ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.18 by root, Wed Oct 31 16:29:52 2007 UTC vs.
Revision 1.310 by root, Sun Jul 26 04:43:03 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
154#endif
29 155
30#include <math.h> 156#include <math.h>
31#include <stdlib.h> 157#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 158#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 159#include <stddef.h>
36 160
37#include <stdio.h> 161#include <stdio.h>
38 162
39#include <assert.h> 163#include <assert.h>
40#include <errno.h> 164#include <errno.h>
41#include <sys/time.h> 165#include <sys/types.h>
42#include <time.h> 166#include <time.h>
43 167
44#define HAVE_EPOLL 1 168#include <signal.h>
45 169
46#ifndef HAVE_MONOTONIC 170#ifdef EV_H
47# ifdef CLOCK_MONOTONIC 171# include EV_H
48# define HAVE_MONOTONIC 1 172#else
173# include "ev.h"
174#endif
175
176#ifndef _WIN32
177# include <sys/time.h>
178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
49# endif 186# endif
50#endif 187#endif
51 188
52#ifndef HAVE_SELECT 189/* this block tries to deduce configuration from header-defined symbols and defaults */
53# define HAVE_SELECT 1 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
54#endif 223# endif
224#endif
55 225
56#ifndef HAVE_EPOLL 226#ifndef EV_USE_MONOTONIC
57# define HAVE_EPOLL 0 227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
58#endif 231# endif
232#endif
59 233
60#ifndef HAVE_REALTIME 234#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
62#endif 243# endif
244#endif
245
246#ifndef EV_USE_SELECT
247# define EV_USE_SELECT 1
248#endif
249
250#ifndef EV_USE_POLL
251# ifdef _WIN32
252# define EV_USE_POLL 0
253# else
254# define EV_USE_POLL 1
255# endif
256#endif
257
258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
262# define EV_USE_EPOLL 0
263# endif
264#endif
265
266#ifndef EV_USE_KQUEUE
267# define EV_USE_KQUEUE 0
268#endif
269
270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
279# endif
280#endif
281
282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
347
348#ifndef CLOCK_MONOTONIC
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 0
351#endif
352
353#ifndef CLOCK_REALTIME
354# undef EV_USE_REALTIME
355# define EV_USE_REALTIME 0
356#endif
357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC
392# endif
393# ifdef __cplusplus
394extern "C" {
395# endif
396int eventfd (unsigned int initval, int flags);
397# ifdef __cplusplus
398}
399# endif
400#endif
401
402#if EV_USE_SIGNALFD
403# include <sys/signalfd.h>
404#endif
405
406/**/
407
408#if EV_VERIFY >= 3
409# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
410#else
411# define EV_FREQUENT_CHECK do { } while (0)
412#endif
413
414/*
415 * This is used to avoid floating point rounding problems.
416 * It is added to ev_rt_now when scheduling periodics
417 * to ensure progress, time-wise, even when rounding
418 * errors are against us.
419 * This value is good at least till the year 4000.
420 * Better solutions welcome.
421 */
422#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
63 423
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 424#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 425#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
426/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
66 427
67#include "ev.h" 428#if __GNUC__ >= 4
429# define expect(expr,value) __builtin_expect ((expr),(value))
430# define noinline __attribute__ ((noinline))
431#else
432# define expect(expr,value) (expr)
433# define noinline
434# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
435# define inline
436# endif
437#endif
68 438
439#define expect_false(expr) expect ((expr) != 0, 0)
440#define expect_true(expr) expect ((expr) != 0, 1)
441#define inline_size static inline
442
443#if EV_MINIMAL
444# define inline_speed static noinline
445#else
446# define inline_speed static inline
447#endif
448
449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450
451#if EV_MINPRI == EV_MAXPRI
452# define ABSPRI(w) (((W)w), 0)
453#else
454# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
455#endif
456
457#define EMPTY /* required for microsofts broken pseudo-c compiler */
458#define EMPTY2(a,b) /* used to suppress some warnings */
459
69typedef struct ev_watcher *W; 460typedef ev_watcher *W;
70typedef struct ev_watcher_list *WL; 461typedef ev_watcher_list *WL;
71typedef struct ev_watcher_time *WT; 462typedef ev_watcher_time *WT;
72 463
73static ev_tstamp now, diff; /* monotonic clock */ 464#define ev_active(w) ((W)(w))->active
74ev_tstamp ev_now; 465#define ev_at(w) ((WT)(w))->at
75int ev_method;
76 466
77static int have_monotonic; /* runtime */ 467#if EV_USE_REALTIME
468/* sig_atomic_t is used to avoid per-thread variables or locking but still */
469/* giving it a reasonably high chance of working on typical architetcures */
470static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
471#endif
78 472
79static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 473#if EV_USE_MONOTONIC
80static void (*method_modify)(int fd, int oev, int nev); 474static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
81static void (*method_poll)(ev_tstamp timeout); 475#endif
476
477#ifdef _WIN32
478# include "ev_win32.c"
479#endif
82 480
83/*****************************************************************************/ 481/*****************************************************************************/
84 482
483static void (*syserr_cb)(const char *msg);
484
485void
486ev_set_syserr_cb (void (*cb)(const char *msg))
487{
488 syserr_cb = cb;
489}
490
491static void noinline
492ev_syserr (const char *msg)
493{
494 if (!msg)
495 msg = "(libev) system error";
496
497 if (syserr_cb)
498 syserr_cb (msg);
499 else
500 {
501 perror (msg);
502 abort ();
503 }
504}
505
506static void *
507ev_realloc_emul (void *ptr, long size)
508{
509 /* some systems, notably openbsd and darwin, fail to properly
510 * implement realloc (x, 0) (as required by both ansi c-98 and
511 * the single unix specification, so work around them here.
512 */
513
514 if (size)
515 return realloc (ptr, size);
516
517 free (ptr);
518 return 0;
519}
520
521static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
522
523void
524ev_set_allocator (void *(*cb)(void *ptr, long size))
525{
526 alloc = cb;
527}
528
529inline_speed void *
530ev_realloc (void *ptr, long size)
531{
532 ptr = alloc (ptr, size);
533
534 if (!ptr && size)
535 {
536 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
537 abort ();
538 }
539
540 return ptr;
541}
542
543#define ev_malloc(size) ev_realloc (0, (size))
544#define ev_free(ptr) ev_realloc ((ptr), 0)
545
546/*****************************************************************************/
547
548/* set in reify when reification needed */
549#define EV_ANFD_REIFY 1
550
551/* file descriptor info structure */
552typedef struct
553{
554 WL head;
555 unsigned char events; /* the events watched for */
556 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
558 unsigned char unused;
559#if EV_USE_EPOLL
560 unsigned int egen; /* generation counter to counter epoll bugs */
561#endif
562#if EV_SELECT_IS_WINSOCKET
563 SOCKET handle;
564#endif
565} ANFD;
566
567/* stores the pending event set for a given watcher */
568typedef struct
569{
570 W w;
571 int events; /* the pending event set for the given watcher */
572} ANPENDING;
573
574#if EV_USE_INOTIFY
575/* hash table entry per inotify-id */
576typedef struct
577{
578 WL head;
579} ANFS;
580#endif
581
582/* Heap Entry */
583#if EV_HEAP_CACHE_AT
584 /* a heap element */
585 typedef struct {
586 ev_tstamp at;
587 WT w;
588 } ANHE;
589
590 #define ANHE_w(he) (he).w /* access watcher, read-write */
591 #define ANHE_at(he) (he).at /* access cached at, read-only */
592 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
593#else
594 /* a heap element */
595 typedef WT ANHE;
596
597 #define ANHE_w(he) (he)
598 #define ANHE_at(he) (he)->at
599 #define ANHE_at_cache(he)
600#endif
601
602#if EV_MULTIPLICITY
603
604 struct ev_loop
605 {
606 ev_tstamp ev_rt_now;
607 #define ev_rt_now ((loop)->ev_rt_now)
608 #define VAR(name,decl) decl;
609 #include "ev_vars.h"
610 #undef VAR
611 };
612 #include "ev_wrap.h"
613
614 static struct ev_loop default_loop_struct;
615 struct ev_loop *ev_default_loop_ptr;
616
617#else
618
619 ev_tstamp ev_rt_now;
620 #define VAR(name,decl) static decl;
621 #include "ev_vars.h"
622 #undef VAR
623
624 static int ev_default_loop_ptr;
625
626#endif
627
628#if EV_MINIMAL < 2
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else
633# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif
637
638#define EVUNLOOP_RECURSE 0x80
639
640/*****************************************************************************/
641
642#ifndef EV_HAVE_EV_TIME
85ev_tstamp 643ev_tstamp
86ev_time (void) 644ev_time (void)
87{ 645{
88#if HAVE_REALTIME 646#if EV_USE_REALTIME
647 if (expect_true (have_realtime))
648 {
89 struct timespec ts; 649 struct timespec ts;
90 clock_gettime (CLOCK_REALTIME, &ts); 650 clock_gettime (CLOCK_REALTIME, &ts);
91 return ts.tv_sec + ts.tv_nsec * 1e-9; 651 return ts.tv_sec + ts.tv_nsec * 1e-9;
92#else 652 }
653#endif
654
93 struct timeval tv; 655 struct timeval tv;
94 gettimeofday (&tv, 0); 656 gettimeofday (&tv, 0);
95 return tv.tv_sec + tv.tv_usec * 1e-6; 657 return tv.tv_sec + tv.tv_usec * 1e-6;
96#endif
97} 658}
659#endif
98 660
99static ev_tstamp 661inline_size ev_tstamp
100get_clock (void) 662get_clock (void)
101{ 663{
102#if HAVE_MONOTONIC 664#if EV_USE_MONOTONIC
103 if (have_monotonic) 665 if (expect_true (have_monotonic))
104 { 666 {
105 struct timespec ts; 667 struct timespec ts;
106 clock_gettime (CLOCK_MONOTONIC, &ts); 668 clock_gettime (CLOCK_MONOTONIC, &ts);
107 return ts.tv_sec + ts.tv_nsec * 1e-9; 669 return ts.tv_sec + ts.tv_nsec * 1e-9;
108 } 670 }
109#endif 671#endif
110 672
111 return ev_time (); 673 return ev_time ();
112} 674}
113 675
114#define array_needsize(base,cur,cnt,init) \ 676#if EV_MULTIPLICITY
115 if ((cnt) > cur) \ 677ev_tstamp
116 { \ 678ev_now (EV_P)
117 int newcnt = cur ? cur << 1 : 16; \ 679{
118 base = realloc (base, sizeof (*base) * (newcnt)); \ 680 return ev_rt_now;
119 init (base + cur, newcnt - cur); \ 681}
120 cur = newcnt; \ 682#endif
683
684void
685ev_sleep (ev_tstamp delay)
686{
687 if (delay > 0.)
121 } 688 {
689#if EV_USE_NANOSLEEP
690 struct timespec ts;
691
692 ts.tv_sec = (time_t)delay;
693 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
694
695 nanosleep (&ts, 0);
696#elif defined(_WIN32)
697 Sleep ((unsigned long)(delay * 1e3));
698#else
699 struct timeval tv;
700
701 tv.tv_sec = (time_t)delay;
702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
703
704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
705 /* something not guaranteed by newer posix versions, but guaranteed */
706 /* by older ones */
707 select (0, 0, 0, 0, &tv);
708#endif
709 }
710}
122 711
123/*****************************************************************************/ 712/*****************************************************************************/
124 713
125typedef struct 714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
126{
127 struct ev_io *head;
128 unsigned char wev, rev; /* want, received event set */
129} ANFD;
130 715
131static ANFD *anfds; 716/* find a suitable new size for the given array, */
132static int anfdmax; 717/* hopefully by rounding to a ncie-to-malloc size */
133 718inline_size int
134static int *fdchanges; 719array_nextsize (int elem, int cur, int cnt)
135static int fdchangemax, fdchangecnt;
136
137static void
138anfds_init (ANFD *base, int count)
139{ 720{
140 while (count--) 721 int ncur = cur + 1;
141 { 722
142 base->head = 0; 723 do
143 base->wev = base->rev = EV_NONE; 724 ncur <<= 1;
144 ++base; 725 while (cnt > ncur);
726
727 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
728 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
145 } 729 {
146} 730 ncur *= elem;
147 731 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
148typedef struct 732 ncur = ncur - sizeof (void *) * 4;
149{ 733 ncur /= elem;
150 W w;
151 int events;
152} ANPENDING;
153
154static ANPENDING *pendings;
155static int pendingmax, pendingcnt;
156
157static void
158event (W w, int events)
159{
160 if (w->active)
161 { 734 }
735
736 return ncur;
737}
738
739static noinline void *
740array_realloc (int elem, void *base, int *cur, int cnt)
741{
742 *cur = array_nextsize (elem, *cur, cnt);
743 return ev_realloc (base, elem * *cur);
744}
745
746#define array_init_zero(base,count) \
747 memset ((void *)(base), 0, sizeof (*(base)) * (count))
748
749#define array_needsize(type,base,cur,cnt,init) \
750 if (expect_false ((cnt) > (cur))) \
751 { \
752 int ocur_ = (cur); \
753 (base) = (type *)array_realloc \
754 (sizeof (type), (base), &(cur), (cnt)); \
755 init ((base) + (ocur_), (cur) - ocur_); \
756 }
757
758#if 0
759#define array_slim(type,stem) \
760 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
761 { \
762 stem ## max = array_roundsize (stem ## cnt >> 1); \
763 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
764 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
765 }
766#endif
767
768#define array_free(stem, idx) \
769 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
770
771/*****************************************************************************/
772
773/* dummy callback for pending events */
774static void noinline
775pendingcb (EV_P_ ev_prepare *w, int revents)
776{
777}
778
779void noinline
780ev_feed_event (EV_P_ void *w, int revents)
781{
782 W w_ = (W)w;
783 int pri = ABSPRI (w_);
784
785 if (expect_false (w_->pending))
786 pendings [pri][w_->pending - 1].events |= revents;
787 else
788 {
162 w->pending = ++pendingcnt; 789 w_->pending = ++pendingcnt [pri];
163 array_needsize (pendings, pendingmax, pendingcnt, ); 790 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
164 pendings [pendingcnt - 1].w = w; 791 pendings [pri][w_->pending - 1].w = w_;
165 pendings [pendingcnt - 1].events = events; 792 pendings [pri][w_->pending - 1].events = revents;
166 } 793 }
167} 794}
168 795
169static void 796inline_speed void
797feed_reverse (EV_P_ W w)
798{
799 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
800 rfeeds [rfeedcnt++] = w;
801}
802
803inline_size void
804feed_reverse_done (EV_P_ int revents)
805{
806 do
807 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
808 while (rfeedcnt);
809}
810
811inline_speed void
812queue_events (EV_P_ W *events, int eventcnt, int type)
813{
814 int i;
815
816 for (i = 0; i < eventcnt; ++i)
817 ev_feed_event (EV_A_ events [i], type);
818}
819
820/*****************************************************************************/
821
822inline_speed void
170fd_event (int fd, int events) 823fd_event_nc (EV_P_ int fd, int revents)
171{ 824{
172 ANFD *anfd = anfds + fd; 825 ANFD *anfd = anfds + fd;
173 struct ev_io *w; 826 ev_io *w;
174 827
175 for (w = anfd->head; w; w = w->next) 828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
176 { 829 {
177 int ev = w->events & events; 830 int ev = w->events & revents;
178 831
179 if (ev) 832 if (ev)
180 event ((W)w, ev); 833 ev_feed_event (EV_A_ (W)w, ev);
181 }
182}
183
184static void
185queue_events (W *events, int eventcnt, int type)
186{
187 int i;
188
189 for (i = 0; i < eventcnt; ++i)
190 event (events [i], type);
191}
192
193/*****************************************************************************/
194
195static struct ev_timer **timers;
196static int timermax, timercnt;
197
198static struct ev_periodic **periodics;
199static int periodicmax, periodiccnt;
200
201static void
202upheap (WT *timers, int k)
203{
204 WT w = timers [k];
205
206 while (k && timers [k >> 1]->at > w->at)
207 {
208 timers [k] = timers [k >> 1];
209 timers [k]->active = k + 1;
210 k >>= 1;
211 }
212
213 timers [k] = w;
214 timers [k]->active = k + 1;
215
216}
217
218static void
219downheap (WT *timers, int N, int k)
220{
221 WT w = timers [k];
222
223 while (k < (N >> 1))
224 {
225 int j = k << 1;
226
227 if (j + 1 < N && timers [j]->at > timers [j + 1]->at)
228 ++j;
229
230 if (w->at <= timers [j]->at)
231 break;
232
233 timers [k] = timers [j];
234 timers [k]->active = k + 1;
235 k = j;
236 }
237
238 timers [k] = w;
239 timers [k]->active = k + 1;
240}
241
242/*****************************************************************************/
243
244typedef struct
245{
246 struct ev_signal *head;
247 sig_atomic_t gotsig;
248} ANSIG;
249
250static ANSIG *signals;
251static int signalmax;
252
253static int sigpipe [2];
254static sig_atomic_t gotsig;
255static struct ev_io sigev;
256
257static void
258signals_init (ANSIG *base, int count)
259{
260 while (count--)
261 {
262 base->head = 0;
263 base->gotsig = 0;
264 ++base;
265 }
266}
267
268static void
269sighandler (int signum)
270{
271 signals [signum - 1].gotsig = 1;
272
273 if (!gotsig)
274 {
275 gotsig = 1;
276 write (sigpipe [1], &gotsig, 1);
277 }
278}
279
280static void
281sigcb (struct ev_io *iow, int revents)
282{
283 struct ev_signal *w;
284 int sig;
285
286 gotsig = 0;
287 read (sigpipe [0], &revents, 1);
288
289 for (sig = signalmax; sig--; )
290 if (signals [sig].gotsig)
291 {
292 signals [sig].gotsig = 0;
293
294 for (w = signals [sig].head; w; w = w->next)
295 event ((W)w, EV_SIGNAL);
296 } 834 }
297} 835}
298 836
299static void 837/* do not submit kernel events for fds that have reify set */
300siginit (void) 838/* because that means they changed while we were polling for new events */
839inline_speed void
840fd_event (EV_P_ int fd, int revents)
301{ 841{
302 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 842 ANFD *anfd = anfds + fd;
303 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
304 843
305 /* rather than sort out wether we really need nb, set it */ 844 if (expect_true (!anfd->reify))
306 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 845 fd_event_nc (EV_A_ fd, revents);
307 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
308
309 evio_set (&sigev, sigpipe [0], EV_READ);
310 evio_start (&sigev);
311} 846}
312 847
313/*****************************************************************************/ 848void
314 849ev_feed_fd_event (EV_P_ int fd, int revents)
315static struct ev_idle **idles;
316static int idlemax, idlecnt;
317
318static struct ev_check **checks;
319static int checkmax, checkcnt;
320
321/*****************************************************************************/
322
323#if HAVE_EPOLL
324# include "ev_epoll.c"
325#endif
326#if HAVE_SELECT
327# include "ev_select.c"
328#endif
329
330int ev_init (int flags)
331{ 850{
332#if HAVE_MONOTONIC 851 if (fd >= 0 && fd < anfdmax)
333 { 852 fd_event_nc (EV_A_ fd, revents);
334 struct timespec ts;
335 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
336 have_monotonic = 1;
337 }
338#endif
339
340 ev_now = ev_time ();
341 now = get_clock ();
342 diff = ev_now - now;
343
344 if (pipe (sigpipe))
345 return 0;
346
347 ev_method = EVMETHOD_NONE;
348#if HAVE_EPOLL
349 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
350#endif
351#if HAVE_SELECT
352 if (ev_method == EVMETHOD_NONE) select_init (flags);
353#endif
354
355 if (ev_method)
356 {
357 evw_init (&sigev, sigcb);
358 siginit ();
359 }
360
361 return ev_method;
362} 853}
363 854
364/*****************************************************************************/ 855/* make sure the external fd watch events are in-sync */
365 856/* with the kernel/libev internal state */
366void ev_prefork (void) 857inline_size void
367{ 858fd_reify (EV_P)
368 /* nop */
369}
370
371void ev_postfork_parent (void)
372{
373 /* nop */
374}
375
376void ev_postfork_child (void)
377{
378#if HAVE_EPOLL
379 if (ev_method == EVMETHOD_EPOLL)
380 epoll_postfork_child ();
381#endif
382
383 evio_stop (&sigev);
384 close (sigpipe [0]);
385 close (sigpipe [1]);
386 pipe (sigpipe);
387 siginit ();
388}
389
390/*****************************************************************************/
391
392static void
393fd_reify (void)
394{ 859{
395 int i; 860 int i;
396 861
397 for (i = 0; i < fdchangecnt; ++i) 862 for (i = 0; i < fdchangecnt; ++i)
398 { 863 {
399 int fd = fdchanges [i]; 864 int fd = fdchanges [i];
400 ANFD *anfd = anfds + fd; 865 ANFD *anfd = anfds + fd;
401 struct ev_io *w; 866 ev_io *w;
402 867
403 int wev = 0; 868 unsigned char events = 0;
404 869
405 for (w = anfd->head; w; w = w->next) 870 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
406 wev |= w->events; 871 events |= (unsigned char)w->events;
407 872
408 if (anfd->wev != wev) 873#if EV_SELECT_IS_WINSOCKET
874 if (events)
409 { 875 {
410 method_modify (fd, anfd->wev, wev); 876 unsigned long arg;
411 anfd->wev = wev; 877 #ifdef EV_FD_TO_WIN32_HANDLE
878 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
879 #else
880 anfd->handle = _get_osfhandle (fd);
881 #endif
882 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
412 } 883 }
884#endif
885
886 {
887 unsigned char o_events = anfd->events;
888 unsigned char o_reify = anfd->reify;
889
890 anfd->reify = 0;
891 anfd->events = events;
892
893 if (o_events != events || o_reify & EV__IOFDSET)
894 backend_modify (EV_A_ fd, o_events, events);
895 }
413 } 896 }
414 897
415 fdchangecnt = 0; 898 fdchangecnt = 0;
416} 899}
417 900
901/* something about the given fd changed */
902inline_size void
903fd_change (EV_P_ int fd, int flags)
904{
905 unsigned char reify = anfds [fd].reify;
906 anfds [fd].reify |= flags;
907
908 if (expect_true (!reify))
909 {
910 ++fdchangecnt;
911 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
912 fdchanges [fdchangecnt - 1] = fd;
913 }
914}
915
916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void
918fd_kill (EV_P_ int fd)
919{
920 ev_io *w;
921
922 while ((w = (ev_io *)anfds [fd].head))
923 {
924 ev_io_stop (EV_A_ w);
925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
926 }
927}
928
929/* check whether the given fd is atcually valid, for error recovery */
930inline_size int
931fd_valid (int fd)
932{
933#ifdef _WIN32
934 return _get_osfhandle (fd) != -1;
935#else
936 return fcntl (fd, F_GETFD) != -1;
937#endif
938}
939
940/* called on EBADF to verify fds */
941static void noinline
942fd_ebadf (EV_P)
943{
944 int fd;
945
946 for (fd = 0; fd < anfdmax; ++fd)
947 if (anfds [fd].events)
948 if (!fd_valid (fd) && errno == EBADF)
949 fd_kill (EV_A_ fd);
950}
951
952/* called on ENOMEM in select/poll to kill some fds and retry */
953static void noinline
954fd_enomem (EV_P)
955{
956 int fd;
957
958 for (fd = anfdmax; fd--; )
959 if (anfds [fd].events)
960 {
961 fd_kill (EV_A_ fd);
962 break;
963 }
964}
965
966/* usually called after fork if backend needs to re-arm all fds from scratch */
967static void noinline
968fd_rearm_all (EV_P)
969{
970 int fd;
971
972 for (fd = 0; fd < anfdmax; ++fd)
973 if (anfds [fd].events)
974 {
975 anfds [fd].events = 0;
976 anfds [fd].emask = 0;
977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
978 }
979}
980
981/*****************************************************************************/
982
983/*
984 * the heap functions want a real array index. array index 0 uis guaranteed to not
985 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
986 * the branching factor of the d-tree.
987 */
988
989/*
990 * at the moment we allow libev the luxury of two heaps,
991 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
992 * which is more cache-efficient.
993 * the difference is about 5% with 50000+ watchers.
994 */
995#if EV_USE_4HEAP
996
997#define DHEAP 4
998#define HEAP0 (DHEAP - 1) /* index of first element in heap */
999#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1000#define UPHEAP_DONE(p,k) ((p) == (k))
1001
1002/* away from the root */
1003inline_speed void
1004downheap (ANHE *heap, int N, int k)
1005{
1006 ANHE he = heap [k];
1007 ANHE *E = heap + N + HEAP0;
1008
1009 for (;;)
1010 {
1011 ev_tstamp minat;
1012 ANHE *minpos;
1013 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1014
1015 /* find minimum child */
1016 if (expect_true (pos + DHEAP - 1 < E))
1017 {
1018 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1019 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1020 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1022 }
1023 else if (pos < E)
1024 {
1025 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else
1031 break;
1032
1033 if (ANHE_at (he) <= minat)
1034 break;
1035
1036 heap [k] = *minpos;
1037 ev_active (ANHE_w (*minpos)) = k;
1038
1039 k = minpos - heap;
1040 }
1041
1042 heap [k] = he;
1043 ev_active (ANHE_w (he)) = k;
1044}
1045
1046#else /* 4HEAP */
1047
1048#define HEAP0 1
1049#define HPARENT(k) ((k) >> 1)
1050#define UPHEAP_DONE(p,k) (!(p))
1051
1052/* away from the root */
1053inline_speed void
1054downheap (ANHE *heap, int N, int k)
1055{
1056 ANHE he = heap [k];
1057
1058 for (;;)
1059 {
1060 int c = k << 1;
1061
1062 if (c >= N + HEAP0)
1063 break;
1064
1065 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1066 ? 1 : 0;
1067
1068 if (ANHE_at (he) <= ANHE_at (heap [c]))
1069 break;
1070
1071 heap [k] = heap [c];
1072 ev_active (ANHE_w (heap [k])) = k;
1073
1074 k = c;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080#endif
1081
1082/* towards the root */
1083inline_speed void
1084upheap (ANHE *heap, int k)
1085{
1086 ANHE he = heap [k];
1087
1088 for (;;)
1089 {
1090 int p = HPARENT (k);
1091
1092 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1093 break;
1094
1095 heap [k] = heap [p];
1096 ev_active (ANHE_w (heap [k])) = k;
1097 k = p;
1098 }
1099
1100 heap [k] = he;
1101 ev_active (ANHE_w (he)) = k;
1102}
1103
1104/* move an element suitably so it is in a correct place */
1105inline_size void
1106adjustheap (ANHE *heap, int N, int k)
1107{
1108 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1109 upheap (heap, k);
1110 else
1111 downheap (heap, N, k);
1112}
1113
1114/* rebuild the heap: this function is used only once and executed rarely */
1115inline_size void
1116reheap (ANHE *heap, int N)
1117{
1118 int i;
1119
1120 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1121 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1122 for (i = 0; i < N; ++i)
1123 upheap (heap, i + HEAP0);
1124}
1125
1126/*****************************************************************************/
1127
1128/* associate signal watchers to a signal signal */
1129typedef struct
1130{
1131 EV_ATOMIC_T pending;
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
1135 WL head;
1136} ANSIG;
1137
1138static ANSIG signals [EV_NSIG - 1];
1139
1140/*****************************************************************************/
1141
1142/* used to prepare libev internal fd's */
1143/* this is not fork-safe */
1144inline_speed void
1145fd_intern (int fd)
1146{
1147#ifdef _WIN32
1148 unsigned long arg = 1;
1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1150#else
1151 fcntl (fd, F_SETFD, FD_CLOEXEC);
1152 fcntl (fd, F_SETFL, O_NONBLOCK);
1153#endif
1154}
1155
1156static void noinline
1157evpipe_init (EV_P)
1158{
1159 if (!ev_is_active (&pipe_w))
1160 {
1161#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1163 if (evfd < 0 && errno == EINVAL)
1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
1167 {
1168 evpipe [0] = -1;
1169 fd_intern (evfd); /* doing it twice doesn't hurt */
1170 ev_io_set (&pipe_w, evfd, EV_READ);
1171 }
1172 else
1173#endif
1174 {
1175 while (pipe (evpipe))
1176 ev_syserr ("(libev) error creating signal/async pipe");
1177
1178 fd_intern (evpipe [0]);
1179 fd_intern (evpipe [1]);
1180 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1181 }
1182
1183 ev_io_start (EV_A_ &pipe_w);
1184 ev_unref (EV_A); /* watcher should not keep loop alive */
1185 }
1186}
1187
1188inline_size void
1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1190{
1191 if (!*flag)
1192 {
1193 int old_errno = errno; /* save errno because write might clobber it */
1194
1195 *flag = 1;
1196
1197#if EV_USE_EVENTFD
1198 if (evfd >= 0)
1199 {
1200 uint64_t counter = 1;
1201 write (evfd, &counter, sizeof (uint64_t));
1202 }
1203 else
1204#endif
1205 write (evpipe [1], &old_errno, 1);
1206
1207 errno = old_errno;
1208 }
1209}
1210
1211/* called whenever the libev signal pipe */
1212/* got some events (signal, async) */
418static void 1213static void
419call_pending () 1214pipecb (EV_P_ ev_io *iow, int revents)
420{ 1215{
421 while (pendingcnt) 1216 int i;
1217
1218#if EV_USE_EVENTFD
1219 if (evfd >= 0)
1220 {
1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
422 { 1223 }
423 ANPENDING *p = pendings + --pendingcnt; 1224 else
1225#endif
1226 {
1227 char dummy;
1228 read (evpipe [0], &dummy, 1);
1229 }
424 1230
425 if (p->w) 1231 if (sig_pending)
1232 {
1233 sig_pending = 0;
1234
1235 for (i = EV_NSIG - 1; i--; )
1236 if (expect_false (signals [i].pending))
1237 ev_feed_signal_event (EV_A_ i + 1);
1238 }
1239
1240#if EV_ASYNC_ENABLE
1241 if (async_pending)
1242 {
1243 async_pending = 0;
1244
1245 for (i = asynccnt; i--; )
1246 if (asyncs [i]->sent)
1247 {
1248 asyncs [i]->sent = 0;
1249 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1250 }
1251 }
1252#endif
1253}
1254
1255/*****************************************************************************/
1256
1257static void
1258ev_sighandler (int signum)
1259{
1260#if EV_MULTIPLICITY
1261 EV_P = signals [signum - 1].loop;
1262#endif
1263
1264#if _WIN32
1265 signal (signum, ev_sighandler);
1266#endif
1267
1268 signals [signum - 1].pending = 1;
1269 evpipe_write (EV_A_ &sig_pending);
1270}
1271
1272void noinline
1273ev_feed_signal_event (EV_P_ int signum)
1274{
1275 WL w;
1276
1277 if (expect_false (signum <= 0 || signum > EV_NSIG))
1278 return;
1279
1280 --signum;
1281
1282#if EV_MULTIPLICITY
1283 /* it is permissible to try to feed a signal to the wrong loop */
1284 /* or, likely more useful, feeding a signal nobody is waiting for */
1285
1286 if (expect_false (signals [signum].loop != EV_A))
1287 return;
1288#endif
1289
1290 signals [signum].pending = 0;
1291
1292 for (w = signals [signum].head; w; w = w->next)
1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1294}
1295
1296#if EV_USE_SIGNALFD
1297static void
1298sigfdcb (EV_P_ ev_io *iow, int revents)
1299{
1300 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1301
1302 for (;;)
1303 {
1304 ssize_t res = read (sigfd, si, sizeof (si));
1305
1306 /* not ISO-C, as res might be -1, but works with SuS */
1307 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1308 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1309
1310 if (res < (ssize_t)sizeof (si))
1311 break;
1312 }
1313}
1314#endif
1315
1316/*****************************************************************************/
1317
1318static WL childs [EV_PID_HASHSIZE];
1319
1320#ifndef _WIN32
1321
1322static ev_signal childev;
1323
1324#ifndef WIFCONTINUED
1325# define WIFCONTINUED(status) 0
1326#endif
1327
1328/* handle a single child status event */
1329inline_speed void
1330child_reap (EV_P_ int chain, int pid, int status)
1331{
1332 ev_child *w;
1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1334
1335 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1336 {
1337 if ((w->pid == pid || !w->pid)
1338 && (!traced || (w->flags & 1)))
426 { 1339 {
427 p->w->pending = 0; 1340 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
428 p->w->cb (p->w, p->events); 1341 w->rpid = pid;
1342 w->rstatus = status;
1343 ev_feed_event (EV_A_ (W)w, EV_CHILD);
429 } 1344 }
430 } 1345 }
431} 1346}
432 1347
1348#ifndef WCONTINUED
1349# define WCONTINUED 0
1350#endif
1351
1352/* called on sigchld etc., calls waitpid */
433static void 1353static void
1354childcb (EV_P_ ev_signal *sw, int revents)
1355{
1356 int pid, status;
1357
1358 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
1359 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
1360 if (!WCONTINUED
1361 || errno != EINVAL
1362 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1363 return;
1364
1365 /* make sure we are called again until all children have been reaped */
1366 /* we need to do it this way so that the callback gets called before we continue */
1367 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1368
1369 child_reap (EV_A_ pid, pid, status);
1370 if (EV_PID_HASHSIZE > 1)
1371 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1372}
1373
1374#endif
1375
1376/*****************************************************************************/
1377
1378#if EV_USE_PORT
1379# include "ev_port.c"
1380#endif
1381#if EV_USE_KQUEUE
1382# include "ev_kqueue.c"
1383#endif
1384#if EV_USE_EPOLL
1385# include "ev_epoll.c"
1386#endif
1387#if EV_USE_POLL
1388# include "ev_poll.c"
1389#endif
1390#if EV_USE_SELECT
1391# include "ev_select.c"
1392#endif
1393
1394int
1395ev_version_major (void)
1396{
1397 return EV_VERSION_MAJOR;
1398}
1399
1400int
1401ev_version_minor (void)
1402{
1403 return EV_VERSION_MINOR;
1404}
1405
1406/* return true if we are running with elevated privileges and should ignore env variables */
1407int inline_size
1408enable_secure (void)
1409{
1410#ifdef _WIN32
1411 return 0;
1412#else
1413 return getuid () != geteuid ()
1414 || getgid () != getegid ();
1415#endif
1416}
1417
1418unsigned int
1419ev_supported_backends (void)
1420{
1421 unsigned int flags = 0;
1422
1423 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1424 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1425 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1426 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1427 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1428
1429 return flags;
1430}
1431
1432unsigned int
1433ev_recommended_backends (void)
1434{
1435 unsigned int flags = ev_supported_backends ();
1436
1437#ifndef __NetBSD__
1438 /* kqueue is borked on everything but netbsd apparently */
1439 /* it usually doesn't work correctly on anything but sockets and pipes */
1440 flags &= ~EVBACKEND_KQUEUE;
1441#endif
1442#ifdef __APPLE__
1443 /* only select works correctly on that "unix-certified" platform */
1444 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1445 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1446#endif
1447
1448 return flags;
1449}
1450
1451unsigned int
1452ev_embeddable_backends (void)
1453{
1454 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1455
1456 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1457 /* please fix it and tell me how to detect the fix */
1458 flags &= ~EVBACKEND_EPOLL;
1459
1460 return flags;
1461}
1462
1463unsigned int
1464ev_backend (EV_P)
1465{
1466 return backend;
1467}
1468
1469#if EV_MINIMAL < 2
1470unsigned int
1471ev_loop_count (EV_P)
1472{
1473 return loop_count;
1474}
1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{
1479 return loop_depth;
1480}
1481
1482void
1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1484{
1485 io_blocktime = interval;
1486}
1487
1488void
1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1490{
1491 timeout_blocktime = interval;
1492}
1493
1494void
1495ev_set_userdata (EV_P_ void *data)
1496{
1497 userdata = data;
1498}
1499
1500void *
1501ev_userdata (EV_P)
1502{
1503 return userdata;
1504}
1505
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1507{
1508 invoke_cb = invoke_pending_cb;
1509}
1510
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1512{
1513 release_cb = release;
1514 acquire_cb = acquire;
1515}
1516#endif
1517
1518/* initialise a loop structure, must be zero-initialised */
1519static void noinline
1520loop_init (EV_P_ unsigned int flags)
1521{
1522 if (!backend)
1523 {
1524#if EV_USE_REALTIME
1525 if (!have_realtime)
1526 {
1527 struct timespec ts;
1528
1529 if (!clock_gettime (CLOCK_REALTIME, &ts))
1530 have_realtime = 1;
1531 }
1532#endif
1533
1534#if EV_USE_MONOTONIC
1535 if (!have_monotonic)
1536 {
1537 struct timespec ts;
1538
1539 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1540 have_monotonic = 1;
1541 }
1542#endif
1543
1544 /* pid check not overridable via env */
1545#ifndef _WIN32
1546 if (flags & EVFLAG_FORKCHECK)
1547 curpid = getpid ();
1548#endif
1549
1550 if (!(flags & EVFLAG_NOENV)
1551 && !enable_secure ()
1552 && getenv ("LIBEV_FLAGS"))
1553 flags = atoi (getenv ("LIBEV_FLAGS"));
1554
1555 ev_rt_now = ev_time ();
1556 mn_now = get_clock ();
1557 now_floor = mn_now;
1558 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2
1560 invoke_cb = ev_invoke_pending;
1561#endif
1562
1563 io_blocktime = 0.;
1564 timeout_blocktime = 0.;
1565 backend = 0;
1566 backend_fd = -1;
1567 sig_pending = 0;
1568#if EV_ASYNC_ENABLE
1569 async_pending = 0;
1570#endif
1571#if EV_USE_INOTIFY
1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1573#endif
1574#if EV_USE_SIGNALFD
1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1576#endif
1577
1578 if (!(flags & 0x0000ffffU))
1579 flags |= ev_recommended_backends ();
1580
1581#if EV_USE_PORT
1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1583#endif
1584#if EV_USE_KQUEUE
1585 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1586#endif
1587#if EV_USE_EPOLL
1588 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1589#endif
1590#if EV_USE_POLL
1591 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1592#endif
1593#if EV_USE_SELECT
1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1595#endif
1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
1599 ev_init (&pipe_w, pipecb);
1600 ev_set_priority (&pipe_w, EV_MAXPRI);
1601 }
1602}
1603
1604/* free up a loop structure */
1605static void noinline
1606loop_destroy (EV_P)
1607{
1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1636
1637#if EV_USE_INOTIFY
1638 if (fs_fd >= 0)
1639 close (fs_fd);
1640#endif
1641
1642 if (backend_fd >= 0)
1643 close (backend_fd);
1644
1645#if EV_USE_PORT
1646 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1647#endif
1648#if EV_USE_KQUEUE
1649 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1650#endif
1651#if EV_USE_EPOLL
1652 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1653#endif
1654#if EV_USE_POLL
1655 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1656#endif
1657#if EV_USE_SELECT
1658 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1659#endif
1660
1661 for (i = NUMPRI; i--; )
1662 {
1663 array_free (pending, [i]);
1664#if EV_IDLE_ENABLE
1665 array_free (idle, [i]);
1666#endif
1667 }
1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1670
1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1673 array_free (fdchange, EMPTY);
1674 array_free (timer, EMPTY);
1675#if EV_PERIODIC_ENABLE
1676 array_free (periodic, EMPTY);
1677#endif
1678#if EV_FORK_ENABLE
1679 array_free (fork, EMPTY);
1680#endif
1681 array_free (prepare, EMPTY);
1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
1686
1687 backend = 0;
1688}
1689
1690#if EV_USE_INOTIFY
1691inline_size void infy_fork (EV_P);
1692#endif
1693
1694inline_size void
1695loop_fork (EV_P)
1696{
1697#if EV_USE_PORT
1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1699#endif
1700#if EV_USE_KQUEUE
1701 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1702#endif
1703#if EV_USE_EPOLL
1704 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1705#endif
1706#if EV_USE_INOTIFY
1707 infy_fork (EV_A);
1708#endif
1709
1710 if (ev_is_active (&pipe_w))
1711 {
1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 sig_pending = 1;
1715#if EV_ASYNC_ENABLE
1716 async_pending = 1;
1717#endif
1718
1719 ev_ref (EV_A);
1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1729 close (evpipe [0]);
1730 close (evpipe [1]);
1731 }
1732
1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
1736 }
1737
1738 postfork = 0;
1739}
1740
1741#if EV_MULTIPLICITY
1742
1743struct ev_loop *
1744ev_loop_new (unsigned int flags)
1745{
1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1747
1748 memset (EV_A, 0, sizeof (struct ev_loop));
1749 loop_init (EV_A_ flags);
1750
1751 if (ev_backend (EV_A))
1752 return EV_A;
1753
1754 return 0;
1755}
1756
1757void
1758ev_loop_destroy (EV_P)
1759{
1760 loop_destroy (EV_A);
1761 ev_free (loop);
1762}
1763
1764void
1765ev_loop_fork (EV_P)
1766{
1767 postfork = 1; /* must be in line with ev_default_fork */
1768}
1769#endif /* multiplicity */
1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1867# endif
1868#endif
1869}
1870#endif
1871
1872#if EV_MULTIPLICITY
1873struct ev_loop *
1874ev_default_loop_init (unsigned int flags)
1875#else
1876int
1877ev_default_loop (unsigned int flags)
1878#endif
1879{
1880 if (!ev_default_loop_ptr)
1881 {
1882#if EV_MULTIPLICITY
1883 EV_P = ev_default_loop_ptr = &default_loop_struct;
1884#else
1885 ev_default_loop_ptr = 1;
1886#endif
1887
1888 loop_init (EV_A_ flags);
1889
1890 if (ev_backend (EV_A))
1891 {
1892#ifndef _WIN32
1893 ev_signal_init (&childev, childcb, SIGCHLD);
1894 ev_set_priority (&childev, EV_MAXPRI);
1895 ev_signal_start (EV_A_ &childev);
1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
1897#endif
1898 }
1899 else
1900 ev_default_loop_ptr = 0;
1901 }
1902
1903 return ev_default_loop_ptr;
1904}
1905
1906void
1907ev_default_destroy (void)
1908{
1909#if EV_MULTIPLICITY
1910 EV_P = ev_default_loop_ptr;
1911#endif
1912
1913 ev_default_loop_ptr = 0;
1914
1915#ifndef _WIN32
1916 ev_ref (EV_A); /* child watcher */
1917 ev_signal_stop (EV_A_ &childev);
1918#endif
1919
1920 loop_destroy (EV_A);
1921}
1922
1923void
1924ev_default_fork (void)
1925{
1926#if EV_MULTIPLICITY
1927 EV_P = ev_default_loop_ptr;
1928#endif
1929
1930 postfork = 1; /* must be in line with ev_loop_fork */
1931}
1932
1933/*****************************************************************************/
1934
1935void
1936ev_invoke (EV_P_ void *w, int revents)
1937{
1938 EV_CB_INVOKE ((W)w, revents);
1939}
1940
1941unsigned int
1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1955{
1956 int pri;
1957
1958 for (pri = NUMPRI; pri--; )
1959 while (pendingcnt [pri])
1960 {
1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1962
1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1965
1966 p->w->pending = 0;
1967 EV_CB_INVOKE (p->w, p->events);
1968 EV_FREQUENT_CHECK;
1969 }
1970}
1971
1972#if EV_IDLE_ENABLE
1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1976idle_reify (EV_P)
1977{
1978 if (expect_false (idleall))
1979 {
1980 int pri;
1981
1982 for (pri = NUMPRI; pri--; )
1983 {
1984 if (pendingcnt [pri])
1985 break;
1986
1987 if (idlecnt [pri])
1988 {
1989 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1990 break;
1991 }
1992 }
1993 }
1994}
1995#endif
1996
1997/* make timers pending */
1998inline_size void
434timers_reify () 1999timers_reify (EV_P)
435{ 2000{
436 while (timercnt && timers [0]->at <= now) 2001 EV_FREQUENT_CHECK;
437 {
438 struct ev_timer *w = timers [0];
439 2002
440 event ((W)w, EV_TIMEOUT); 2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
441 2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
442 /* first reschedule or stop timer */ 2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033}
2034
2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
2038periodics_reify (EV_P)
2039{
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
2134time_update (EV_P_ ev_tstamp max_block)
2135{
2136#if EV_USE_MONOTONIC
2137 if (expect_true (have_monotonic))
2138 {
2139 int i;
2140 ev_tstamp odiff = rtmn_diff;
2141
2142 mn_now = get_clock ();
2143
2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2145 /* interpolate in the meantime */
2146 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2147 {
2148 ev_rt_now = rtmn_diff + mn_now;
2149 return;
2150 }
2151
2152 now_floor = mn_now;
2153 ev_rt_now = ev_time ();
2154
2155 /* loop a few times, before making important decisions.
2156 * on the choice of "4": one iteration isn't enough,
2157 * in case we get preempted during the calls to
2158 * ev_time and get_clock. a second call is almost guaranteed
2159 * to succeed in that case, though. and looping a few more times
2160 * doesn't hurt either as we only do this on time-jumps or
2161 * in the unlikely event of having been preempted here.
2162 */
2163 for (i = 4; --i; )
2164 {
2165 rtmn_diff = ev_rt_now - mn_now;
2166
2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2168 return; /* all is well */
2169
2170 ev_rt_now = ev_time ();
2171 mn_now = get_clock ();
2172 now_floor = mn_now;
2173 }
2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2177# if EV_PERIODIC_ENABLE
2178 periodics_reschedule (EV_A);
2179# endif
2180 }
2181 else
2182#endif
2183 {
2184 ev_rt_now = ev_time ();
2185
2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2190#if EV_PERIODIC_ENABLE
2191 periodics_reschedule (EV_A);
2192#endif
2193 }
2194
2195 mn_now = ev_rt_now;
2196 }
2197}
2198
2199void
2200ev_loop (EV_P_ int flags)
2201{
2202#if EV_MINIMAL < 2
2203 ++loop_depth;
2204#endif
2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2211
2212 do
2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
2218#ifndef _WIN32
2219 if (expect_false (curpid)) /* penalise the forking check even more */
2220 if (expect_false (getpid () != curpid))
2221 {
2222 curpid = getpid ();
2223 postfork = 1;
2224 }
2225#endif
2226
2227#if EV_FORK_ENABLE
2228 /* we might have forked, so queue fork handlers */
2229 if (expect_false (postfork))
2230 if (forkcnt)
2231 {
2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2233 EV_INVOKE_PENDING;
2234 }
2235#endif
2236
2237 /* queue prepare watchers (and execute them) */
2238 if (expect_false (preparecnt))
2239 {
2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2241 EV_INVOKE_PENDING;
2242 }
2243
2244 if (expect_false (loop_done))
2245 break;
2246
2247 /* we might have forked, so reify kernel state if necessary */
2248 if (expect_false (postfork))
2249 loop_fork (EV_A);
2250
2251 /* update fd-related kernel structures */
2252 fd_reify (EV_A);
2253
2254 /* calculate blocking time */
2255 {
2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
2258
2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
2264 /* update time to cancel out callback processing overhead */
2265 time_update (EV_A_ 1e100);
2266
2267 waittime = MAX_BLOCKTIME;
2268
2269 if (timercnt)
2270 {
2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2272 if (waittime > to) waittime = to;
2273 }
2274
2275#if EV_PERIODIC_ENABLE
2276 if (periodiccnt)
2277 {
2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2279 if (waittime > to) waittime = to;
2280 }
2281#endif
2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
2301 }
2302
2303#if EV_MINIMAL < 2
2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2309
2310 /* update ev_rt_now, do magic */
2311 time_update (EV_A_ waittime + sleeptime);
2312 }
2313
2314 /* queue pending timers and reschedule them */
2315 timers_reify (EV_A); /* relative timers called last */
2316#if EV_PERIODIC_ENABLE
2317 periodics_reify (EV_A); /* absolute timers called first */
2318#endif
2319
2320#if EV_IDLE_ENABLE
2321 /* queue idle watchers unless other events are pending */
2322 idle_reify (EV_A);
2323#endif
2324
2325 /* queue check watchers, to be executed first */
2326 if (expect_false (checkcnt))
2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2328
2329 EV_INVOKE_PENDING;
2330 }
2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
2336
2337 if (loop_done == EVUNLOOP_ONE)
2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
2343}
2344
2345void
2346ev_unloop (EV_P_ int how)
2347{
2348 loop_done = how;
2349}
2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
2390
2391inline_size void
2392wlist_add (WL *head, WL elem)
2393{
2394 elem->next = *head;
2395 *head = elem;
2396}
2397
2398inline_size void
2399wlist_del (WL *head, WL elem)
2400{
2401 while (*head)
2402 {
2403 if (expect_true (*head == elem))
2404 {
2405 *head = elem->next;
2406 break;
2407 }
2408
2409 head = &(*head)->next;
2410 }
2411}
2412
2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
2415clear_pending (EV_P_ W w)
2416{
2417 if (w->pending)
2418 {
2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2420 w->pending = 0;
2421 }
2422}
2423
2424int
2425ev_clear_pending (EV_P_ void *w)
2426{
2427 W w_ = (W)w;
2428 int pending = w_->pending;
2429
2430 if (expect_true (pending))
2431 {
2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
2434 w_->pending = 0;
2435 return p->events;
2436 }
2437 else
2438 return 0;
2439}
2440
2441inline_size void
2442pri_adjust (EV_P_ W w)
2443{
2444 int pri = ev_priority (w);
2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2447 ev_set_priority (w, pri);
2448}
2449
2450inline_speed void
2451ev_start (EV_P_ W w, int active)
2452{
2453 pri_adjust (EV_A_ w);
2454 w->active = active;
2455 ev_ref (EV_A);
2456}
2457
2458inline_size void
2459ev_stop (EV_P_ W w)
2460{
2461 ev_unref (EV_A);
2462 w->active = 0;
2463}
2464
2465/*****************************************************************************/
2466
2467void noinline
2468ev_io_start (EV_P_ ev_io *w)
2469{
2470 int fd = w->fd;
2471
2472 if (expect_false (ev_is_active (w)))
2473 return;
2474
2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
2479
2480 ev_start (EV_A_ (W)w, 1);
2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2482 wlist_add (&anfds[fd].head, (WL)w);
2483
2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2485 w->events &= ~EV__IOFDSET;
2486
2487 EV_FREQUENT_CHECK;
2488}
2489
2490void noinline
2491ev_io_stop (EV_P_ ev_io *w)
2492{
2493 clear_pending (EV_A_ (W)w);
2494 if (expect_false (!ev_is_active (w)))
2495 return;
2496
2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2498
2499 EV_FREQUENT_CHECK;
2500
2501 wlist_del (&anfds[w->fd].head, (WL)w);
2502 ev_stop (EV_A_ (W)w);
2503
2504 fd_change (EV_A_ w->fd, 1);
2505
2506 EV_FREQUENT_CHECK;
2507}
2508
2509void noinline
2510ev_timer_start (EV_P_ ev_timer *w)
2511{
2512 if (expect_false (ev_is_active (w)))
2513 return;
2514
2515 ev_at (w) += mn_now;
2516
2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
2527
2528 EV_FREQUENT_CHECK;
2529
2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2531}
2532
2533void noinline
2534ev_timer_stop (EV_P_ ev_timer *w)
2535{
2536 clear_pending (EV_A_ (W)w);
2537 if (expect_false (!ev_is_active (w)))
2538 return;
2539
2540 EV_FREQUENT_CHECK;
2541
2542 {
2543 int active = ev_active (w);
2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
2549 if (expect_true (active < timercnt + HEAP0))
2550 {
2551 timers [active] = timers [timercnt + HEAP0];
2552 adjustheap (timers, timercnt, active);
2553 }
2554 }
2555
2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
2559
2560 ev_stop (EV_A_ (W)w);
2561}
2562
2563void noinline
2564ev_timer_again (EV_P_ ev_timer *w)
2565{
2566 EV_FREQUENT_CHECK;
2567
2568 if (ev_is_active (w))
2569 {
443 if (w->repeat) 2570 if (w->repeat)
444 { 2571 {
445 w->at = now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
446 assert (("timer timeout in the past, negative repeat?", w->at > now)); 2573 ANHE_at_cache (timers [ev_active (w)]);
447 downheap ((WT *)timers, timercnt, 0); 2574 adjustheap (timers, timercnt, ev_active (w));
448 } 2575 }
449 else 2576 else
450 evtimer_stop (w); /* nonrepeating: stop timer */ 2577 ev_timer_stop (EV_A_ w);
451 }
452}
453
454static void
455periodics_reify ()
456{
457 while (periodiccnt && periodics [0]->at <= ev_now)
458 { 2578 }
459 struct ev_periodic *w = periodics [0]; 2579 else if (w->repeat)
2580 {
2581 ev_at (w) = w->repeat;
2582 ev_timer_start (EV_A_ w);
2583 }
460 2584
461 /* first reschedule or stop timer */ 2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2592}
2593
2594#if EV_PERIODIC_ENABLE
2595void noinline
2596ev_periodic_start (EV_P_ ev_periodic *w)
2597{
2598 if (expect_false (ev_is_active (w)))
2599 return;
2600
2601 if (w->reschedule_cb)
2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
462 if (w->interval) 2603 else if (w->interval)
2604 {
2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2606 /* this formula differs from the one in periodic_reify because we do not always round up */
2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2608 }
2609 else
2610 ev_at (w) = w->offset;
2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
2620
2621 EV_FREQUENT_CHECK;
2622
2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2624}
2625
2626void noinline
2627ev_periodic_stop (EV_P_ ev_periodic *w)
2628{
2629 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w)))
2631 return;
2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
2642 if (expect_true (active < periodiccnt + HEAP0))
2643 {
2644 periodics [active] = periodics [periodiccnt + HEAP0];
2645 adjustheap (periodics, periodiccnt, active);
2646 }
2647 }
2648
2649 EV_FREQUENT_CHECK;
2650
2651 ev_stop (EV_A_ (W)w);
2652}
2653
2654void noinline
2655ev_periodic_again (EV_P_ ev_periodic *w)
2656{
2657 /* TODO: use adjustheap and recalculation */
2658 ev_periodic_stop (EV_A_ w);
2659 ev_periodic_start (EV_A_ w);
2660}
2661#endif
2662
2663#ifndef SA_RESTART
2664# define SA_RESTART 0
2665#endif
2666
2667void noinline
2668ev_signal_start (EV_P_ ev_signal *w)
2669{
2670 if (expect_false (ev_is_active (w)))
2671 return;
2672
2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2674
2675#if EV_MULTIPLICITY
2676 assert (("libev: a signal must not be attached to two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2678
2679 signals [w->signum - 1].loop = EV_A;
2680#endif
2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_SIGNALFD
2685 if (sigfd == -2)
2686 {
2687 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2688 if (sigfd < 0 && errno == EINVAL)
2689 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2690
2691 if (sigfd >= 0)
463 { 2692 {
464 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 2693 fd_intern (sigfd); /* doing it twice will not hurt */
465 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 2694
466 downheap ((WT *)periodics, periodiccnt, 0); 2695 sigemptyset (&sigfd_set);
2696
2697 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2698 ev_set_priority (&sigfd_w, EV_MAXPRI);
2699 ev_io_start (EV_A_ &sigfd_w);
2700 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2701 }
2702 }
2703
2704 if (sigfd >= 0)
2705 {
2706 /* TODO: check .head */
2707 sigaddset (&sigfd_set, w->signum);
2708 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2709
2710 signalfd (sigfd, &sigfd_set, 0);
2711 }
2712#endif
2713
2714 ev_start (EV_A_ (W)w, 1);
2715 wlist_add (&signals [w->signum - 1].head, (WL)w);
2716
2717 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/
2720# endif
2721 {
2722# if _WIN32
2723 signal (w->signum, ev_sighandler);
2724# else
2725 struct sigaction sa;
2726
2727 evpipe_init (EV_A);
2728
2729 sa.sa_handler = ev_sighandler;
2730 sigfillset (&sa.sa_mask);
2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2732 sigaction (w->signum, &sa, 0);
2733
2734 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2737#endif
2738 }
2739
2740 EV_FREQUENT_CHECK;
2741}
2742
2743void noinline
2744ev_signal_stop (EV_P_ ev_signal *w)
2745{
2746 clear_pending (EV_A_ (W)w);
2747 if (expect_false (!ev_is_active (w)))
2748 return;
2749
2750 EV_FREQUENT_CHECK;
2751
2752 wlist_del (&signals [w->signum - 1].head, (WL)w);
2753 ev_stop (EV_A_ (W)w);
2754
2755 if (!signals [w->signum - 1].head)
2756 {
2757#if EV_MULTIPLICITY
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif
2760#if EV_USE_SIGNALFD
2761 if (sigfd >= 0)
2762 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2764 sigdelset (&sigfd_set, w->signum);
2765 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2767 /*TODO: maybe unblock signal? */
467 } 2768 }
468 else 2769 else
469 evperiodic_stop (w); /* nonrepeating: stop timer */ 2770#endif
470 2771 signal (w->signum, SIG_DFL);
471 event ((W)w, EV_TIMEOUT);
472 }
473}
474
475static void
476periodics_reschedule (ev_tstamp diff)
477{
478 int i;
479
480 /* adjust periodics after time jump */
481 for (i = 0; i < periodiccnt; ++i)
482 { 2772 }
483 struct ev_periodic *w = periodics [i];
484 2773
485 if (w->interval) 2774 EV_FREQUENT_CHECK;
2775}
2776
2777void
2778ev_child_start (EV_P_ ev_child *w)
2779{
2780#if EV_MULTIPLICITY
2781 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2782#endif
2783 if (expect_false (ev_is_active (w)))
2784 return;
2785
2786 EV_FREQUENT_CHECK;
2787
2788 ev_start (EV_A_ (W)w, 1);
2789 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2790
2791 EV_FREQUENT_CHECK;
2792}
2793
2794void
2795ev_child_stop (EV_P_ ev_child *w)
2796{
2797 clear_pending (EV_A_ (W)w);
2798 if (expect_false (!ev_is_active (w)))
2799 return;
2800
2801 EV_FREQUENT_CHECK;
2802
2803 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2807}
2808
2809#if EV_STAT_ENABLE
2810
2811# ifdef _WIN32
2812# undef lstat
2813# define lstat(a,b) _stati64 (a,b)
2814# endif
2815
2816#define DEF_STAT_INTERVAL 5.0074891
2817#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2818#define MIN_STAT_INTERVAL 0.1074891
2819
2820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2821
2822#if EV_USE_INOTIFY
2823# define EV_INOTIFY_BUFSIZE 8192
2824
2825static void noinline
2826infy_add (EV_P_ ev_stat *w)
2827{
2828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2829
2830 if (w->wd < 0)
2831 {
2832 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2833 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2834
2835 /* monitor some parent directory for speedup hints */
2836 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2837 /* but an efficiency issue only */
2838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
486 { 2839 {
487 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 2840 char path [4096];
2841 strcpy (path, w->path);
488 2842
489 if (fabs (diff) >= 1e-4) 2843 do
490 { 2844 {
491 evperiodic_stop (w); 2845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
492 evperiodic_start (w); 2846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
493 2847
494 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 2848 char *pend = strrchr (path, '/');
2849
2850 if (!pend || pend == path)
2851 break;
2852
2853 *pend = 0;
2854 w->wd = inotify_add_watch (fs_fd, path, mask);
2855 }
2856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2857 }
2858 }
2859
2860 if (w->wd >= 0)
2861 {
2862 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2863
2864 /* now local changes will be tracked by inotify, but remote changes won't */
2865 /* unless the filesystem it known to be local, we therefore still poll */
2866 /* also do poll on <2.6.25, but with normal frequency */
2867 struct statfs sfs;
2868
2869 if (fs_2625 && !statfs (w->path, &sfs))
2870 if (sfs.f_type == 0x1373 /* devfs */
2871 || sfs.f_type == 0xEF53 /* ext2/3 */
2872 || sfs.f_type == 0x3153464a /* jfs */
2873 || sfs.f_type == 0x52654973 /* reiser3 */
2874 || sfs.f_type == 0x01021994 /* tempfs */
2875 || sfs.f_type == 0x58465342 /* xfs */)
2876 return;
2877
2878 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2879 ev_timer_again (EV_A_ &w->timer);
2880 }
2881}
2882
2883static void noinline
2884infy_del (EV_P_ ev_stat *w)
2885{
2886 int slot;
2887 int wd = w->wd;
2888
2889 if (wd < 0)
2890 return;
2891
2892 w->wd = -2;
2893 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2894 wlist_del (&fs_hash [slot].head, (WL)w);
2895
2896 /* remove this watcher, if others are watching it, they will rearm */
2897 inotify_rm_watch (fs_fd, wd);
2898}
2899
2900static void noinline
2901infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2902{
2903 if (slot < 0)
2904 /* overflow, need to check for all hash slots */
2905 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2906 infy_wd (EV_A_ slot, wd, ev);
2907 else
2908 {
2909 WL w_;
2910
2911 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2912 {
2913 ev_stat *w = (ev_stat *)w_;
2914 w_ = w_->next; /* lets us remove this watcher and all before it */
2915
2916 if (w->wd == wd || wd == -1)
2917 {
2918 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2919 {
2920 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2921 w->wd = -1;
2922 infy_add (EV_A_ w); /* re-add, no matter what */
2923 }
2924
2925 stat_timer_cb (EV_A_ &w->timer, 0);
495 } 2926 }
496 } 2927 }
497 } 2928 }
498} 2929}
499 2930
500static void 2931static void
501time_update () 2932infy_cb (EV_P_ ev_io *w, int revents)
502{ 2933{
2934 char buf [EV_INOTIFY_BUFSIZE];
2935 struct inotify_event *ev = (struct inotify_event *)buf;
503 int i; 2936 int ofs;
2937 int len = read (fs_fd, buf, sizeof (buf));
504 2938
505 ev_now = ev_time (); 2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2940 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2941}
506 2942
507 if (have_monotonic) 2943inline_size void
2944check_2625 (EV_P)
2945{
2946 /* kernels < 2.6.25 are borked
2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2948 */
2949 struct utsname buf;
2950 int major, minor, micro;
2951
2952 if (uname (&buf))
2953 return;
2954
2955 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2956 return;
2957
2958 if (major < 2
2959 || (major == 2 && minor < 6)
2960 || (major == 2 && minor == 6 && micro < 25))
2961 return;
2962
2963 fs_2625 = 1;
2964}
2965
2966inline_size void
2967infy_init (EV_P)
2968{
2969 if (fs_fd != -2)
2970 return;
2971
2972 fs_fd = -1;
2973
2974 check_2625 (EV_A);
2975
2976 fs_fd = inotify_init ();
2977
2978 if (fs_fd >= 0)
2979 {
2980 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2981 ev_set_priority (&fs_w, EV_MAXPRI);
2982 ev_io_start (EV_A_ &fs_w);
508 { 2983 }
509 ev_tstamp odiff = diff; 2984}
510 2985
511 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2986inline_size void
2987infy_fork (EV_P)
2988{
2989 int slot;
2990
2991 if (fs_fd < 0)
2992 return;
2993
2994 close (fs_fd);
2995 fs_fd = inotify_init ();
2996
2997 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2998 {
2999 WL w_ = fs_hash [slot].head;
3000 fs_hash [slot].head = 0;
3001
3002 while (w_)
512 { 3003 {
513 now = get_clock (); 3004 ev_stat *w = (ev_stat *)w_;
514 diff = ev_now - now; 3005 w_ = w_->next; /* lets us add this watcher */
515 3006
516 if (fabs (odiff - diff) < MIN_TIMEJUMP) 3007 w->wd = -1;
517 return; /* all is well */
518 3008
519 ev_now = ev_time (); 3009 if (fs_fd >= 0)
3010 infy_add (EV_A_ w); /* re-add, no matter what */
3011 else
3012 ev_timer_again (EV_A_ &w->timer);
520 } 3013 }
521
522 periodics_reschedule (diff - odiff);
523 /* no timer adjustment, as the monotonic clock doesn't jump */
524 } 3014 }
3015}
3016
3017#endif
3018
3019#ifdef _WIN32
3020# define EV_LSTAT(p,b) _stati64 (p, b)
3021#else
3022# define EV_LSTAT(p,b) lstat (p, b)
3023#endif
3024
3025void
3026ev_stat_stat (EV_P_ ev_stat *w)
3027{
3028 if (lstat (w->path, &w->attr) < 0)
3029 w->attr.st_nlink = 0;
3030 else if (!w->attr.st_nlink)
3031 w->attr.st_nlink = 1;
3032}
3033
3034static void noinline
3035stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3036{
3037 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3038
3039 /* we copy this here each the time so that */
3040 /* prev has the old value when the callback gets invoked */
3041 w->prev = w->attr;
3042 ev_stat_stat (EV_A_ w);
3043
3044 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3045 if (
3046 w->prev.st_dev != w->attr.st_dev
3047 || w->prev.st_ino != w->attr.st_ino
3048 || w->prev.st_mode != w->attr.st_mode
3049 || w->prev.st_nlink != w->attr.st_nlink
3050 || w->prev.st_uid != w->attr.st_uid
3051 || w->prev.st_gid != w->attr.st_gid
3052 || w->prev.st_rdev != w->attr.st_rdev
3053 || w->prev.st_size != w->attr.st_size
3054 || w->prev.st_atime != w->attr.st_atime
3055 || w->prev.st_mtime != w->attr.st_mtime
3056 || w->prev.st_ctime != w->attr.st_ctime
3057 ) {
3058 #if EV_USE_INOTIFY
3059 if (fs_fd >= 0)
3060 {
3061 infy_del (EV_A_ w);
3062 infy_add (EV_A_ w);
3063 ev_stat_stat (EV_A_ w); /* avoid race... */
3064 }
3065 #endif
3066
3067 ev_feed_event (EV_A_ w, EV_STAT);
3068 }
3069}
3070
3071void
3072ev_stat_start (EV_P_ ev_stat *w)
3073{
3074 if (expect_false (ev_is_active (w)))
3075 return;
3076
3077 ev_stat_stat (EV_A_ w);
3078
3079 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3080 w->interval = MIN_STAT_INTERVAL;
3081
3082 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3083 ev_set_priority (&w->timer, ev_priority (w));
3084
3085#if EV_USE_INOTIFY
3086 infy_init (EV_A);
3087
3088 if (fs_fd >= 0)
3089 infy_add (EV_A_ w);
525 else 3090 else
3091#endif
3092 ev_timer_again (EV_A_ &w->timer);
3093
3094 ev_start (EV_A_ (W)w, 1);
3095
3096 EV_FREQUENT_CHECK;
3097}
3098
3099void
3100ev_stat_stop (EV_P_ ev_stat *w)
3101{
3102 clear_pending (EV_A_ (W)w);
3103 if (expect_false (!ev_is_active (w)))
3104 return;
3105
3106 EV_FREQUENT_CHECK;
3107
3108#if EV_USE_INOTIFY
3109 infy_del (EV_A_ w);
3110#endif
3111 ev_timer_stop (EV_A_ &w->timer);
3112
3113 ev_stop (EV_A_ (W)w);
3114
3115 EV_FREQUENT_CHECK;
3116}
3117#endif
3118
3119#if EV_IDLE_ENABLE
3120void
3121ev_idle_start (EV_P_ ev_idle *w)
3122{
3123 if (expect_false (ev_is_active (w)))
3124 return;
3125
3126 pri_adjust (EV_A_ (W)w);
3127
3128 EV_FREQUENT_CHECK;
3129
526 { 3130 {
527 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 3131 int active = ++idlecnt [ABSPRI (w)];
3132
3133 ++idleall;
3134 ev_start (EV_A_ (W)w, active);
3135
3136 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3137 idles [ABSPRI (w)][active - 1] = w;
3138 }
3139
3140 EV_FREQUENT_CHECK;
3141}
3142
3143void
3144ev_idle_stop (EV_P_ ev_idle *w)
3145{
3146 clear_pending (EV_A_ (W)w);
3147 if (expect_false (!ev_is_active (w)))
3148 return;
3149
3150 EV_FREQUENT_CHECK;
3151
3152 {
3153 int active = ev_active (w);
3154
3155 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3156 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3157
3158 ev_stop (EV_A_ (W)w);
3159 --idleall;
3160 }
3161
3162 EV_FREQUENT_CHECK;
3163}
3164#endif
3165
3166void
3167ev_prepare_start (EV_P_ ev_prepare *w)
3168{
3169 if (expect_false (ev_is_active (w)))
3170 return;
3171
3172 EV_FREQUENT_CHECK;
3173
3174 ev_start (EV_A_ (W)w, ++preparecnt);
3175 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3176 prepares [preparecnt - 1] = w;
3177
3178 EV_FREQUENT_CHECK;
3179}
3180
3181void
3182ev_prepare_stop (EV_P_ ev_prepare *w)
3183{
3184 clear_pending (EV_A_ (W)w);
3185 if (expect_false (!ev_is_active (w)))
3186 return;
3187
3188 EV_FREQUENT_CHECK;
3189
3190 {
3191 int active = ev_active (w);
3192
3193 prepares [active - 1] = prepares [--preparecnt];
3194 ev_active (prepares [active - 1]) = active;
3195 }
3196
3197 ev_stop (EV_A_ (W)w);
3198
3199 EV_FREQUENT_CHECK;
3200}
3201
3202void
3203ev_check_start (EV_P_ ev_check *w)
3204{
3205 if (expect_false (ev_is_active (w)))
3206 return;
3207
3208 EV_FREQUENT_CHECK;
3209
3210 ev_start (EV_A_ (W)w, ++checkcnt);
3211 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3212 checks [checkcnt - 1] = w;
3213
3214 EV_FREQUENT_CHECK;
3215}
3216
3217void
3218ev_check_stop (EV_P_ ev_check *w)
3219{
3220 clear_pending (EV_A_ (W)w);
3221 if (expect_false (!ev_is_active (w)))
3222 return;
3223
3224 EV_FREQUENT_CHECK;
3225
3226 {
3227 int active = ev_active (w);
3228
3229 checks [active - 1] = checks [--checkcnt];
3230 ev_active (checks [active - 1]) = active;
3231 }
3232
3233 ev_stop (EV_A_ (W)w);
3234
3235 EV_FREQUENT_CHECK;
3236}
3237
3238#if EV_EMBED_ENABLE
3239void noinline
3240ev_embed_sweep (EV_P_ ev_embed *w)
3241{
3242 ev_loop (w->other, EVLOOP_NONBLOCK);
3243}
3244
3245static void
3246embed_io_cb (EV_P_ ev_io *io, int revents)
3247{
3248 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3249
3250 if (ev_cb (w))
3251 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3252 else
3253 ev_loop (w->other, EVLOOP_NONBLOCK);
3254}
3255
3256static void
3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3258{
3259 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3260
3261 {
3262 EV_P = w->other;
3263
3264 while (fdchangecnt)
528 { 3265 {
529 periodics_reschedule (ev_now - now); 3266 fd_reify (EV_A);
530 3267 ev_loop (EV_A_ EVLOOP_NONBLOCK);
531 /* adjust timers. this is easy, as the offset is the same for all */
532 for (i = 0; i < timercnt; ++i)
533 timers [i]->at += diff;
534 } 3268 }
535
536 now = ev_now;
537 } 3269 }
538} 3270}
539 3271
540int ev_loop_done; 3272static void
541 3273embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
542void ev_loop (int flags)
543{ 3274{
544 double block; 3275 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
545 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0;
546 3276
547 if (checkcnt) 3277 ev_embed_stop (EV_A_ w);
3278
548 { 3279 {
549 queue_events ((W *)checks, checkcnt, EV_CHECK); 3280 EV_P = w->other;
550 call_pending (); 3281
3282 ev_loop_fork (EV_A);
3283 ev_loop (EV_A_ EVLOOP_NONBLOCK);
551 } 3284 }
552 3285
553 do 3286 ev_embed_start (EV_A_ w);
3287}
3288
3289#if 0
3290static void
3291embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3292{
3293 ev_idle_stop (EV_A_ idle);
3294}
3295#endif
3296
3297void
3298ev_embed_start (EV_P_ ev_embed *w)
3299{
3300 if (expect_false (ev_is_active (w)))
3301 return;
3302
554 { 3303 {
555 /* update fd-related kernel structures */ 3304 EV_P = w->other;
556 fd_reify (); 3305 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
557 3306 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
558 /* calculate blocking time */
559
560 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */
561 ev_now = ev_time ();
562
563 if (flags & EVLOOP_NONBLOCK || idlecnt)
564 block = 0.;
565 else
566 {
567 block = MAX_BLOCKTIME;
568
569 if (timercnt)
570 {
571 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
572 if (block > to) block = to;
573 }
574
575 if (periodiccnt)
576 {
577 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
578 if (block > to) block = to;
579 }
580
581 if (block < 0.) block = 0.;
582 }
583
584 method_poll (block);
585
586 /* update ev_now, do magic */
587 time_update ();
588
589 /* queue pending timers and reschedule them */
590 periodics_reify (); /* absolute timers first */
591 timers_reify (); /* relative timers second */
592
593 /* queue idle watchers unless io or timers are pending */
594 if (!pendingcnt)
595 queue_events ((W *)idles, idlecnt, EV_IDLE);
596
597 /* queue check and possibly idle watchers */
598 queue_events ((W *)checks, checkcnt, EV_CHECK);
599
600 call_pending ();
601 } 3307 }
602 while (!ev_loop_done);
603 3308
604 if (ev_loop_done != 2) 3309 EV_FREQUENT_CHECK;
605 ev_loop_done = 0; 3310
3311 ev_set_priority (&w->io, ev_priority (w));
3312 ev_io_start (EV_A_ &w->io);
3313
3314 ev_prepare_init (&w->prepare, embed_prepare_cb);
3315 ev_set_priority (&w->prepare, EV_MINPRI);
3316 ev_prepare_start (EV_A_ &w->prepare);
3317
3318 ev_fork_init (&w->fork, embed_fork_cb);
3319 ev_fork_start (EV_A_ &w->fork);
3320
3321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3322
3323 ev_start (EV_A_ (W)w, 1);
3324
3325 EV_FREQUENT_CHECK;
606} 3326}
3327
3328void
3329ev_embed_stop (EV_P_ ev_embed *w)
3330{
3331 clear_pending (EV_A_ (W)w);
3332 if (expect_false (!ev_is_active (w)))
3333 return;
3334
3335 EV_FREQUENT_CHECK;
3336
3337 ev_io_stop (EV_A_ &w->io);
3338 ev_prepare_stop (EV_A_ &w->prepare);
3339 ev_fork_stop (EV_A_ &w->fork);
3340
3341 EV_FREQUENT_CHECK;
3342}
3343#endif
3344
3345#if EV_FORK_ENABLE
3346void
3347ev_fork_start (EV_P_ ev_fork *w)
3348{
3349 if (expect_false (ev_is_active (w)))
3350 return;
3351
3352 EV_FREQUENT_CHECK;
3353
3354 ev_start (EV_A_ (W)w, ++forkcnt);
3355 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3356 forks [forkcnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
3359}
3360
3361void
3362ev_fork_stop (EV_P_ ev_fork *w)
3363{
3364 clear_pending (EV_A_ (W)w);
3365 if (expect_false (!ev_is_active (w)))
3366 return;
3367
3368 EV_FREQUENT_CHECK;
3369
3370 {
3371 int active = ev_active (w);
3372
3373 forks [active - 1] = forks [--forkcnt];
3374 ev_active (forks [active - 1]) = active;
3375 }
3376
3377 ev_stop (EV_A_ (W)w);
3378
3379 EV_FREQUENT_CHECK;
3380}
3381#endif
3382
3383#if EV_ASYNC_ENABLE
3384void
3385ev_async_start (EV_P_ ev_async *w)
3386{
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 evpipe_init (EV_A);
3391
3392 EV_FREQUENT_CHECK;
3393
3394 ev_start (EV_A_ (W)w, ++asynccnt);
3395 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3396 asyncs [asynccnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
3399}
3400
3401void
3402ev_async_stop (EV_P_ ev_async *w)
3403{
3404 clear_pending (EV_A_ (W)w);
3405 if (expect_false (!ev_is_active (w)))
3406 return;
3407
3408 EV_FREQUENT_CHECK;
3409
3410 {
3411 int active = ev_active (w);
3412
3413 asyncs [active - 1] = asyncs [--asynccnt];
3414 ev_active (asyncs [active - 1]) = active;
3415 }
3416
3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
3420}
3421
3422void
3423ev_async_send (EV_P_ ev_async *w)
3424{
3425 w->sent = 1;
3426 evpipe_write (EV_A_ &async_pending);
3427}
3428#endif
607 3429
608/*****************************************************************************/ 3430/*****************************************************************************/
609 3431
610static void
611wlist_add (WL *head, WL elem)
612{
613 elem->next = *head;
614 *head = elem;
615}
616
617static void
618wlist_del (WL *head, WL elem)
619{
620 while (*head)
621 {
622 if (*head == elem)
623 {
624 *head = elem->next;
625 return;
626 }
627
628 head = &(*head)->next;
629 }
630}
631
632static void
633ev_clear (W w)
634{
635 if (w->pending)
636 {
637 pendings [w->pending - 1].w = 0;
638 w->pending = 0;
639 }
640}
641
642static void
643ev_start (W w, int active)
644{
645 w->active = active;
646}
647
648static void
649ev_stop (W w)
650{
651 w->active = 0;
652}
653
654/*****************************************************************************/
655
656void
657evio_start (struct ev_io *w)
658{
659 if (ev_is_active (w))
660 return;
661
662 int fd = w->fd;
663
664 ev_start ((W)w, 1);
665 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
666 wlist_add ((WL *)&anfds[fd].head, (WL)w);
667
668 ++fdchangecnt;
669 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
670 fdchanges [fdchangecnt - 1] = fd;
671}
672
673void
674evio_stop (struct ev_io *w)
675{
676 ev_clear ((W)w);
677 if (!ev_is_active (w))
678 return;
679
680 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
681 ev_stop ((W)w);
682
683 ++fdchangecnt;
684 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
685 fdchanges [fdchangecnt - 1] = w->fd;
686}
687
688void
689evtimer_start (struct ev_timer *w)
690{
691 if (ev_is_active (w))
692 return;
693
694 w->at += now;
695
696 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.));
697
698 ev_start ((W)w, ++timercnt);
699 array_needsize (timers, timermax, timercnt, );
700 timers [timercnt - 1] = w;
701 upheap ((WT *)timers, timercnt - 1);
702}
703
704void
705evtimer_stop (struct ev_timer *w)
706{
707 ev_clear ((W)w);
708 if (!ev_is_active (w))
709 return;
710
711 if (w->active < timercnt--)
712 {
713 timers [w->active - 1] = timers [timercnt];
714 downheap ((WT *)timers, timercnt, w->active - 1);
715 }
716
717 w->at = w->repeat;
718
719 ev_stop ((W)w);
720}
721
722void
723evtimer_again (struct ev_timer *w)
724{
725 if (ev_is_active (w))
726 {
727 if (w->repeat)
728 {
729 w->at = now + w->repeat;
730 downheap ((WT *)timers, timercnt, w->active - 1);
731 }
732 else
733 evtimer_stop (w);
734 }
735 else if (w->repeat)
736 evtimer_start (w);
737}
738
739void
740evperiodic_start (struct ev_periodic *w)
741{
742 if (ev_is_active (w))
743 return;
744
745 assert (("periodic interval value less than zero not allowed", w->interval >= 0.));
746
747 /* this formula differs from the one in periodic_reify because we do not always round up */
748 if (w->interval)
749 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
750
751 ev_start ((W)w, ++periodiccnt);
752 array_needsize (periodics, periodicmax, periodiccnt, );
753 periodics [periodiccnt - 1] = w;
754 upheap ((WT *)periodics, periodiccnt - 1);
755}
756
757void
758evperiodic_stop (struct ev_periodic *w)
759{
760 ev_clear ((W)w);
761 if (!ev_is_active (w))
762 return;
763
764 if (w->active < periodiccnt--)
765 {
766 periodics [w->active - 1] = periodics [periodiccnt];
767 downheap ((WT *)periodics, periodiccnt, w->active - 1);
768 }
769
770 ev_stop ((W)w);
771}
772
773void
774evsignal_start (struct ev_signal *w)
775{
776 if (ev_is_active (w))
777 return;
778
779 ev_start ((W)w, 1);
780 array_needsize (signals, signalmax, w->signum, signals_init);
781 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
782
783 if (!w->next)
784 {
785 struct sigaction sa;
786 sa.sa_handler = sighandler;
787 sigfillset (&sa.sa_mask);
788 sa.sa_flags = 0;
789 sigaction (w->signum, &sa, 0);
790 }
791}
792
793void
794evsignal_stop (struct ev_signal *w)
795{
796 ev_clear ((W)w);
797 if (!ev_is_active (w))
798 return;
799
800 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
801 ev_stop ((W)w);
802
803 if (!signals [w->signum - 1].head)
804 signal (w->signum, SIG_DFL);
805}
806
807void evidle_start (struct ev_idle *w)
808{
809 if (ev_is_active (w))
810 return;
811
812 ev_start ((W)w, ++idlecnt);
813 array_needsize (idles, idlemax, idlecnt, );
814 idles [idlecnt - 1] = w;
815}
816
817void evidle_stop (struct ev_idle *w)
818{
819 ev_clear ((W)w);
820 if (ev_is_active (w))
821 return;
822
823 idles [w->active - 1] = idles [--idlecnt];
824 ev_stop ((W)w);
825}
826
827void evcheck_start (struct ev_check *w)
828{
829 if (ev_is_active (w))
830 return;
831
832 ev_start ((W)w, ++checkcnt);
833 array_needsize (checks, checkmax, checkcnt, );
834 checks [checkcnt - 1] = w;
835}
836
837void evcheck_stop (struct ev_check *w)
838{
839 ev_clear ((W)w);
840 if (ev_is_active (w))
841 return;
842
843 checks [w->active - 1] = checks [--checkcnt];
844 ev_stop ((W)w);
845}
846
847/*****************************************************************************/
848
849struct ev_once 3432struct ev_once
850{ 3433{
851 struct ev_io io; 3434 ev_io io;
852 struct ev_timer to; 3435 ev_timer to;
853 void (*cb)(int revents, void *arg); 3436 void (*cb)(int revents, void *arg);
854 void *arg; 3437 void *arg;
855}; 3438};
856 3439
857static void 3440static void
858once_cb (struct ev_once *once, int revents) 3441once_cb (EV_P_ struct ev_once *once, int revents)
859{ 3442{
860 void (*cb)(int revents, void *arg) = once->cb; 3443 void (*cb)(int revents, void *arg) = once->cb;
861 void *arg = once->arg; 3444 void *arg = once->arg;
862 3445
863 evio_stop (&once->io); 3446 ev_io_stop (EV_A_ &once->io);
864 evtimer_stop (&once->to); 3447 ev_timer_stop (EV_A_ &once->to);
865 free (once); 3448 ev_free (once);
866 3449
867 cb (revents, arg); 3450 cb (revents, arg);
868} 3451}
869 3452
870static void 3453static void
871once_cb_io (struct ev_io *w, int revents) 3454once_cb_io (EV_P_ ev_io *w, int revents)
872{ 3455{
873 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3456 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3457
3458 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
874} 3459}
875 3460
876static void 3461static void
877once_cb_to (struct ev_timer *w, int revents) 3462once_cb_to (EV_P_ ev_timer *w, int revents)
878{ 3463{
879 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3464 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
880}
881 3465
3466 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3467}
3468
882void 3469void
883ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3470ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
884{ 3471{
885 struct ev_once *once = malloc (sizeof (struct ev_once)); 3472 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
886 3473
887 if (!once) 3474 if (expect_false (!once))
888 cb (EV_ERROR, arg); 3475 {
889 else 3476 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
3477 return;
890 { 3478 }
3479
891 once->cb = cb; 3480 once->cb = cb;
892 once->arg = arg; 3481 once->arg = arg;
893 3482
894 evw_init (&once->io, once_cb_io); 3483 ev_init (&once->io, once_cb_io);
895
896 if (fd >= 0) 3484 if (fd >= 0)
3485 {
3486 ev_io_set (&once->io, fd, events);
3487 ev_io_start (EV_A_ &once->io);
3488 }
3489
3490 ev_init (&once->to, once_cb_to);
3491 if (timeout >= 0.)
3492 {
3493 ev_timer_set (&once->to, timeout, 0.);
3494 ev_timer_start (EV_A_ &once->to);
3495 }
3496}
3497
3498/*****************************************************************************/
3499
3500#if EV_WALK_ENABLE
3501void
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3503{
3504 int i, j;
3505 ev_watcher_list *wl, *wn;
3506
3507 if (types & (EV_IO | EV_EMBED))
3508 for (i = 0; i < anfdmax; ++i)
3509 for (wl = anfds [i].head; wl; )
897 { 3510 {
898 evio_set (&once->io, fd, events); 3511 wn = wl->next;
899 evio_start (&once->io); 3512
3513#if EV_EMBED_ENABLE
3514 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3515 {
3516 if (types & EV_EMBED)
3517 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3518 }
3519 else
3520#endif
3521#if EV_USE_INOTIFY
3522 if (ev_cb ((ev_io *)wl) == infy_cb)
3523 ;
3524 else
3525#endif
3526 if ((ev_io *)wl != &pipe_w)
3527 if (types & EV_IO)
3528 cb (EV_A_ EV_IO, wl);
3529
3530 wl = wn;
900 } 3531 }
901 3532
902 evw_init (&once->to, once_cb_to); 3533 if (types & (EV_TIMER | EV_STAT))
903 3534 for (i = timercnt + HEAP0; i-- > HEAP0; )
904 if (timeout >= 0.) 3535#if EV_STAT_ENABLE
3536 /*TODO: timer is not always active*/
3537 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
905 { 3538 {
906 evtimer_set (&once->to, timeout, 0.); 3539 if (types & EV_STAT)
907 evtimer_start (&once->to); 3540 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
908 } 3541 }
909 } 3542 else
910} 3543#endif
3544 if (types & EV_TIMER)
3545 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
911 3546
912/*****************************************************************************/ 3547#if EV_PERIODIC_ENABLE
3548 if (types & EV_PERIODIC)
3549 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif
913 3552
914#if 0 3553#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; )
3556 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif
915 3559
916struct ev_io wio; 3560#if EV_FORK_ENABLE
3561 if (types & EV_FORK)
3562 for (i = forkcnt; i--; )
3563 if (ev_cb (forks [i]) != embed_fork_cb)
3564 cb (EV_A_ EV_FORK, forks [i]);
3565#endif
917 3566
918static void 3567#if EV_ASYNC_ENABLE
919sin_cb (struct ev_io *w, int revents) 3568 if (types & EV_ASYNC)
920{ 3569 for (i = asynccnt; i--; )
921 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3570 cb (EV_A_ EV_ASYNC, asyncs [i]);
922} 3571#endif
923 3572
924static void 3573 if (types & EV_PREPARE)
925ocb (struct ev_timer *w, int revents) 3574 for (i = preparecnt; i--; )
926{ 3575#if EV_EMBED_ENABLE
927 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3576 if (ev_cb (prepares [i]) != embed_prepare_cb)
928 evtimer_stop (w); 3577#endif
929 evtimer_start (w); 3578 cb (EV_A_ EV_PREPARE, prepares [i]);
930}
931 3579
932static void 3580 if (types & EV_CHECK)
933scb (struct ev_signal *w, int revents) 3581 for (i = checkcnt; i--; )
934{ 3582 cb (EV_A_ EV_CHECK, checks [i]);
935 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
936 evio_stop (&wio);
937 evio_start (&wio);
938}
939 3583
940static void 3584 if (types & EV_SIGNAL)
941gcb (struct ev_signal *w, int revents)
942{
943 fprintf (stderr, "generic %x\n", revents);
944
945}
946
947int main (void)
948{
949 ev_init (0);
950
951 evio_init (&wio, sin_cb, 0, EV_READ);
952 evio_start (&wio);
953
954 struct ev_timer t[10000];
955
956#if 0
957 int i;
958 for (i = 0; i < 10000; ++i) 3585 for (i = 0; i < EV_NSIG - 1; ++i)
959 { 3586 for (wl = signals [i].head; wl; )
960 struct ev_timer *w = t + i; 3587 {
961 evw_init (w, ocb, i); 3588 wn = wl->next;
962 evtimer_init_abs (w, ocb, drand48 (), 0.99775533); 3589 cb (EV_A_ EV_SIGNAL, wl);
963 evtimer_start (w); 3590 wl = wn;
964 if (drand48 () < 0.5) 3591 }
965 evtimer_stop (w);
966 }
967#endif
968 3592
969 struct ev_timer t1; 3593 if (types & EV_CHILD)
970 evtimer_init (&t1, ocb, 5, 10); 3594 for (i = EV_PID_HASHSIZE; i--; )
971 evtimer_start (&t1); 3595 for (wl = childs [i]; wl; )
972 3596 {
973 struct ev_signal sig; 3597 wn = wl->next;
974 evsignal_init (&sig, scb, SIGQUIT); 3598 cb (EV_A_ EV_CHILD, wl);
975 evsignal_start (&sig); 3599 wl = wn;
976 3600 }
977 struct ev_check cw; 3601/* EV_STAT 0x00001000 /* stat data changed */
978 evcheck_init (&cw, gcb); 3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
979 evcheck_start (&cw);
980
981 struct ev_idle iw;
982 evidle_init (&iw, gcb);
983 evidle_start (&iw);
984
985 ev_loop (0);
986
987 return 0;
988} 3603}
989
990#endif 3604#endif
991 3605
3606#if EV_MULTIPLICITY
3607 #include "ev_wrap.h"
3608#endif
992 3609
3610#ifdef __cplusplus
3611}
3612#endif
993 3613
994

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines