 771/*****************************************************************************/
344 772
345static void 773/* dummy callback for pending events */
346anfds_init (ANFD *base, int count) 774static void noinline
775pendingcb (EV_P_ ev_prepare *w, int revents)
347{ 776{
348 while (count--)
349 {
350 base->head = 0;
351 base->events = EV_NONE;
352 base->reify = 0;
353
354 ++base;
355 }
356} 777}
357 778
358void 779void noinline
359ev_feed_event (EV_P_ void *w, int revents) 780ev_feed_event (EV_P_ void *w, int revents)
360{ 781{
361 W w_ = (W)w; 782 W w_ = (W)w;
783 int pri = ABSPRI (w_);
362 784
363 if (w_->pending) 785 if (expect_false (w_->pending))
786 pendings [pri][w_->pending - 1].events |= revents;
787 else
364 { 788 {
789 w_->pending = ++pendingcnt [pri];
790 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
791 pendings [pri][w_->pending - 1].w = w_;
365 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 792 pendings [pri][w_->pending - 1].events = revents;
366 return;
367 } 793 }
368
369 w_->pending = ++pendingcnt [ABSPRI (w_)];
370 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
371 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
372 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
373} 794}
374 795
375static void 796inline_speed void
797feed_reverse (EV_P_ W w)
798{
799 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
800 rfeeds [rfeedcnt++] = w;
801}
802
803inline_size void
804feed_reverse_done (EV_P_ int revents)
805{
806 do
807 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
808 while (rfeedcnt);
809}
810
811inline_speed void
376queue_events (EV_P_ W *events, int eventcnt, int type) 812queue_events (EV_P_ W *events, int eventcnt, int type)
377{ 813{
378 int i; 814 int i;
379 815
380 for (i = 0; i < eventcnt; ++i) 816 for (i = 0; i < eventcnt; ++i)
381 ev_feed_event (EV_A_ events [i], type); 817 ev_feed_event (EV_A_ events [i], type);
382} 818}
383 819
820/*****************************************************************************/
821
384inline void 822inline_speed void
385fd_event (EV_P_ int fd, int revents) 823fd_event_nc (EV_P_ int fd, int revents)
386{ 824{
387 ANFD *anfd = anfds + fd; 825 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 826 ev_io *w;
389 827
390 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
391 { 829 {
392 int ev = w->events & revents; 830 int ev = w->events & revents;
393 831
394 if (ev) 832 if (ev)
395 ev_feed_event (EV_A_ (W)w, ev); 833 ev_feed_event (EV_A_ (W)w, ev);
396 } 834 }
397} 835}
398 836
837/* do not submit kernel events for fds that have reify set */
838/* because that means they changed while we were polling for new events */
839inline_speed void
840fd_event (EV_P_ int fd, int revents)
841{
842 ANFD *anfd = anfds + fd;
843
844 if (expect_true (!anfd->reify))
845 fd_event_nc (EV_A_ fd, revents);
846}
847
399void 848void
400ev_feed_fd_event (EV_P_ int fd, int revents) 849ev_feed_fd_event (EV_P_ int fd, int revents)
401{ 850{
851 if (fd >= 0 && fd < anfdmax)
402 fd_event (EV_A_ fd, revents); 852 fd_event_nc (EV_A_ fd, revents);
403} 853}
404 854
405/*****************************************************************************/ 855/* make sure the external fd watch events are in-sync */
406 856/* with the kernel/libev internal state */
407static void 857inline_size void
408fd_reify (EV_P) 858fd_reify (EV_P)
409{ 859{
410 int i; 860 int i;
411 861
412 for (i = 0; i < fdchangecnt; ++i) 862 for (i = 0; i < fdchangecnt; ++i)
413 { 863 {
414 int fd = fdchanges [i]; 864 int fd = fdchanges [i];
415 ANFD *anfd = anfds + fd; 865 ANFD *anfd = anfds + fd;
416 struct ev_io *w; 866 ev_io *w;
417 867
418 int events = 0; 868 unsigned char events = 0;
419 869
420 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 870 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
421 events |= w->events; 871 events |= (unsigned char)w->events;
422 872
423#if EV_SELECT_IS_WINSOCKET 873#if EV_SELECT_IS_WINSOCKET
424 if (events) 874 if (events)
425 { 875 {
426 unsigned long argp; 876 unsigned long arg;
877 #ifdef EV_FD_TO_WIN32_HANDLE
878 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
879 #else
427 anfd->handle = _get_osfhandle (fd); 880 anfd->handle = _get_osfhandle (fd);
881 #endif
428 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 882 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
429 } 883 }
430#endif 884#endif
431 885
886 {
887 unsigned char o_events = anfd->events;
888 unsigned char o_reify = anfd->reify;
889
432 anfd->reify = 0; 890 anfd->reify = 0;
433
434 method_modify (EV_A_ fd, anfd->events, events);
435 anfd->events = events; 891 anfd->events = events;
892
893 if (o_events != events || o_reify & EV__IOFDSET)
894 backend_modify (EV_A_ fd, o_events, events);
895 }
436 } 896 }
437 897
438 fdchangecnt = 0; 898 fdchangecnt = 0;
439} 899}
440 900
441static void 901/* something about the given fd changed */
902inline_size void
442fd_change (EV_P_ int fd) 903fd_change (EV_P_ int fd, int flags)
443{ 904{
444 if (anfds [fd].reify) 905 unsigned char reify = anfds [fd].reify;
445 return;
446
447 anfds [fd].reify = 1; 906 anfds [fd].reify |= flags;
448 907
908 if (expect_true (!reify))
909 {
449 ++fdchangecnt; 910 ++fdchangecnt;
450 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 911 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
451 fdchanges [fdchangecnt - 1] = fd; 912 fdchanges [fdchangecnt - 1] = fd;
913 }
452} 914}
453 915
454static void 916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void
455fd_kill (EV_P_ int fd) 918fd_kill (EV_P_ int fd)
456{ 919{
457 struct ev_io *w; 920 ev_io *w;
458 921
459 while ((w = (struct ev_io *)anfds [fd].head)) 922 while ((w = (ev_io *)anfds [fd].head))
460 { 923 {
461 ev_io_stop (EV_A_ w); 924 ev_io_stop (EV_A_ w);
462 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
463 } 926 }
464} 927}
465 928
466static int 929/* check whether the given fd is atcually valid, for error recovery */
930inline_size int
467fd_valid (int fd) 931fd_valid (int fd)
468{ 932{
469#ifdef _WIN32 933#ifdef _WIN32
470 return _get_osfhandle (fd) != -1; 934 return _get_osfhandle (fd) != -1;
471#else 935#else
472 return fcntl (fd, F_GETFD) != -1; 936 return fcntl (fd, F_GETFD) != -1;
473#endif 937#endif
474} 938}
475 939
476/* called on EBADF to verify fds */ 940/* called on EBADF to verify fds */
477static void 941static void noinline
478fd_ebadf (EV_P) 942fd_ebadf (EV_P)
479{ 943{
480 int fd; 944 int fd;
481 945
482 for (fd = 0; fd < anfdmax; ++fd) 946 for (fd = 0; fd < anfdmax; ++fd)
483 if (anfds [fd].events) 947 if (anfds [fd].events)
484 if (!fd_valid (fd) == -1 && errno == EBADF) 948 if (!fd_valid (fd) && errno == EBADF)
485 fd_kill (EV_A_ fd); 949 fd_kill (EV_A_ fd);
486} 950}
487 951
488/* called on ENOMEM in select/poll to kill some fds and retry */ 952/* called on ENOMEM in select/poll to kill some fds and retry */
489static void 953static void noinline
490fd_enomem (EV_P) 954fd_enomem (EV_P)
491{ 955{
492 int fd; 956 int fd;
493 957
494 for (fd = anfdmax; fd--; ) 958 for (fd = anfdmax; fd--; )
495 if (anfds [fd].events) 959 if (anfds [fd].events)
496 { 960 {
497 fd_kill (EV_A_ fd); 961 fd_kill (EV_A_ fd);
498 return; 962 break;
499 } 963 }
500} 964}
501 965
502/* usually called after fork if method needs to re-arm all fds from scratch */ 966/* usually called after fork if backend needs to re-arm all fds from scratch */
503static void 967static void noinline
504fd_rearm_all (EV_P) 968fd_rearm_all (EV_P)
505{ 969{
506 int fd; 970 int fd;
507 971
508 /* this should be highly optimised to not do anything but set a flag */
509 for (fd = 0; fd < anfdmax; ++fd) 972 for (fd = 0; fd < anfdmax; ++fd)
510 if (anfds [fd].events) 973 if (anfds [fd].events)
511 { 974 {
512 anfds [fd].events = 0; 975 anfds [fd].events = 0;
513 fd_change (EV_A_ fd); 976 anfds [fd].emask = 0;
977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
514 } 978 }
515} 979}
516 980
517/*****************************************************************************/ 981/*****************************************************************************/
518 982
519static void 983/*
520upheap (WT *heap, int k) 984 * the heap functions want a real array index. array index 0 uis guaranteed to not
521{ 985 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
522 WT w = heap [k]; 986 * the branching factor of the d-tree.
987 */
523 988
524 while (k && heap [k >> 1]->at > w->at) 989/*
525 { 990 * at the moment we allow libev the luxury of two heaps,
526 heap [k] = heap [k >> 1]; 991 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
527 ((W)heap [k])->active = k + 1; 992 * which is more cache-efficient.
528 k >>= 1; 993 * the difference is about 5% with 50000+ watchers.
529 } 994 */
995#if EV_USE_4HEAP
530 996
531 heap [k] = w; 997#define DHEAP 4
532 ((W)heap [k])->active = k + 1; 998#define HEAP0 (DHEAP - 1) /* index of first element in heap */
999#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1000#define UPHEAP_DONE(p,k) ((p) == (k))
533 1001
534} 1002/* away from the root */
535 1003inline_speed void
536static void
537downheap (WT *heap, int N, int k) 1004downheap (ANHE *heap, int N, int k)
538{ 1005{
539 WT w = heap [k]; 1006 ANHE he = heap [k];
1007 ANHE *E = heap + N + HEAP0;
540 1008
541 while (k < (N >> 1)) 1009 for (;;)
542 { 1010 {
543 int j = k << 1; 1011 ev_tstamp minat;
1012 ANHE *minpos;
1013 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
544 1014
545 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1015 /* find minimum child */
1016 if (expect_true (pos + DHEAP - 1 < E))
546 ++j; 1017 {
547 1018 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
548 if (w->at <= heap [j]->at) 1019 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1020 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1022 }
1023 else if (pos < E)
1024 {
1025 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else
549 break; 1031 break;
550 1032
1033 if (ANHE_at (he) <= minat)
1034 break;
1035
1036 heap [k] = *minpos;
1037 ev_active (ANHE_w (*minpos)) = k;
1038
1039 k = minpos - heap;
1040 }
1041
1042 heap [k] = he;
1043 ev_active (ANHE_w (he)) = k;
1044}
1045
1046#else /* 4HEAP */
1047
1048#define HEAP0 1
1049#define HPARENT(k) ((k) >> 1)
1050#define UPHEAP_DONE(p,k) (!(p))
1051
1052/* away from the root */
1053inline_speed void
1054downheap (ANHE *heap, int N, int k)
1055{
1056 ANHE he = heap [k];
1057
1058 for (;;)
1059 {
1060 int c = k << 1;
1061
1062 if (c >= N + HEAP0)
1063 break;
1064
1065 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1066 ? 1 : 0;
1067
1068 if (ANHE_at (he) <= ANHE_at (heap [c]))
1069 break;
1070
551 heap [k] = heap [j]; 1071 heap [k] = heap [c];
552 ((W)heap [k])->active = k + 1; 1072 ev_active (ANHE_w (heap [k])) = k;
1073
553 k = j; 1074 k = c;
554 } 1075 }
555 1076
556 heap [k] = w; 1077 heap [k] = he;
557 ((W)heap [k])->active = k + 1; 1078 ev_active (ANHE_w (he)) = k;
558} 1079}
1080#endif
559 1081
1082/* towards the root */
1083inline_speed void
1084upheap (ANHE *heap, int k)
1085{
1086 ANHE he = heap [k];
1087
1088 for (;;)
1089 {
1090 int p = HPARENT (k);
1091
1092 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1093 break;
1094
1095 heap [k] = heap [p];
1096 ev_active (ANHE_w (heap [k])) = k;
1097 k = p;
1098 }
1099
1100 heap [k] = he;
1101 ev_active (ANHE_w (he)) = k;
1102}
1103
1104/* move an element suitably so it is in a correct place */
560inline void 1105inline_size void
561adjustheap (WT *heap, int N, int k) 1106adjustheap (ANHE *heap, int N, int k)
562{ 1107{
1108 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
563 upheap (heap, k); 1109 upheap (heap, k);
1110 else
564 downheap (heap, N, k); 1111 downheap (heap, N, k);
1112}
1113
1114/* rebuild the heap: this function is used only once and executed rarely */
1115inline_size void
1116reheap (ANHE *heap, int N)
1117{
1118 int i;
1119
1120 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1121 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1122 for (i = 0; i < N; ++i)
1123 upheap (heap, i + HEAP0);
565} 1124}
566 1125
567/*****************************************************************************/ 1126/*****************************************************************************/
568 1127
1128/* associate signal watchers to a signal signal */
569typedef struct 1129typedef struct
570{ 1130{
1131 EV_ATOMIC_T pending;
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
571 WL head; 1135 WL head;
572 sig_atomic_t volatile gotsig;
573} ANSIG; 1136} ANSIG;
574 1137
575static ANSIG *signals; 1138static ANSIG signals [EV_NSIG - 1];
576static int signalmax;
577 1139
578static int sigpipe [2]; 1140/*****************************************************************************/
579static sig_atomic_t volatile gotsig;
580static struct ev_io sigev;
581 1141
582static void 1142/* used to prepare libev internal fd's */
583signals_init (ANSIG *base, int count) 1143/* this is not fork-safe */
584{
585 while (count--)
586 {
587 base->head = 0;
588 base->gotsig = 0;
589
590 ++base;
591 }
592}
593
594static void
595sighandler (int signum)
596{
597#if _WIN32
598 signal (signum, sighandler);
599#endif
600
601 signals [signum - 1].gotsig = 1;
602
603 if (!gotsig)
604 {
605 int old_errno = errno;
606 gotsig = 1;
607 write (sigpipe [1], &signum, 1);
608 errno = old_errno;
609 }
610}
611
612void
613ev_feed_signal_event (EV_P_ int signum)
614{
615 WL w;
616
617#if EV_MULTIPLICITY
618 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
619#endif
620
621 --signum;
622
623 if (signum < 0 || signum >= signalmax)
624 return;
625
626 signals [signum].gotsig = 0;
627
628 for (w = signals [signum].head; w; w = w->next)
629 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
630}
631
632static void
633sigcb (EV_P_ struct ev_io *iow, int revents)
634{
635 int signum;
636
637 read (sigpipe [0], &revents, 1);
638 gotsig = 0;
639
640 for (signum = signalmax; signum--; )
641 if (signals [signum].gotsig)
642 ev_feed_signal_event (EV_A_ signum + 1);
643}
644
645inline void 1144inline_speed void
646fd_intern (int fd) 1145fd_intern (int fd)
647{ 1146{
648#ifdef _WIN32 1147#ifdef _WIN32
649 int arg = 1; 1148 unsigned long arg = 1;
650 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
651#else 1150#else
652 fcntl (fd, F_SETFD, FD_CLOEXEC); 1151 fcntl (fd, F_SETFD, FD_CLOEXEC);
653 fcntl (fd, F_SETFL, O_NONBLOCK); 1152 fcntl (fd, F_SETFL, O_NONBLOCK);
654#endif 1153#endif
655} 1154}
656 1155
1156static void noinline
1157evpipe_init (EV_P)
1158{
1159 if (!ev_is_active (&pipe_w))
1160 {
1161#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1163 if (evfd < 0 && errno == EINVAL)
1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
1167 {
1168 evpipe [0] = -1;
1169 fd_intern (evfd); /* doing it twice doesn't hurt */
1170 ev_io_set (&pipe_w, evfd, EV_READ);
1171 }
1172 else
1173#endif
1174 {
1175 while (pipe (evpipe))
1176 ev_syserr ("(libev) error creating signal/async pipe");
1177
1178 fd_intern (evpipe [0]);
1179 fd_intern (evpipe [1]);
1180 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1181 }
1182
1183 ev_io_start (EV_A_ &pipe_w);
1184 ev_unref (EV_A); /* watcher should not keep loop alive */
1185 }
1186}
1187
1188inline_size void
1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1190{
1191 if (!*flag)
1192 {
1193 int old_errno = errno; /* save errno because write might clobber it */
1194
1195 *flag = 1;
1196
1197#if EV_USE_EVENTFD
1198 if (evfd >= 0)
1199 {
1200 uint64_t counter = 1;
1201 write (evfd, &counter, sizeof (uint64_t));
1202 }
1203 else
1204#endif
1205 write (evpipe [1], &old_errno, 1);
1206
1207 errno = old_errno;
1208 }
1209}
1210
1211/* called whenever the libev signal pipe */
1212/* got some events (signal, async) */
657static void 1213static void
658siginit (EV_P) 1214pipecb (EV_P_ ev_io *iow, int revents)
659{ 1215{
660 fd_intern (sigpipe [0]); 1216 int i;
661 fd_intern (sigpipe [1]);
662 1217
663 ev_io_set (&sigev, sigpipe [0], EV_READ); 1218#if EV_USE_EVENTFD
664 ev_io_start (EV_A_ &sigev); 1219 if (evfd >= 0)
665 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1220 {
1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
1223 }
1224 else
1225#endif
1226 {
1227 char dummy;
1228 read (evpipe [0], &dummy, 1);
1229 }
1230
1231 if (sig_pending)
1232 {
1233 sig_pending = 0;
1234
1235 for (i = EV_NSIG - 1; i--; )
1236 if (expect_false (signals [i].pending))
1237 ev_feed_signal_event (EV_A_ i + 1);
1238 }
1239
1240#if EV_ASYNC_ENABLE
1241 if (async_pending)
1242 {
1243 async_pending = 0;
1244
1245 for (i = asynccnt; i--; )
1246 if (asyncs [i]->sent)
1247 {
1248 asyncs [i]->sent = 0;
1249 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1250 }
1251 }
1252#endif
666} 1253}
667 1254
668/*****************************************************************************/ 1255/*****************************************************************************/
669 1256
670static struct ev_child *childs [PID_HASHSIZE]; 1257static void
1258ev_sighandler (int signum)
1259{
1260#if EV_MULTIPLICITY
1261 EV_P = signals [signum - 1].loop;
1262#endif
1263
1264#if _WIN32
1265 signal (signum, ev_sighandler);
1266#endif
1267
1268 signals [signum - 1].pending = 1;
1269 evpipe_write (EV_A_ &sig_pending);
1270}
1271
1272void noinline
1273ev_feed_signal_event (EV_P_ int signum)
1274{
1275 WL w;
1276
1277 if (expect_false (signum <= 0 || signum > EV_NSIG))
1278 return;
1279
1280 --signum;
1281
1282#if EV_MULTIPLICITY
1283 /* it is permissible to try to feed a signal to the wrong loop */
1284 /* or, likely more useful, feeding a signal nobody is waiting for */
1285
1286 if (expect_false (signals [signum].loop != EV_A))
1287 return;
1288#endif
1289
1290 signals [signum].pending = 0;
1291
1292 for (w = signals [signum].head; w; w = w->next)
1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1294}
1295
1296#if EV_USE_SIGNALFD
1297static void
1298sigfdcb (EV_P_ ev_io *iow, int revents)
1299{
1300 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1301
1302 for (;;)
1303 {
1304 ssize_t res = read (sigfd, si, sizeof (si));
1305
1306 /* not ISO-C, as res might be -1, but works with SuS */
1307 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1308 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1309
1310 if (res < (ssize_t)sizeof (si))
1311 break;
1312 }
1313}
1314#endif
1315
1316/*****************************************************************************/
1317
1318static WL childs [EV_PID_HASHSIZE];
671 1319
672#ifndef _WIN32 1320#ifndef _WIN32
673 1321
674static struct ev_signal childev; 1322static ev_signal childev;
1323
1324#ifndef WIFCONTINUED
1325# define WIFCONTINUED(status) 0
1326#endif
1327
1328/* handle a single child status event */
1329inline_speed void
1330child_reap (EV_P_ int chain, int pid, int status)
1331{
1332 ev_child *w;
1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1334
1335 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1336 {
1337 if ((w->pid == pid || !w->pid)
1338 && (!traced || (w->flags & 1)))
1339 {
1340 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1341 w->rpid = pid;
1342 w->rstatus = status;
1343 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1344 }
1345 }
1346}
675 1347
676#ifndef WCONTINUED 1348#ifndef WCONTINUED
677# define WCONTINUED 0 1349# define WCONTINUED 0
678#endif 1350#endif
679 1351
1352/* called on sigchld etc., calls waitpid */
680static void 1353static void
681child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
682{
683 struct ev_child *w;
684
685 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
686 if (w->pid == pid || !w->pid)
687 {
688 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
689 w->rpid = pid;
690 w->rstatus = status;
691 ev_feed_event (EV_A_ (W)w, EV_CHILD);
692 }
693}
694
695static void
696childcb (EV_P_ struct ev_signal *sw, int revents) 1354childcb (EV_P_ ev_signal *sw, int revents)
697{ 1355{
698 int pid, status; 1356 int pid, status;
699 1357
1358 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
700 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1359 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
701 { 1360 if (!WCONTINUED
1361 || errno != EINVAL
1362 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1363 return;
1364
702 /* make sure we are called again until all childs have been reaped */ 1365 /* make sure we are called again until all children have been reaped */
1366 /* we need to do it this way so that the callback gets called before we continue */
703 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1367 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
704 1368
705 child_reap (EV_A_ sw, pid, pid, status); 1369 child_reap (EV_A_ pid, pid, status);
1370 if (EV_PID_HASHSIZE > 1)
706 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1371 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
707 }
708} 1372}
709 1373
710#endif 1374#endif
711 1375
712/*****************************************************************************/ 1376/*****************************************************************************/
713 1377
1378#if EV_USE_PORT
1379# include "ev_port.c"
1380#endif
714#if EV_USE_KQUEUE 1381#if EV_USE_KQUEUE
715# include "ev_kqueue.c" 1382# include "ev_kqueue.c"
716#endif 1383#endif
717#if EV_USE_EPOLL 1384#if EV_USE_EPOLL
718# include "ev_epoll.c" 1385# include "ev_epoll.c"
735{ 1402{
736 return EV_VERSION_MINOR; 1403 return EV_VERSION_MINOR;
737} 1404}
738 1405
739/* return true if we are running with elevated privileges and should ignore env variables */ 1406/* return true if we are running with elevated privileges and should ignore env variables */
740static int 1407int inline_size
741enable_secure (void) 1408enable_secure (void)
742{ 1409{
743#ifdef _WIN32 1410#ifdef _WIN32
744 return 0; 1411 return 0;
745#else 1412#else
746 return getuid () != geteuid () 1413 return getuid () != geteuid ()
747 || getgid () != getegid (); 1414 || getgid () != getegid ();
748#endif 1415#endif
749} 1416}
750 1417
751int 1418unsigned int
752ev_method (EV_P) 1419ev_supported_backends (void)
753{ 1420{
754 return method; 1421 unsigned int flags = 0;
755}
756 1422
757static void 1423 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1424 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1425 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1426 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1427 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1428
1429 return flags;
1430}
1431
1432unsigned int
1433ev_recommended_backends (void)
1434{
1435 unsigned int flags = ev_supported_backends ();
1436
1437#ifndef __NetBSD__
1438 /* kqueue is borked on everything but netbsd apparently */
1439 /* it usually doesn't work correctly on anything but sockets and pipes */
1440 flags &= ~EVBACKEND_KQUEUE;
1441#endif
1442#ifdef __APPLE__
1443 /* only select works correctly on that "unix-certified" platform */
1444 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1445 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1446#endif
1447
1448 return flags;
1449}
1450
1451unsigned int
1452ev_embeddable_backends (void)
1453{
1454 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1455
1456 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1457 /* please fix it and tell me how to detect the fix */
1458 flags &= ~EVBACKEND_EPOLL;
1459
1460 return flags;
1461}
1462
1463unsigned int
1464ev_backend (EV_P)
1465{
1466 return backend;
1467}
1468
1469#if EV_MINIMAL < 2
1470unsigned int
1471ev_loop_count (EV_P)
1472{
1473 return loop_count;
1474}
1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{
1479 return loop_depth;
1480}
1481
1482void
1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1484{
1485 io_blocktime = interval;
1486}
1487
1488void
1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1490{
1491 timeout_blocktime = interval;
1492}
1493
1494void
1495ev_set_userdata (EV_P_ void *data)
1496{
1497 userdata = data;
1498}
1499
1500void *
1501ev_userdata (EV_P)
1502{
1503 return userdata;
1504}
1505
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1507{
1508 invoke_cb = invoke_pending_cb;
1509}
1510
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1512{
1513 release_cb = release;
1514 acquire_cb = acquire;
1515}
1516#endif
1517
1518/* initialise a loop structure, must be zero-initialised */
1519static void noinline
758loop_init (EV_P_ unsigned int flags) 1520loop_init (EV_P_ unsigned int flags)
759{ 1521{
760 if (!method) 1522 if (!backend)
761 { 1523 {
1524#if EV_USE_REALTIME
1525 if (!have_realtime)
1526 {
1527 struct timespec ts;
1528
1529 if (!clock_gettime (CLOCK_REALTIME, &ts))
1530 have_realtime = 1;
1531 }
1532#endif
1533
762#if EV_USE_MONOTONIC 1534#if EV_USE_MONOTONIC
1535 if (!have_monotonic)
763 { 1536 {
764 struct timespec ts; 1537 struct timespec ts;
1538
765 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1539 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
766 have_monotonic = 1; 1540 have_monotonic = 1;
767 } 1541 }
768#endif 1542#endif
769 1543
770 ev_rt_now = ev_time (); 1544 /* pid check not overridable via env */
771 mn_now = get_clock (); 1545#ifndef _WIN32
772 now_floor = mn_now; 1546 if (flags & EVFLAG_FORKCHECK)
773 rtmn_diff = ev_rt_now - mn_now; 1547 curpid = getpid ();
1548#endif
774 1549
775 if (!(flags & EVMETHOD_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1550 if (!(flags & EVFLAG_NOENV)
1551 && !enable_secure ()
1552 && getenv ("LIBEV_FLAGS"))
776 flags = atoi (getenv ("LIBEV_FLAGS")); 1553 flags = atoi (getenv ("LIBEV_FLAGS"));
777 1554
1555 ev_rt_now = ev_time ();
1556 mn_now = get_clock ();
1557 now_floor = mn_now;
1558 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2
1560 invoke_cb = ev_invoke_pending;
1561#endif
1562
1563 io_blocktime = 0.;
1564 timeout_blocktime = 0.;
1565 backend = 0;
1566 backend_fd = -1;
1567 sig_pending = 0;
1568#if EV_ASYNC_ENABLE
1569 async_pending = 0;
1570#endif
1571#if EV_USE_INOTIFY
1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1573#endif
1574#if EV_USE_SIGNALFD
1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1576#endif
1577
778 if (!(flags & 0x0000ffff)) 1578 if (!(flags & 0x0000ffffU))
779 flags |= 0x0000ffff; 1579 flags |= ev_recommended_backends ();
780 1580
781 method = 0; 1581#if EV_USE_PORT
1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1583#endif
782#if EV_USE_KQUEUE 1584#if EV_USE_KQUEUE
783 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1585 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
784#endif 1586#endif
785#if EV_USE_EPOLL 1587#if EV_USE_EPOLL
786 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1588 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
787#endif 1589#endif
788#if EV_USE_POLL 1590#if EV_USE_POLL
789 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1591 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
790#endif 1592#endif
791#if EV_USE_SELECT 1593#if EV_USE_SELECT
792 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
793#endif 1595#endif
794 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
795 ev_init (&sigev, sigcb); 1599 ev_init (&pipe_w, pipecb);
796 ev_set_priority (&sigev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
797 } 1601 }
798} 1602}
799 1603
800void 1604/* free up a loop structure */
1605static void noinline
801loop_destroy (EV_P) 1606loop_destroy (EV_P)
802{ 1607{
803 int i; 1608 int i;
804 1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1636
1637#if EV_USE_INOTIFY
1638 if (fs_fd >= 0)
1639 close (fs_fd);
1640#endif
1641
1642 if (backend_fd >= 0)
1643 close (backend_fd);
1644
1645#if EV_USE_PORT
1646 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1647#endif
805#if EV_USE_KQUEUE 1648#if EV_USE_KQUEUE
806 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1649 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
807#endif 1650#endif
808#if EV_USE_EPOLL 1651#if EV_USE_EPOLL
809 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1652 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
810#endif 1653#endif
811#if EV_USE_POLL 1654#if EV_USE_POLL
812 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1655 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
813#endif 1656#endif
814#if EV_USE_SELECT 1657#if EV_USE_SELECT
815 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1658 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
816#endif 1659#endif
817 1660
818 for (i = NUMPRI; i--; ) 1661 for (i = NUMPRI; i--; )
1662 {
819 array_free (pending, [i]); 1663 array_free (pending, [i]);
1664#if EV_IDLE_ENABLE
1665 array_free (idle, [i]);
1666#endif
1667 }
1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
820 1670
821 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
822 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
823 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
824#if EV_PERIODICS 1675#if EV_PERIODIC_ENABLE
825 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
826#endif 1677#endif
1678#if EV_FORK_ENABLE
827 array_free (idle, EMPTY); 1679 array_free (fork, EMPTY);
1680#endif
828 array_free (prepare, EMPTY); 1681 array_free (prepare, EMPTY);
829 array_free (check, EMPTY); 1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
830 1686
831 method = 0; 1687 backend = 0;
832} 1688}
833 1689
834static void 1690#if EV_USE_INOTIFY
1691inline_size void infy_fork (EV_P);
1692#endif
1693
1694inline_size void
835loop_fork (EV_P) 1695loop_fork (EV_P)
836{ 1696{
1697#if EV_USE_PORT
1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1699#endif
1700#if EV_USE_KQUEUE
1701 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1702#endif
837#if EV_USE_EPOLL 1703#if EV_USE_EPOLL
838 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1704 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
839#endif 1705#endif
840#if EV_USE_KQUEUE 1706#if EV_USE_INOTIFY
841 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1707 infy_fork (EV_A);
842#endif 1708#endif
843 1709
844 if (ev_is_active (&sigev)) 1710 if (ev_is_active (&pipe_w))
845 { 1711 {
846 /* default loop */ 1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 sig_pending = 1;
1715#if EV_ASYNC_ENABLE
1716 async_pending = 1;
1717#endif
847 1718
848 ev_ref (EV_A); 1719 ev_ref (EV_A);
849 ev_io_stop (EV_A_ &sigev); 1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
850 close (sigpipe [0]); 1729 close (evpipe [0]);
851 close (sigpipe [1]); 1730 close (evpipe [1]);
1731 }
852 1732
853 while (pipe (sigpipe))
854 syserr ("(libev) error creating pipe");
855
856 siginit (EV_A); 1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
857 } 1736 }
858 1737
859 postfork = 0; 1738 postfork = 0;
860} 1739}
1740
1741#if EV_MULTIPLICITY
1742
1743struct ev_loop *
1744ev_loop_new (unsigned int flags)
1745{
1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1747
1748 memset (EV_A, 0, sizeof (struct ev_loop));
1749 loop_init (EV_A_ flags);
1750
1751 if (ev_backend (EV_A))
1752 return EV_A;
1753
1754 return 0;
1755}
1756
1757void
1758ev_loop_destroy (EV_P)
1759{
1760 loop_destroy (EV_A);
1761 ev_free (loop);
1762}
1763
1764void
1765ev_loop_fork (EV_P)
1766{
1767 postfork = 1; /* must be in line with ev_default_fork */
1768}
1769#endif /* multiplicity */
1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1867# endif
1868#endif
1869}
1870#endif
861 1871
862#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
863struct ev_loop * 1873struct ev_loop *
864ev_loop_new (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
865{
866 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
867
868 memset (loop, 0, sizeof (struct ev_loop));
869
870 loop_init (EV_A_ flags);
871
872 if (ev_method (EV_A))
873 return loop;
874
875 return 0;
876}
877
878void
879ev_loop_destroy (EV_P)
880{
881 loop_destroy (EV_A);
882 ev_free (loop);
883}
884
885void
886ev_loop_fork (EV_P)
887{
888 postfork = 1;
889}
890
891#endif
892
893#if EV_MULTIPLICITY
894struct ev_loop *
895#else 1875#else
896int 1876int
897#endif
898ev_default_loop (unsigned int methods) 1877ev_default_loop (unsigned int flags)
1878#endif
899{ 1879{
900 if (sigpipe [0] == sigpipe [1])
901 if (pipe (sigpipe))
902 return 0;
903
904 if (!default_loop) 1880 if (!ev_default_loop_ptr)
905 { 1881 {
906#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
907 struct ev_loop *loop = default_loop = &default_loop_struct; 1883 EV_P = ev_default_loop_ptr = &default_loop_struct;
908#else 1884#else
909 default_loop = 1; 1885 ev_default_loop_ptr = 1;
910#endif 1886#endif
911 1887
912 loop_init (EV_A_ methods); 1888 loop_init (EV_A_ flags);
913 1889
914 if (ev_method (EV_A)) 1890 if (ev_backend (EV_A))
915 { 1891 {
916 siginit (EV_A);
917
918#ifndef _WIN32 1892#ifndef _WIN32
919 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
920 ev_set_priority (&childev, EV_MAXPRI); 1894 ev_set_priority (&childev, EV_MAXPRI);
921 ev_signal_start (EV_A_ &childev); 1895 ev_signal_start (EV_A_ &childev);
922 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
923#endif 1897#endif
924 } 1898 }
925 else 1899 else
926 default_loop = 0; 1900 ev_default_loop_ptr = 0;
927 } 1901 }
928 1902
929 return default_loop; 1903 return ev_default_loop_ptr;
930} 1904}
931 1905
932void 1906void
933ev_default_destroy (void) 1907ev_default_destroy (void)
934{ 1908{
935#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
936 struct ev_loop *loop = default_loop; 1910 EV_P = ev_default_loop_ptr;
937#endif 1911#endif
1912
1913 ev_default_loop_ptr = 0;
938 1914
939#ifndef _WIN32 1915#ifndef _WIN32
940 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
941 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
942#endif 1918#endif
943 1919
944 ev_ref (EV_A); /* signal watcher */
945 ev_io_stop (EV_A_ &sigev);
946
947 close (sigpipe [0]); sigpipe [0] = 0;
948 close (sigpipe [1]); sigpipe [1] = 0;
949
950 loop_destroy (EV_A); 1920 loop_destroy (EV_A);
951} 1921}
952 1922
953void 1923void
954ev_default_fork (void) 1924ev_default_fork (void)
955{ 1925{
956#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
957 struct ev_loop *loop = default_loop; 1927 EV_P = ev_default_loop_ptr;
958#endif 1928#endif
959 1929
960 if (method) 1930 postfork = 1; /* must be in line with ev_loop_fork */
961 postfork = 1;
962} 1931}
963 1932
964/*****************************************************************************/ 1933/*****************************************************************************/
965 1934
966static int 1935void
967any_pending (EV_P) 1936ev_invoke (EV_P_ void *w, int revents)
1937{
1938 EV_CB_INVOKE ((W)w, revents);
1939}
1940
1941unsigned int
1942ev_pending_count (EV_P)
968{ 1943{
969 int pri; 1944 int pri;
1945 unsigned int count = 0;
970 1946
971 for (pri = NUMPRI; pri--; ) 1947 for (pri = NUMPRI; pri--; )
972 if (pendingcnt [pri]) 1948 count += pendingcnt [pri];
973 return 1;
974 1949
975 return 0; 1950 return count;
976} 1951}
977 1952
978static void 1953void noinline
979call_pending (EV_P) 1954ev_invoke_pending (EV_P)
980{ 1955{
981 int pri; 1956 int pri;
982 1957
983 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
984 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
985 { 1960 {
986 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
987 1962
988 if (p->w) 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
989 { 1964 /* ^ this is no longer true, as pending_w could be here */
1965
990 p->w->pending = 0; 1966 p->w->pending = 0;
991 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
992 } 1968 EV_FREQUENT_CHECK;
993 } 1969 }
994} 1970}
995 1971
996static void 1972#if EV_IDLE_ENABLE
1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1976idle_reify (EV_P)
1977{
1978 if (expect_false (idleall))
1979 {
1980 int pri;
1981
1982 for (pri = NUMPRI; pri--; )
1983 {
1984 if (pendingcnt [pri])
1985 break;
1986
1987 if (idlecnt [pri])
1988 {
1989 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1990 break;
1991 }
1992 }
1993 }
1994}
1995#endif
1996
1997/* make timers pending */
1998inline_size void
997timers_reify (EV_P) 1999timers_reify (EV_P)
998{ 2000{
2001 EV_FREQUENT_CHECK;
2002
999 while (timercnt && ((WT)timers [0])->at <= mn_now) 2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1000 { 2004 {
1001 struct ev_timer *w = timers [0]; 2005 do
1002
1003 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1004
1005 /* first reschedule or stop timer */
1006 if (w->repeat)
1007 { 2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
1008 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1009 2019
1010 ((WT)w)->at += w->repeat; 2020 ANHE_at_cache (timers [HEAP0]);
1011 if (((WT)w)->at < mn_now)
1012 ((WT)w)->at = mn_now;
1013
1014 downheap ((WT *)timers, timercnt, 0); 2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
1015 } 2028 }
1016 else 2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1017 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 2030
1019 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
1020 } 2032 }
1021} 2033}
1022 2034
1023#if EV_PERIODICS 2035#if EV_PERIODIC_ENABLE
1024static void 2036/* make periodics pending */
2037inline_size void
1025periodics_reify (EV_P) 2038periodics_reify (EV_P)
1026{ 2039{
2040 EV_FREQUENT_CHECK;
2041
1027 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1028 { 2043 {
1029 struct ev_periodic *w = periodics [0]; 2044 int feed_count = 0;
1030 2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
1031 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1032 2051
1033 /* first reschedule or stop timer */ 2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
1034 if (w->reschedule_cb) 2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
2134time_update (EV_P_ ev_tstamp max_block)
2135{
2136#if EV_USE_MONOTONIC
2137 if (expect_true (have_monotonic))
2138 {
2139 int i;
2140 ev_tstamp odiff = rtmn_diff;
2141
2142 mn_now = get_clock ();
2143
2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145 /* interpolate in the meantime */
2146 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1035 { 2147 {
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2148 ev_rt_now = rtmn_diff + mn_now;
1037 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2149 return;
1038 downheap ((WT *)periodics, periodiccnt, 0);
1039 } 2150 }
1040 else if (w->interval)
1041 {
1042 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1043 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1044 downheap ((WT *)periodics, periodiccnt, 0);
1045 }
1046 else
1047 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1048 2151
1049 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1050 }
1051}
1052
1053static void
1054periodics_reschedule (EV_P)
1055{
1056 int i;
1057
1058 /* adjust periodics after time jump */
1059 for (i = 0; i < periodiccnt; ++i)
1060 {
1061 struct ev_periodic *w = periodics [i];
1062
1063 if (w->reschedule_cb)
1064 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1065 else if (w->interval)
1066 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1067 }
1068
1069 /* now rebuild the heap */
1070 for (i = periodiccnt >> 1; i--; )
1071 downheap ((WT *)periodics, periodiccnt, i);
1072}
1073#endif
1074
1075inline int
1076time_update_monotonic (EV_P)
1077{
1078 mn_now = get_clock ();
1079
1080 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1081 {
1082 ev_rt_now = rtmn_diff + mn_now;
1083 return 0;
1084 }
1085 else
1086 {
1087 now_floor = mn_now; 2152 now_floor = mn_now;
1088 ev_rt_now = ev_time (); 2153 ev_rt_now = ev_time ();
1089 return 1;
1090 }
1091}
1092 2154
1093static void 2155 /* loop a few times, before making important decisions.
1094time_update (EV_P) 2156 * on the choice of "4": one iteration isn't enough,
1095{ 2157 * in case we get preempted during the calls to
1096 int i; 2158 * ev_time and get_clock. a second call is almost guaranteed
1097 2159 * to succeed in that case, though. and looping a few more times
1098#if EV_USE_MONOTONIC 2160 * doesn't hurt either as we only do this on time-jumps or
1099 if (expect_true (have_monotonic)) 2161 * in the unlikely event of having been preempted here.
1100 { 2162 */
1101 if (time_update_monotonic (EV_A)) 2163 for (i = 4; --i; )
1102 { 2164 {
1103 ev_tstamp odiff = rtmn_diff;
1104
1105 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1106 {
1107 rtmn_diff = ev_rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1108 2166
1109 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1110 return; /* all is well */ 2168 return; /* all is well */
1111 2169
1112 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1113 mn_now = get_clock (); 2171 mn_now = get_clock ();
1114 now_floor = mn_now; 2172 now_floor = mn_now;
1115 } 2173 }
1116 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117# if EV_PERIODICS 2177# if EV_PERIODIC_ENABLE
2178 periodics_reschedule (EV_A);
2179# endif
2180 }
2181 else
2182#endif
2183 {
2184 ev_rt_now = ev_time ();
2185
2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2190#if EV_PERIODIC_ENABLE
1118 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1119# endif 2192#endif
1120 /* no timer adjustment, as the monotonic clock doesn't jump */
1121 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1122 } 2193 }
1123 }
1124 else
1125#endif
1126 {
1127 ev_rt_now = ev_time ();
1128
1129 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1130 {
1131#if EV_PERIODICS
1132 periodics_reschedule (EV_A);
1133#endif
1134
1135 /* adjust timers. this is easy, as the offset is the same for all */
1136 for (i = 0; i < timercnt; ++i)
1137 ((WT)timers [i])->at += ev_rt_now - mn_now;
1138 }
1139 2194
1140 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1141 } 2196 }
1142} 2197}
1143 2198
1144void 2199void
1145ev_ref (EV_P)
1146{
1147 ++activecnt;
1148}
1149
1150void
1151ev_unref (EV_P)
1152{
1153 --activecnt;
1154}
1155
1156static int loop_done;
1157
1158void
1159ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1160{ 2201{
1161 double block; 2202#if EV_MINIMAL < 2
1162 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2203 ++loop_depth;
2204#endif
2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1163 2211
1164 do 2212 do
1165 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
2218#ifndef _WIN32
2219 if (expect_false (curpid)) /* penalise the forking check even more */
2220 if (expect_false (getpid () != curpid))
2221 {
2222 curpid = getpid ();
2223 postfork = 1;
2224 }
2225#endif
2226
2227#if EV_FORK_ENABLE
2228 /* we might have forked, so queue fork handlers */
2229 if (expect_false (postfork))
2230 if (forkcnt)
2231 {
2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2233 EV_INVOKE_PENDING;
2234 }
2235#endif
2236
1166 /* queue check watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1167 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1168 { 2239 {
1169 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1170 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1171 } 2242 }
2243
2244 if (expect_false (loop_done))
2245 break;
1172 2246
1173 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1174 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1175 loop_fork (EV_A); 2249 loop_fork (EV_A);
1176 2250
1177 /* update fd-related kernel structures */ 2251 /* update fd-related kernel structures */
1178 fd_reify (EV_A); 2252 fd_reify (EV_A);
1179 2253
1180 /* calculate blocking time */ 2254 /* calculate blocking time */
2255 {
2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
1181 2258
1182 /* we only need this for !monotonic clock or timers, but as we basically 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1183 always have timers, we just calculate it always */
1184#if EV_USE_MONOTONIC
1185 if (expect_true (have_monotonic))
1186 time_update_monotonic (EV_A);
1187 else
1188#endif
1189 { 2260 {
1190 ev_rt_now = ev_time (); 2261 /* remember old timestamp for io_blocktime calculation */
1191 mn_now = ev_rt_now; 2262 ev_tstamp prev_mn_now = mn_now;
1192 }
1193 2263
1194 if (flags & EVLOOP_NONBLOCK || idlecnt) 2264 /* update time to cancel out callback processing overhead */
1195 block = 0.; 2265 time_update (EV_A_ 1e100);
1196 else 2266
1197 {
1198 block = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1199 2268
1200 if (timercnt) 2269 if (timercnt)
1201 { 2270 {
1202 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1203 if (block > to) block = to; 2272 if (waittime > to) waittime = to;
1204 } 2273 }
1205 2274
1206#if EV_PERIODICS 2275#if EV_PERIODIC_ENABLE
1207 if (periodiccnt) 2276 if (periodiccnt)
1208 { 2277 {
1209 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1210 if (block > to) block = to; 2279 if (waittime > to) waittime = to;
1211 } 2280 }
1212#endif 2281#endif
1213 2282
1214 if (block < 0.) block = 0.; 2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
1215 } 2301 }
1216 2302
1217 method_poll (EV_A_ block); 2303#if EV_MINIMAL < 2
2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1218 2309
1219 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
1220 time_update (EV_A); 2311 time_update (EV_A_ waittime + sleeptime);
2312 }
1221 2313
1222 /* queue pending timers and reschedule them */ 2314 /* queue pending timers and reschedule them */
1223 timers_reify (EV_A); /* relative timers called last */ 2315 timers_reify (EV_A); /* relative timers called last */
1224#if EV_PERIODICS 2316#if EV_PERIODIC_ENABLE
1225 periodics_reify (EV_A); /* absolute timers called first */ 2317 periodics_reify (EV_A); /* absolute timers called first */
1226#endif 2318#endif
1227 2319
2320#if EV_IDLE_ENABLE
1228 /* queue idle watchers unless io or timers are pending */ 2321 /* queue idle watchers unless other events are pending */
1229 if (idlecnt && !any_pending (EV_A)) 2322 idle_reify (EV_A);
1230 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2323#endif
1231 2324
1232 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1233 if (checkcnt) 2326 if (expect_false (checkcnt))
1234 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1235 2328
1236 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1237 } 2330 }
1238 while (activecnt && !loop_done); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1239 2336
1240 if (loop_done != 2) 2337 if (loop_done == EVUNLOOP_ONE)
1241 loop_done = 0; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1242} 2343}
1243 2344
1244void 2345void
1245ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1246{ 2347{
1247 loop_done = how; 2348 loop_done = how;
1248} 2349}
1249 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1250/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1251 2390
1252inline void 2391inline_size void
1253wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1254{ 2393{
1255 elem->next = *head; 2394 elem->next = *head;
1256 *head = elem; 2395 *head = elem;
1257} 2396}
1258 2397
1259inline void 2398inline_size void
1260wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1261{ 2400{
1262 while (*head) 2401 while (*head)
1263 { 2402 {
1264 if (*head == elem) 2403 if (expect_true (*head == elem))
1265 { 2404 {
1266 *head = elem->next; 2405 *head = elem->next;
1267 return; 2406 break;
1268 } 2407 }
1269 2408
1270 head = &(*head)->next; 2409 head = &(*head)->next;
1271 } 2410 }
1272} 2411}
1273 2412
2413/* internal, faster, version of ev_clear_pending */
1274inline void 2414inline_speed void
1275ev_clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1276{ 2416{
1277 if (w->pending) 2417 if (w->pending)
1278 { 2418 {
1279 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1280 w->pending = 0; 2420 w->pending = 0;
1281 } 2421 }
1282} 2422}
1283 2423
2424int
2425ev_clear_pending (EV_P_ void *w)
2426{
2427 W w_ = (W)w;
2428 int pending = w_->pending;
2429
2430 if (expect_true (pending))
2431 {
2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2434 w_->pending = 0;
2435 return p->events;
2436 }
2437 else
2438 return 0;
2439}
2440
1284inline void 2441inline_size void
2442pri_adjust (EV_P_ W w)
2443{
2444 int pri = ev_priority (w);
2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2447 ev_set_priority (w, pri);
2448}
2449
2450inline_speed void
1285ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1286{ 2452{
1287 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2453 pri_adjust (EV_A_ w);
1288 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1289
1290 w->active = active; 2454 w->active = active;
1291 ev_ref (EV_A); 2455 ev_ref (EV_A);
1292} 2456}
1293 2457
1294inline void 2458inline_size void
1295ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1296{ 2460{
1297 ev_unref (EV_A); 2461 ev_unref (EV_A);
1298 w->active = 0; 2462 w->active = 0;
1299} 2463}
1300 2464
1301/*****************************************************************************/ 2465/*****************************************************************************/
1302 2466
1303void 2467void noinline
1304ev_io_start (EV_P_ struct ev_io *w) 2468ev_io_start (EV_P_ ev_io *w)
1305{ 2469{
1306 int fd = w->fd; 2470 int fd = w->fd;
1307 2471
1308 if (ev_is_active (w)) 2472 if (expect_false (ev_is_active (w)))
1309 return; 2473 return;
1310 2474
1311 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1312 2479
1313 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1314 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1315 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1316 2483
1317 fd_change (EV_A_ fd); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1318} 2485 w->events &= ~EV__IOFDSET;
1319 2486
1320void 2487 EV_FREQUENT_CHECK;
2488}
2489
2490void noinline
1321ev_io_stop (EV_P_ struct ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1322{ 2492{
1323 ev_clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1324 if (!ev_is_active (w)) 2494 if (expect_false (!ev_is_active (w)))
1325 return; 2495 return;
1326 2496
1327 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1328 2498
2499 EV_FREQUENT_CHECK;
2500
1329 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1330 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1331 2503
1332 fd_change (EV_A_ w->fd); 2504 fd_change (EV_A_ w->fd, 1);
1333}
1334 2505
1335void 2506 EV_FREQUENT_CHECK;
2507}
2508
2509void noinline
1336ev_timer_start (EV_P_ struct ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1337{ 2511{
1338 if (ev_is_active (w)) 2512 if (expect_false (ev_is_active (w)))
1339 return; 2513 return;
1340 2514
1341 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1342 2516
1343 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1344 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1345 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1346 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1347 timers [timercnt - 1] = w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1348 upheap ((WT *)timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1349 2527
2528 EV_FREQUENT_CHECK;
2529
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1351} 2531}
1352 2532
1353void 2533void noinline
1354ev_timer_stop (EV_P_ struct ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1355{ 2535{
1356 ev_clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1357 if (!ev_is_active (w)) 2537 if (expect_false (!ev_is_active (w)))
1358 return; 2538 return;
1359 2539
2540 EV_FREQUENT_CHECK;
2541
2542 {
2543 int active = ev_active (w);
2544
1360 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1361 2546
1362 if (((W)w)->active < timercnt--) 2547 --timercnt;
2548
2549 if (expect_true (active < timercnt + HEAP0))
1363 { 2550 {
1364 timers [((W)w)->active - 1] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2552 adjustheap (timers, timercnt, active);
1366 } 2553 }
2554 }
1367 2555
1368 ((WT)w)->at -= mn_now; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1369 2559
1370 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1371} 2561}
1372 2562
1373void 2563void noinline
1374ev_timer_again (EV_P_ struct ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1375{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1376 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1377 { 2569 {
1378 if (w->repeat) 2570 if (w->repeat)
1379 { 2571 {
1380 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
1381 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
1382 } 2575 }
1383 else 2576 else
1384 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1385 } 2578 }
1386 else if (w->repeat) 2579 else if (w->repeat)
2580 {
2581 ev_at (w) = w->repeat;
1387 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1388} 2583 }
1389 2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592}
2593
1390#if EV_PERIODICS 2594#if EV_PERIODIC_ENABLE
1391void 2595void noinline
1392ev_periodic_start (EV_P_ struct ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1393{ 2597{
1394 if (ev_is_active (w)) 2598 if (expect_false (ev_is_active (w)))
1395 return; 2599 return;
1396 2600
1397 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1398 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1399 else if (w->interval) 2603 else if (w->interval)
1400 { 2604 {
1401 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1402 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1403 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 } 2608 }
2609 else
2610 ev_at (w) = w->offset;
1405 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1406 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1407 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1408 periodics [periodiccnt - 1] = w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1409 upheap ((WT *)periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1410 2620
2621 EV_FREQUENT_CHECK;
2622
1411 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1412} 2624}
1413 2625
1414void 2626void noinline
1415ev_periodic_stop (EV_P_ struct ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1416{ 2628{
1417 ev_clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1418 if (!ev_is_active (w)) 2630 if (expect_false (!ev_is_active (w)))
1419 return; 2631 return;
1420 2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
1421 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1422 2639
1423 if (((W)w)->active < periodiccnt--) 2640 --periodiccnt;
2641
2642 if (expect_true (active < periodiccnt + HEAP0))
1424 { 2643 {
1425 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1426 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2645 adjustheap (periodics, periodiccnt, active);
1427 } 2646 }
2647 }
2648
2649 EV_FREQUENT_CHECK;
1428 2650
1429 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1430} 2652}
1431 2653
1432void 2654void noinline
1433ev_periodic_again (EV_P_ struct ev_periodic *w) 2655ev_periodic_again (EV_P_ ev_periodic *w)
1434{ 2656{
1435 /* TODO: use adjustheap and recalculation */ 2657 /* TODO: use adjustheap and recalculation */
1436 ev_periodic_stop (EV_A_ w); 2658 ev_periodic_stop (EV_A_ w);
1437 ev_periodic_start (EV_A_ w); 2659 ev_periodic_start (EV_A_ w);
1438} 2660}
1439#endif 2661#endif
1440 2662
1441void
1442ev_idle_start (EV_P_ struct ev_idle *w)
1443{
1444 if (ev_is_active (w))
1445 return;
1446
1447 ev_start (EV_A_ (W)w, ++idlecnt);
1448 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1449 idles [idlecnt - 1] = w;
1450}
1451
1452void
1453ev_idle_stop (EV_P_ struct ev_idle *w)
1454{
1455 ev_clear_pending (EV_A_ (W)w);
1456 if (!ev_is_active (w))
1457 return;
1458
1459 idles [((W)w)->active - 1] = idles [--idlecnt];
1460 ev_stop (EV_A_ (W)w);
1461}
1462
1463void
1464ev_prepare_start (EV_P_ struct ev_prepare *w)
1465{
1466 if (ev_is_active (w))
1467 return;
1468
1469 ev_start (EV_A_ (W)w, ++preparecnt);
1470 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1471 prepares [preparecnt - 1] = w;
1472}
1473
1474void
1475ev_prepare_stop (EV_P_ struct ev_prepare *w)
1476{
1477 ev_clear_pending (EV_A_ (W)w);
1478 if (!ev_is_active (w))
1479 return;
1480
1481 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1482 ev_stop (EV_A_ (W)w);
1483}
1484
1485void
1486ev_check_start (EV_P_ struct ev_check *w)
1487{
1488 if (ev_is_active (w))
1489 return;
1490
1491 ev_start (EV_A_ (W)w, ++checkcnt);
1492 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1493 checks [checkcnt - 1] = w;
1494}
1495
1496void
1497ev_check_stop (EV_P_ struct ev_check *w)
1498{
1499 ev_clear_pending (EV_A_ (W)w);
1500 if (!ev_is_active (w))
1501 return;
1502
1503 checks [((W)w)->active - 1] = checks [--checkcnt];
1504 ev_stop (EV_A_ (W)w);
1505}
1506
1507#ifndef SA_RESTART 2663#ifndef SA_RESTART
1508# define SA_RESTART 0 2664# define SA_RESTART 0
1509#endif 2665#endif
1510 2666
1511void 2667void noinline
1512ev_signal_start (EV_P_ struct ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
1513{ 2669{
2670 if (expect_false (ev_is_active (w)))
2671 return;
2672
2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2674
1514#if EV_MULTIPLICITY 2675#if EV_MULTIPLICITY
1515 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2676 assert (("libev: a signal must not be attached to two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2678
2679 signals [w->signum - 1].loop = EV_A;
2680#endif
2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_SIGNALFD
2685 if (sigfd == -2)
2686 {
2687 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2688 if (sigfd < 0 && errno == EINVAL)
2689 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2690
2691 if (sigfd >= 0)
2692 {
2693 fd_intern (sigfd); /* doing it twice will not hurt */
2694
2695 sigemptyset (&sigfd_set);
2696
2697 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2698 ev_set_priority (&sigfd_w, EV_MAXPRI);
2699 ev_io_start (EV_A_ &sigfd_w);
2700 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2701 }
2702 }
2703
2704 if (sigfd >= 0)
2705 {
2706 /* TODO: check .head */
2707 sigaddset (&sigfd_set, w->signum);
2708 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2709
2710 signalfd (sigfd, &sigfd_set, 0);
2711 }
2712#endif
2713
2714 ev_start (EV_A_ (W)w, 1);
2715 wlist_add (&signals [w->signum - 1].head, (WL)w);
2716
2717 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/
1516#endif 2720# endif
1517 if (ev_is_active (w)) 2721 {
2722# if _WIN32
2723 signal (w->signum, ev_sighandler);
2724# else
2725 struct sigaction sa;
2726
2727 evpipe_init (EV_A);
2728
2729 sa.sa_handler = ev_sighandler;
2730 sigfillset (&sa.sa_mask);
2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2732 sigaction (w->signum, &sa, 0);
2733
2734 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2737#endif
2738 }
2739
2740 EV_FREQUENT_CHECK;
2741}
2742
2743void noinline
2744ev_signal_stop (EV_P_ ev_signal *w)
2745{
2746 clear_pending (EV_A_ (W)w);
2747 if (expect_false (!ev_is_active (w)))
1518 return; 2748 return;
1519 2749
1520 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2750 EV_FREQUENT_CHECK;
2751
2752 wlist_del (&signals [w->signum - 1].head, (WL)w);
2753 ev_stop (EV_A_ (W)w);
2754
2755 if (!signals [w->signum - 1].head)
2756 {
2757#if EV_MULTIPLICITY
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif
2760#if EV_USE_SIGNALFD
2761 if (sigfd >= 0)
2762 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2764 sigdelset (&sigfd_set, w->signum);
2765 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2767 /*TODO: maybe unblock signal? */
2768 }
2769 else
2770#endif
2771 signal (w->signum, SIG_DFL);
2772 }
2773
2774 EV_FREQUENT_CHECK;
2775}
2776
2777void
2778ev_child_start (EV_P_ ev_child *w)
2779{
2780#if EV_MULTIPLICITY
2781 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2782#endif
2783 if (expect_false (ev_is_active (w)))
2784 return;
2785
2786 EV_FREQUENT_CHECK;
1521 2787
1522 ev_start (EV_A_ (W)w, 1); 2788 ev_start (EV_A_ (W)w, 1);
1523 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2789 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1524 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1525 2790
1526 if (!((WL)w)->next) 2791 EV_FREQUENT_CHECK;
2792}
2793
2794void
2795ev_child_stop (EV_P_ ev_child *w)
2796{
2797 clear_pending (EV_A_ (W)w);
2798 if (expect_false (!ev_is_active (w)))
2799 return;
2800
2801 EV_FREQUENT_CHECK;
2802
2803 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2807}
2808
2809#if EV_STAT_ENABLE
2810
2811# ifdef _WIN32
2812# undef lstat
2813# define lstat(a,b) _stati64 (a,b)
2814# endif
2815
2816#define DEF_STAT_INTERVAL 5.0074891
2817#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2818#define MIN_STAT_INTERVAL 0.1074891
2819
2820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2821
2822#if EV_USE_INOTIFY
2823# define EV_INOTIFY_BUFSIZE 8192
2824
2825static void noinline
2826infy_add (EV_P_ ev_stat *w)
2827{
2828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2829
2830 if (w->wd < 0)
2831 {
2832 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2833 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2834
2835 /* monitor some parent directory for speedup hints */
2836 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2837 /* but an efficiency issue only */
2838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2839 {
2840 char path [4096];
2841 strcpy (path, w->path);
2842
2843 do
2844 {
2845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2847
2848 char *pend = strrchr (path, '/');
2849
2850 if (!pend || pend == path)
2851 break;
2852
2853 *pend = 0;
2854 w->wd = inotify_add_watch (fs_fd, path, mask);
2855 }
2856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2857 }
1527 { 2858 }
2859
2860 if (w->wd >= 0)
2861 {
2862 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2863
2864 /* now local changes will be tracked by inotify, but remote changes won't */
2865 /* unless the filesystem it known to be local, we therefore still poll */
2866 /* also do poll on <2.6.25, but with normal frequency */
2867 struct statfs sfs;
2868
2869 if (fs_2625 && !statfs (w->path, &sfs))
2870 if (sfs.f_type == 0x1373 /* devfs */
2871 || sfs.f_type == 0xEF53 /* ext2/3 */
2872 || sfs.f_type == 0x3153464a /* jfs */
2873 || sfs.f_type == 0x52654973 /* reiser3 */
2874 || sfs.f_type == 0x01021994 /* tempfs */
2875 || sfs.f_type == 0x58465342 /* xfs */)
2876 return;
2877
2878 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2879 ev_timer_again (EV_A_ &w->timer);
2880 }
2881}
2882
2883static void noinline
2884infy_del (EV_P_ ev_stat *w)
2885{
2886 int slot;
2887 int wd = w->wd;
2888
2889 if (wd < 0)
2890 return;
2891
2892 w->wd = -2;
2893 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2894 wlist_del (&fs_hash [slot].head, (WL)w);
2895
2896 /* remove this watcher, if others are watching it, they will rearm */
2897 inotify_rm_watch (fs_fd, wd);
2898}
2899
2900static void noinline
2901infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2902{
2903 if (slot < 0)
2904 /* overflow, need to check for all hash slots */
2905 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2906 infy_wd (EV_A_ slot, wd, ev);
2907 else
2908 {
2909 WL w_;
2910
2911 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2912 {
2913 ev_stat *w = (ev_stat *)w_;
2914 w_ = w_->next; /* lets us remove this watcher and all before it */
2915
2916 if (w->wd == wd || wd == -1)
2917 {
2918 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2919 {
2920 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2921 w->wd = -1;
2922 infy_add (EV_A_ w); /* re-add, no matter what */
2923 }
2924
2925 stat_timer_cb (EV_A_ &w->timer, 0);
2926 }
2927 }
2928 }
2929}
2930
2931static void
2932infy_cb (EV_P_ ev_io *w, int revents)
2933{
2934 char buf [EV_INOTIFY_BUFSIZE];
2935 struct inotify_event *ev = (struct inotify_event *)buf;
2936 int ofs;
2937 int len = read (fs_fd, buf, sizeof (buf));
2938
2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2940 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2941}
2942
2943inline_size void
2944check_2625 (EV_P)
2945{
2946 /* kernels < 2.6.25 are borked
2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2948 */
2949 struct utsname buf;
2950 int major, minor, micro;
2951
2952 if (uname (&buf))
2953 return;
2954
2955 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2956 return;
2957
2958 if (major < 2
2959 || (major == 2 && minor < 6)
2960 || (major == 2 && minor == 6 && micro < 25))
2961 return;
2962
2963 fs_2625 = 1;
2964}
2965
2966inline_size void
2967infy_init (EV_P)
2968{
2969 if (fs_fd != -2)
2970 return;
2971
2972 fs_fd = -1;
2973
2974 check_2625 (EV_A);
2975
2976 fs_fd = inotify_init ();
2977
2978 if (fs_fd >= 0)
2979 {
2980 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2981 ev_set_priority (&fs_w, EV_MAXPRI);
2982 ev_io_start (EV_A_ &fs_w);
2983 }
2984}
2985
2986inline_size void
2987infy_fork (EV_P)
2988{
2989 int slot;
2990
2991 if (fs_fd < 0)
2992 return;
2993
2994 close (fs_fd);
2995 fs_fd = inotify_init ();
2996
2997 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2998 {
2999 WL w_ = fs_hash [slot].head;
3000 fs_hash [slot].head = 0;
3001
3002 while (w_)
3003 {
3004 ev_stat *w = (ev_stat *)w_;
3005 w_ = w_->next; /* lets us add this watcher */
3006
3007 w->wd = -1;
3008
3009 if (fs_fd >= 0)
3010 infy_add (EV_A_ w); /* re-add, no matter what */
3011 else
3012 ev_timer_again (EV_A_ &w->timer);
3013 }
3014 }
3015}
3016
3017#endif
3018
1528#if _WIN32 3019#ifdef _WIN32
1529 signal (w->signum, sighandler); 3020# define EV_LSTAT(p,b) _stati64 (p, b)
1530#else 3021#else
1531 struct sigaction sa; 3022# define EV_LSTAT(p,b) lstat (p, b)
1532 sa.sa_handler = sighandler;
1533 sigfillset (&sa.sa_mask);
1534 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1535 sigaction (w->signum, &sa, 0);
1536#endif 3023#endif
1537 }
1538}
1539 3024
1540void 3025void
1541ev_signal_stop (EV_P_ struct ev_signal *w) 3026ev_stat_stat (EV_P_ ev_stat *w)
1542{ 3027{
1543 ev_clear_pending (EV_A_ (W)w); 3028 if (lstat (w->path, &w->attr) < 0)
1544 if (!ev_is_active (w)) 3029 w->attr.st_nlink = 0;
3030 else if (!w->attr.st_nlink)
3031 w->attr.st_nlink = 1;
3032}
3033
3034static void noinline
3035stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3036{
3037 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3038
3039 /* we copy this here each the time so that */
3040 /* prev has the old value when the callback gets invoked */
3041 w->prev = w->attr;
3042 ev_stat_stat (EV_A_ w);
3043
3044 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3045 if (
3046 w->prev.st_dev != w->attr.st_dev
3047 || w->prev.st_ino != w->attr.st_ino
3048 || w->prev.st_mode != w->attr.st_mode
3049 || w->prev.st_nlink != w->attr.st_nlink
3050 || w->prev.st_uid != w->attr.st_uid
3051 || w->prev.st_gid != w->attr.st_gid
3052 || w->prev.st_rdev != w->attr.st_rdev
3053 || w->prev.st_size != w->attr.st_size
3054 || w->prev.st_atime != w->attr.st_atime
3055 || w->prev.st_mtime != w->attr.st_mtime
3056 || w->prev.st_ctime != w->attr.st_ctime
3057 ) {
3058 #if EV_USE_INOTIFY
3059 if (fs_fd >= 0)
3060 {
3061 infy_del (EV_A_ w);
3062 infy_add (EV_A_ w);
3063 ev_stat_stat (EV_A_ w); /* avoid race... */
3064 }
3065 #endif
3066
3067 ev_feed_event (EV_A_ w, EV_STAT);
3068 }
3069}
3070
3071void
3072ev_stat_start (EV_P_ ev_stat *w)
3073{
3074 if (expect_false (ev_is_active (w)))
1545 return; 3075 return;
1546 3076
1547 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3077 ev_stat_stat (EV_A_ w);
3078
3079 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3080 w->interval = MIN_STAT_INTERVAL;
3081
3082 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3083 ev_set_priority (&w->timer, ev_priority (w));
3084
3085#if EV_USE_INOTIFY
3086 infy_init (EV_A);
3087
3088 if (fs_fd >= 0)
3089 infy_add (EV_A_ w);
3090 else
3091#endif
3092 ev_timer_again (EV_A_ &w->timer);
3093
3094 ev_start (EV_A_ (W)w, 1);
3095
3096 EV_FREQUENT_CHECK;
3097}
3098
3099void
3100ev_stat_stop (EV_P_ ev_stat *w)
3101{
3102 clear_pending (EV_A_ (W)w);
3103 if (expect_false (!ev_is_active (w)))
3104 return;
3105
3106 EV_FREQUENT_CHECK;
3107
3108#if EV_USE_INOTIFY
3109 infy_del (EV_A_ w);
3110#endif
3111 ev_timer_stop (EV_A_ &w->timer);
3112
1548 ev_stop (EV_A_ (W)w); 3113 ev_stop (EV_A_ (W)w);
1549 3114
1550 if (!signals [w->signum - 1].head) 3115 EV_FREQUENT_CHECK;
1551 signal (w->signum, SIG_DFL);
1552} 3116}
3117#endif
1553 3118
3119#if EV_IDLE_ENABLE
1554void 3120void
1555ev_child_start (EV_P_ struct ev_child *w) 3121ev_idle_start (EV_P_ ev_idle *w)
1556{ 3122{
1557#if EV_MULTIPLICITY
1558 assert (("child watchers are only supported in the default loop", loop == default_loop));
1559#endif
1560 if (ev_is_active (w)) 3123 if (expect_false (ev_is_active (w)))
1561 return; 3124 return;
1562 3125
3126 pri_adjust (EV_A_ (W)w);
3127
3128 EV_FREQUENT_CHECK;
3129
3130 {
3131 int active = ++idlecnt [ABSPRI (w)];
3132
3133 ++idleall;
3134 ev_start (EV_A_ (W)w, active);
3135
3136 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3137 idles [ABSPRI (w)][active - 1] = w;
3138 }
3139
3140 EV_FREQUENT_CHECK;
3141}
3142
3143void
3144ev_idle_stop (EV_P_ ev_idle *w)
3145{
3146 clear_pending (EV_A_ (W)w);
3147 if (expect_false (!ev_is_active (w)))
3148 return;
3149
3150 EV_FREQUENT_CHECK;
3151
3152 {
3153 int active = ev_active (w);
3154
3155 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3156 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3157
3158 ev_stop (EV_A_ (W)w);
3159 --idleall;
3160 }
3161
3162 EV_FREQUENT_CHECK;
3163}
3164#endif
3165
3166void
3167ev_prepare_start (EV_P_ ev_prepare *w)
3168{
3169 if (expect_false (ev_is_active (w)))
3170 return;
3171
3172 EV_FREQUENT_CHECK;
3173
3174 ev_start (EV_A_ (W)w, ++preparecnt);
3175 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3176 prepares [preparecnt - 1] = w;
3177
3178 EV_FREQUENT_CHECK;
3179}
3180
3181void
3182ev_prepare_stop (EV_P_ ev_prepare *w)
3183{
3184 clear_pending (EV_A_ (W)w);
3185 if (expect_false (!ev_is_active (w)))
3186 return;
3187
3188 EV_FREQUENT_CHECK;
3189
3190 {
3191 int active = ev_active (w);
3192
3193 prepares [active - 1] = prepares [--preparecnt];
3194 ev_active (prepares [active - 1]) = active;
3195 }
3196
3197 ev_stop (EV_A_ (W)w);
3198
3199 EV_FREQUENT_CHECK;
3200}
3201
3202void
3203ev_check_start (EV_P_ ev_check *w)
3204{
3205 if (expect_false (ev_is_active (w)))
3206 return;
3207
3208 EV_FREQUENT_CHECK;
3209
3210 ev_start (EV_A_ (W)w, ++checkcnt);
3211 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3212 checks [checkcnt - 1] = w;
3213
3214 EV_FREQUENT_CHECK;
3215}
3216
3217void
3218ev_check_stop (EV_P_ ev_check *w)
3219{
3220 clear_pending (EV_A_ (W)w);
3221 if (expect_false (!ev_is_active (w)))
3222 return;
3223
3224 EV_FREQUENT_CHECK;
3225
3226 {
3227 int active = ev_active (w);
3228
3229 checks [active - 1] = checks [--checkcnt];
3230 ev_active (checks [active - 1]) = active;
3231 }
3232
3233 ev_stop (EV_A_ (W)w);
3234
3235 EV_FREQUENT_CHECK;
3236}
3237
3238#if EV_EMBED_ENABLE
3239void noinline
3240ev_embed_sweep (EV_P_ ev_embed *w)
3241{
3242 ev_loop (w->other, EVLOOP_NONBLOCK);
3243}
3244
3245static void
3246embed_io_cb (EV_P_ ev_io *io, int revents)
3247{
3248 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3249
3250 if (ev_cb (w))
3251 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3252 else
3253 ev_loop (w->other, EVLOOP_NONBLOCK);
3254}
3255
3256static void
3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3258{
3259 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3260
3261 {
3262 EV_P = w->other;
3263
3264 while (fdchangecnt)
3265 {
3266 fd_reify (EV_A);
3267 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3268 }
3269 }
3270}
3271
3272static void
3273embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3274{
3275 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3276
3277 ev_embed_stop (EV_A_ w);
3278
3279 {
3280 EV_P = w->other;
3281
3282 ev_loop_fork (EV_A);
3283 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3284 }
3285
3286 ev_embed_start (EV_A_ w);
3287}
3288
3289#if 0
3290static void
3291embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3292{
3293 ev_idle_stop (EV_A_ idle);
3294}
3295#endif
3296
3297void
3298ev_embed_start (EV_P_ ev_embed *w)
3299{
3300 if (expect_false (ev_is_active (w)))
3301 return;
3302
3303 {
3304 EV_P = w->other;
3305 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3306 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3307 }
3308
3309 EV_FREQUENT_CHECK;
3310
3311 ev_set_priority (&w->io, ev_priority (w));
3312 ev_io_start (EV_A_ &w->io);
3313
3314 ev_prepare_init (&w->prepare, embed_prepare_cb);
3315 ev_set_priority (&w->prepare, EV_MINPRI);
3316 ev_prepare_start (EV_A_ &w->prepare);
3317
3318 ev_fork_init (&w->fork, embed_fork_cb);
3319 ev_fork_start (EV_A_ &w->fork);
3320
3321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3322
1563 ev_start (EV_A_ (W)w, 1); 3323 ev_start (EV_A_ (W)w, 1);
1564 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1565}
1566 3324
3325 EV_FREQUENT_CHECK;
3326}
3327
1567void 3328void
1568ev_child_stop (EV_P_ struct ev_child *w) 3329ev_embed_stop (EV_P_ ev_embed *w)
1569{ 3330{
1570 ev_clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 3332 if (expect_false (!ev_is_active (w)))
1572 return; 3333 return;
1573 3334
1574 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3335 EV_FREQUENT_CHECK;
3336
3337 ev_io_stop (EV_A_ &w->io);
3338 ev_prepare_stop (EV_A_ &w->prepare);
3339 ev_fork_stop (EV_A_ &w->fork);
3340
3341 EV_FREQUENT_CHECK;
3342}
3343#endif
3344
3345#if EV_FORK_ENABLE
3346void
3347ev_fork_start (EV_P_ ev_fork *w)
3348{
3349 if (expect_false (ev_is_active (w)))
3350 return;
3351
3352 EV_FREQUENT_CHECK;
3353
3354 ev_start (EV_A_ (W)w, ++forkcnt);
3355 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3356 forks [forkcnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
3359}
3360
3361void
3362ev_fork_stop (EV_P_ ev_fork *w)
3363{
3364 clear_pending (EV_A_ (W)w);
3365 if (expect_false (!ev_is_active (w)))
3366 return;
3367
3368 EV_FREQUENT_CHECK;
3369
3370 {
3371 int active = ev_active (w);
3372
3373 forks [active - 1] = forks [--forkcnt];
3374 ev_active (forks [active - 1]) = active;
3375 }
3376
1575 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
3378
3379 EV_FREQUENT_CHECK;
1576} 3380}
3381#endif
3382
3383#if EV_ASYNC_ENABLE
3384void
3385ev_async_start (EV_P_ ev_async *w)
3386{
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 evpipe_init (EV_A);
3391
3392 EV_FREQUENT_CHECK;
3393
3394 ev_start (EV_A_ (W)w, ++asynccnt);
3395 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3396 asyncs [asynccnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
3399}
3400
3401void
3402ev_async_stop (EV_P_ ev_async *w)
3403{
3404 clear_pending (EV_A_ (W)w);
3405 if (expect_false (!ev_is_active (w)))
3406 return;
3407
3408 EV_FREQUENT_CHECK;
3409
3410 {
3411 int active = ev_active (w);
3412
3413 asyncs [active - 1] = asyncs [--asynccnt];
3414 ev_active (asyncs [active - 1]) = active;
3415 }
3416
3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
3420}
3421
3422void
3423ev_async_send (EV_P_ ev_async *w)
3424{
3425 w->sent = 1;
3426 evpipe_write (EV_A_ &async_pending);
3427}
3428#endif
1577 3429
1578/*****************************************************************************/ 3430/*****************************************************************************/
1579 3431
1580struct ev_once 3432struct ev_once
1581{ 3433{
1582 struct ev_io io; 3434 ev_io io;
1583 struct ev_timer to; 3435 ev_timer to;
1584 void (*cb)(int revents, void *arg); 3436 void (*cb)(int revents, void *arg);
1585 void *arg; 3437 void *arg;
1586}; 3438};
1587 3439
1588static void 3440static void
1589once_cb (EV_P_ struct ev_once *once, int revents) 3441once_cb (EV_P_ struct ev_once *once, int revents)
1590{ 3442{
1591 void (*cb)(int revents, void *arg) = once->cb; 3443 void (*cb)(int revents, void *arg) = once->cb;
1592 void *arg = once->arg; 3444 void *arg = once->arg;
1593 3445
1594 ev_io_stop (EV_A_ &once->io); 3446 ev_io_stop (EV_A_ &once->io);
1595 ev_timer_stop (EV_A_ &once->to); 3447 ev_timer_stop (EV_A_ &once->to);
1596 ev_free (once); 3448 ev_free (once);
1597 3449
1598 cb (revents, arg); 3450 cb (revents, arg);
1599} 3451}
1600 3452
1601static void 3453static void
1602once_cb_io (EV_P_ struct ev_io *w, int revents) 3454once_cb_io (EV_P_ ev_io *w, int revents)
1603{ 3455{
1604 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3456 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3457
3458 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1605} 3459}
1606 3460
1607static void 3461static void
1608once_cb_to (EV_P_ struct ev_timer *w, int revents) 3462once_cb_to (EV_P_ ev_timer *w, int revents)
1609{ 3463{
1610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3464 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3465
3466 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1611} 3467}
1612 3468
1613void 3469void
1614ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3470ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1615{ 3471{
1616 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3472 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1617 3473
1618 if (!once) 3474 if (expect_false (!once))
3475 {
1619 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3476 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1620 else 3477 return;
1621 { 3478 }
3479
1622 once->cb = cb; 3480 once->cb = cb;
1623 once->arg = arg; 3481 once->arg = arg;
1624 3482
1625 ev_init (&once->io, once_cb_io); 3483 ev_init (&once->io, once_cb_io);
1626 if (fd >= 0) 3484 if (fd >= 0)
3485 {
3486 ev_io_set (&once->io, fd, events);
3487 ev_io_start (EV_A_ &once->io);
3488 }
3489
3490 ev_init (&once->to, once_cb_to);
3491 if (timeout >= 0.)
3492 {
3493 ev_timer_set (&once->to, timeout, 0.);
3494 ev_timer_start (EV_A_ &once->to);
3495 }
3496}
3497
3498/*****************************************************************************/
3499
3500#if EV_WALK_ENABLE
3501void
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3503{
3504 int i, j;
3505 ev_watcher_list *wl, *wn;
3506
3507 if (types & (EV_IO | EV_EMBED))
3508 for (i = 0; i < anfdmax; ++i)
3509 for (wl = anfds [i].head; wl; )
1627 { 3510 {
1628 ev_io_set (&once->io, fd, events); 3511 wn = wl->next;
1629 ev_io_start (EV_A_ &once->io); 3512
3513#if EV_EMBED_ENABLE
3514 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3515 {
3516 if (types & EV_EMBED)
3517 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3518 }
3519 else
3520#endif
3521#if EV_USE_INOTIFY
3522 if (ev_cb ((ev_io *)wl) == infy_cb)
3523 ;
3524 else
3525#endif
3526 if ((ev_io *)wl != &pipe_w)
3527 if (types & EV_IO)
3528 cb (EV_A_ EV_IO, wl);
3529
3530 wl = wn;
1630 } 3531 }
1631 3532
1632 ev_init (&once->to, once_cb_to); 3533 if (types & (EV_TIMER | EV_STAT))
1633 if (timeout >= 0.) 3534 for (i = timercnt + HEAP0; i-- > HEAP0; )
3535#if EV_STAT_ENABLE
3536 /*TODO: timer is not always active*/
3537 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1634 { 3538 {
1635 ev_timer_set (&once->to, timeout, 0.); 3539 if (types & EV_STAT)
1636 ev_timer_start (EV_A_ &once->to); 3540 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1637 } 3541 }
1638 } 3542 else
3543#endif
3544 if (types & EV_TIMER)
3545 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3546
3547#if EV_PERIODIC_ENABLE
3548 if (types & EV_PERIODIC)
3549 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif
3552
3553#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; )
3556 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif
3559
3560#if EV_FORK_ENABLE
3561 if (types & EV_FORK)
3562 for (i = forkcnt; i--; )
3563 if (ev_cb (forks [i]) != embed_fork_cb)
3564 cb (EV_A_ EV_FORK, forks [i]);
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568 if (types & EV_ASYNC)
3569 for (i = asynccnt; i--; )
3570 cb (EV_A_ EV_ASYNC, asyncs [i]);
3571#endif
3572
3573 if (types & EV_PREPARE)
3574 for (i = preparecnt; i--; )
3575#if EV_EMBED_ENABLE
3576 if (ev_cb (prepares [i]) != embed_prepare_cb)
3577#endif
3578 cb (EV_A_ EV_PREPARE, prepares [i]);
3579
3580 if (types & EV_CHECK)
3581 for (i = checkcnt; i--; )
3582 cb (EV_A_ EV_CHECK, checks [i]);
3583
3584 if (types & EV_SIGNAL)
3585 for (i = 0; i < EV_NSIG - 1; ++i)
3586 for (wl = signals [i].head; wl; )
3587 {
3588 wn = wl->next;
3589 cb (EV_A_ EV_SIGNAL, wl);
3590 wl = wn;
3591 }
3592
3593 if (types & EV_CHILD)
3594 for (i = EV_PID_HASHSIZE; i--; )
3595 for (wl = childs [i]; wl; )
3596 {
3597 wn = wl->next;
3598 cb (EV_A_ EV_CHILD, wl);
3599 wl = wn;
3600 }
3601/* EV_STAT 0x00001000 /* stat data changed */
3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1639} 3603}
3604#endif
3605
3606#if EV_MULTIPLICITY
3607 #include "ev_wrap.h"
3608#endif
1640 3609
1641#ifdef __cplusplus 3610#ifdef __cplusplus
1642} 3611}
1643#endif 3612#endif
1644 3613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines