ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.180 by root, Tue Dec 11 22:04:55 2007 UTC vs.
Revision 1.310 by root, Sun Jul 26 04:43:03 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
202#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
205#endif 356#endif
206 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
207#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 381# include <winsock.h>
209#endif 382#endif
210 383
211#if !EV_STAT_ENABLE 384#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
213#endif 389# endif
390# ifndef EFD_CLOEXEC
391# define EFD_CLOEXEC O_CLOEXEC
392# endif
393# ifdef __cplusplus
394extern "C" {
395# endif
396int eventfd (unsigned int initval, int flags);
397# ifdef __cplusplus
398}
399# endif
400#endif
214 401
215#if EV_USE_INOTIFY 402#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 403# include <sys/signalfd.h>
217#endif 404#endif
218 405
219/**/ 406/**/
407
408#if EV_VERIFY >= 3
409# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
410#else
411# define EV_FREQUENT_CHECK do { } while (0)
412#endif
220 413
221/* 414/*
222 * This is used to avoid floating point rounding problems. 415 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 416 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 417 * to ensure progress, time-wise, even when rounding
230 423
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 424#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 425#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 426/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 427
235#if __GNUC__ >= 3 428#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 429# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 430# define noinline __attribute__ ((noinline))
238#else 431#else
239# define expect(expr,value) (expr) 432# define expect(expr,value) (expr)
240# define noinline 433# define noinline
241# if __STDC_VERSION__ < 199901L 434# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 435# define inline
243# endif 436# endif
244#endif 437#endif
245 438
246#define expect_false(expr) expect ((expr) != 0, 0) 439#define expect_false(expr) expect ((expr) != 0, 0)
251# define inline_speed static noinline 444# define inline_speed static noinline
252#else 445#else
253# define inline_speed static inline 446# define inline_speed static inline
254#endif 447#endif
255 448
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 449#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
450
451#if EV_MINPRI == EV_MAXPRI
452# define ABSPRI(w) (((W)w), 0)
453#else
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 454# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
455#endif
258 456
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 457#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 458#define EMPTY2(a,b) /* used to suppress some warnings */
261 459
262typedef ev_watcher *W; 460typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 461typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 462typedef ev_watcher_time *WT;
265 463
464#define ev_active(w) ((W)(w))->active
465#define ev_at(w) ((WT)(w))->at
466
467#if EV_USE_REALTIME
468/* sig_atomic_t is used to avoid per-thread variables or locking but still */
469/* giving it a reasonably high chance of working on typical architetcures */
470static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
471#endif
472
473#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 474static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
475#endif
267 476
268#ifdef _WIN32 477#ifdef _WIN32
269# include "ev_win32.c" 478# include "ev_win32.c"
270#endif 479#endif
271 480
278{ 487{
279 syserr_cb = cb; 488 syserr_cb = cb;
280} 489}
281 490
282static void noinline 491static void noinline
283syserr (const char *msg) 492ev_syserr (const char *msg)
284{ 493{
285 if (!msg) 494 if (!msg)
286 msg = "(libev) system error"; 495 msg = "(libev) system error";
287 496
288 if (syserr_cb) 497 if (syserr_cb)
292 perror (msg); 501 perror (msg);
293 abort (); 502 abort ();
294 } 503 }
295} 504}
296 505
506static void *
507ev_realloc_emul (void *ptr, long size)
508{
509 /* some systems, notably openbsd and darwin, fail to properly
510 * implement realloc (x, 0) (as required by both ansi c-98 and
511 * the single unix specification, so work around them here.
512 */
513
514 if (size)
515 return realloc (ptr, size);
516
517 free (ptr);
518 return 0;
519}
520
297static void *(*alloc)(void *ptr, long size); 521static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 522
299void 523void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 524ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 525{
302 alloc = cb; 526 alloc = cb;
303} 527}
304 528
305inline_speed void * 529inline_speed void *
306ev_realloc (void *ptr, long size) 530ev_realloc (void *ptr, long size)
307{ 531{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 532 ptr = alloc (ptr, size);
309 533
310 if (!ptr && size) 534 if (!ptr && size)
311 { 535 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 536 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 537 abort ();
319#define ev_malloc(size) ev_realloc (0, (size)) 543#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 544#define ev_free(ptr) ev_realloc ((ptr), 0)
321 545
322/*****************************************************************************/ 546/*****************************************************************************/
323 547
548/* set in reify when reification needed */
549#define EV_ANFD_REIFY 1
550
551/* file descriptor info structure */
324typedef struct 552typedef struct
325{ 553{
326 WL head; 554 WL head;
327 unsigned char events; 555 unsigned char events; /* the events watched for */
556 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
557 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 558 unsigned char unused;
559#if EV_USE_EPOLL
560 unsigned int egen; /* generation counter to counter epoll bugs */
561#endif
329#if EV_SELECT_IS_WINSOCKET 562#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 563 SOCKET handle;
331#endif 564#endif
332} ANFD; 565} ANFD;
333 566
567/* stores the pending event set for a given watcher */
334typedef struct 568typedef struct
335{ 569{
336 W w; 570 W w;
337 int events; 571 int events; /* the pending event set for the given watcher */
338} ANPENDING; 572} ANPENDING;
339 573
340#if EV_USE_INOTIFY 574#if EV_USE_INOTIFY
575/* hash table entry per inotify-id */
341typedef struct 576typedef struct
342{ 577{
343 WL head; 578 WL head;
344} ANFS; 579} ANFS;
580#endif
581
582/* Heap Entry */
583#if EV_HEAP_CACHE_AT
584 /* a heap element */
585 typedef struct {
586 ev_tstamp at;
587 WT w;
588 } ANHE;
589
590 #define ANHE_w(he) (he).w /* access watcher, read-write */
591 #define ANHE_at(he) (he).at /* access cached at, read-only */
592 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
593#else
594 /* a heap element */
595 typedef WT ANHE;
596
597 #define ANHE_w(he) (he)
598 #define ANHE_at(he) (he)->at
599 #define ANHE_at_cache(he)
345#endif 600#endif
346 601
347#if EV_MULTIPLICITY 602#if EV_MULTIPLICITY
348 603
349 struct ev_loop 604 struct ev_loop
368 623
369 static int ev_default_loop_ptr; 624 static int ev_default_loop_ptr;
370 625
371#endif 626#endif
372 627
628#if EV_MINIMAL < 2
629# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
630# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
631# define EV_INVOKE_PENDING invoke_cb (EV_A)
632#else
633# define EV_RELEASE_CB (void)0
634# define EV_ACQUIRE_CB (void)0
635# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
636#endif
637
638#define EVUNLOOP_RECURSE 0x80
639
373/*****************************************************************************/ 640/*****************************************************************************/
374 641
642#ifndef EV_HAVE_EV_TIME
375ev_tstamp 643ev_tstamp
376ev_time (void) 644ev_time (void)
377{ 645{
378#if EV_USE_REALTIME 646#if EV_USE_REALTIME
647 if (expect_true (have_realtime))
648 {
379 struct timespec ts; 649 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 650 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 651 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 652 }
653#endif
654
383 struct timeval tv; 655 struct timeval tv;
384 gettimeofday (&tv, 0); 656 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 657 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 658}
659#endif
388 660
389ev_tstamp inline_size 661inline_size ev_tstamp
390get_clock (void) 662get_clock (void)
391{ 663{
392#if EV_USE_MONOTONIC 664#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 665 if (expect_true (have_monotonic))
394 { 666 {
407{ 679{
408 return ev_rt_now; 680 return ev_rt_now;
409} 681}
410#endif 682#endif
411 683
412int inline_size 684void
685ev_sleep (ev_tstamp delay)
686{
687 if (delay > 0.)
688 {
689#if EV_USE_NANOSLEEP
690 struct timespec ts;
691
692 ts.tv_sec = (time_t)delay;
693 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
694
695 nanosleep (&ts, 0);
696#elif defined(_WIN32)
697 Sleep ((unsigned long)(delay * 1e3));
698#else
699 struct timeval tv;
700
701 tv.tv_sec = (time_t)delay;
702 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
703
704 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
705 /* something not guaranteed by newer posix versions, but guaranteed */
706 /* by older ones */
707 select (0, 0, 0, 0, &tv);
708#endif
709 }
710}
711
712/*****************************************************************************/
713
714#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
715
716/* find a suitable new size for the given array, */
717/* hopefully by rounding to a ncie-to-malloc size */
718inline_size int
413array_nextsize (int elem, int cur, int cnt) 719array_nextsize (int elem, int cur, int cnt)
414{ 720{
415 int ncur = cur + 1; 721 int ncur = cur + 1;
416 722
417 do 723 do
418 ncur <<= 1; 724 ncur <<= 1;
419 while (cnt > ncur); 725 while (cnt > ncur);
420 726
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 727 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 728 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 729 {
424 ncur *= elem; 730 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 731 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 732 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 733 ncur /= elem;
428 } 734 }
429 735
430 return ncur; 736 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 740array_realloc (int elem, void *base, int *cur, int cnt)
435{ 741{
436 *cur = array_nextsize (elem, *cur, cnt); 742 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 743 return ev_realloc (base, elem * *cur);
438} 744}
745
746#define array_init_zero(base,count) \
747 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 748
440#define array_needsize(type,base,cur,cnt,init) \ 749#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 750 if (expect_false ((cnt) > (cur))) \
442 { \ 751 { \
443 int ocur_ = (cur); \ 752 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 764 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 765 }
457#endif 766#endif
458 767
459#define array_free(stem, idx) \ 768#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 769 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 770
462/*****************************************************************************/ 771/*****************************************************************************/
772
773/* dummy callback for pending events */
774static void noinline
775pendingcb (EV_P_ ev_prepare *w, int revents)
776{
777}
463 778
464void noinline 779void noinline
465ev_feed_event (EV_P_ void *w, int revents) 780ev_feed_event (EV_P_ void *w, int revents)
466{ 781{
467 W w_ = (W)w; 782 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 791 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 792 pendings [pri][w_->pending - 1].events = revents;
478 } 793 }
479} 794}
480 795
481void inline_speed 796inline_speed void
797feed_reverse (EV_P_ W w)
798{
799 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
800 rfeeds [rfeedcnt++] = w;
801}
802
803inline_size void
804feed_reverse_done (EV_P_ int revents)
805{
806 do
807 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
808 while (rfeedcnt);
809}
810
811inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 812queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 813{
484 int i; 814 int i;
485 815
486 for (i = 0; i < eventcnt; ++i) 816 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 817 ev_feed_event (EV_A_ events [i], type);
488} 818}
489 819
490/*****************************************************************************/ 820/*****************************************************************************/
491 821
492void inline_size 822inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 823fd_event_nc (EV_P_ int fd, int revents)
507{ 824{
508 ANFD *anfd = anfds + fd; 825 ANFD *anfd = anfds + fd;
509 ev_io *w; 826 ev_io *w;
510 827
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 828 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 832 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 833 ev_feed_event (EV_A_ (W)w, ev);
517 } 834 }
518} 835}
519 836
837/* do not submit kernel events for fds that have reify set */
838/* because that means they changed while we were polling for new events */
839inline_speed void
840fd_event (EV_P_ int fd, int revents)
841{
842 ANFD *anfd = anfds + fd;
843
844 if (expect_true (!anfd->reify))
845 fd_event_nc (EV_A_ fd, revents);
846}
847
520void 848void
521ev_feed_fd_event (EV_P_ int fd, int revents) 849ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 850{
523 if (fd >= 0 && fd < anfdmax) 851 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 852 fd_event_nc (EV_A_ fd, revents);
525} 853}
526 854
527void inline_size 855/* make sure the external fd watch events are in-sync */
856/* with the kernel/libev internal state */
857inline_size void
528fd_reify (EV_P) 858fd_reify (EV_P)
529{ 859{
530 int i; 860 int i;
531 861
532 for (i = 0; i < fdchangecnt; ++i) 862 for (i = 0; i < fdchangecnt; ++i)
533 { 863 {
534 int fd = fdchanges [i]; 864 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 865 ANFD *anfd = anfds + fd;
536 ev_io *w; 866 ev_io *w;
537 867
538 int events = 0; 868 unsigned char events = 0;
539 869
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 870 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 871 events |= (unsigned char)w->events;
542 872
543#if EV_SELECT_IS_WINSOCKET 873#if EV_SELECT_IS_WINSOCKET
544 if (events) 874 if (events)
545 { 875 {
546 unsigned long argp; 876 unsigned long arg;
877 #ifdef EV_FD_TO_WIN32_HANDLE
878 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
879 #else
547 anfd->handle = _get_osfhandle (fd); 880 anfd->handle = _get_osfhandle (fd);
881 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 882 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 883 }
550#endif 884#endif
551 885
886 {
887 unsigned char o_events = anfd->events;
888 unsigned char o_reify = anfd->reify;
889
552 anfd->reify = 0; 890 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 891 anfd->events = events;
892
893 if (o_events != events || o_reify & EV__IOFDSET)
894 backend_modify (EV_A_ fd, o_events, events);
895 }
556 } 896 }
557 897
558 fdchangecnt = 0; 898 fdchangecnt = 0;
559} 899}
560 900
561void inline_size 901/* something about the given fd changed */
902inline_size void
562fd_change (EV_P_ int fd) 903fd_change (EV_P_ int fd, int flags)
563{ 904{
564 if (expect_false (anfds [fd].reify)) 905 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 906 anfds [fd].reify |= flags;
568 907
908 if (expect_true (!reify))
909 {
569 ++fdchangecnt; 910 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 911 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 912 fdchanges [fdchangecnt - 1] = fd;
913 }
572} 914}
573 915
574void inline_speed 916/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
917inline_speed void
575fd_kill (EV_P_ int fd) 918fd_kill (EV_P_ int fd)
576{ 919{
577 ev_io *w; 920 ev_io *w;
578 921
579 while ((w = (ev_io *)anfds [fd].head)) 922 while ((w = (ev_io *)anfds [fd].head))
581 ev_io_stop (EV_A_ w); 924 ev_io_stop (EV_A_ w);
582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 925 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
583 } 926 }
584} 927}
585 928
586int inline_size 929/* check whether the given fd is atcually valid, for error recovery */
930inline_size int
587fd_valid (int fd) 931fd_valid (int fd)
588{ 932{
589#ifdef _WIN32 933#ifdef _WIN32
590 return _get_osfhandle (fd) != -1; 934 return _get_osfhandle (fd) != -1;
591#else 935#else
599{ 943{
600 int fd; 944 int fd;
601 945
602 for (fd = 0; fd < anfdmax; ++fd) 946 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 947 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 948 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 949 fd_kill (EV_A_ fd);
606} 950}
607 951
608/* called on ENOMEM in select/poll to kill some fds and retry */ 952/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 953static void noinline
613 957
614 for (fd = anfdmax; fd--; ) 958 for (fd = anfdmax; fd--; )
615 if (anfds [fd].events) 959 if (anfds [fd].events)
616 { 960 {
617 fd_kill (EV_A_ fd); 961 fd_kill (EV_A_ fd);
618 return; 962 break;
619 } 963 }
620} 964}
621 965
622/* usually called after fork if backend needs to re-arm all fds from scratch */ 966/* usually called after fork if backend needs to re-arm all fds from scratch */
623static void noinline 967static void noinline
627 971
628 for (fd = 0; fd < anfdmax; ++fd) 972 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 973 if (anfds [fd].events)
630 { 974 {
631 anfds [fd].events = 0; 975 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 976 anfds [fd].emask = 0;
977 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
633 } 978 }
634} 979}
635 980
636/*****************************************************************************/ 981/*****************************************************************************/
637 982
638void inline_speed 983/*
639upheap (WT *heap, int k) 984 * the heap functions want a real array index. array index 0 uis guaranteed to not
640{ 985 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
641 WT w = heap [k]; 986 * the branching factor of the d-tree.
987 */
642 988
643 while (k) 989/*
644 { 990 * at the moment we allow libev the luxury of two heaps,
645 int p = (k - 1) >> 1; 991 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
992 * which is more cache-efficient.
993 * the difference is about 5% with 50000+ watchers.
994 */
995#if EV_USE_4HEAP
646 996
647 if (heap [p]->at <= w->at) 997#define DHEAP 4
998#define HEAP0 (DHEAP - 1) /* index of first element in heap */
999#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1000#define UPHEAP_DONE(p,k) ((p) == (k))
1001
1002/* away from the root */
1003inline_speed void
1004downheap (ANHE *heap, int N, int k)
1005{
1006 ANHE he = heap [k];
1007 ANHE *E = heap + N + HEAP0;
1008
1009 for (;;)
1010 {
1011 ev_tstamp minat;
1012 ANHE *minpos;
1013 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1014
1015 /* find minimum child */
1016 if (expect_true (pos + DHEAP - 1 < E))
1017 {
1018 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1019 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1020 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1022 }
1023 else if (pos < E)
1024 {
1025 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1026 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1027 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1028 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1029 }
1030 else
648 break; 1031 break;
649 1032
1033 if (ANHE_at (he) <= minat)
1034 break;
1035
1036 heap [k] = *minpos;
1037 ev_active (ANHE_w (*minpos)) = k;
1038
1039 k = minpos - heap;
1040 }
1041
1042 heap [k] = he;
1043 ev_active (ANHE_w (he)) = k;
1044}
1045
1046#else /* 4HEAP */
1047
1048#define HEAP0 1
1049#define HPARENT(k) ((k) >> 1)
1050#define UPHEAP_DONE(p,k) (!(p))
1051
1052/* away from the root */
1053inline_speed void
1054downheap (ANHE *heap, int N, int k)
1055{
1056 ANHE he = heap [k];
1057
1058 for (;;)
1059 {
1060 int c = k << 1;
1061
1062 if (c >= N + HEAP0)
1063 break;
1064
1065 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1066 ? 1 : 0;
1067
1068 if (ANHE_at (he) <= ANHE_at (heap [c]))
1069 break;
1070
1071 heap [k] = heap [c];
1072 ev_active (ANHE_w (heap [k])) = k;
1073
1074 k = c;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080#endif
1081
1082/* towards the root */
1083inline_speed void
1084upheap (ANHE *heap, int k)
1085{
1086 ANHE he = heap [k];
1087
1088 for (;;)
1089 {
1090 int p = HPARENT (k);
1091
1092 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1093 break;
1094
650 heap [k] = heap [p]; 1095 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 1096 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 1097 k = p;
653 } 1098 }
654 1099
655 heap [k] = w; 1100 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 1101 ev_active (ANHE_w (he)) = k;
657
658} 1102}
659 1103
660void inline_speed 1104/* move an element suitably so it is in a correct place */
661downheap (WT *heap, int N, int k) 1105inline_size void
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686}
687
688void inline_size
689adjustheap (WT *heap, int N, int k) 1106adjustheap (ANHE *heap, int N, int k)
690{ 1107{
1108 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
691 upheap (heap, k); 1109 upheap (heap, k);
1110 else
692 downheap (heap, N, k); 1111 downheap (heap, N, k);
1112}
1113
1114/* rebuild the heap: this function is used only once and executed rarely */
1115inline_size void
1116reheap (ANHE *heap, int N)
1117{
1118 int i;
1119
1120 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1121 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1122 for (i = 0; i < N; ++i)
1123 upheap (heap, i + HEAP0);
693} 1124}
694 1125
695/*****************************************************************************/ 1126/*****************************************************************************/
696 1127
1128/* associate signal watchers to a signal signal */
697typedef struct 1129typedef struct
698{ 1130{
1131 EV_ATOMIC_T pending;
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
699 WL head; 1135 WL head;
700 sig_atomic_t volatile gotsig;
701} ANSIG; 1136} ANSIG;
702 1137
703static ANSIG *signals; 1138static ANSIG signals [EV_NSIG - 1];
704static int signalmax;
705 1139
706static int sigpipe [2]; 1140/*****************************************************************************/
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 1141
710void inline_size 1142/* used to prepare libev internal fd's */
711signals_init (ANSIG *base, int count) 1143/* this is not fork-safe */
712{ 1144inline_speed void
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717
718 ++base;
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772
773void inline_speed
774fd_intern (int fd) 1145fd_intern (int fd)
775{ 1146{
776#ifdef _WIN32 1147#ifdef _WIN32
777 int arg = 1; 1148 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1149 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
779#else 1150#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 1151 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 1152 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 1153#endif
783} 1154}
784 1155
785static void noinline 1156static void noinline
786siginit (EV_P) 1157evpipe_init (EV_P)
787{ 1158{
1159 if (!ev_is_active (&pipe_w))
1160 {
1161#if EV_USE_EVENTFD
1162 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1163 if (evfd < 0 && errno == EINVAL)
1164 evfd = eventfd (0, 0);
1165
1166 if (evfd >= 0)
1167 {
1168 evpipe [0] = -1;
1169 fd_intern (evfd); /* doing it twice doesn't hurt */
1170 ev_io_set (&pipe_w, evfd, EV_READ);
1171 }
1172 else
1173#endif
1174 {
1175 while (pipe (evpipe))
1176 ev_syserr ("(libev) error creating signal/async pipe");
1177
788 fd_intern (sigpipe [0]); 1178 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1179 fd_intern (evpipe [1]);
1180 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1181 }
790 1182
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1183 ev_io_start (EV_A_ &pipe_w);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1184 ev_unref (EV_A); /* watcher should not keep loop alive */
1185 }
1186}
1187
1188inline_size void
1189evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1190{
1191 if (!*flag)
1192 {
1193 int old_errno = errno; /* save errno because write might clobber it */
1194
1195 *flag = 1;
1196
1197#if EV_USE_EVENTFD
1198 if (evfd >= 0)
1199 {
1200 uint64_t counter = 1;
1201 write (evfd, &counter, sizeof (uint64_t));
1202 }
1203 else
1204#endif
1205 write (evpipe [1], &old_errno, 1);
1206
1207 errno = old_errno;
1208 }
1209}
1210
1211/* called whenever the libev signal pipe */
1212/* got some events (signal, async) */
1213static void
1214pipecb (EV_P_ ev_io *iow, int revents)
1215{
1216 int i;
1217
1218#if EV_USE_EVENTFD
1219 if (evfd >= 0)
1220 {
1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
1223 }
1224 else
1225#endif
1226 {
1227 char dummy;
1228 read (evpipe [0], &dummy, 1);
1229 }
1230
1231 if (sig_pending)
1232 {
1233 sig_pending = 0;
1234
1235 for (i = EV_NSIG - 1; i--; )
1236 if (expect_false (signals [i].pending))
1237 ev_feed_signal_event (EV_A_ i + 1);
1238 }
1239
1240#if EV_ASYNC_ENABLE
1241 if (async_pending)
1242 {
1243 async_pending = 0;
1244
1245 for (i = asynccnt; i--; )
1246 if (asyncs [i]->sent)
1247 {
1248 asyncs [i]->sent = 0;
1249 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1250 }
1251 }
1252#endif
794} 1253}
795 1254
796/*****************************************************************************/ 1255/*****************************************************************************/
797 1256
1257static void
1258ev_sighandler (int signum)
1259{
1260#if EV_MULTIPLICITY
1261 EV_P = signals [signum - 1].loop;
1262#endif
1263
1264#if _WIN32
1265 signal (signum, ev_sighandler);
1266#endif
1267
1268 signals [signum - 1].pending = 1;
1269 evpipe_write (EV_A_ &sig_pending);
1270}
1271
1272void noinline
1273ev_feed_signal_event (EV_P_ int signum)
1274{
1275 WL w;
1276
1277 if (expect_false (signum <= 0 || signum > EV_NSIG))
1278 return;
1279
1280 --signum;
1281
1282#if EV_MULTIPLICITY
1283 /* it is permissible to try to feed a signal to the wrong loop */
1284 /* or, likely more useful, feeding a signal nobody is waiting for */
1285
1286 if (expect_false (signals [signum].loop != EV_A))
1287 return;
1288#endif
1289
1290 signals [signum].pending = 0;
1291
1292 for (w = signals [signum].head; w; w = w->next)
1293 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1294}
1295
1296#if EV_USE_SIGNALFD
1297static void
1298sigfdcb (EV_P_ ev_io *iow, int revents)
1299{
1300 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1301
1302 for (;;)
1303 {
1304 ssize_t res = read (sigfd, si, sizeof (si));
1305
1306 /* not ISO-C, as res might be -1, but works with SuS */
1307 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1308 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1309
1310 if (res < (ssize_t)sizeof (si))
1311 break;
1312 }
1313}
1314#endif
1315
1316/*****************************************************************************/
1317
798static ev_child *childs [EV_PID_HASHSIZE]; 1318static WL childs [EV_PID_HASHSIZE];
799 1319
800#ifndef _WIN32 1320#ifndef _WIN32
801 1321
802static ev_signal childev; 1322static ev_signal childev;
803 1323
804void inline_speed 1324#ifndef WIFCONTINUED
1325# define WIFCONTINUED(status) 0
1326#endif
1327
1328/* handle a single child status event */
1329inline_speed void
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1330child_reap (EV_P_ int chain, int pid, int status)
806{ 1331{
807 ev_child *w; 1332 ev_child *w;
1333 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1334
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1335 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1336 {
810 if (w->pid == pid || !w->pid) 1337 if ((w->pid == pid || !w->pid)
1338 && (!traced || (w->flags & 1)))
811 { 1339 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1340 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1341 w->rpid = pid;
814 w->rstatus = status; 1342 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1343 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1344 }
1345 }
817} 1346}
818 1347
819#ifndef WCONTINUED 1348#ifndef WCONTINUED
820# define WCONTINUED 0 1349# define WCONTINUED 0
821#endif 1350#endif
822 1351
1352/* called on sigchld etc., calls waitpid */
823static void 1353static void
824childcb (EV_P_ ev_signal *sw, int revents) 1354childcb (EV_P_ ev_signal *sw, int revents)
825{ 1355{
826 int pid, status; 1356 int pid, status;
827 1357
830 if (!WCONTINUED 1360 if (!WCONTINUED
831 || errno != EINVAL 1361 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1362 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1363 return;
834 1364
835 /* make sure we are called again until all childs have been reaped */ 1365 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1366 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1367 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1368
839 child_reap (EV_A_ sw, pid, pid, status); 1369 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1370 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1371 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1372}
843 1373
844#endif 1374#endif
845 1375
846/*****************************************************************************/ 1376/*****************************************************************************/
908 /* kqueue is borked on everything but netbsd apparently */ 1438 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */ 1439 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE; 1440 flags &= ~EVBACKEND_KQUEUE;
911#endif 1441#endif
912#ifdef __APPLE__ 1442#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation 1443 /* only select works correctly on that "unix-certified" platform */
914 flags &= ~EVBACKEND_POLL; 1444 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1445 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
915#endif 1446#endif
916 1447
917 return flags; 1448 return flags;
918} 1449}
919 1450
920unsigned int 1451unsigned int
921ev_embeddable_backends (void) 1452ev_embeddable_backends (void)
922{ 1453{
923 return EVBACKEND_EPOLL 1454 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1455
925 | EVBACKEND_PORT; 1456 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1457 /* please fix it and tell me how to detect the fix */
1458 flags &= ~EVBACKEND_EPOLL;
1459
1460 return flags;
926} 1461}
927 1462
928unsigned int 1463unsigned int
929ev_backend (EV_P) 1464ev_backend (EV_P)
930{ 1465{
931 return backend; 1466 return backend;
932} 1467}
933 1468
1469#if EV_MINIMAL < 2
934unsigned int 1470unsigned int
935ev_loop_count (EV_P) 1471ev_loop_count (EV_P)
936{ 1472{
937 return loop_count; 1473 return loop_count;
938} 1474}
939 1475
1476unsigned int
1477ev_loop_depth (EV_P)
1478{
1479 return loop_depth;
1480}
1481
1482void
1483ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1484{
1485 io_blocktime = interval;
1486}
1487
1488void
1489ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1490{
1491 timeout_blocktime = interval;
1492}
1493
1494void
1495ev_set_userdata (EV_P_ void *data)
1496{
1497 userdata = data;
1498}
1499
1500void *
1501ev_userdata (EV_P)
1502{
1503 return userdata;
1504}
1505
1506void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1507{
1508 invoke_cb = invoke_pending_cb;
1509}
1510
1511void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1512{
1513 release_cb = release;
1514 acquire_cb = acquire;
1515}
1516#endif
1517
1518/* initialise a loop structure, must be zero-initialised */
940static void noinline 1519static void noinline
941loop_init (EV_P_ unsigned int flags) 1520loop_init (EV_P_ unsigned int flags)
942{ 1521{
943 if (!backend) 1522 if (!backend)
944 { 1523 {
1524#if EV_USE_REALTIME
1525 if (!have_realtime)
1526 {
1527 struct timespec ts;
1528
1529 if (!clock_gettime (CLOCK_REALTIME, &ts))
1530 have_realtime = 1;
1531 }
1532#endif
1533
945#if EV_USE_MONOTONIC 1534#if EV_USE_MONOTONIC
1535 if (!have_monotonic)
946 { 1536 {
947 struct timespec ts; 1537 struct timespec ts;
1538
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1539 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1540 have_monotonic = 1;
950 } 1541 }
951#endif 1542#endif
952
953 ev_rt_now = ev_time ();
954 mn_now = get_clock ();
955 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now;
957 1543
958 /* pid check not overridable via env */ 1544 /* pid check not overridable via env */
959#ifndef _WIN32 1545#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1546 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1547 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1550 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1551 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1552 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1553 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1554
1555 ev_rt_now = ev_time ();
1556 mn_now = get_clock ();
1557 now_floor = mn_now;
1558 rtmn_diff = ev_rt_now - mn_now;
1559#if EV_MINIMAL < 2
1560 invoke_cb = ev_invoke_pending;
1561#endif
1562
1563 io_blocktime = 0.;
1564 timeout_blocktime = 0.;
1565 backend = 0;
1566 backend_fd = -1;
1567 sig_pending = 0;
1568#if EV_ASYNC_ENABLE
1569 async_pending = 0;
1570#endif
1571#if EV_USE_INOTIFY
1572 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1573#endif
1574#if EV_USE_SIGNALFD
1575 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1576#endif
1577
969 if (!(flags & 0x0000ffffUL)) 1578 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1579 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1580
978#if EV_USE_PORT 1581#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1582 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1583#endif
981#if EV_USE_KQUEUE 1584#if EV_USE_KQUEUE
989#endif 1592#endif
990#if EV_USE_SELECT 1593#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1594 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1595#endif
993 1596
1597 ev_prepare_init (&pending_w, pendingcb);
1598
994 ev_init (&sigev, sigcb); 1599 ev_init (&pipe_w, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1600 ev_set_priority (&pipe_w, EV_MAXPRI);
996 } 1601 }
997} 1602}
998 1603
1604/* free up a loop structure */
999static void noinline 1605static void noinline
1000loop_destroy (EV_P) 1606loop_destroy (EV_P)
1001{ 1607{
1002 int i; 1608 int i;
1609
1610 if (ev_is_active (&pipe_w))
1611 {
1612 /*ev_ref (EV_A);*/
1613 /*ev_io_stop (EV_A_ &pipe_w);*/
1614
1615#if EV_USE_EVENTFD
1616 if (evfd >= 0)
1617 close (evfd);
1618#endif
1619
1620 if (evpipe [0] >= 0)
1621 {
1622 close (evpipe [0]);
1623 close (evpipe [1]);
1624 }
1625 }
1626
1627#if EV_USE_SIGNALFD
1628 if (ev_is_active (&sigfd_w))
1629 {
1630 /*ev_ref (EV_A);*/
1631 /*ev_io_stop (EV_A_ &sigfd_w);*/
1632
1633 close (sigfd);
1634 }
1635#endif
1003 1636
1004#if EV_USE_INOTIFY 1637#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1638 if (fs_fd >= 0)
1006 close (fs_fd); 1639 close (fs_fd);
1007#endif 1640#endif
1031#if EV_IDLE_ENABLE 1664#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1665 array_free (idle, [i]);
1033#endif 1666#endif
1034 } 1667 }
1035 1668
1669 ev_free (anfds); anfds = 0; anfdmax = 0;
1670
1036 /* have to use the microsoft-never-gets-it-right macro */ 1671 /* have to use the microsoft-never-gets-it-right macro */
1672 array_free (rfeed, EMPTY);
1037 array_free (fdchange, EMPTY); 1673 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1674 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1675#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1676 array_free (periodic, EMPTY);
1041#endif 1677#endif
1678#if EV_FORK_ENABLE
1679 array_free (fork, EMPTY);
1680#endif
1042 array_free (prepare, EMPTY); 1681 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1682 array_free (check, EMPTY);
1683#if EV_ASYNC_ENABLE
1684 array_free (async, EMPTY);
1685#endif
1044 1686
1045 backend = 0; 1687 backend = 0;
1046} 1688}
1047 1689
1690#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1691inline_size void infy_fork (EV_P);
1692#endif
1049 1693
1050void inline_size 1694inline_size void
1051loop_fork (EV_P) 1695loop_fork (EV_P)
1052{ 1696{
1053#if EV_USE_PORT 1697#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1698 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif 1699#endif
1061#endif 1705#endif
1062#if EV_USE_INOTIFY 1706#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1707 infy_fork (EV_A);
1064#endif 1708#endif
1065 1709
1066 if (ev_is_active (&sigev)) 1710 if (ev_is_active (&pipe_w))
1067 { 1711 {
1068 /* default loop */ 1712 /* this "locks" the handlers against writing to the pipe */
1713 /* while we modify the fd vars */
1714 sig_pending = 1;
1715#if EV_ASYNC_ENABLE
1716 async_pending = 1;
1717#endif
1069 1718
1070 ev_ref (EV_A); 1719 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1720 ev_io_stop (EV_A_ &pipe_w);
1721
1722#if EV_USE_EVENTFD
1723 if (evfd >= 0)
1724 close (evfd);
1725#endif
1726
1727 if (evpipe [0] >= 0)
1728 {
1072 close (sigpipe [0]); 1729 close (evpipe [0]);
1073 close (sigpipe [1]); 1730 close (evpipe [1]);
1731 }
1074 1732
1075 while (pipe (sigpipe))
1076 syserr ("(libev) error creating pipe");
1077
1078 siginit (EV_A); 1733 evpipe_init (EV_A);
1734 /* now iterate over everything, in case we missed something */
1735 pipecb (EV_A_ &pipe_w, EV_READ);
1079 } 1736 }
1080 1737
1081 postfork = 0; 1738 postfork = 0;
1082} 1739}
1083 1740
1084#if EV_MULTIPLICITY 1741#if EV_MULTIPLICITY
1742
1085struct ev_loop * 1743struct ev_loop *
1086ev_loop_new (unsigned int flags) 1744ev_loop_new (unsigned int flags)
1087{ 1745{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1746 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1747
1090 memset (loop, 0, sizeof (struct ev_loop)); 1748 memset (EV_A, 0, sizeof (struct ev_loop));
1091
1092 loop_init (EV_A_ flags); 1749 loop_init (EV_A_ flags);
1093 1750
1094 if (ev_backend (EV_A)) 1751 if (ev_backend (EV_A))
1095 return loop; 1752 return EV_A;
1096 1753
1097 return 0; 1754 return 0;
1098} 1755}
1099 1756
1100void 1757void
1105} 1762}
1106 1763
1107void 1764void
1108ev_loop_fork (EV_P) 1765ev_loop_fork (EV_P)
1109{ 1766{
1110 postfork = 1; 1767 postfork = 1; /* must be in line with ev_default_fork */
1111} 1768}
1769#endif /* multiplicity */
1112 1770
1771#if EV_VERIFY
1772static void noinline
1773verify_watcher (EV_P_ W w)
1774{
1775 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1776
1777 if (w->pending)
1778 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1779}
1780
1781static void noinline
1782verify_heap (EV_P_ ANHE *heap, int N)
1783{
1784 int i;
1785
1786 for (i = HEAP0; i < N + HEAP0; ++i)
1787 {
1788 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1789 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1790 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1791
1792 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1793 }
1794}
1795
1796static void noinline
1797array_verify (EV_P_ W *ws, int cnt)
1798{
1799 while (cnt--)
1800 {
1801 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1802 verify_watcher (EV_A_ ws [cnt]);
1803 }
1804}
1805#endif
1806
1807#if EV_MINIMAL < 2
1808void
1809ev_loop_verify (EV_P)
1810{
1811#if EV_VERIFY
1812 int i;
1813 WL w;
1814
1815 assert (activecnt >= -1);
1816
1817 assert (fdchangemax >= fdchangecnt);
1818 for (i = 0; i < fdchangecnt; ++i)
1819 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1820
1821 assert (anfdmax >= 0);
1822 for (i = 0; i < anfdmax; ++i)
1823 for (w = anfds [i].head; w; w = w->next)
1824 {
1825 verify_watcher (EV_A_ (W)w);
1826 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1827 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1828 }
1829
1830 assert (timermax >= timercnt);
1831 verify_heap (EV_A_ timers, timercnt);
1832
1833#if EV_PERIODIC_ENABLE
1834 assert (periodicmax >= periodiccnt);
1835 verify_heap (EV_A_ periodics, periodiccnt);
1836#endif
1837
1838 for (i = NUMPRI; i--; )
1839 {
1840 assert (pendingmax [i] >= pendingcnt [i]);
1841#if EV_IDLE_ENABLE
1842 assert (idleall >= 0);
1843 assert (idlemax [i] >= idlecnt [i]);
1844 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1845#endif
1846 }
1847
1848#if EV_FORK_ENABLE
1849 assert (forkmax >= forkcnt);
1850 array_verify (EV_A_ (W *)forks, forkcnt);
1851#endif
1852
1853#if EV_ASYNC_ENABLE
1854 assert (asyncmax >= asynccnt);
1855 array_verify (EV_A_ (W *)asyncs, asynccnt);
1856#endif
1857
1858 assert (preparemax >= preparecnt);
1859 array_verify (EV_A_ (W *)prepares, preparecnt);
1860
1861 assert (checkmax >= checkcnt);
1862 array_verify (EV_A_ (W *)checks, checkcnt);
1863
1864# if 0
1865 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1866 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1867# endif
1868#endif
1869}
1113#endif 1870#endif
1114 1871
1115#if EV_MULTIPLICITY 1872#if EV_MULTIPLICITY
1116struct ev_loop * 1873struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1874ev_default_loop_init (unsigned int flags)
1118#else 1875#else
1119int 1876int
1120ev_default_loop (unsigned int flags) 1877ev_default_loop (unsigned int flags)
1121#endif 1878#endif
1122{ 1879{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1880 if (!ev_default_loop_ptr)
1128 { 1881 {
1129#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1883 EV_P = ev_default_loop_ptr = &default_loop_struct;
1131#else 1884#else
1132 ev_default_loop_ptr = 1; 1885 ev_default_loop_ptr = 1;
1133#endif 1886#endif
1134 1887
1135 loop_init (EV_A_ flags); 1888 loop_init (EV_A_ flags);
1136 1889
1137 if (ev_backend (EV_A)) 1890 if (ev_backend (EV_A))
1138 { 1891 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1892#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1893 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1894 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1895 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1896 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154 1905
1155void 1906void
1156ev_default_destroy (void) 1907ev_default_destroy (void)
1157{ 1908{
1158#if EV_MULTIPLICITY 1909#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1910 EV_P = ev_default_loop_ptr;
1160#endif 1911#endif
1912
1913 ev_default_loop_ptr = 0;
1161 1914
1162#ifndef _WIN32 1915#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1916 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1917 ev_signal_stop (EV_A_ &childev);
1165#endif 1918#endif
1166 1919
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1920 loop_destroy (EV_A);
1174} 1921}
1175 1922
1176void 1923void
1177ev_default_fork (void) 1924ev_default_fork (void)
1178{ 1925{
1179#if EV_MULTIPLICITY 1926#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1927 EV_P = ev_default_loop_ptr;
1181#endif 1928#endif
1182 1929
1183 if (backend) 1930 postfork = 1; /* must be in line with ev_loop_fork */
1184 postfork = 1;
1185} 1931}
1186 1932
1187/*****************************************************************************/ 1933/*****************************************************************************/
1188 1934
1189void 1935void
1190ev_invoke (EV_P_ void *w, int revents) 1936ev_invoke (EV_P_ void *w, int revents)
1191{ 1937{
1192 EV_CB_INVOKE ((W)w, revents); 1938 EV_CB_INVOKE ((W)w, revents);
1193} 1939}
1194 1940
1195void inline_speed 1941unsigned int
1196call_pending (EV_P) 1942ev_pending_count (EV_P)
1943{
1944 int pri;
1945 unsigned int count = 0;
1946
1947 for (pri = NUMPRI; pri--; )
1948 count += pendingcnt [pri];
1949
1950 return count;
1951}
1952
1953void noinline
1954ev_invoke_pending (EV_P)
1197{ 1955{
1198 int pri; 1956 int pri;
1199 1957
1200 for (pri = NUMPRI; pri--; ) 1958 for (pri = NUMPRI; pri--; )
1201 while (pendingcnt [pri]) 1959 while (pendingcnt [pri])
1202 { 1960 {
1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1961 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1204 1962
1205 if (expect_true (p->w))
1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1963 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1964 /* ^ this is no longer true, as pending_w could be here */
1208 1965
1209 p->w->pending = 0; 1966 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1967 EV_CB_INVOKE (p->w, p->events);
1211 } 1968 EV_FREQUENT_CHECK;
1212 } 1969 }
1213} 1970}
1214 1971
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294
1295#if EV_IDLE_ENABLE 1972#if EV_IDLE_ENABLE
1296void inline_size 1973/* make idle watchers pending. this handles the "call-idle */
1974/* only when higher priorities are idle" logic */
1975inline_size void
1297idle_reify (EV_P) 1976idle_reify (EV_P)
1298{ 1977{
1299 if (expect_false (idleall)) 1978 if (expect_false (idleall))
1300 { 1979 {
1301 int pri; 1980 int pri;
1313 } 1992 }
1314 } 1993 }
1315} 1994}
1316#endif 1995#endif
1317 1996
1318void inline_speed 1997/* make timers pending */
1998inline_size void
1999timers_reify (EV_P)
2000{
2001 EV_FREQUENT_CHECK;
2002
2003 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2004 {
2005 do
2006 {
2007 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2008
2009 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2010
2011 /* first reschedule or stop timer */
2012 if (w->repeat)
2013 {
2014 ev_at (w) += w->repeat;
2015 if (ev_at (w) < mn_now)
2016 ev_at (w) = mn_now;
2017
2018 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2019
2020 ANHE_at_cache (timers [HEAP0]);
2021 downheap (timers, timercnt, HEAP0);
2022 }
2023 else
2024 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2025
2026 EV_FREQUENT_CHECK;
2027 feed_reverse (EV_A_ (W)w);
2028 }
2029 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2030
2031 feed_reverse_done (EV_A_ EV_TIMEOUT);
2032 }
2033}
2034
2035#if EV_PERIODIC_ENABLE
2036/* make periodics pending */
2037inline_size void
2038periodics_reify (EV_P)
2039{
2040 EV_FREQUENT_CHECK;
2041
2042 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2043 {
2044 int feed_count = 0;
2045
2046 do
2047 {
2048 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2049
2050 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2051
2052 /* first reschedule or stop timer */
2053 if (w->reschedule_cb)
2054 {
2055 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2056
2057 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2058
2059 ANHE_at_cache (periodics [HEAP0]);
2060 downheap (periodics, periodiccnt, HEAP0);
2061 }
2062 else if (w->interval)
2063 {
2064 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2065 /* if next trigger time is not sufficiently in the future, put it there */
2066 /* this might happen because of floating point inexactness */
2067 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2068 {
2069 ev_at (w) += w->interval;
2070
2071 /* if interval is unreasonably low we might still have a time in the past */
2072 /* so correct this. this will make the periodic very inexact, but the user */
2073 /* has effectively asked to get triggered more often than possible */
2074 if (ev_at (w) < ev_rt_now)
2075 ev_at (w) = ev_rt_now;
2076 }
2077
2078 ANHE_at_cache (periodics [HEAP0]);
2079 downheap (periodics, periodiccnt, HEAP0);
2080 }
2081 else
2082 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2088
2089 feed_reverse_done (EV_A_ EV_PERIODIC);
2090 }
2091}
2092
2093/* simply recalculate all periodics */
2094/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2095static void noinline
2096periodics_reschedule (EV_P)
2097{
2098 int i;
2099
2100 /* adjust periodics after time jump */
2101 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2102 {
2103 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2104
2105 if (w->reschedule_cb)
2106 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2107 else if (w->interval)
2108 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2109
2110 ANHE_at_cache (periodics [i]);
2111 }
2112
2113 reheap (periodics, periodiccnt);
2114}
2115#endif
2116
2117/* adjust all timers by a given offset */
2118static void noinline
2119timers_reschedule (EV_P_ ev_tstamp adjust)
2120{
2121 int i;
2122
2123 for (i = 0; i < timercnt; ++i)
2124 {
2125 ANHE *he = timers + i + HEAP0;
2126 ANHE_w (*he)->at += adjust;
2127 ANHE_at_cache (*he);
2128 }
2129}
2130
2131/* fetch new monotonic and realtime times from the kernel */
2132/* also detetc if there was a timejump, and act accordingly */
2133inline_speed void
1319time_update (EV_P_ ev_tstamp max_block) 2134time_update (EV_P_ ev_tstamp max_block)
1320{ 2135{
1321 int i;
1322
1323#if EV_USE_MONOTONIC 2136#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic)) 2137 if (expect_true (have_monotonic))
1325 { 2138 {
2139 int i;
1326 ev_tstamp odiff = rtmn_diff; 2140 ev_tstamp odiff = rtmn_diff;
1327 2141
1328 mn_now = get_clock (); 2142 mn_now = get_clock ();
1329 2143
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2144 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1348 */ 2162 */
1349 for (i = 4; --i; ) 2163 for (i = 4; --i; )
1350 { 2164 {
1351 rtmn_diff = ev_rt_now - mn_now; 2165 rtmn_diff = ev_rt_now - mn_now;
1352 2166
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2167 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 2168 return; /* all is well */
1355 2169
1356 ev_rt_now = ev_time (); 2170 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 2171 mn_now = get_clock ();
1358 now_floor = mn_now; 2172 now_floor = mn_now;
1359 } 2173 }
1360 2174
2175 /* no timer adjustment, as the monotonic clock doesn't jump */
2176 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1361# if EV_PERIODIC_ENABLE 2177# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2178 periodics_reschedule (EV_A);
1363# endif 2179# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 } 2180 }
1367 else 2181 else
1368#endif 2182#endif
1369 { 2183 {
1370 ev_rt_now = ev_time (); 2184 ev_rt_now = ev_time ();
1371 2185
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2186 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 { 2187 {
2188 /* adjust timers. this is easy, as the offset is the same for all of them */
2189 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1374#if EV_PERIODIC_ENABLE 2190#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 2191 periodics_reschedule (EV_A);
1376#endif 2192#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2193 }
1381 2194
1382 mn_now = ev_rt_now; 2195 mn_now = ev_rt_now;
1383 } 2196 }
1384} 2197}
1385 2198
1386void 2199void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2200ev_loop (EV_P_ int flags)
1402{ 2201{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2202#if EV_MINIMAL < 2
1404 ? EVUNLOOP_ONE 2203 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2204#endif
1406 2205
2206 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2207
2208 loop_done = EVUNLOOP_CANCEL;
2209
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2210 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2211
1409 do 2212 do
1410 { 2213 {
2214#if EV_VERIFY >= 2
2215 ev_loop_verify (EV_A);
2216#endif
2217
1411#ifndef _WIN32 2218#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2219 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2220 if (expect_false (getpid () != curpid))
1414 { 2221 {
1415 curpid = getpid (); 2222 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2228 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2229 if (expect_false (postfork))
1423 if (forkcnt) 2230 if (forkcnt)
1424 { 2231 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2232 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1427 } 2234 }
1428#endif 2235#endif
1429 2236
1430 /* queue prepare watchers (and execute them) */ 2237 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2238 if (expect_false (preparecnt))
1432 { 2239 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2240 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2241 EV_INVOKE_PENDING;
1435 } 2242 }
1436 2243
1437 if (expect_false (!activecnt)) 2244 if (expect_false (loop_done))
1438 break; 2245 break;
1439 2246
1440 /* we might have forked, so reify kernel state if necessary */ 2247 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2248 if (expect_false (postfork))
1442 loop_fork (EV_A); 2249 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2251 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2252 fd_reify (EV_A);
1446 2253
1447 /* calculate blocking time */ 2254 /* calculate blocking time */
1448 { 2255 {
1449 ev_tstamp block; 2256 ev_tstamp waittime = 0.;
2257 ev_tstamp sleeptime = 0.;
1450 2258
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2259 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2260 {
2261 /* remember old timestamp for io_blocktime calculation */
2262 ev_tstamp prev_mn_now = mn_now;
2263
1455 /* update time to cancel out callback processing overhead */ 2264 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 2265 time_update (EV_A_ 1e100);
1457 2266
1458 block = MAX_BLOCKTIME; 2267 waittime = MAX_BLOCKTIME;
1459 2268
1460 if (timercnt) 2269 if (timercnt)
1461 { 2270 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2271 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 2272 if (waittime > to) waittime = to;
1464 } 2273 }
1465 2274
1466#if EV_PERIODIC_ENABLE 2275#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 2276 if (periodiccnt)
1468 { 2277 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2278 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 2279 if (waittime > to) waittime = to;
1471 } 2280 }
1472#endif 2281#endif
1473 2282
2283 /* don't let timeouts decrease the waittime below timeout_blocktime */
2284 if (expect_false (waittime < timeout_blocktime))
2285 waittime = timeout_blocktime;
2286
2287 /* extra check because io_blocktime is commonly 0 */
1474 if (expect_false (block < 0.)) block = 0.; 2288 if (expect_false (io_blocktime))
2289 {
2290 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2291
2292 if (sleeptime > waittime - backend_fudge)
2293 sleeptime = waittime - backend_fudge;
2294
2295 if (expect_true (sleeptime > 0.))
2296 {
2297 ev_sleep (sleeptime);
2298 waittime -= sleeptime;
2299 }
2300 }
1475 } 2301 }
1476 2302
2303#if EV_MINIMAL < 2
1477 ++loop_count; 2304 ++loop_count;
2305#endif
2306 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1478 backend_poll (EV_A_ block); 2307 backend_poll (EV_A_ waittime);
2308 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1479 2309
1480 /* update ev_rt_now, do magic */ 2310 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2311 time_update (EV_A_ waittime + sleeptime);
1482 } 2312 }
1483 2313
1484 /* queue pending timers and reschedule them */ 2314 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2315 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2316#if EV_PERIODIC_ENABLE
1494 2324
1495 /* queue check watchers, to be executed first */ 2325 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2326 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2327 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2328
1499 call_pending (EV_A); 2329 EV_INVOKE_PENDING;
1500
1501 } 2330 }
1502 while (expect_true (activecnt && !loop_done)); 2331 while (expect_true (
2332 activecnt
2333 && !loop_done
2334 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2335 ));
1503 2336
1504 if (loop_done == EVUNLOOP_ONE) 2337 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2338 loop_done = EVUNLOOP_CANCEL;
2339
2340#if EV_MINIMAL < 2
2341 --loop_depth;
2342#endif
1506} 2343}
1507 2344
1508void 2345void
1509ev_unloop (EV_P_ int how) 2346ev_unloop (EV_P_ int how)
1510{ 2347{
1511 loop_done = how; 2348 loop_done = how;
1512} 2349}
1513 2350
2351void
2352ev_ref (EV_P)
2353{
2354 ++activecnt;
2355}
2356
2357void
2358ev_unref (EV_P)
2359{
2360 --activecnt;
2361}
2362
2363void
2364ev_now_update (EV_P)
2365{
2366 time_update (EV_A_ 1e100);
2367}
2368
2369void
2370ev_suspend (EV_P)
2371{
2372 ev_now_update (EV_A);
2373}
2374
2375void
2376ev_resume (EV_P)
2377{
2378 ev_tstamp mn_prev = mn_now;
2379
2380 ev_now_update (EV_A);
2381 timers_reschedule (EV_A_ mn_now - mn_prev);
2382#if EV_PERIODIC_ENABLE
2383 /* TODO: really do this? */
2384 periodics_reschedule (EV_A);
2385#endif
2386}
2387
1514/*****************************************************************************/ 2388/*****************************************************************************/
2389/* singly-linked list management, used when the expected list length is short */
1515 2390
1516void inline_size 2391inline_size void
1517wlist_add (WL *head, WL elem) 2392wlist_add (WL *head, WL elem)
1518{ 2393{
1519 elem->next = *head; 2394 elem->next = *head;
1520 *head = elem; 2395 *head = elem;
1521} 2396}
1522 2397
1523void inline_size 2398inline_size void
1524wlist_del (WL *head, WL elem) 2399wlist_del (WL *head, WL elem)
1525{ 2400{
1526 while (*head) 2401 while (*head)
1527 { 2402 {
1528 if (*head == elem) 2403 if (expect_true (*head == elem))
1529 { 2404 {
1530 *head = elem->next; 2405 *head = elem->next;
1531 return; 2406 break;
1532 } 2407 }
1533 2408
1534 head = &(*head)->next; 2409 head = &(*head)->next;
1535 } 2410 }
1536} 2411}
1537 2412
1538void inline_speed 2413/* internal, faster, version of ev_clear_pending */
2414inline_speed void
1539clear_pending (EV_P_ W w) 2415clear_pending (EV_P_ W w)
1540{ 2416{
1541 if (w->pending) 2417 if (w->pending)
1542 { 2418 {
1543 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2419 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1544 w->pending = 0; 2420 w->pending = 0;
1545 } 2421 }
1546} 2422}
1547 2423
1548int 2424int
1552 int pending = w_->pending; 2428 int pending = w_->pending;
1553 2429
1554 if (expect_true (pending)) 2430 if (expect_true (pending))
1555 { 2431 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2432 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2433 p->w = (W)&pending_w;
1557 w_->pending = 0; 2434 w_->pending = 0;
1558 p->w = 0;
1559 return p->events; 2435 return p->events;
1560 } 2436 }
1561 else 2437 else
1562 return 0; 2438 return 0;
1563} 2439}
1564 2440
1565void inline_size 2441inline_size void
1566pri_adjust (EV_P_ W w) 2442pri_adjust (EV_P_ W w)
1567{ 2443{
1568 int pri = w->priority; 2444 int pri = ev_priority (w);
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2445 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2446 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri; 2447 ev_set_priority (w, pri);
1572} 2448}
1573 2449
1574void inline_speed 2450inline_speed void
1575ev_start (EV_P_ W w, int active) 2451ev_start (EV_P_ W w, int active)
1576{ 2452{
1577 pri_adjust (EV_A_ w); 2453 pri_adjust (EV_A_ w);
1578 w->active = active; 2454 w->active = active;
1579 ev_ref (EV_A); 2455 ev_ref (EV_A);
1580} 2456}
1581 2457
1582void inline_size 2458inline_size void
1583ev_stop (EV_P_ W w) 2459ev_stop (EV_P_ W w)
1584{ 2460{
1585 ev_unref (EV_A); 2461 ev_unref (EV_A);
1586 w->active = 0; 2462 w->active = 0;
1587} 2463}
1594 int fd = w->fd; 2470 int fd = w->fd;
1595 2471
1596 if (expect_false (ev_is_active (w))) 2472 if (expect_false (ev_is_active (w)))
1597 return; 2473 return;
1598 2474
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2475 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2476 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2477
2478 EV_FREQUENT_CHECK;
1600 2479
1601 ev_start (EV_A_ (W)w, 1); 2480 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2481 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2482 wlist_add (&anfds[fd].head, (WL)w);
1604 2483
1605 fd_change (EV_A_ fd); 2484 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2485 w->events &= ~EV__IOFDSET;
2486
2487 EV_FREQUENT_CHECK;
1606} 2488}
1607 2489
1608void noinline 2490void noinline
1609ev_io_stop (EV_P_ ev_io *w) 2491ev_io_stop (EV_P_ ev_io *w)
1610{ 2492{
1611 clear_pending (EV_A_ (W)w); 2493 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 2494 if (expect_false (!ev_is_active (w)))
1613 return; 2495 return;
1614 2496
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2497 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 2498
2499 EV_FREQUENT_CHECK;
2500
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2501 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1619 2503
1620 fd_change (EV_A_ w->fd); 2504 fd_change (EV_A_ w->fd, 1);
2505
2506 EV_FREQUENT_CHECK;
1621} 2507}
1622 2508
1623void noinline 2509void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 2510ev_timer_start (EV_P_ ev_timer *w)
1625{ 2511{
1626 if (expect_false (ev_is_active (w))) 2512 if (expect_false (ev_is_active (w)))
1627 return; 2513 return;
1628 2514
1629 ((WT)w)->at += mn_now; 2515 ev_at (w) += mn_now;
1630 2516
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2517 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 2518
2519 EV_FREQUENT_CHECK;
2520
2521 ++timercnt;
1633 ev_start (EV_A_ (W)w, ++timercnt); 2522 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2523 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 2524 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 2525 ANHE_at_cache (timers [ev_active (w)]);
2526 upheap (timers, ev_active (w));
1637 2527
2528 EV_FREQUENT_CHECK;
2529
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2530 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 2531}
1640 2532
1641void noinline 2533void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 2534ev_timer_stop (EV_P_ ev_timer *w)
1643{ 2535{
1644 clear_pending (EV_A_ (W)w); 2536 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2537 if (expect_false (!ev_is_active (w)))
1646 return; 2538 return;
1647 2539
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2540 EV_FREQUENT_CHECK;
1649 2541
1650 { 2542 {
1651 int active = ((W)w)->active; 2543 int active = ev_active (w);
1652 2544
2545 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2546
2547 --timercnt;
2548
1653 if (expect_true (--active < --timercnt)) 2549 if (expect_true (active < timercnt + HEAP0))
1654 { 2550 {
1655 timers [active] = timers [timercnt]; 2551 timers [active] = timers [timercnt + HEAP0];
1656 adjustheap ((WT *)timers, timercnt, active); 2552 adjustheap (timers, timercnt, active);
1657 } 2553 }
1658 } 2554 }
1659 2555
1660 ((WT)w)->at -= mn_now; 2556 EV_FREQUENT_CHECK;
2557
2558 ev_at (w) -= mn_now;
1661 2559
1662 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1663} 2561}
1664 2562
1665void noinline 2563void noinline
1666ev_timer_again (EV_P_ ev_timer *w) 2564ev_timer_again (EV_P_ ev_timer *w)
1667{ 2565{
2566 EV_FREQUENT_CHECK;
2567
1668 if (ev_is_active (w)) 2568 if (ev_is_active (w))
1669 { 2569 {
1670 if (w->repeat) 2570 if (w->repeat)
1671 { 2571 {
1672 ((WT)w)->at = mn_now + w->repeat; 2572 ev_at (w) = mn_now + w->repeat;
2573 ANHE_at_cache (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2574 adjustheap (timers, timercnt, ev_active (w));
1674 } 2575 }
1675 else 2576 else
1676 ev_timer_stop (EV_A_ w); 2577 ev_timer_stop (EV_A_ w);
1677 } 2578 }
1678 else if (w->repeat) 2579 else if (w->repeat)
1679 { 2580 {
1680 w->at = w->repeat; 2581 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 2582 ev_timer_start (EV_A_ w);
1682 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
2586}
2587
2588ev_tstamp
2589ev_timer_remaining (EV_P_ ev_timer *w)
2590{
2591 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1683} 2592}
1684 2593
1685#if EV_PERIODIC_ENABLE 2594#if EV_PERIODIC_ENABLE
1686void noinline 2595void noinline
1687ev_periodic_start (EV_P_ ev_periodic *w) 2596ev_periodic_start (EV_P_ ev_periodic *w)
1688{ 2597{
1689 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1690 return; 2599 return;
1691 2600
1692 if (w->reschedule_cb) 2601 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2602 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 2603 else if (w->interval)
1695 { 2604 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2605 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 2606 /* this formula differs from the one in periodic_reify because we do not always round up */
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2607 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 2608 }
1700 else 2609 else
1701 ((WT)w)->at = w->offset; 2610 ev_at (w) = w->offset;
1702 2611
2612 EV_FREQUENT_CHECK;
2613
2614 ++periodiccnt;
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 2615 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2616 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 2617 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 2618 ANHE_at_cache (periodics [ev_active (w)]);
2619 upheap (periodics, ev_active (w));
1707 2620
2621 EV_FREQUENT_CHECK;
2622
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2623 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 2624}
1710 2625
1711void noinline 2626void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 2627ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 2628{
1714 clear_pending (EV_A_ (W)w); 2629 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 2630 if (expect_false (!ev_is_active (w)))
1716 return; 2631 return;
1717 2632
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2633 EV_FREQUENT_CHECK;
1719 2634
1720 { 2635 {
1721 int active = ((W)w)->active; 2636 int active = ev_active (w);
1722 2637
2638 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2639
2640 --periodiccnt;
2641
1723 if (expect_true (--active < --periodiccnt)) 2642 if (expect_true (active < periodiccnt + HEAP0))
1724 { 2643 {
1725 periodics [active] = periodics [periodiccnt]; 2644 periodics [active] = periodics [periodiccnt + HEAP0];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 2645 adjustheap (periodics, periodiccnt, active);
1727 } 2646 }
1728 } 2647 }
2648
2649 EV_FREQUENT_CHECK;
1729 2650
1730 ev_stop (EV_A_ (W)w); 2651 ev_stop (EV_A_ (W)w);
1731} 2652}
1732 2653
1733void noinline 2654void noinline
1744#endif 2665#endif
1745 2666
1746void noinline 2667void noinline
1747ev_signal_start (EV_P_ ev_signal *w) 2668ev_signal_start (EV_P_ ev_signal *w)
1748{ 2669{
1749#if EV_MULTIPLICITY
1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1751#endif
1752 if (expect_false (ev_is_active (w))) 2670 if (expect_false (ev_is_active (w)))
1753 return; 2671 return;
1754 2672
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2673 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1756 2674
2675#if EV_MULTIPLICITY
2676 assert (("libev: a signal must not be attached to two different loops",
2677 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2678
2679 signals [w->signum - 1].loop = EV_A;
2680#endif
2681
2682 EV_FREQUENT_CHECK;
2683
2684#if EV_USE_SIGNALFD
2685 if (sigfd == -2)
1757 { 2686 {
1758#ifndef _WIN32 2687 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1759 sigset_t full, prev; 2688 if (sigfd < 0 && errno == EINVAL)
1760 sigfillset (&full); 2689 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1761 sigprocmask (SIG_SETMASK, &full, &prev);
1762#endif
1763 2690
1764 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2691 if (sigfd >= 0)
2692 {
2693 fd_intern (sigfd); /* doing it twice will not hurt */
1765 2694
1766#ifndef _WIN32 2695 sigemptyset (&sigfd_set);
1767 sigprocmask (SIG_SETMASK, &prev, 0); 2696
1768#endif 2697 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2698 ev_set_priority (&sigfd_w, EV_MAXPRI);
2699 ev_io_start (EV_A_ &sigfd_w);
2700 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2701 }
1769 } 2702 }
2703
2704 if (sigfd >= 0)
2705 {
2706 /* TODO: check .head */
2707 sigaddset (&sigfd_set, w->signum);
2708 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2709
2710 signalfd (sigfd, &sigfd_set, 0);
2711 }
2712#endif
1770 2713
1771 ev_start (EV_A_ (W)w, 1); 2714 ev_start (EV_A_ (W)w, 1);
1772 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2715 wlist_add (&signals [w->signum - 1].head, (WL)w);
1773 2716
1774 if (!((WL)w)->next) 2717 if (!((WL)w)->next)
2718# if EV_USE_SIGNALFD
2719 if (sigfd < 0) /*TODO*/
2720# endif
1775 { 2721 {
1776#if _WIN32 2722# if _WIN32
1777 signal (w->signum, sighandler); 2723 signal (w->signum, ev_sighandler);
1778#else 2724# else
1779 struct sigaction sa; 2725 struct sigaction sa;
2726
2727 evpipe_init (EV_A);
2728
1780 sa.sa_handler = sighandler; 2729 sa.sa_handler = ev_sighandler;
1781 sigfillset (&sa.sa_mask); 2730 sigfillset (&sa.sa_mask);
1782 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2731 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1783 sigaction (w->signum, &sa, 0); 2732 sigaction (w->signum, &sa, 0);
2733
2734 sigemptyset (&sa.sa_mask);
2735 sigaddset (&sa.sa_mask, w->signum);
2736 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1784#endif 2737#endif
1785 } 2738 }
2739
2740 EV_FREQUENT_CHECK;
1786} 2741}
1787 2742
1788void noinline 2743void noinline
1789ev_signal_stop (EV_P_ ev_signal *w) 2744ev_signal_stop (EV_P_ ev_signal *w)
1790{ 2745{
1791 clear_pending (EV_A_ (W)w); 2746 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 2747 if (expect_false (!ev_is_active (w)))
1793 return; 2748 return;
1794 2749
2750 EV_FREQUENT_CHECK;
2751
1795 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2752 wlist_del (&signals [w->signum - 1].head, (WL)w);
1796 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
1797 2754
1798 if (!signals [w->signum - 1].head) 2755 if (!signals [w->signum - 1].head)
2756 {
2757#if EV_MULTIPLICITY
2758 signals [w->signum - 1].loop = 0; /* unattach from signal */
2759#endif
2760#if EV_USE_SIGNALFD
2761 if (sigfd >= 0)
2762 {
2763 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2764 sigdelset (&sigfd_set, w->signum);
2765 signalfd (sigfd, &sigfd_set, 0);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2767 /*TODO: maybe unblock signal? */
2768 }
2769 else
2770#endif
1799 signal (w->signum, SIG_DFL); 2771 signal (w->signum, SIG_DFL);
2772 }
2773
2774 EV_FREQUENT_CHECK;
1800} 2775}
1801 2776
1802void 2777void
1803ev_child_start (EV_P_ ev_child *w) 2778ev_child_start (EV_P_ ev_child *w)
1804{ 2779{
1805#if EV_MULTIPLICITY 2780#if EV_MULTIPLICITY
1806 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2781 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1807#endif 2782#endif
1808 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
1809 return; 2784 return;
1810 2785
2786 EV_FREQUENT_CHECK;
2787
1811 ev_start (EV_A_ (W)w, 1); 2788 ev_start (EV_A_ (W)w, 1);
1812 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2789 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2790
2791 EV_FREQUENT_CHECK;
1813} 2792}
1814 2793
1815void 2794void
1816ev_child_stop (EV_P_ ev_child *w) 2795ev_child_stop (EV_P_ ev_child *w)
1817{ 2796{
1818 clear_pending (EV_A_ (W)w); 2797 clear_pending (EV_A_ (W)w);
1819 if (expect_false (!ev_is_active (w))) 2798 if (expect_false (!ev_is_active (w)))
1820 return; 2799 return;
1821 2800
2801 EV_FREQUENT_CHECK;
2802
1822 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2803 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1823 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
1824} 2807}
1825 2808
1826#if EV_STAT_ENABLE 2809#if EV_STAT_ENABLE
1827 2810
1828# ifdef _WIN32 2811# ifdef _WIN32
1829# undef lstat 2812# undef lstat
1830# define lstat(a,b) _stati64 (a,b) 2813# define lstat(a,b) _stati64 (a,b)
1831# endif 2814# endif
1832 2815
1833#define DEF_STAT_INTERVAL 5.0074891 2816#define DEF_STAT_INTERVAL 5.0074891
2817#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1834#define MIN_STAT_INTERVAL 0.1074891 2818#define MIN_STAT_INTERVAL 0.1074891
1835 2819
1836static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1837 2821
1838#if EV_USE_INOTIFY 2822#if EV_USE_INOTIFY
1839# define EV_INOTIFY_BUFSIZE 8192 2823# define EV_INOTIFY_BUFSIZE 8192
1843{ 2827{
1844 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1845 2829
1846 if (w->wd < 0) 2830 if (w->wd < 0)
1847 { 2831 {
2832 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1848 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2833 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1849 2834
1850 /* monitor some parent directory for speedup hints */ 2835 /* monitor some parent directory for speedup hints */
2836 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2837 /* but an efficiency issue only */
1851 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1852 { 2839 {
1853 char path [4096]; 2840 char path [4096];
1854 strcpy (path, w->path); 2841 strcpy (path, w->path);
1855 2842
1858 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1859 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1860 2847
1861 char *pend = strrchr (path, '/'); 2848 char *pend = strrchr (path, '/');
1862 2849
1863 if (!pend) 2850 if (!pend || pend == path)
1864 break; /* whoops, no '/', complain to your admin */ 2851 break;
1865 2852
1866 *pend = 0; 2853 *pend = 0;
1867 w->wd = inotify_add_watch (fs_fd, path, mask); 2854 w->wd = inotify_add_watch (fs_fd, path, mask);
1868 } 2855 }
1869 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1870 } 2857 }
1871 } 2858 }
1872 else
1873 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1874 2859
1875 if (w->wd >= 0) 2860 if (w->wd >= 0)
2861 {
1876 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2862 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2863
2864 /* now local changes will be tracked by inotify, but remote changes won't */
2865 /* unless the filesystem it known to be local, we therefore still poll */
2866 /* also do poll on <2.6.25, but with normal frequency */
2867 struct statfs sfs;
2868
2869 if (fs_2625 && !statfs (w->path, &sfs))
2870 if (sfs.f_type == 0x1373 /* devfs */
2871 || sfs.f_type == 0xEF53 /* ext2/3 */
2872 || sfs.f_type == 0x3153464a /* jfs */
2873 || sfs.f_type == 0x52654973 /* reiser3 */
2874 || sfs.f_type == 0x01021994 /* tempfs */
2875 || sfs.f_type == 0x58465342 /* xfs */)
2876 return;
2877
2878 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2879 ev_timer_again (EV_A_ &w->timer);
2880 }
1877} 2881}
1878 2882
1879static void noinline 2883static void noinline
1880infy_del (EV_P_ ev_stat *w) 2884infy_del (EV_P_ ev_stat *w)
1881{ 2885{
1895 2899
1896static void noinline 2900static void noinline
1897infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2901infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1898{ 2902{
1899 if (slot < 0) 2903 if (slot < 0)
1900 /* overflow, need to check for all hahs slots */ 2904 /* overflow, need to check for all hash slots */
1901 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2905 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1902 infy_wd (EV_A_ slot, wd, ev); 2906 infy_wd (EV_A_ slot, wd, ev);
1903 else 2907 else
1904 { 2908 {
1905 WL w_; 2909 WL w_;
1911 2915
1912 if (w->wd == wd || wd == -1) 2916 if (w->wd == wd || wd == -1)
1913 { 2917 {
1914 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2918 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1915 { 2919 {
2920 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1916 w->wd = -1; 2921 w->wd = -1;
1917 infy_add (EV_A_ w); /* re-add, no matter what */ 2922 infy_add (EV_A_ w); /* re-add, no matter what */
1918 } 2923 }
1919 2924
1920 stat_timer_cb (EV_A_ &w->timer, 0); 2925 stat_timer_cb (EV_A_ &w->timer, 0);
1933 2938
1934 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2939 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1935 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2940 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1936} 2941}
1937 2942
1938void inline_size 2943inline_size void
2944check_2625 (EV_P)
2945{
2946 /* kernels < 2.6.25 are borked
2947 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2948 */
2949 struct utsname buf;
2950 int major, minor, micro;
2951
2952 if (uname (&buf))
2953 return;
2954
2955 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2956 return;
2957
2958 if (major < 2
2959 || (major == 2 && minor < 6)
2960 || (major == 2 && minor == 6 && micro < 25))
2961 return;
2962
2963 fs_2625 = 1;
2964}
2965
2966inline_size void
1939infy_init (EV_P) 2967infy_init (EV_P)
1940{ 2968{
1941 if (fs_fd != -2) 2969 if (fs_fd != -2)
1942 return; 2970 return;
2971
2972 fs_fd = -1;
2973
2974 check_2625 (EV_A);
1943 2975
1944 fs_fd = inotify_init (); 2976 fs_fd = inotify_init ();
1945 2977
1946 if (fs_fd >= 0) 2978 if (fs_fd >= 0)
1947 { 2979 {
1949 ev_set_priority (&fs_w, EV_MAXPRI); 2981 ev_set_priority (&fs_w, EV_MAXPRI);
1950 ev_io_start (EV_A_ &fs_w); 2982 ev_io_start (EV_A_ &fs_w);
1951 } 2983 }
1952} 2984}
1953 2985
1954void inline_size 2986inline_size void
1955infy_fork (EV_P) 2987infy_fork (EV_P)
1956{ 2988{
1957 int slot; 2989 int slot;
1958 2990
1959 if (fs_fd < 0) 2991 if (fs_fd < 0)
1975 w->wd = -1; 3007 w->wd = -1;
1976 3008
1977 if (fs_fd >= 0) 3009 if (fs_fd >= 0)
1978 infy_add (EV_A_ w); /* re-add, no matter what */ 3010 infy_add (EV_A_ w); /* re-add, no matter what */
1979 else 3011 else
1980 ev_timer_start (EV_A_ &w->timer); 3012 ev_timer_again (EV_A_ &w->timer);
1981 } 3013 }
1982
1983 } 3014 }
1984} 3015}
1985 3016
3017#endif
3018
3019#ifdef _WIN32
3020# define EV_LSTAT(p,b) _stati64 (p, b)
3021#else
3022# define EV_LSTAT(p,b) lstat (p, b)
1986#endif 3023#endif
1987 3024
1988void 3025void
1989ev_stat_stat (EV_P_ ev_stat *w) 3026ev_stat_stat (EV_P_ ev_stat *w)
1990{ 3027{
2017 || w->prev.st_atime != w->attr.st_atime 3054 || w->prev.st_atime != w->attr.st_atime
2018 || w->prev.st_mtime != w->attr.st_mtime 3055 || w->prev.st_mtime != w->attr.st_mtime
2019 || w->prev.st_ctime != w->attr.st_ctime 3056 || w->prev.st_ctime != w->attr.st_ctime
2020 ) { 3057 ) {
2021 #if EV_USE_INOTIFY 3058 #if EV_USE_INOTIFY
3059 if (fs_fd >= 0)
3060 {
2022 infy_del (EV_A_ w); 3061 infy_del (EV_A_ w);
2023 infy_add (EV_A_ w); 3062 infy_add (EV_A_ w);
2024 ev_stat_stat (EV_A_ w); /* avoid race... */ 3063 ev_stat_stat (EV_A_ w); /* avoid race... */
3064 }
2025 #endif 3065 #endif
2026 3066
2027 ev_feed_event (EV_A_ w, EV_STAT); 3067 ev_feed_event (EV_A_ w, EV_STAT);
2028 } 3068 }
2029} 3069}
2032ev_stat_start (EV_P_ ev_stat *w) 3072ev_stat_start (EV_P_ ev_stat *w)
2033{ 3073{
2034 if (expect_false (ev_is_active (w))) 3074 if (expect_false (ev_is_active (w)))
2035 return; 3075 return;
2036 3076
2037 /* since we use memcmp, we need to clear any padding data etc. */
2038 memset (&w->prev, 0, sizeof (ev_statdata));
2039 memset (&w->attr, 0, sizeof (ev_statdata));
2040
2041 ev_stat_stat (EV_A_ w); 3077 ev_stat_stat (EV_A_ w);
2042 3078
3079 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2043 if (w->interval < MIN_STAT_INTERVAL) 3080 w->interval = MIN_STAT_INTERVAL;
2044 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2045 3081
2046 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3082 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2047 ev_set_priority (&w->timer, ev_priority (w)); 3083 ev_set_priority (&w->timer, ev_priority (w));
2048 3084
2049#if EV_USE_INOTIFY 3085#if EV_USE_INOTIFY
2050 infy_init (EV_A); 3086 infy_init (EV_A);
2051 3087
2052 if (fs_fd >= 0) 3088 if (fs_fd >= 0)
2053 infy_add (EV_A_ w); 3089 infy_add (EV_A_ w);
2054 else 3090 else
2055#endif 3091#endif
2056 ev_timer_start (EV_A_ &w->timer); 3092 ev_timer_again (EV_A_ &w->timer);
2057 3093
2058 ev_start (EV_A_ (W)w, 1); 3094 ev_start (EV_A_ (W)w, 1);
3095
3096 EV_FREQUENT_CHECK;
2059} 3097}
2060 3098
2061void 3099void
2062ev_stat_stop (EV_P_ ev_stat *w) 3100ev_stat_stop (EV_P_ ev_stat *w)
2063{ 3101{
2064 clear_pending (EV_A_ (W)w); 3102 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 3103 if (expect_false (!ev_is_active (w)))
2066 return; 3104 return;
2067 3105
3106 EV_FREQUENT_CHECK;
3107
2068#if EV_USE_INOTIFY 3108#if EV_USE_INOTIFY
2069 infy_del (EV_A_ w); 3109 infy_del (EV_A_ w);
2070#endif 3110#endif
2071 ev_timer_stop (EV_A_ &w->timer); 3111 ev_timer_stop (EV_A_ &w->timer);
2072 3112
2073 ev_stop (EV_A_ (W)w); 3113 ev_stop (EV_A_ (W)w);
3114
3115 EV_FREQUENT_CHECK;
2074} 3116}
2075#endif 3117#endif
2076 3118
2077#if EV_IDLE_ENABLE 3119#if EV_IDLE_ENABLE
2078void 3120void
2080{ 3122{
2081 if (expect_false (ev_is_active (w))) 3123 if (expect_false (ev_is_active (w)))
2082 return; 3124 return;
2083 3125
2084 pri_adjust (EV_A_ (W)w); 3126 pri_adjust (EV_A_ (W)w);
3127
3128 EV_FREQUENT_CHECK;
2085 3129
2086 { 3130 {
2087 int active = ++idlecnt [ABSPRI (w)]; 3131 int active = ++idlecnt [ABSPRI (w)];
2088 3132
2089 ++idleall; 3133 ++idleall;
2090 ev_start (EV_A_ (W)w, active); 3134 ev_start (EV_A_ (W)w, active);
2091 3135
2092 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3136 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2093 idles [ABSPRI (w)][active - 1] = w; 3137 idles [ABSPRI (w)][active - 1] = w;
2094 } 3138 }
3139
3140 EV_FREQUENT_CHECK;
2095} 3141}
2096 3142
2097void 3143void
2098ev_idle_stop (EV_P_ ev_idle *w) 3144ev_idle_stop (EV_P_ ev_idle *w)
2099{ 3145{
2100 clear_pending (EV_A_ (W)w); 3146 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 3147 if (expect_false (!ev_is_active (w)))
2102 return; 3148 return;
2103 3149
3150 EV_FREQUENT_CHECK;
3151
2104 { 3152 {
2105 int active = ((W)w)->active; 3153 int active = ev_active (w);
2106 3154
2107 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3155 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2108 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3156 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2109 3157
2110 ev_stop (EV_A_ (W)w); 3158 ev_stop (EV_A_ (W)w);
2111 --idleall; 3159 --idleall;
2112 } 3160 }
3161
3162 EV_FREQUENT_CHECK;
2113} 3163}
2114#endif 3164#endif
2115 3165
2116void 3166void
2117ev_prepare_start (EV_P_ ev_prepare *w) 3167ev_prepare_start (EV_P_ ev_prepare *w)
2118{ 3168{
2119 if (expect_false (ev_is_active (w))) 3169 if (expect_false (ev_is_active (w)))
2120 return; 3170 return;
3171
3172 EV_FREQUENT_CHECK;
2121 3173
2122 ev_start (EV_A_ (W)w, ++preparecnt); 3174 ev_start (EV_A_ (W)w, ++preparecnt);
2123 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3175 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2124 prepares [preparecnt - 1] = w; 3176 prepares [preparecnt - 1] = w;
3177
3178 EV_FREQUENT_CHECK;
2125} 3179}
2126 3180
2127void 3181void
2128ev_prepare_stop (EV_P_ ev_prepare *w) 3182ev_prepare_stop (EV_P_ ev_prepare *w)
2129{ 3183{
2130 clear_pending (EV_A_ (W)w); 3184 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w))) 3185 if (expect_false (!ev_is_active (w)))
2132 return; 3186 return;
2133 3187
3188 EV_FREQUENT_CHECK;
3189
2134 { 3190 {
2135 int active = ((W)w)->active; 3191 int active = ev_active (w);
3192
2136 prepares [active - 1] = prepares [--preparecnt]; 3193 prepares [active - 1] = prepares [--preparecnt];
2137 ((W)prepares [active - 1])->active = active; 3194 ev_active (prepares [active - 1]) = active;
2138 } 3195 }
2139 3196
2140 ev_stop (EV_A_ (W)w); 3197 ev_stop (EV_A_ (W)w);
3198
3199 EV_FREQUENT_CHECK;
2141} 3200}
2142 3201
2143void 3202void
2144ev_check_start (EV_P_ ev_check *w) 3203ev_check_start (EV_P_ ev_check *w)
2145{ 3204{
2146 if (expect_false (ev_is_active (w))) 3205 if (expect_false (ev_is_active (w)))
2147 return; 3206 return;
3207
3208 EV_FREQUENT_CHECK;
2148 3209
2149 ev_start (EV_A_ (W)w, ++checkcnt); 3210 ev_start (EV_A_ (W)w, ++checkcnt);
2150 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3211 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2151 checks [checkcnt - 1] = w; 3212 checks [checkcnt - 1] = w;
3213
3214 EV_FREQUENT_CHECK;
2152} 3215}
2153 3216
2154void 3217void
2155ev_check_stop (EV_P_ ev_check *w) 3218ev_check_stop (EV_P_ ev_check *w)
2156{ 3219{
2157 clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
2158 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
2159 return; 3222 return;
2160 3223
3224 EV_FREQUENT_CHECK;
3225
2161 { 3226 {
2162 int active = ((W)w)->active; 3227 int active = ev_active (w);
3228
2163 checks [active - 1] = checks [--checkcnt]; 3229 checks [active - 1] = checks [--checkcnt];
2164 ((W)checks [active - 1])->active = active; 3230 ev_active (checks [active - 1]) = active;
2165 } 3231 }
2166 3232
2167 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
3234
3235 EV_FREQUENT_CHECK;
2168} 3236}
2169 3237
2170#if EV_EMBED_ENABLE 3238#if EV_EMBED_ENABLE
2171void noinline 3239void noinline
2172ev_embed_sweep (EV_P_ ev_embed *w) 3240ev_embed_sweep (EV_P_ ev_embed *w)
2173{ 3241{
2174 ev_loop (w->loop, EVLOOP_NONBLOCK); 3242 ev_loop (w->other, EVLOOP_NONBLOCK);
2175} 3243}
2176 3244
2177static void 3245static void
2178embed_cb (EV_P_ ev_io *io, int revents) 3246embed_io_cb (EV_P_ ev_io *io, int revents)
2179{ 3247{
2180 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3248 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2181 3249
2182 if (ev_cb (w)) 3250 if (ev_cb (w))
2183 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3251 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2184 else 3252 else
2185 ev_embed_sweep (loop, w); 3253 ev_loop (w->other, EVLOOP_NONBLOCK);
2186} 3254}
3255
3256static void
3257embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3258{
3259 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3260
3261 {
3262 EV_P = w->other;
3263
3264 while (fdchangecnt)
3265 {
3266 fd_reify (EV_A);
3267 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3268 }
3269 }
3270}
3271
3272static void
3273embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3274{
3275 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3276
3277 ev_embed_stop (EV_A_ w);
3278
3279 {
3280 EV_P = w->other;
3281
3282 ev_loop_fork (EV_A);
3283 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3284 }
3285
3286 ev_embed_start (EV_A_ w);
3287}
3288
3289#if 0
3290static void
3291embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3292{
3293 ev_idle_stop (EV_A_ idle);
3294}
3295#endif
2187 3296
2188void 3297void
2189ev_embed_start (EV_P_ ev_embed *w) 3298ev_embed_start (EV_P_ ev_embed *w)
2190{ 3299{
2191 if (expect_false (ev_is_active (w))) 3300 if (expect_false (ev_is_active (w)))
2192 return; 3301 return;
2193 3302
2194 { 3303 {
2195 struct ev_loop *loop = w->loop; 3304 EV_P = w->other;
2196 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3305 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2197 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3306 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2198 } 3307 }
3308
3309 EV_FREQUENT_CHECK;
2199 3310
2200 ev_set_priority (&w->io, ev_priority (w)); 3311 ev_set_priority (&w->io, ev_priority (w));
2201 ev_io_start (EV_A_ &w->io); 3312 ev_io_start (EV_A_ &w->io);
2202 3313
3314 ev_prepare_init (&w->prepare, embed_prepare_cb);
3315 ev_set_priority (&w->prepare, EV_MINPRI);
3316 ev_prepare_start (EV_A_ &w->prepare);
3317
3318 ev_fork_init (&w->fork, embed_fork_cb);
3319 ev_fork_start (EV_A_ &w->fork);
3320
3321 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3322
2203 ev_start (EV_A_ (W)w, 1); 3323 ev_start (EV_A_ (W)w, 1);
3324
3325 EV_FREQUENT_CHECK;
2204} 3326}
2205 3327
2206void 3328void
2207ev_embed_stop (EV_P_ ev_embed *w) 3329ev_embed_stop (EV_P_ ev_embed *w)
2208{ 3330{
2209 clear_pending (EV_A_ (W)w); 3331 clear_pending (EV_A_ (W)w);
2210 if (expect_false (!ev_is_active (w))) 3332 if (expect_false (!ev_is_active (w)))
2211 return; 3333 return;
2212 3334
3335 EV_FREQUENT_CHECK;
3336
2213 ev_io_stop (EV_A_ &w->io); 3337 ev_io_stop (EV_A_ &w->io);
3338 ev_prepare_stop (EV_A_ &w->prepare);
3339 ev_fork_stop (EV_A_ &w->fork);
2214 3340
2215 ev_stop (EV_A_ (W)w); 3341 EV_FREQUENT_CHECK;
2216} 3342}
2217#endif 3343#endif
2218 3344
2219#if EV_FORK_ENABLE 3345#if EV_FORK_ENABLE
2220void 3346void
2221ev_fork_start (EV_P_ ev_fork *w) 3347ev_fork_start (EV_P_ ev_fork *w)
2222{ 3348{
2223 if (expect_false (ev_is_active (w))) 3349 if (expect_false (ev_is_active (w)))
2224 return; 3350 return;
3351
3352 EV_FREQUENT_CHECK;
2225 3353
2226 ev_start (EV_A_ (W)w, ++forkcnt); 3354 ev_start (EV_A_ (W)w, ++forkcnt);
2227 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3355 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2228 forks [forkcnt - 1] = w; 3356 forks [forkcnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
2229} 3359}
2230 3360
2231void 3361void
2232ev_fork_stop (EV_P_ ev_fork *w) 3362ev_fork_stop (EV_P_ ev_fork *w)
2233{ 3363{
2234 clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
2236 return; 3366 return;
2237 3367
3368 EV_FREQUENT_CHECK;
3369
2238 { 3370 {
2239 int active = ((W)w)->active; 3371 int active = ev_active (w);
3372
2240 forks [active - 1] = forks [--forkcnt]; 3373 forks [active - 1] = forks [--forkcnt];
2241 ((W)forks [active - 1])->active = active; 3374 ev_active (forks [active - 1]) = active;
2242 } 3375 }
2243 3376
2244 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
3378
3379 EV_FREQUENT_CHECK;
3380}
3381#endif
3382
3383#if EV_ASYNC_ENABLE
3384void
3385ev_async_start (EV_P_ ev_async *w)
3386{
3387 if (expect_false (ev_is_active (w)))
3388 return;
3389
3390 evpipe_init (EV_A);
3391
3392 EV_FREQUENT_CHECK;
3393
3394 ev_start (EV_A_ (W)w, ++asynccnt);
3395 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3396 asyncs [asynccnt - 1] = w;
3397
3398 EV_FREQUENT_CHECK;
3399}
3400
3401void
3402ev_async_stop (EV_P_ ev_async *w)
3403{
3404 clear_pending (EV_A_ (W)w);
3405 if (expect_false (!ev_is_active (w)))
3406 return;
3407
3408 EV_FREQUENT_CHECK;
3409
3410 {
3411 int active = ev_active (w);
3412
3413 asyncs [active - 1] = asyncs [--asynccnt];
3414 ev_active (asyncs [active - 1]) = active;
3415 }
3416
3417 ev_stop (EV_A_ (W)w);
3418
3419 EV_FREQUENT_CHECK;
3420}
3421
3422void
3423ev_async_send (EV_P_ ev_async *w)
3424{
3425 w->sent = 1;
3426 evpipe_write (EV_A_ &async_pending);
2245} 3427}
2246#endif 3428#endif
2247 3429
2248/*****************************************************************************/ 3430/*****************************************************************************/
2249 3431
2259once_cb (EV_P_ struct ev_once *once, int revents) 3441once_cb (EV_P_ struct ev_once *once, int revents)
2260{ 3442{
2261 void (*cb)(int revents, void *arg) = once->cb; 3443 void (*cb)(int revents, void *arg) = once->cb;
2262 void *arg = once->arg; 3444 void *arg = once->arg;
2263 3445
2264 ev_io_stop (EV_A_ &once->io); 3446 ev_io_stop (EV_A_ &once->io);
2265 ev_timer_stop (EV_A_ &once->to); 3447 ev_timer_stop (EV_A_ &once->to);
2266 ev_free (once); 3448 ev_free (once);
2267 3449
2268 cb (revents, arg); 3450 cb (revents, arg);
2269} 3451}
2270 3452
2271static void 3453static void
2272once_cb_io (EV_P_ ev_io *w, int revents) 3454once_cb_io (EV_P_ ev_io *w, int revents)
2273{ 3455{
2274 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3456 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3457
3458 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2275} 3459}
2276 3460
2277static void 3461static void
2278once_cb_to (EV_P_ ev_timer *w, int revents) 3462once_cb_to (EV_P_ ev_timer *w, int revents)
2279{ 3463{
2280 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3464 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3465
3466 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2281} 3467}
2282 3468
2283void 3469void
2284ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3470ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2285{ 3471{
2307 ev_timer_set (&once->to, timeout, 0.); 3493 ev_timer_set (&once->to, timeout, 0.);
2308 ev_timer_start (EV_A_ &once->to); 3494 ev_timer_start (EV_A_ &once->to);
2309 } 3495 }
2310} 3496}
2311 3497
3498/*****************************************************************************/
3499
3500#if EV_WALK_ENABLE
3501void
3502ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3503{
3504 int i, j;
3505 ev_watcher_list *wl, *wn;
3506
3507 if (types & (EV_IO | EV_EMBED))
3508 for (i = 0; i < anfdmax; ++i)
3509 for (wl = anfds [i].head; wl; )
3510 {
3511 wn = wl->next;
3512
3513#if EV_EMBED_ENABLE
3514 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3515 {
3516 if (types & EV_EMBED)
3517 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3518 }
3519 else
3520#endif
3521#if EV_USE_INOTIFY
3522 if (ev_cb ((ev_io *)wl) == infy_cb)
3523 ;
3524 else
3525#endif
3526 if ((ev_io *)wl != &pipe_w)
3527 if (types & EV_IO)
3528 cb (EV_A_ EV_IO, wl);
3529
3530 wl = wn;
3531 }
3532
3533 if (types & (EV_TIMER | EV_STAT))
3534 for (i = timercnt + HEAP0; i-- > HEAP0; )
3535#if EV_STAT_ENABLE
3536 /*TODO: timer is not always active*/
3537 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3538 {
3539 if (types & EV_STAT)
3540 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3541 }
3542 else
3543#endif
3544 if (types & EV_TIMER)
3545 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3546
3547#if EV_PERIODIC_ENABLE
3548 if (types & EV_PERIODIC)
3549 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3550 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3551#endif
3552
3553#if EV_IDLE_ENABLE
3554 if (types & EV_IDLE)
3555 for (j = NUMPRI; i--; )
3556 for (i = idlecnt [j]; i--; )
3557 cb (EV_A_ EV_IDLE, idles [j][i]);
3558#endif
3559
3560#if EV_FORK_ENABLE
3561 if (types & EV_FORK)
3562 for (i = forkcnt; i--; )
3563 if (ev_cb (forks [i]) != embed_fork_cb)
3564 cb (EV_A_ EV_FORK, forks [i]);
3565#endif
3566
3567#if EV_ASYNC_ENABLE
3568 if (types & EV_ASYNC)
3569 for (i = asynccnt; i--; )
3570 cb (EV_A_ EV_ASYNC, asyncs [i]);
3571#endif
3572
3573 if (types & EV_PREPARE)
3574 for (i = preparecnt; i--; )
3575#if EV_EMBED_ENABLE
3576 if (ev_cb (prepares [i]) != embed_prepare_cb)
3577#endif
3578 cb (EV_A_ EV_PREPARE, prepares [i]);
3579
3580 if (types & EV_CHECK)
3581 for (i = checkcnt; i--; )
3582 cb (EV_A_ EV_CHECK, checks [i]);
3583
3584 if (types & EV_SIGNAL)
3585 for (i = 0; i < EV_NSIG - 1; ++i)
3586 for (wl = signals [i].head; wl; )
3587 {
3588 wn = wl->next;
3589 cb (EV_A_ EV_SIGNAL, wl);
3590 wl = wn;
3591 }
3592
3593 if (types & EV_CHILD)
3594 for (i = EV_PID_HASHSIZE; i--; )
3595 for (wl = childs [i]; wl; )
3596 {
3597 wn = wl->next;
3598 cb (EV_A_ EV_CHILD, wl);
3599 wl = wn;
3600 }
3601/* EV_STAT 0x00001000 /* stat data changed */
3602/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3603}
3604#endif
3605
3606#if EV_MULTIPLICITY
3607 #include "ev_wrap.h"
3608#endif
3609
2312#ifdef __cplusplus 3610#ifdef __cplusplus
2313} 3611}
2314#endif 3612#endif
2315 3613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines