ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.149 by root, Tue Nov 27 19:23:31 2007 UTC vs.
Revision 1.311 by root, Wed Jul 29 09:36:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
99#endif 154#endif
100 155
101#include <math.h> 156#include <math.h>
102#include <stdlib.h> 157#include <stdlib.h>
103#include <fcntl.h> 158#include <fcntl.h>
109#include <errno.h> 164#include <errno.h>
110#include <sys/types.h> 165#include <sys/types.h>
111#include <time.h> 166#include <time.h>
112 167
113#include <signal.h> 168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
114 175
115#ifndef _WIN32 176#ifndef _WIN32
116# include <sys/time.h> 177# include <sys/time.h>
117# include <sys/wait.h> 178# include <sys/wait.h>
118# include <unistd.h> 179# include <unistd.h>
119#else 180#else
181# include <io.h>
120# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 183# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
124# endif 186# endif
125#endif 187#endif
126 188
127/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
128 225
129#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
130# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
131#endif 232#endif
132 233
133#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
135#endif 244#endif
136 245
137#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
139#endif 248#endif
145# define EV_USE_POLL 1 254# define EV_USE_POLL 1
146# endif 255# endif
147#endif 256#endif
148 257
149#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
150# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
151#endif 264#endif
152 265
153#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
155#endif 268#endif
156 269
157#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
279# endif
159#endif 280#endif
160 281
161#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 283# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
164# else 285# else
165# define EV_PID_HASHSIZE 16 286# define EV_PID_HASHSIZE 16
166# endif 287# endif
167#endif 288#endif
168 289
169/**/ 290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
170 347
171#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
174#endif 351#endif
176#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
179#endif 356#endif
180 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
181#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 381# include <winsock.h>
183#endif 382#endif
184 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
185/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
417
418/*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
186 427
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
190 431
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 432#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 434# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 435#else
208# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 437# define noinline
438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439# define inline
440# endif
212#endif 441#endif
213 442
214#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 444#define expect_true(expr) expect ((expr) != 0, 1)
445#define inline_size static inline
216 446
447#if EV_MINIMAL
448# define inline_speed static noinline
449#else
450# define inline_speed static inline
451#endif
452
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
219 460
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
222 463
223typedef ev_watcher *W; 464typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
226 467
468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
228 480
229#ifdef _WIN32 481#ifdef _WIN32
230# include "ev_win32.c" 482# include "ev_win32.c"
231#endif 483#endif
232 484
239{ 491{
240 syserr_cb = cb; 492 syserr_cb = cb;
241} 493}
242 494
243static void noinline 495static void noinline
244syserr (const char *msg) 496ev_syserr (const char *msg)
245{ 497{
246 if (!msg) 498 if (!msg)
247 msg = "(libev) system error"; 499 msg = "(libev) system error";
248 500
249 if (syserr_cb) 501 if (syserr_cb)
253 perror (msg); 505 perror (msg);
254 abort (); 506 abort ();
255 } 507 }
256} 508}
257 509
510static void *
511ev_realloc_emul (void *ptr, long size)
512{
513 /* some systems, notably openbsd and darwin, fail to properly
514 * implement realloc (x, 0) (as required by both ansi c-98 and
515 * the single unix specification, so work around them here.
516 */
517
518 if (size)
519 return realloc (ptr, size);
520
521 free (ptr);
522 return 0;
523}
524
258static void *(*alloc)(void *ptr, long size); 525static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
259 526
260void 527void
261ev_set_allocator (void *(*cb)(void *ptr, long size)) 528ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 529{
263 alloc = cb; 530 alloc = cb;
264} 531}
265 532
266static void * 533inline_speed void *
267ev_realloc (void *ptr, long size) 534ev_realloc (void *ptr, long size)
268{ 535{
269 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 536 ptr = alloc (ptr, size);
270 537
271 if (!ptr && size) 538 if (!ptr && size)
272 { 539 {
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 540 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
274 abort (); 541 abort ();
280#define ev_malloc(size) ev_realloc (0, (size)) 547#define ev_malloc(size) ev_realloc (0, (size))
281#define ev_free(ptr) ev_realloc ((ptr), 0) 548#define ev_free(ptr) ev_realloc ((ptr), 0)
282 549
283/*****************************************************************************/ 550/*****************************************************************************/
284 551
552/* set in reify when reification needed */
553#define EV_ANFD_REIFY 1
554
555/* file descriptor info structure */
285typedef struct 556typedef struct
286{ 557{
287 WL head; 558 WL head;
288 unsigned char events; 559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
289 unsigned char reify; 562 unsigned char unused;
563#if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565#endif
290#if EV_SELECT_IS_WINSOCKET 566#if EV_SELECT_IS_WINSOCKET
291 SOCKET handle; 567 SOCKET handle;
292#endif 568#endif
293} ANFD; 569} ANFD;
294 570
571/* stores the pending event set for a given watcher */
295typedef struct 572typedef struct
296{ 573{
297 W w; 574 W w;
298 int events; 575 int events; /* the pending event set for the given watcher */
299} ANPENDING; 576} ANPENDING;
577
578#if EV_USE_INOTIFY
579/* hash table entry per inotify-id */
580typedef struct
581{
582 WL head;
583} ANFS;
584#endif
585
586/* Heap Entry */
587#if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597#else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
604#endif
300 605
301#if EV_MULTIPLICITY 606#if EV_MULTIPLICITY
302 607
303 struct ev_loop 608 struct ev_loop
304 { 609 {
322 627
323 static int ev_default_loop_ptr; 628 static int ev_default_loop_ptr;
324 629
325#endif 630#endif
326 631
632#if EV_MINIMAL < 2
633# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635# define EV_INVOKE_PENDING invoke_cb (EV_A)
636#else
637# define EV_RELEASE_CB (void)0
638# define EV_ACQUIRE_CB (void)0
639# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640#endif
641
642#define EVUNLOOP_RECURSE 0x80
643
327/*****************************************************************************/ 644/*****************************************************************************/
328 645
646#ifndef EV_HAVE_EV_TIME
329ev_tstamp 647ev_tstamp
330ev_time (void) 648ev_time (void)
331{ 649{
332#if EV_USE_REALTIME 650#if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
333 struct timespec ts; 653 struct timespec ts;
334 clock_gettime (CLOCK_REALTIME, &ts); 654 clock_gettime (CLOCK_REALTIME, &ts);
335 return ts.tv_sec + ts.tv_nsec * 1e-9; 655 return ts.tv_sec + ts.tv_nsec * 1e-9;
336#else 656 }
657#endif
658
337 struct timeval tv; 659 struct timeval tv;
338 gettimeofday (&tv, 0); 660 gettimeofday (&tv, 0);
339 return tv.tv_sec + tv.tv_usec * 1e-6; 661 return tv.tv_sec + tv.tv_usec * 1e-6;
340#endif
341} 662}
663#endif
342 664
343ev_tstamp inline_size 665inline_size ev_tstamp
344get_clock (void) 666get_clock (void)
345{ 667{
346#if EV_USE_MONOTONIC 668#if EV_USE_MONOTONIC
347 if (expect_true (have_monotonic)) 669 if (expect_true (have_monotonic))
348 { 670 {
361{ 683{
362 return ev_rt_now; 684 return ev_rt_now;
363} 685}
364#endif 686#endif
365 687
366#define array_roundsize(type,n) (((n) | 4) & ~3) 688void
689ev_sleep (ev_tstamp delay)
690{
691 if (delay > 0.)
692 {
693#if EV_USE_NANOSLEEP
694 struct timespec ts;
695
696 ts.tv_sec = (time_t)delay;
697 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
698
699 nanosleep (&ts, 0);
700#elif defined(_WIN32)
701 Sleep ((unsigned long)(delay * 1e3));
702#else
703 struct timeval tv;
704
705 tv.tv_sec = (time_t)delay;
706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
711 select (0, 0, 0, 0, &tv);
712#endif
713 }
714}
715
716/*****************************************************************************/
717
718#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
719
720/* find a suitable new size for the given array, */
721/* hopefully by rounding to a ncie-to-malloc size */
722inline_size int
723array_nextsize (int elem, int cur, int cnt)
724{
725 int ncur = cur + 1;
726
727 do
728 ncur <<= 1;
729 while (cnt > ncur);
730
731 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
732 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
733 {
734 ncur *= elem;
735 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
736 ncur = ncur - sizeof (void *) * 4;
737 ncur /= elem;
738 }
739
740 return ncur;
741}
742
743static noinline void *
744array_realloc (int elem, void *base, int *cur, int cnt)
745{
746 *cur = array_nextsize (elem, *cur, cnt);
747 return ev_realloc (base, elem * *cur);
748}
749
750#define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
367 752
368#define array_needsize(type,base,cur,cnt,init) \ 753#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 754 if (expect_false ((cnt) > (cur))) \
370 { \ 755 { \
371 int newcnt = cur; \ 756 int ocur_ = (cur); \
372 do \ 757 (base) = (type *)array_realloc \
373 { \ 758 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 759 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 760 }
382 761
762#if 0
383#define array_slim(type,stem) \ 763#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 764 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 765 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 766 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 767 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 769 }
770#endif
390 771
391#define array_free(stem, idx) \ 772#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
393 774
394/*****************************************************************************/ 775/*****************************************************************************/
776
777/* dummy callback for pending events */
778static void noinline
779pendingcb (EV_P_ ev_prepare *w, int revents)
780{
781}
395 782
396void noinline 783void noinline
397ev_feed_event (EV_P_ void *w, int revents) 784ev_feed_event (EV_P_ void *w, int revents)
398{ 785{
399 W w_ = (W)w; 786 W w_ = (W)w;
787 int pri = ABSPRI (w_);
400 788
401 if (expect_false (w_->pending)) 789 if (expect_false (w_->pending))
790 pendings [pri][w_->pending - 1].events |= revents;
791 else
402 { 792 {
793 w_->pending = ++pendingcnt [pri];
794 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
795 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 796 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 797 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 798}
412 799
413void inline_size 800inline_speed void
801feed_reverse (EV_P_ W w)
802{
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805}
806
807inline_size void
808feed_reverse_done (EV_P_ int revents)
809{
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813}
814
815inline_speed void
414queue_events (EV_P_ W *events, int eventcnt, int type) 816queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 817{
416 int i; 818 int i;
417 819
418 for (i = 0; i < eventcnt; ++i) 820 for (i = 0; i < eventcnt; ++i)
419 ev_feed_event (EV_A_ events [i], type); 821 ev_feed_event (EV_A_ events [i], type);
420} 822}
421 823
422/*****************************************************************************/ 824/*****************************************************************************/
423 825
424void inline_size 826inline_speed void
425anfds_init (ANFD *base, int count)
426{
427 while (count--)
428 {
429 base->head = 0;
430 base->events = EV_NONE;
431 base->reify = 0;
432
433 ++base;
434 }
435}
436
437void inline_speed
438fd_event (EV_P_ int fd, int revents) 827fd_event_nc (EV_P_ int fd, int revents)
439{ 828{
440 ANFD *anfd = anfds + fd; 829 ANFD *anfd = anfds + fd;
441 ev_io *w; 830 ev_io *w;
442 831
443 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
447 if (ev) 836 if (ev)
448 ev_feed_event (EV_A_ (W)w, ev); 837 ev_feed_event (EV_A_ (W)w, ev);
449 } 838 }
450} 839}
451 840
841/* do not submit kernel events for fds that have reify set */
842/* because that means they changed while we were polling for new events */
843inline_speed void
844fd_event (EV_P_ int fd, int revents)
845{
846 ANFD *anfd = anfds + fd;
847
848 if (expect_true (!anfd->reify))
849 fd_event_nc (EV_A_ fd, revents);
850}
851
452void 852void
453ev_feed_fd_event (EV_P_ int fd, int revents) 853ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 854{
855 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 856 fd_event_nc (EV_A_ fd, revents);
456} 857}
457 858
458void inline_size 859/* make sure the external fd watch events are in-sync */
860/* with the kernel/libev internal state */
861inline_size void
459fd_reify (EV_P) 862fd_reify (EV_P)
460{ 863{
461 int i; 864 int i;
462 865
463 for (i = 0; i < fdchangecnt; ++i) 866 for (i = 0; i < fdchangecnt; ++i)
464 { 867 {
465 int fd = fdchanges [i]; 868 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 869 ANFD *anfd = anfds + fd;
467 ev_io *w; 870 ev_io *w;
468 871
469 int events = 0; 872 unsigned char events = 0;
470 873
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 875 events |= (unsigned char)w->events;
473 876
474#if EV_SELECT_IS_WINSOCKET 877#if EV_SELECT_IS_WINSOCKET
475 if (events) 878 if (events)
476 { 879 {
477 unsigned long argp; 880 unsigned long arg;
881 #ifdef EV_FD_TO_WIN32_HANDLE
882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
883 #else
478 anfd->handle = _get_osfhandle (fd); 884 anfd->handle = _get_osfhandle (fd);
885 #endif
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
480 } 887 }
481#endif 888#endif
482 889
890 {
891 unsigned char o_events = anfd->events;
892 unsigned char o_reify = anfd->reify;
893
483 anfd->reify = 0; 894 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 895 anfd->events = events;
896
897 if (o_events != events || o_reify & EV__IOFDSET)
898 backend_modify (EV_A_ fd, o_events, events);
899 }
487 } 900 }
488 901
489 fdchangecnt = 0; 902 fdchangecnt = 0;
490} 903}
491 904
492void inline_size 905/* something about the given fd changed */
906inline_size void
493fd_change (EV_P_ int fd) 907fd_change (EV_P_ int fd, int flags)
494{ 908{
495 if (expect_false (anfds [fd].reify)) 909 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 910 anfds [fd].reify |= flags;
499 911
912 if (expect_true (!reify))
913 {
500 ++fdchangecnt; 914 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 916 fdchanges [fdchangecnt - 1] = fd;
917 }
503} 918}
504 919
505void inline_speed 920/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921inline_speed void
506fd_kill (EV_P_ int fd) 922fd_kill (EV_P_ int fd)
507{ 923{
508 ev_io *w; 924 ev_io *w;
509 925
510 while ((w = (ev_io *)anfds [fd].head)) 926 while ((w = (ev_io *)anfds [fd].head))
512 ev_io_stop (EV_A_ w); 928 ev_io_stop (EV_A_ w);
513 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
514 } 930 }
515} 931}
516 932
517int inline_size 933/* check whether the given fd is atcually valid, for error recovery */
934inline_size int
518fd_valid (int fd) 935fd_valid (int fd)
519{ 936{
520#ifdef _WIN32 937#ifdef _WIN32
521 return _get_osfhandle (fd) != -1; 938 return _get_osfhandle (fd) != -1;
522#else 939#else
530{ 947{
531 int fd; 948 int fd;
532 949
533 for (fd = 0; fd < anfdmax; ++fd) 950 for (fd = 0; fd < anfdmax; ++fd)
534 if (anfds [fd].events) 951 if (anfds [fd].events)
535 if (!fd_valid (fd) == -1 && errno == EBADF) 952 if (!fd_valid (fd) && errno == EBADF)
536 fd_kill (EV_A_ fd); 953 fd_kill (EV_A_ fd);
537} 954}
538 955
539/* called on ENOMEM in select/poll to kill some fds and retry */ 956/* called on ENOMEM in select/poll to kill some fds and retry */
540static void noinline 957static void noinline
544 961
545 for (fd = anfdmax; fd--; ) 962 for (fd = anfdmax; fd--; )
546 if (anfds [fd].events) 963 if (anfds [fd].events)
547 { 964 {
548 fd_kill (EV_A_ fd); 965 fd_kill (EV_A_ fd);
549 return; 966 break;
550 } 967 }
551} 968}
552 969
553/* usually called after fork if backend needs to re-arm all fds from scratch */ 970/* usually called after fork if backend needs to re-arm all fds from scratch */
554static void noinline 971static void noinline
555fd_rearm_all (EV_P) 972fd_rearm_all (EV_P)
556{ 973{
557 int fd; 974 int fd;
558 975
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 976 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 977 if (anfds [fd].events)
562 { 978 {
563 anfds [fd].events = 0; 979 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 980 anfds [fd].emask = 0;
981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
565 } 982 }
566} 983}
567 984
568/*****************************************************************************/ 985/*****************************************************************************/
569 986
570void inline_speed 987/*
571upheap (WT *heap, int k) 988 * the heap functions want a real array index. array index 0 uis guaranteed to not
572{ 989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
573 WT w = heap [k]; 990 * the branching factor of the d-tree.
991 */
574 992
575 while (k && heap [k >> 1]->at > w->at) 993/*
576 { 994 * at the moment we allow libev the luxury of two heaps,
577 heap [k] = heap [k >> 1]; 995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
578 ((W)heap [k])->active = k + 1; 996 * which is more cache-efficient.
579 k >>= 1; 997 * the difference is about 5% with 50000+ watchers.
580 } 998 */
999#if EV_USE_4HEAP
581 1000
582 heap [k] = w; 1001#define DHEAP 4
583 ((W)heap [k])->active = k + 1; 1002#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004#define UPHEAP_DONE(p,k) ((p) == (k))
584 1005
585} 1006/* away from the root */
586 1007inline_speed void
587void inline_speed
588downheap (WT *heap, int N, int k) 1008downheap (ANHE *heap, int N, int k)
589{ 1009{
590 WT w = heap [k]; 1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
591 1012
592 while (k < (N >> 1)) 1013 for (;;)
593 { 1014 {
594 int j = k << 1; 1015 ev_tstamp minat;
1016 ANHE *minpos;
1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
595 1018
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1019 /* find minimum child */
1020 if (expect_true (pos + DHEAP - 1 < E))
597 ++j; 1021 {
598 1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
599 if (w->at <= heap [j]->at) 1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1033 }
1034 else
600 break; 1035 break;
601 1036
1037 if (ANHE_at (he) <= minat)
1038 break;
1039
1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
1042
1043 k = minpos - heap;
1044 }
1045
1046 heap [k] = he;
1047 ev_active (ANHE_w (he)) = k;
1048}
1049
1050#else /* 4HEAP */
1051
1052#define HEAP0 1
1053#define HPARENT(k) ((k) >> 1)
1054#define UPHEAP_DONE(p,k) (!(p))
1055
1056/* away from the root */
1057inline_speed void
1058downheap (ANHE *heap, int N, int k)
1059{
1060 ANHE he = heap [k];
1061
1062 for (;;)
1063 {
1064 int c = k << 1;
1065
1066 if (c >= N + HEAP0)
1067 break;
1068
1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1070 ? 1 : 0;
1071
1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
1073 break;
1074
602 heap [k] = heap [j]; 1075 heap [k] = heap [c];
603 ((W)heap [k])->active = k + 1; 1076 ev_active (ANHE_w (heap [k])) = k;
1077
604 k = j; 1078 k = c;
605 } 1079 }
606 1080
607 heap [k] = w; 1081 heap [k] = he;
608 ((W)heap [k])->active = k + 1; 1082 ev_active (ANHE_w (he)) = k;
609} 1083}
1084#endif
610 1085
611void inline_size 1086/* towards the root */
1087inline_speed void
1088upheap (ANHE *heap, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
1099 heap [k] = heap [p];
1100 ev_active (ANHE_w (heap [k])) = k;
1101 k = p;
1102 }
1103
1104 heap [k] = he;
1105 ev_active (ANHE_w (he)) = k;
1106}
1107
1108/* move an element suitably so it is in a correct place */
1109inline_size void
612adjustheap (WT *heap, int N, int k) 1110adjustheap (ANHE *heap, int N, int k)
613{ 1111{
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
614 upheap (heap, k); 1113 upheap (heap, k);
1114 else
615 downheap (heap, N, k); 1115 downheap (heap, N, k);
1116}
1117
1118/* rebuild the heap: this function is used only once and executed rarely */
1119inline_size void
1120reheap (ANHE *heap, int N)
1121{
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
616} 1128}
617 1129
618/*****************************************************************************/ 1130/*****************************************************************************/
619 1131
1132/* associate signal watchers to a signal signal */
620typedef struct 1133typedef struct
621{ 1134{
1135 EV_ATOMIC_T pending;
1136#if EV_MULTIPLICITY
1137 EV_P;
1138#endif
622 WL head; 1139 WL head;
623 sig_atomic_t volatile gotsig;
624} ANSIG; 1140} ANSIG;
625 1141
626static ANSIG *signals; 1142static ANSIG signals [EV_NSIG - 1];
627static int signalmax;
628 1143
629static int sigpipe [2]; 1144/*****************************************************************************/
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632 1145
633void inline_size 1146/* used to prepare libev internal fd's */
634signals_init (ANSIG *base, int count) 1147/* this is not fork-safe */
635{ 1148inline_speed void
636 while (count--)
637 {
638 base->head = 0;
639 base->gotsig = 0;
640
641 ++base;
642 }
643}
644
645static void
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size
697fd_intern (int fd) 1149fd_intern (int fd)
698{ 1150{
699#ifdef _WIN32 1151#ifdef _WIN32
700 int arg = 1; 1152 unsigned long arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
702#else 1154#else
703 fcntl (fd, F_SETFD, FD_CLOEXEC); 1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 1156 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 1157#endif
706} 1158}
707 1159
708static void noinline 1160static void noinline
709siginit (EV_P) 1161evpipe_init (EV_P)
710{ 1162{
1163 if (!ev_is_active (&pipe_w))
1164 {
1165#if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
1171 {
1172 evpipe [0] = -1;
1173 fd_intern (evfd); /* doing it twice doesn't hurt */
1174 ev_io_set (&pipe_w, evfd, EV_READ);
1175 }
1176 else
1177#endif
1178 {
1179 while (pipe (evpipe))
1180 ev_syserr ("(libev) error creating signal/async pipe");
1181
711 fd_intern (sigpipe [0]); 1182 fd_intern (evpipe [0]);
712 fd_intern (sigpipe [1]); 1183 fd_intern (evpipe [1]);
1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1185 }
713 1186
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev); 1187 ev_io_start (EV_A_ &pipe_w);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1188 ev_unref (EV_A); /* watcher should not keep loop alive */
1189 }
1190}
1191
1192inline_size void
1193evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1194{
1195 if (!*flag)
1196 {
1197 int old_errno = errno; /* save errno because write might clobber it */
1198
1199 *flag = 1;
1200
1201#if EV_USE_EVENTFD
1202 if (evfd >= 0)
1203 {
1204 uint64_t counter = 1;
1205 write (evfd, &counter, sizeof (uint64_t));
1206 }
1207 else
1208#endif
1209 write (evpipe [1], &old_errno, 1);
1210
1211 errno = old_errno;
1212 }
1213}
1214
1215/* called whenever the libev signal pipe */
1216/* got some events (signal, async) */
1217static void
1218pipecb (EV_P_ ev_io *iow, int revents)
1219{
1220 int i;
1221
1222#if EV_USE_EVENTFD
1223 if (evfd >= 0)
1224 {
1225 uint64_t counter;
1226 read (evfd, &counter, sizeof (uint64_t));
1227 }
1228 else
1229#endif
1230 {
1231 char dummy;
1232 read (evpipe [0], &dummy, 1);
1233 }
1234
1235 if (sig_pending)
1236 {
1237 sig_pending = 0;
1238
1239 for (i = EV_NSIG - 1; i--; )
1240 if (expect_false (signals [i].pending))
1241 ev_feed_signal_event (EV_A_ i + 1);
1242 }
1243
1244#if EV_ASYNC_ENABLE
1245 if (async_pending)
1246 {
1247 async_pending = 0;
1248
1249 for (i = asynccnt; i--; )
1250 if (asyncs [i]->sent)
1251 {
1252 asyncs [i]->sent = 0;
1253 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1254 }
1255 }
1256#endif
717} 1257}
718 1258
719/*****************************************************************************/ 1259/*****************************************************************************/
720 1260
1261static void
1262ev_sighandler (int signum)
1263{
1264#if EV_MULTIPLICITY
1265 EV_P = signals [signum - 1].loop;
1266#endif
1267
1268#if _WIN32
1269 signal (signum, ev_sighandler);
1270#endif
1271
1272 signals [signum - 1].pending = 1;
1273 evpipe_write (EV_A_ &sig_pending);
1274}
1275
1276void noinline
1277ev_feed_signal_event (EV_P_ int signum)
1278{
1279 WL w;
1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
1286#if EV_MULTIPLICITY
1287 /* it is permissible to try to feed a signal to the wrong loop */
1288 /* or, likely more useful, feeding a signal nobody is waiting for */
1289
1290 if (expect_false (signals [signum].loop != EV_A))
1291 return;
1292#endif
1293
1294 signals [signum].pending = 0;
1295
1296 for (w = signals [signum].head; w; w = w->next)
1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1298}
1299
1300#if EV_USE_SIGNALFD
1301static void
1302sigfdcb (EV_P_ ev_io *iow, int revents)
1303{
1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1305
1306 for (;;)
1307 {
1308 ssize_t res = read (sigfd, si, sizeof (si));
1309
1310 /* not ISO-C, as res might be -1, but works with SuS */
1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1313
1314 if (res < (ssize_t)sizeof (si))
1315 break;
1316 }
1317}
1318#endif
1319
1320/*****************************************************************************/
1321
721static ev_child *childs [EV_PID_HASHSIZE]; 1322static WL childs [EV_PID_HASHSIZE];
722 1323
723#ifndef _WIN32 1324#ifndef _WIN32
724 1325
725static ev_signal childev; 1326static ev_signal childev;
726 1327
727void inline_speed 1328#ifndef WIFCONTINUED
1329# define WIFCONTINUED(status) 0
1330#endif
1331
1332/* handle a single child status event */
1333inline_speed void
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1334child_reap (EV_P_ int chain, int pid, int status)
729{ 1335{
730 ev_child *w; 1336 ev_child *w;
1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 1338
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1339 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1340 {
733 if (w->pid == pid || !w->pid) 1341 if ((w->pid == pid || !w->pid)
1342 && (!traced || (w->flags & 1)))
734 { 1343 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1344 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 1345 w->rpid = pid;
737 w->rstatus = status; 1346 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1347 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 1348 }
1349 }
740} 1350}
741 1351
742#ifndef WCONTINUED 1352#ifndef WCONTINUED
743# define WCONTINUED 0 1353# define WCONTINUED 0
744#endif 1354#endif
745 1355
1356/* called on sigchld etc., calls waitpid */
746static void 1357static void
747childcb (EV_P_ ev_signal *sw, int revents) 1358childcb (EV_P_ ev_signal *sw, int revents)
748{ 1359{
749 int pid, status; 1360 int pid, status;
750 1361
753 if (!WCONTINUED 1364 if (!WCONTINUED
754 || errno != EINVAL 1365 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1366 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 1367 return;
757 1368
758 /* make sure we are called again until all childs have been reaped */ 1369 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 1370 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1371 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 1372
762 child_reap (EV_A_ sw, pid, pid, status); 1373 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 1374 if (EV_PID_HASHSIZE > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1375 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 1376}
766 1377
767#endif 1378#endif
768 1379
769/*****************************************************************************/ 1380/*****************************************************************************/
831 /* kqueue is borked on everything but netbsd apparently */ 1442 /* kqueue is borked on everything but netbsd apparently */
832 /* it usually doesn't work correctly on anything but sockets and pipes */ 1443 /* it usually doesn't work correctly on anything but sockets and pipes */
833 flags &= ~EVBACKEND_KQUEUE; 1444 flags &= ~EVBACKEND_KQUEUE;
834#endif 1445#endif
835#ifdef __APPLE__ 1446#ifdef __APPLE__
836 // flags &= ~EVBACKEND_KQUEUE; for documentation 1447 /* only select works correctly on that "unix-certified" platform */
837 flags &= ~EVBACKEND_POLL; 1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
838#endif 1450#endif
839 1451
840 return flags; 1452 return flags;
841} 1453}
842 1454
843unsigned int 1455unsigned int
844ev_embeddable_backends (void) 1456ev_embeddable_backends (void)
845{ 1457{
846 return EVBACKEND_EPOLL 1458 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 1459
848 | EVBACKEND_PORT; 1460 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1461 /* please fix it and tell me how to detect the fix */
1462 flags &= ~EVBACKEND_EPOLL;
1463
1464 return flags;
849} 1465}
850 1466
851unsigned int 1467unsigned int
852ev_backend (EV_P) 1468ev_backend (EV_P)
853{ 1469{
854 return backend; 1470 return backend;
855} 1471}
856 1472
857static void 1473#if EV_MINIMAL < 2
1474unsigned int
1475ev_loop_count (EV_P)
1476{
1477 return loop_count;
1478}
1479
1480unsigned int
1481ev_loop_depth (EV_P)
1482{
1483 return loop_depth;
1484}
1485
1486void
1487ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 io_blocktime = interval;
1490}
1491
1492void
1493ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 timeout_blocktime = interval;
1496}
1497
1498void
1499ev_set_userdata (EV_P_ void *data)
1500{
1501 userdata = data;
1502}
1503
1504void *
1505ev_userdata (EV_P)
1506{
1507 return userdata;
1508}
1509
1510void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511{
1512 invoke_cb = invoke_pending_cb;
1513}
1514
1515void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516{
1517 release_cb = release;
1518 acquire_cb = acquire;
1519}
1520#endif
1521
1522/* initialise a loop structure, must be zero-initialised */
1523static void noinline
858loop_init (EV_P_ unsigned int flags) 1524loop_init (EV_P_ unsigned int flags)
859{ 1525{
860 if (!backend) 1526 if (!backend)
861 { 1527 {
1528#if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536#endif
1537
862#if EV_USE_MONOTONIC 1538#if EV_USE_MONOTONIC
1539 if (!have_monotonic)
863 { 1540 {
864 struct timespec ts; 1541 struct timespec ts;
1542
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 1544 have_monotonic = 1;
867 } 1545 }
868#endif 1546#endif
869 1547
870 ev_rt_now = ev_time (); 1548 /* pid check not overridable via env */
871 mn_now = get_clock (); 1549#ifndef _WIN32
872 now_floor = mn_now; 1550 if (flags & EVFLAG_FORKCHECK)
873 rtmn_diff = ev_rt_now - mn_now; 1551 curpid = getpid ();
1552#endif
874 1553
875 if (!(flags & EVFLAG_NOENV) 1554 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1555 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1556 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1557 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1558
1559 ev_rt_now = ev_time ();
1560 mn_now = get_clock ();
1561 now_floor = mn_now;
1562 rtmn_diff = ev_rt_now - mn_now;
1563#if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565#endif
1566
1567 io_blocktime = 0.;
1568 timeout_blocktime = 0.;
1569 backend = 0;
1570 backend_fd = -1;
1571 sig_pending = 0;
1572#if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574#endif
1575#if EV_USE_INOTIFY
1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1577#endif
1578#if EV_USE_SIGNALFD
1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1580#endif
1581
880 if (!(flags & 0x0000ffffUL)) 1582 if (!(flags & 0x0000ffffU))
881 flags |= ev_recommended_backends (); 1583 flags |= ev_recommended_backends ();
882 1584
883 backend = 0;
884#if EV_USE_PORT 1585#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1586 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1587#endif
887#if EV_USE_KQUEUE 1588#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1589 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 1596#endif
896#if EV_USE_SELECT 1597#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 1599#endif
899 1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
900 ev_init (&sigev, sigcb); 1603 ev_init (&pipe_w, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1604 ev_set_priority (&pipe_w, EV_MAXPRI);
902 } 1605 }
903} 1606}
904 1607
905static void 1608/* free up a loop structure */
1609static void noinline
906loop_destroy (EV_P) 1610loop_destroy (EV_P)
907{ 1611{
908 int i; 1612 int i;
1613
1614 if (ev_is_active (&pipe_w))
1615 {
1616 /*ev_ref (EV_A);*/
1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1618
1619#if EV_USE_EVENTFD
1620 if (evfd >= 0)
1621 close (evfd);
1622#endif
1623
1624 if (evpipe [0] >= 0)
1625 {
1626 close (evpipe [0]);
1627 close (evpipe [1]);
1628 }
1629 }
1630
1631#if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639#endif
1640
1641#if EV_USE_INOTIFY
1642 if (fs_fd >= 0)
1643 close (fs_fd);
1644#endif
1645
1646 if (backend_fd >= 0)
1647 close (backend_fd);
909 1648
910#if EV_USE_PORT 1649#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1650 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1651#endif
913#if EV_USE_KQUEUE 1652#if EV_USE_KQUEUE
922#if EV_USE_SELECT 1661#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1662 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1663#endif
925 1664
926 for (i = NUMPRI; i--; ) 1665 for (i = NUMPRI; i--; )
1666 {
927 array_free (pending, [i]); 1667 array_free (pending, [i]);
1668#if EV_IDLE_ENABLE
1669 array_free (idle, [i]);
1670#endif
1671 }
1672
1673 ev_free (anfds); anfds = 0; anfdmax = 0;
928 1674
929 /* have to use the microsoft-never-gets-it-right macro */ 1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
930 array_free (fdchange, EMPTY0); 1677 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1678 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1679#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1680 array_free (periodic, EMPTY);
934#endif 1681#endif
1682#if EV_FORK_ENABLE
935 array_free (idle, EMPTY0); 1683 array_free (fork, EMPTY);
1684#endif
936 array_free (prepare, EMPTY0); 1685 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1686 array_free (check, EMPTY);
1687#if EV_ASYNC_ENABLE
1688 array_free (async, EMPTY);
1689#endif
938 1690
939 backend = 0; 1691 backend = 0;
940} 1692}
941 1693
942static void 1694#if EV_USE_INOTIFY
1695inline_size void infy_fork (EV_P);
1696#endif
1697
1698inline_size void
943loop_fork (EV_P) 1699loop_fork (EV_P)
944{ 1700{
945#if EV_USE_PORT 1701#if EV_USE_PORT
946 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
947#endif 1703#endif
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1705 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1706#endif
951#if EV_USE_EPOLL 1707#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1708 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 1709#endif
1710#if EV_USE_INOTIFY
1711 infy_fork (EV_A);
1712#endif
954 1713
955 if (ev_is_active (&sigev)) 1714 if (ev_is_active (&pipe_w))
956 { 1715 {
957 /* default loop */ 1716 /* this "locks" the handlers against writing to the pipe */
1717 /* while we modify the fd vars */
1718 sig_pending = 1;
1719#if EV_ASYNC_ENABLE
1720 async_pending = 1;
1721#endif
958 1722
959 ev_ref (EV_A); 1723 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 1724 ev_io_stop (EV_A_ &pipe_w);
1725
1726#if EV_USE_EVENTFD
1727 if (evfd >= 0)
1728 close (evfd);
1729#endif
1730
1731 if (evpipe [0] >= 0)
1732 {
961 close (sigpipe [0]); 1733 close (evpipe [0]);
962 close (sigpipe [1]); 1734 close (evpipe [1]);
1735 }
963 1736
964 while (pipe (sigpipe))
965 syserr ("(libev) error creating pipe");
966
967 siginit (EV_A); 1737 evpipe_init (EV_A);
1738 /* now iterate over everything, in case we missed something */
1739 pipecb (EV_A_ &pipe_w, EV_READ);
968 } 1740 }
969 1741
970 postfork = 0; 1742 postfork = 0;
971} 1743}
972 1744
973#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
1746
974struct ev_loop * 1747struct ev_loop *
975ev_loop_new (unsigned int flags) 1748ev_loop_new (unsigned int flags)
976{ 1749{
977 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
978 1751
979 memset (loop, 0, sizeof (struct ev_loop)); 1752 memset (EV_A, 0, sizeof (struct ev_loop));
980
981 loop_init (EV_A_ flags); 1753 loop_init (EV_A_ flags);
982 1754
983 if (ev_backend (EV_A)) 1755 if (ev_backend (EV_A))
984 return loop; 1756 return EV_A;
985 1757
986 return 0; 1758 return 0;
987} 1759}
988 1760
989void 1761void
994} 1766}
995 1767
996void 1768void
997ev_loop_fork (EV_P) 1769ev_loop_fork (EV_P)
998{ 1770{
999 postfork = 1; 1771 postfork = 1; /* must be in line with ev_default_fork */
1000} 1772}
1773#endif /* multiplicity */
1001 1774
1775#if EV_VERIFY
1776static void noinline
1777verify_watcher (EV_P_ W w)
1778{
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783}
1784
1785static void noinline
1786verify_heap (EV_P_ ANHE *heap, int N)
1787{
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798}
1799
1800static void noinline
1801array_verify (EV_P_ W *ws, int cnt)
1802{
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808}
1809#endif
1810
1811#if EV_MINIMAL < 2
1812void
1813ev_loop_verify (EV_P)
1814{
1815#if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
1828 {
1829 verify_watcher (EV_A_ (W)w);
1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837#if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840#endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845#if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849#endif
1850 }
1851
1852#if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855#endif
1856
1857#if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860#endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868# if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1871# endif
1872#endif
1873}
1002#endif 1874#endif
1003 1875
1004#if EV_MULTIPLICITY 1876#if EV_MULTIPLICITY
1005struct ev_loop * 1877struct ev_loop *
1006ev_default_loop_init (unsigned int flags) 1878ev_default_loop_init (unsigned int flags)
1007#else 1879#else
1008int 1880int
1009ev_default_loop (unsigned int flags) 1881ev_default_loop (unsigned int flags)
1010#endif 1882#endif
1011{ 1883{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 1884 if (!ev_default_loop_ptr)
1017 { 1885 {
1018#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
1020#else 1888#else
1021 ev_default_loop_ptr = 1; 1889 ev_default_loop_ptr = 1;
1022#endif 1890#endif
1023 1891
1024 loop_init (EV_A_ flags); 1892 loop_init (EV_A_ flags);
1025 1893
1026 if (ev_backend (EV_A)) 1894 if (ev_backend (EV_A))
1027 { 1895 {
1028 siginit (EV_A);
1029
1030#ifndef _WIN32 1896#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 1897 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 1898 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 1899 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1900 ev_unref (EV_A); /* child watcher should not keep loop alive */
1043 1909
1044void 1910void
1045ev_default_destroy (void) 1911ev_default_destroy (void)
1046{ 1912{
1047#if EV_MULTIPLICITY 1913#if EV_MULTIPLICITY
1048 struct ev_loop *loop = ev_default_loop_ptr; 1914 EV_P = ev_default_loop_ptr;
1049#endif 1915#endif
1916
1917 ev_default_loop_ptr = 0;
1050 1918
1051#ifndef _WIN32 1919#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */ 1920 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev); 1921 ev_signal_stop (EV_A_ &childev);
1054#endif 1922#endif
1055 1923
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A); 1924 loop_destroy (EV_A);
1063} 1925}
1064 1926
1065void 1927void
1066ev_default_fork (void) 1928ev_default_fork (void)
1067{ 1929{
1068#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr; 1931 EV_P = ev_default_loop_ptr;
1070#endif 1932#endif
1071 1933
1072 if (backend) 1934 postfork = 1; /* must be in line with ev_loop_fork */
1073 postfork = 1;
1074} 1935}
1075 1936
1076/*****************************************************************************/ 1937/*****************************************************************************/
1077 1938
1078int inline_size 1939void
1079any_pending (EV_P) 1940ev_invoke (EV_P_ void *w, int revents)
1941{
1942 EV_CB_INVOKE ((W)w, revents);
1943}
1944
1945unsigned int
1946ev_pending_count (EV_P)
1080{ 1947{
1081 int pri; 1948 int pri;
1949 unsigned int count = 0;
1082 1950
1083 for (pri = NUMPRI; pri--; ) 1951 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri]) 1952 count += pendingcnt [pri];
1085 return 1;
1086 1953
1087 return 0; 1954 return count;
1088} 1955}
1089 1956
1090void inline_speed 1957void noinline
1091call_pending (EV_P) 1958ev_invoke_pending (EV_P)
1092{ 1959{
1093 int pri; 1960 int pri;
1094 1961
1095 for (pri = NUMPRI; pri--; ) 1962 for (pri = NUMPRI; pri--; )
1096 while (pendingcnt [pri]) 1963 while (pendingcnt [pri])
1097 { 1964 {
1098 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1099 1966
1100 if (expect_true (p->w))
1101 {
1102 assert (("non-pending watcher on pending list", p->w->pending)); 1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1968 /* ^ this is no longer true, as pending_w could be here */
1103 1969
1104 p->w->pending = 0; 1970 p->w->pending = 0;
1105 EV_CB_INVOKE (p->w, p->events); 1971 EV_CB_INVOKE (p->w, p->events);
1106 } 1972 EV_FREQUENT_CHECK;
1107 } 1973 }
1108} 1974}
1109 1975
1110void inline_size 1976#if EV_IDLE_ENABLE
1977/* make idle watchers pending. this handles the "call-idle */
1978/* only when higher priorities are idle" logic */
1979inline_size void
1980idle_reify (EV_P)
1981{
1982 if (expect_false (idleall))
1983 {
1984 int pri;
1985
1986 for (pri = NUMPRI; pri--; )
1987 {
1988 if (pendingcnt [pri])
1989 break;
1990
1991 if (idlecnt [pri])
1992 {
1993 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1994 break;
1995 }
1996 }
1997 }
1998}
1999#endif
2000
2001/* make timers pending */
2002inline_size void
1111timers_reify (EV_P) 2003timers_reify (EV_P)
1112{ 2004{
2005 EV_FREQUENT_CHECK;
2006
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1114 { 2008 {
1115 ev_timer *w = timers [0]; 2009 do
1116
1117 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1118
1119 /* first reschedule or stop timer */
1120 if (w->repeat)
1121 { 2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 2023
1124 ((WT)w)->at += w->repeat; 2024 ANHE_at_cache (timers [HEAP0]);
1125 if (((WT)w)->at < mn_now)
1126 ((WT)w)->at = mn_now;
1127
1128 downheap ((WT *)timers, timercnt, 0); 2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
1129 } 2032 }
1130 else 2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 2034
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
1134 } 2036 }
1135} 2037}
1136 2038
1137#if EV_PERIODIC_ENABLE 2039#if EV_PERIODIC_ENABLE
1138void inline_size 2040/* make periodics pending */
2041inline_size void
1139periodics_reify (EV_P) 2042periodics_reify (EV_P)
1140{ 2043{
2044 EV_FREQUENT_CHECK;
2045
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1142 { 2047 {
1143 ev_periodic *w = periodics [0]; 2048 int feed_count = 0;
1144 2049
1145 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2050 do
1146
1147 /* first reschedule or stop timer */
1148 if (w->reschedule_cb)
1149 { 2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2055
2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
1152 downheap ((WT *)periodics, periodiccnt, 0); 2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
1153 } 2090 }
1154 else if (w->interval) 2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1155 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0);
1159 }
1160 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 2092
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2093 feed_reverse_done (EV_A_ EV_PERIODIC);
1164 } 2094 }
1165} 2095}
1166 2096
2097/* simply recalculate all periodics */
2098/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1167static void noinline 2099static void noinline
1168periodics_reschedule (EV_P) 2100periodics_reschedule (EV_P)
1169{ 2101{
1170 int i; 2102 int i;
1171 2103
1172 /* adjust periodics after time jump */ 2104 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1174 { 2106 {
1175 ev_periodic *w = periodics [i]; 2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1176 2108
1177 if (w->reschedule_cb) 2109 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 2111 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118}
2119#endif
2120
2121/* adjust all timers by a given offset */
2122static void noinline
2123timers_reschedule (EV_P_ ev_tstamp adjust)
2124{
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
1181 } 2128 {
1182 2129 ANHE *he = timers + i + HEAP0;
1183 /* now rebuild the heap */ 2130 ANHE_w (*he)->at += adjust;
1184 for (i = periodiccnt >> 1; i--; ) 2131 ANHE_at_cache (*he);
1185 downheap ((WT *)periodics, periodiccnt, i); 2132 }
1186} 2133}
1187#endif
1188 2134
1189int inline_size 2135/* fetch new monotonic and realtime times from the kernel */
1190time_update_monotonic (EV_P) 2136/* also detetc if there was a timejump, and act accordingly */
2137inline_speed void
2138time_update (EV_P_ ev_tstamp max_block)
1191{ 2139{
2140#if EV_USE_MONOTONIC
2141 if (expect_true (have_monotonic))
2142 {
2143 int i;
2144 ev_tstamp odiff = rtmn_diff;
2145
1192 mn_now = get_clock (); 2146 mn_now = get_clock ();
1193 2147
2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2149 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2150 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 2151 {
1196 ev_rt_now = rtmn_diff + mn_now; 2152 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 2153 return;
1198 } 2154 }
1199 else 2155
1200 {
1201 now_floor = mn_now; 2156 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 2157 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 2158
1207void inline_size 2159 /* loop a few times, before making important decisions.
1208time_update (EV_P) 2160 * on the choice of "4": one iteration isn't enough,
1209{ 2161 * in case we get preempted during the calls to
1210 int i; 2162 * ev_time and get_clock. a second call is almost guaranteed
1211 2163 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 2164 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 2165 * in the unlikely event of having been preempted here.
1214 { 2166 */
1215 if (time_update_monotonic (EV_A)) 2167 for (i = 4; --i; )
1216 { 2168 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 2169 rtmn_diff = ev_rt_now - mn_now;
1230 2170
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2171 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1232 return; /* all is well */ 2172 return; /* all is well */
1233 2173
1234 ev_rt_now = ev_time (); 2174 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 2175 mn_now = get_clock ();
1236 now_floor = mn_now; 2176 now_floor = mn_now;
1237 } 2177 }
1238 2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1239# if EV_PERIODIC_ENABLE 2181# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 2182 periodics_reschedule (EV_A);
1241# endif 2183# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 2184 }
1246 else 2185 else
1247#endif 2186#endif
1248 { 2187 {
1249 ev_rt_now = ev_time (); 2188 ev_rt_now = ev_time ();
1250 2189
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 2191 {
2192 /* adjust timers. this is easy, as the offset is the same for all of them */
2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1253#if EV_PERIODIC_ENABLE 2194#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 2195 periodics_reschedule (EV_A);
1255#endif 2196#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */
1258 for (i = 0; i < timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now;
1260 } 2197 }
1261 2198
1262 mn_now = ev_rt_now; 2199 mn_now = ev_rt_now;
1263 } 2200 }
1264} 2201}
1265 2202
1266void 2203void
1267ev_ref (EV_P)
1268{
1269 ++activecnt;
1270}
1271
1272void
1273ev_unref (EV_P)
1274{
1275 --activecnt;
1276}
1277
1278static int loop_done;
1279
1280void
1281ev_loop (EV_P_ int flags) 2204ev_loop (EV_P_ int flags)
1282{ 2205{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2206#if EV_MINIMAL < 2
1284 ? EVUNLOOP_ONE 2207 ++loop_depth;
1285 : EVUNLOOP_CANCEL; 2208#endif
1286 2209
1287 while (activecnt) 2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
2212 loop_done = EVUNLOOP_CANCEL;
2213
2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2215
2216 do
1288 { 2217 {
1289 /* we might have forked, so reify kernel state if necessary */ 2218#if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220#endif
2221
2222#ifndef _WIN32
2223 if (expect_false (curpid)) /* penalise the forking check even more */
2224 if (expect_false (getpid () != curpid))
2225 {
2226 curpid = getpid ();
2227 postfork = 1;
2228 }
2229#endif
2230
1290 #if EV_FORK_ENABLE 2231#if EV_FORK_ENABLE
2232 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 2233 if (expect_false (postfork))
1292 if (forkcnt) 2234 if (forkcnt)
1293 { 2235 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 2237 EV_INVOKE_PENDING;
1296 } 2238 }
1297 #endif 2239#endif
1298 2240
1299 /* queue check watchers (and execute them) */ 2241 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 2242 if (expect_false (preparecnt))
1301 { 2243 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 2245 EV_INVOKE_PENDING;
1304 } 2246 }
2247
2248 if (expect_false (loop_done))
2249 break;
1305 2250
1306 /* we might have forked, so reify kernel state if necessary */ 2251 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 2252 if (expect_false (postfork))
1308 loop_fork (EV_A); 2253 loop_fork (EV_A);
1309 2254
1310 /* update fd-related kernel structures */ 2255 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 2256 fd_reify (EV_A);
1312 2257
1313 /* calculate blocking time */ 2258 /* calculate blocking time */
1314 { 2259 {
1315 double block; 2260 ev_tstamp waittime = 0.;
2261 ev_tstamp sleeptime = 0.;
1316 2262
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1318 block = 0.; /* do not block at all */
1319 else
1320 { 2264 {
2265 /* remember old timestamp for io_blocktime calculation */
2266 ev_tstamp prev_mn_now = mn_now;
2267
1321 /* update time to cancel out callback processing overhead */ 2268 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 2269 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 2270
1332 block = MAX_BLOCKTIME; 2271 waittime = MAX_BLOCKTIME;
1333 2272
1334 if (timercnt) 2273 if (timercnt)
1335 { 2274 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1337 if (block > to) block = to; 2276 if (waittime > to) waittime = to;
1338 } 2277 }
1339 2278
1340#if EV_PERIODIC_ENABLE 2279#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 2280 if (periodiccnt)
1342 { 2281 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1344 if (block > to) block = to; 2283 if (waittime > to) waittime = to;
1345 } 2284 }
1346#endif 2285#endif
1347 2286
2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
2288 if (expect_false (waittime < timeout_blocktime))
2289 waittime = timeout_blocktime;
2290
2291 /* extra check because io_blocktime is commonly 0 */
1348 if (expect_false (block < 0.)) block = 0.; 2292 if (expect_false (io_blocktime))
2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
2301 ev_sleep (sleeptime);
2302 waittime -= sleeptime;
2303 }
2304 }
1349 } 2305 }
1350 2306
2307#if EV_MINIMAL < 2
2308 ++loop_count;
2309#endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1351 backend_poll (EV_A_ block); 2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2313
2314 /* update ev_rt_now, do magic */
2315 time_update (EV_A_ waittime + sleeptime);
1352 } 2316 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 2317
1357 /* queue pending timers and reschedule them */ 2318 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 2319 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 2320#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 2321 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 2322#endif
1362 2323
2324#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 2325 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 2326 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2327#endif
1366 2328
1367 /* queue check watchers, to be executed first */ 2329 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 2330 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1370 2332
1371 call_pending (EV_A); 2333 EV_INVOKE_PENDING;
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 2334 }
2335 while (expect_true (
2336 activecnt
2337 && !loop_done
2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2339 ));
1376 2340
1377 if (loop_done == EVUNLOOP_ONE) 2341 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 2342 loop_done = EVUNLOOP_CANCEL;
2343
2344#if EV_MINIMAL < 2
2345 --loop_depth;
2346#endif
1379} 2347}
1380 2348
1381void 2349void
1382ev_unloop (EV_P_ int how) 2350ev_unloop (EV_P_ int how)
1383{ 2351{
1384 loop_done = how; 2352 loop_done = how;
1385} 2353}
1386 2354
2355void
2356ev_ref (EV_P)
2357{
2358 ++activecnt;
2359}
2360
2361void
2362ev_unref (EV_P)
2363{
2364 --activecnt;
2365}
2366
2367void
2368ev_now_update (EV_P)
2369{
2370 time_update (EV_A_ 1e100);
2371}
2372
2373void
2374ev_suspend (EV_P)
2375{
2376 ev_now_update (EV_A);
2377}
2378
2379void
2380ev_resume (EV_P)
2381{
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386#if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389#endif
2390}
2391
1387/*****************************************************************************/ 2392/*****************************************************************************/
2393/* singly-linked list management, used when the expected list length is short */
1388 2394
1389void inline_size 2395inline_size void
1390wlist_add (WL *head, WL elem) 2396wlist_add (WL *head, WL elem)
1391{ 2397{
1392 elem->next = *head; 2398 elem->next = *head;
1393 *head = elem; 2399 *head = elem;
1394} 2400}
1395 2401
1396void inline_size 2402inline_size void
1397wlist_del (WL *head, WL elem) 2403wlist_del (WL *head, WL elem)
1398{ 2404{
1399 while (*head) 2405 while (*head)
1400 { 2406 {
1401 if (*head == elem) 2407 if (expect_true (*head == elem))
1402 { 2408 {
1403 *head = elem->next; 2409 *head = elem->next;
1404 return; 2410 break;
1405 } 2411 }
1406 2412
1407 head = &(*head)->next; 2413 head = &(*head)->next;
1408 } 2414 }
1409} 2415}
1410 2416
1411void inline_speed 2417/* internal, faster, version of ev_clear_pending */
2418inline_speed void
1412ev_clear_pending (EV_P_ W w) 2419clear_pending (EV_P_ W w)
1413{ 2420{
1414 if (w->pending) 2421 if (w->pending)
1415 { 2422 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1417 w->pending = 0; 2424 w->pending = 0;
1418 } 2425 }
1419} 2426}
1420 2427
1421void inline_speed 2428int
2429ev_clear_pending (EV_P_ void *w)
2430{
2431 W w_ = (W)w;
2432 int pending = w_->pending;
2433
2434 if (expect_true (pending))
2435 {
2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
2438 w_->pending = 0;
2439 return p->events;
2440 }
2441 else
2442 return 0;
2443}
2444
2445inline_size void
2446pri_adjust (EV_P_ W w)
2447{
2448 int pri = ev_priority (w);
2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2451 ev_set_priority (w, pri);
2452}
2453
2454inline_speed void
1422ev_start (EV_P_ W w, int active) 2455ev_start (EV_P_ W w, int active)
1423{ 2456{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2457 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 2458 w->active = active;
1428 ev_ref (EV_A); 2459 ev_ref (EV_A);
1429} 2460}
1430 2461
1431void inline_size 2462inline_size void
1432ev_stop (EV_P_ W w) 2463ev_stop (EV_P_ W w)
1433{ 2464{
1434 ev_unref (EV_A); 2465 ev_unref (EV_A);
1435 w->active = 0; 2466 w->active = 0;
1436} 2467}
1437 2468
1438/*****************************************************************************/ 2469/*****************************************************************************/
1439 2470
1440void 2471void noinline
1441ev_io_start (EV_P_ ev_io *w) 2472ev_io_start (EV_P_ ev_io *w)
1442{ 2473{
1443 int fd = w->fd; 2474 int fd = w->fd;
1444 2475
1445 if (expect_false (ev_is_active (w))) 2476 if (expect_false (ev_is_active (w)))
1446 return; 2477 return;
1447 2478
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
1449 2483
1450 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2486 wlist_add (&anfds[fd].head, (WL)w);
1453 2487
1454 fd_change (EV_A_ fd); 2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1455} 2489 w->events &= ~EV__IOFDSET;
1456 2490
1457void 2491 EV_FREQUENT_CHECK;
2492}
2493
2494void noinline
1458ev_io_stop (EV_P_ ev_io *w) 2495ev_io_stop (EV_P_ ev_io *w)
1459{ 2496{
1460 ev_clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 2498 if (expect_false (!ev_is_active (w)))
1462 return; 2499 return;
1463 2500
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 2502
2503 EV_FREQUENT_CHECK;
2504
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2505 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 2506 ev_stop (EV_A_ (W)w);
1468 2507
1469 fd_change (EV_A_ w->fd); 2508 fd_change (EV_A_ w->fd, 1);
1470}
1471 2509
1472void 2510 EV_FREQUENT_CHECK;
2511}
2512
2513void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 2514ev_timer_start (EV_P_ ev_timer *w)
1474{ 2515{
1475 if (expect_false (ev_is_active (w))) 2516 if (expect_false (ev_is_active (w)))
1476 return; 2517 return;
1477 2518
1478 ((WT)w)->at += mn_now; 2519 ev_at (w) += mn_now;
1479 2520
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
1482 ev_start (EV_A_ (W)w, ++timercnt); 2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 2529 ANHE_at_cache (timers [ev_active (w)]);
2530 upheap (timers, ev_active (w));
1486 2531
2532 EV_FREQUENT_CHECK;
2533
1487 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1488} 2535}
1489 2536
1490void 2537void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 2538ev_timer_stop (EV_P_ ev_timer *w)
1492{ 2539{
1493 ev_clear_pending (EV_A_ (W)w); 2540 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 2541 if (expect_false (!ev_is_active (w)))
1495 return; 2542 return;
1496 2543
2544 EV_FREQUENT_CHECK;
2545
2546 {
2547 int active = ev_active (w);
2548
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1498 2550
2551 --timercnt;
2552
1499 if (expect_true (((W)w)->active < timercnt--)) 2553 if (expect_true (active < timercnt + HEAP0))
1500 { 2554 {
1501 timers [((W)w)->active - 1] = timers [timercnt]; 2555 timers [active] = timers [timercnt + HEAP0];
1502 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2556 adjustheap (timers, timercnt, active);
1503 } 2557 }
2558 }
1504 2559
1505 ((WT)w)->at -= mn_now; 2560 EV_FREQUENT_CHECK;
2561
2562 ev_at (w) -= mn_now;
1506 2563
1507 ev_stop (EV_A_ (W)w); 2564 ev_stop (EV_A_ (W)w);
1508} 2565}
1509 2566
1510void 2567void noinline
1511ev_timer_again (EV_P_ ev_timer *w) 2568ev_timer_again (EV_P_ ev_timer *w)
1512{ 2569{
2570 EV_FREQUENT_CHECK;
2571
1513 if (ev_is_active (w)) 2572 if (ev_is_active (w))
1514 { 2573 {
1515 if (w->repeat) 2574 if (w->repeat)
1516 { 2575 {
1517 ((WT)w)->at = mn_now + w->repeat; 2576 ev_at (w) = mn_now + w->repeat;
2577 ANHE_at_cache (timers [ev_active (w)]);
1518 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2578 adjustheap (timers, timercnt, ev_active (w));
1519 } 2579 }
1520 else 2580 else
1521 ev_timer_stop (EV_A_ w); 2581 ev_timer_stop (EV_A_ w);
1522 } 2582 }
1523 else if (w->repeat) 2583 else if (w->repeat)
1524 { 2584 {
1525 w->at = w->repeat; 2585 ev_at (w) = w->repeat;
1526 ev_timer_start (EV_A_ w); 2586 ev_timer_start (EV_A_ w);
1527 } 2587 }
2588
2589 EV_FREQUENT_CHECK;
2590}
2591
2592ev_tstamp
2593ev_timer_remaining (EV_P_ ev_timer *w)
2594{
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1528} 2596}
1529 2597
1530#if EV_PERIODIC_ENABLE 2598#if EV_PERIODIC_ENABLE
1531void 2599void noinline
1532ev_periodic_start (EV_P_ ev_periodic *w) 2600ev_periodic_start (EV_P_ ev_periodic *w)
1533{ 2601{
1534 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1535 return; 2603 return;
1536 2604
1537 if (w->reschedule_cb) 2605 if (w->reschedule_cb)
1538 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1539 else if (w->interval) 2607 else if (w->interval)
1540 { 2608 {
1541 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1542 /* this formula differs from the one in periodic_reify because we do not always round up */ 2610 /* this formula differs from the one in periodic_reify because we do not always round up */
1543 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1544 } 2612 }
2613 else
2614 ev_at (w) = w->offset;
1545 2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
1546 ev_start (EV_A_ (W)w, ++periodiccnt); 2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1547 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1548 periodics [periodiccnt - 1] = w; 2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1549 upheap ((WT *)periodics, periodiccnt - 1); 2622 ANHE_at_cache (periodics [ev_active (w)]);
2623 upheap (periodics, ev_active (w));
1550 2624
2625 EV_FREQUENT_CHECK;
2626
1551 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1552} 2628}
1553 2629
1554void 2630void noinline
1555ev_periodic_stop (EV_P_ ev_periodic *w) 2631ev_periodic_stop (EV_P_ ev_periodic *w)
1556{ 2632{
1557 ev_clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w))) 2634 if (expect_false (!ev_is_active (w)))
1559 return; 2635 return;
1560 2636
2637 EV_FREQUENT_CHECK;
2638
2639 {
2640 int active = ev_active (w);
2641
1561 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1562 2643
2644 --periodiccnt;
2645
1563 if (expect_true (((W)w)->active < periodiccnt--)) 2646 if (expect_true (active < periodiccnt + HEAP0))
1564 { 2647 {
1565 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2648 periodics [active] = periodics [periodiccnt + HEAP0];
1566 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2649 adjustheap (periodics, periodiccnt, active);
1567 } 2650 }
2651 }
2652
2653 EV_FREQUENT_CHECK;
1568 2654
1569 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
1570} 2656}
1571 2657
1572void 2658void noinline
1573ev_periodic_again (EV_P_ ev_periodic *w) 2659ev_periodic_again (EV_P_ ev_periodic *w)
1574{ 2660{
1575 /* TODO: use adjustheap and recalculation */ 2661 /* TODO: use adjustheap and recalculation */
1576 ev_periodic_stop (EV_A_ w); 2662 ev_periodic_stop (EV_A_ w);
1577 ev_periodic_start (EV_A_ w); 2663 ev_periodic_start (EV_A_ w);
1580 2666
1581#ifndef SA_RESTART 2667#ifndef SA_RESTART
1582# define SA_RESTART 0 2668# define SA_RESTART 0
1583#endif 2669#endif
1584 2670
1585void 2671void noinline
1586ev_signal_start (EV_P_ ev_signal *w) 2672ev_signal_start (EV_P_ ev_signal *w)
1587{ 2673{
1588#if EV_MULTIPLICITY
1589 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1590#endif
1591 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
1592 return; 2675 return;
1593 2676
1594 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2678
2679#if EV_MULTIPLICITY
2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2682
2683 signals [w->signum - 1].loop = EV_A;
2684#endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688#if EV_USE_SIGNALFD
2689 if (sigfd == -2)
2690 {
2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2692 if (sigfd < 0 && errno == EINVAL)
2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2694
2695 if (sigfd >= 0)
2696 {
2697 fd_intern (sigfd); /* doing it twice will not hurt */
2698
2699 sigemptyset (&sigfd_set);
2700
2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716#endif
1595 2717
1596 ev_start (EV_A_ (W)w, 1); 2718 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1598 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
1599 2720
1600 if (!((WL)w)->next) 2721 if (!((WL)w)->next)
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
2724# endif
1601 { 2725 {
1602#if _WIN32 2726# if _WIN32
1603 signal (w->signum, sighandler); 2727 signal (w->signum, ev_sighandler);
1604#else 2728# else
1605 struct sigaction sa; 2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
1606 sa.sa_handler = sighandler; 2733 sa.sa_handler = ev_sighandler;
1607 sigfillset (&sa.sa_mask); 2734 sigfillset (&sa.sa_mask);
1608 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1609 sigaction (w->signum, &sa, 0); 2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1610#endif 2741#endif
1611 } 2742 }
1612}
1613 2743
1614void 2744 EV_FREQUENT_CHECK;
2745}
2746
2747void noinline
1615ev_signal_stop (EV_P_ ev_signal *w) 2748ev_signal_stop (EV_P_ ev_signal *w)
1616{ 2749{
1617 ev_clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
1618 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
1619 return; 2752 return;
1620 2753
2754 EV_FREQUENT_CHECK;
2755
1621 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
1622 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
1623 2758
1624 if (!signals [w->signum - 1].head) 2759 if (!signals [w->signum - 1].head)
2760 {
2761#if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763#endif
2764#if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
2772 }
2773 else
2774#endif
1625 signal (w->signum, SIG_DFL); 2775 signal (w->signum, SIG_DFL);
2776 }
2777
2778 EV_FREQUENT_CHECK;
1626} 2779}
1627 2780
1628void 2781void
1629ev_child_start (EV_P_ ev_child *w) 2782ev_child_start (EV_P_ ev_child *w)
1630{ 2783{
1631#if EV_MULTIPLICITY 2784#if EV_MULTIPLICITY
1632 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1633#endif 2786#endif
1634 if (expect_false (ev_is_active (w))) 2787 if (expect_false (ev_is_active (w)))
1635 return; 2788 return;
1636 2789
2790 EV_FREQUENT_CHECK;
2791
1637 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
1638 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2794
2795 EV_FREQUENT_CHECK;
1639} 2796}
1640 2797
1641void 2798void
1642ev_child_stop (EV_P_ ev_child *w) 2799ev_child_stop (EV_P_ ev_child *w)
1643{ 2800{
1644 ev_clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
1646 return; 2803 return;
1647 2804
2805 EV_FREQUENT_CHECK;
2806
1648 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1649 ev_stop (EV_A_ (W)w); 2808 ev_stop (EV_A_ (W)w);
2809
2810 EV_FREQUENT_CHECK;
1650} 2811}
1651 2812
1652#if EV_STAT_ENABLE 2813#if EV_STAT_ENABLE
1653 2814
1654# ifdef _WIN32 2815# ifdef _WIN32
1655# undef lstat 2816# undef lstat
1656# define lstat(a,b) _stati64 (a,b) 2817# define lstat(a,b) _stati64 (a,b)
1657# endif 2818# endif
1658 2819
1659#define DEF_STAT_INTERVAL 5.0074891 2820#define DEF_STAT_INTERVAL 5.0074891
2821#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1660#define MIN_STAT_INTERVAL 0.1074891 2822#define MIN_STAT_INTERVAL 0.1074891
2823
2824static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2825
2826#if EV_USE_INOTIFY
2827# define EV_INOTIFY_BUFSIZE 8192
2828
2829static void noinline
2830infy_add (EV_P_ ev_stat *w)
2831{
2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2833
2834 if (w->wd < 0)
2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2838
2839 /* monitor some parent directory for speedup hints */
2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2841 /* but an efficiency issue only */
2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2843 {
2844 char path [4096];
2845 strcpy (path, w->path);
2846
2847 do
2848 {
2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2851
2852 char *pend = strrchr (path, '/');
2853
2854 if (!pend || pend == path)
2855 break;
2856
2857 *pend = 0;
2858 w->wd = inotify_add_watch (fs_fd, path, mask);
2859 }
2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2861 }
2862 }
2863
2864 if (w->wd >= 0)
2865 {
2866 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2867
2868 /* now local changes will be tracked by inotify, but remote changes won't */
2869 /* unless the filesystem it known to be local, we therefore still poll */
2870 /* also do poll on <2.6.25, but with normal frequency */
2871 struct statfs sfs;
2872
2873 if (fs_2625 && !statfs (w->path, &sfs))
2874 if (sfs.f_type == 0x1373 /* devfs */
2875 || sfs.f_type == 0xEF53 /* ext2/3 */
2876 || sfs.f_type == 0x3153464a /* jfs */
2877 || sfs.f_type == 0x52654973 /* reiser3 */
2878 || sfs.f_type == 0x01021994 /* tempfs */
2879 || sfs.f_type == 0x58465342 /* xfs */)
2880 return;
2881
2882 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2883 ev_timer_again (EV_A_ &w->timer);
2884 }
2885}
2886
2887static void noinline
2888infy_del (EV_P_ ev_stat *w)
2889{
2890 int slot;
2891 int wd = w->wd;
2892
2893 if (wd < 0)
2894 return;
2895
2896 w->wd = -2;
2897 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2898 wlist_del (&fs_hash [slot].head, (WL)w);
2899
2900 /* remove this watcher, if others are watching it, they will rearm */
2901 inotify_rm_watch (fs_fd, wd);
2902}
2903
2904static void noinline
2905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2906{
2907 if (slot < 0)
2908 /* overflow, need to check for all hash slots */
2909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2910 infy_wd (EV_A_ slot, wd, ev);
2911 else
2912 {
2913 WL w_;
2914
2915 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2916 {
2917 ev_stat *w = (ev_stat *)w_;
2918 w_ = w_->next; /* lets us remove this watcher and all before it */
2919
2920 if (w->wd == wd || wd == -1)
2921 {
2922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2923 {
2924 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2925 w->wd = -1;
2926 infy_add (EV_A_ w); /* re-add, no matter what */
2927 }
2928
2929 stat_timer_cb (EV_A_ &w->timer, 0);
2930 }
2931 }
2932 }
2933}
2934
2935static void
2936infy_cb (EV_P_ ev_io *w, int revents)
2937{
2938 char buf [EV_INOTIFY_BUFSIZE];
2939 struct inotify_event *ev = (struct inotify_event *)buf;
2940 int ofs;
2941 int len = read (fs_fd, buf, sizeof (buf));
2942
2943 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2944 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2945}
2946
2947inline_size void
2948check_2625 (EV_P)
2949{
2950 /* kernels < 2.6.25 are borked
2951 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2952 */
2953 struct utsname buf;
2954 int major, minor, micro;
2955
2956 if (uname (&buf))
2957 return;
2958
2959 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2960 return;
2961
2962 if (major < 2
2963 || (major == 2 && minor < 6)
2964 || (major == 2 && minor == 6 && micro < 25))
2965 return;
2966
2967 fs_2625 = 1;
2968}
2969
2970inline_size void
2971infy_init (EV_P)
2972{
2973 if (fs_fd != -2)
2974 return;
2975
2976 fs_fd = -1;
2977
2978 check_2625 (EV_A);
2979
2980 fs_fd = inotify_init ();
2981
2982 if (fs_fd >= 0)
2983 {
2984 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2985 ev_set_priority (&fs_w, EV_MAXPRI);
2986 ev_io_start (EV_A_ &fs_w);
2987 }
2988}
2989
2990inline_size void
2991infy_fork (EV_P)
2992{
2993 int slot;
2994
2995 if (fs_fd < 0)
2996 return;
2997
2998 close (fs_fd);
2999 fs_fd = inotify_init ();
3000
3001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3002 {
3003 WL w_ = fs_hash [slot].head;
3004 fs_hash [slot].head = 0;
3005
3006 while (w_)
3007 {
3008 ev_stat *w = (ev_stat *)w_;
3009 w_ = w_->next; /* lets us add this watcher */
3010
3011 w->wd = -1;
3012
3013 if (fs_fd >= 0)
3014 infy_add (EV_A_ w); /* re-add, no matter what */
3015 else
3016 ev_timer_again (EV_A_ &w->timer);
3017 }
3018 }
3019}
3020
3021#endif
3022
3023#ifdef _WIN32
3024# define EV_LSTAT(p,b) _stati64 (p, b)
3025#else
3026# define EV_LSTAT(p,b) lstat (p, b)
3027#endif
1661 3028
1662void 3029void
1663ev_stat_stat (EV_P_ ev_stat *w) 3030ev_stat_stat (EV_P_ ev_stat *w)
1664{ 3031{
1665 if (lstat (w->path, &w->attr) < 0) 3032 if (lstat (w->path, &w->attr) < 0)
1666 w->attr.st_nlink = 0; 3033 w->attr.st_nlink = 0;
1667 else if (!w->attr.st_nlink) 3034 else if (!w->attr.st_nlink)
1668 w->attr.st_nlink = 1; 3035 w->attr.st_nlink = 1;
1669} 3036}
1670 3037
1671static void 3038static void noinline
1672stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3039stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1673{ 3040{
1674 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3041 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1675 3042
1676 /* we copy this here each the time so that */ 3043 /* we copy this here each the time so that */
1677 /* prev has the old value when the callback gets invoked */ 3044 /* prev has the old value when the callback gets invoked */
1678 w->prev = w->attr; 3045 w->prev = w->attr;
1679 ev_stat_stat (EV_A_ w); 3046 ev_stat_stat (EV_A_ w);
1680 3047
1681 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3048 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3049 if (
3050 w->prev.st_dev != w->attr.st_dev
3051 || w->prev.st_ino != w->attr.st_ino
3052 || w->prev.st_mode != w->attr.st_mode
3053 || w->prev.st_nlink != w->attr.st_nlink
3054 || w->prev.st_uid != w->attr.st_uid
3055 || w->prev.st_gid != w->attr.st_gid
3056 || w->prev.st_rdev != w->attr.st_rdev
3057 || w->prev.st_size != w->attr.st_size
3058 || w->prev.st_atime != w->attr.st_atime
3059 || w->prev.st_mtime != w->attr.st_mtime
3060 || w->prev.st_ctime != w->attr.st_ctime
3061 ) {
3062 #if EV_USE_INOTIFY
3063 if (fs_fd >= 0)
3064 {
3065 infy_del (EV_A_ w);
3066 infy_add (EV_A_ w);
3067 ev_stat_stat (EV_A_ w); /* avoid race... */
3068 }
3069 #endif
3070
1682 ev_feed_event (EV_A_ w, EV_STAT); 3071 ev_feed_event (EV_A_ w, EV_STAT);
3072 }
1683} 3073}
1684 3074
1685void 3075void
1686ev_stat_start (EV_P_ ev_stat *w) 3076ev_stat_start (EV_P_ ev_stat *w)
1687{ 3077{
1688 if (expect_false (ev_is_active (w))) 3078 if (expect_false (ev_is_active (w)))
1689 return; 3079 return;
1690 3080
1691 /* since we use memcmp, we need to clear any padding data etc. */
1692 memset (&w->prev, 0, sizeof (ev_statdata));
1693 memset (&w->attr, 0, sizeof (ev_statdata));
1694
1695 ev_stat_stat (EV_A_ w); 3081 ev_stat_stat (EV_A_ w);
1696 3082
3083 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1697 if (w->interval < MIN_STAT_INTERVAL) 3084 w->interval = MIN_STAT_INTERVAL;
1698 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1699 3085
1700 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3086 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1701 ev_set_priority (&w->timer, ev_priority (w)); 3087 ev_set_priority (&w->timer, ev_priority (w));
3088
3089#if EV_USE_INOTIFY
3090 infy_init (EV_A);
3091
3092 if (fs_fd >= 0)
3093 infy_add (EV_A_ w);
3094 else
3095#endif
1702 ev_timer_start (EV_A_ &w->timer); 3096 ev_timer_again (EV_A_ &w->timer);
1703 3097
1704 ev_start (EV_A_ (W)w, 1); 3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
1705} 3101}
1706 3102
1707void 3103void
1708ev_stat_stop (EV_P_ ev_stat *w) 3104ev_stat_stop (EV_P_ ev_stat *w)
1709{ 3105{
1710 ev_clear_pending (EV_A_ (W)w); 3106 clear_pending (EV_A_ (W)w);
1711 if (expect_false (!ev_is_active (w))) 3107 if (expect_false (!ev_is_active (w)))
1712 return; 3108 return;
1713 3109
3110 EV_FREQUENT_CHECK;
3111
3112#if EV_USE_INOTIFY
3113 infy_del (EV_A_ w);
3114#endif
1714 ev_timer_stop (EV_A_ &w->timer); 3115 ev_timer_stop (EV_A_ &w->timer);
1715 3116
1716 ev_stop (EV_A_ (W)w); 3117 ev_stop (EV_A_ (W)w);
1717}
1718#endif
1719 3118
3119 EV_FREQUENT_CHECK;
3120}
3121#endif
3122
3123#if EV_IDLE_ENABLE
1720void 3124void
1721ev_idle_start (EV_P_ ev_idle *w) 3125ev_idle_start (EV_P_ ev_idle *w)
1722{ 3126{
1723 if (expect_false (ev_is_active (w))) 3127 if (expect_false (ev_is_active (w)))
1724 return; 3128 return;
1725 3129
3130 pri_adjust (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
3133
3134 {
3135 int active = ++idlecnt [ABSPRI (w)];
3136
3137 ++idleall;
1726 ev_start (EV_A_ (W)w, ++idlecnt); 3138 ev_start (EV_A_ (W)w, active);
3139
1727 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3140 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1728 idles [idlecnt - 1] = w; 3141 idles [ABSPRI (w)][active - 1] = w;
3142 }
3143
3144 EV_FREQUENT_CHECK;
1729} 3145}
1730 3146
1731void 3147void
1732ev_idle_stop (EV_P_ ev_idle *w) 3148ev_idle_stop (EV_P_ ev_idle *w)
1733{ 3149{
1734 ev_clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
1735 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
1736 return; 3152 return;
1737 3153
3154 EV_FREQUENT_CHECK;
3155
1738 { 3156 {
1739 int active = ((W)w)->active; 3157 int active = ev_active (w);
1740 idles [active - 1] = idles [--idlecnt]; 3158
1741 ((W)idles [active - 1])->active = active; 3159 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3160 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3161
3162 ev_stop (EV_A_ (W)w);
3163 --idleall;
1742 } 3164 }
1743 3165
1744 ev_stop (EV_A_ (W)w); 3166 EV_FREQUENT_CHECK;
1745} 3167}
3168#endif
1746 3169
1747void 3170void
1748ev_prepare_start (EV_P_ ev_prepare *w) 3171ev_prepare_start (EV_P_ ev_prepare *w)
1749{ 3172{
1750 if (expect_false (ev_is_active (w))) 3173 if (expect_false (ev_is_active (w)))
1751 return; 3174 return;
3175
3176 EV_FREQUENT_CHECK;
1752 3177
1753 ev_start (EV_A_ (W)w, ++preparecnt); 3178 ev_start (EV_A_ (W)w, ++preparecnt);
1754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3179 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1755 prepares [preparecnt - 1] = w; 3180 prepares [preparecnt - 1] = w;
3181
3182 EV_FREQUENT_CHECK;
1756} 3183}
1757 3184
1758void 3185void
1759ev_prepare_stop (EV_P_ ev_prepare *w) 3186ev_prepare_stop (EV_P_ ev_prepare *w)
1760{ 3187{
1761 ev_clear_pending (EV_A_ (W)w); 3188 clear_pending (EV_A_ (W)w);
1762 if (expect_false (!ev_is_active (w))) 3189 if (expect_false (!ev_is_active (w)))
1763 return; 3190 return;
1764 3191
3192 EV_FREQUENT_CHECK;
3193
1765 { 3194 {
1766 int active = ((W)w)->active; 3195 int active = ev_active (w);
3196
1767 prepares [active - 1] = prepares [--preparecnt]; 3197 prepares [active - 1] = prepares [--preparecnt];
1768 ((W)prepares [active - 1])->active = active; 3198 ev_active (prepares [active - 1]) = active;
1769 } 3199 }
1770 3200
1771 ev_stop (EV_A_ (W)w); 3201 ev_stop (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
1772} 3204}
1773 3205
1774void 3206void
1775ev_check_start (EV_P_ ev_check *w) 3207ev_check_start (EV_P_ ev_check *w)
1776{ 3208{
1777 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
1778 return; 3210 return;
3211
3212 EV_FREQUENT_CHECK;
1779 3213
1780 ev_start (EV_A_ (W)w, ++checkcnt); 3214 ev_start (EV_A_ (W)w, ++checkcnt);
1781 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3215 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1782 checks [checkcnt - 1] = w; 3216 checks [checkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
1783} 3219}
1784 3220
1785void 3221void
1786ev_check_stop (EV_P_ ev_check *w) 3222ev_check_stop (EV_P_ ev_check *w)
1787{ 3223{
1788 ev_clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
1789 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
1790 return; 3226 return;
1791 3227
3228 EV_FREQUENT_CHECK;
3229
1792 { 3230 {
1793 int active = ((W)w)->active; 3231 int active = ev_active (w);
3232
1794 checks [active - 1] = checks [--checkcnt]; 3233 checks [active - 1] = checks [--checkcnt];
1795 ((W)checks [active - 1])->active = active; 3234 ev_active (checks [active - 1]) = active;
1796 } 3235 }
1797 3236
1798 ev_stop (EV_A_ (W)w); 3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
1799} 3240}
1800 3241
1801#if EV_EMBED_ENABLE 3242#if EV_EMBED_ENABLE
1802void noinline 3243void noinline
1803ev_embed_sweep (EV_P_ ev_embed *w) 3244ev_embed_sweep (EV_P_ ev_embed *w)
1804{ 3245{
1805 ev_loop (w->loop, EVLOOP_NONBLOCK); 3246 ev_loop (w->other, EVLOOP_NONBLOCK);
1806} 3247}
1807 3248
1808static void 3249static void
1809embed_cb (EV_P_ ev_io *io, int revents) 3250embed_io_cb (EV_P_ ev_io *io, int revents)
1810{ 3251{
1811 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3252 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1812 3253
1813 if (ev_cb (w)) 3254 if (ev_cb (w))
1814 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3255 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1815 else 3256 else
1816 ev_embed_sweep (loop, w); 3257 ev_loop (w->other, EVLOOP_NONBLOCK);
1817} 3258}
3259
3260static void
3261embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3262{
3263 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3264
3265 {
3266 EV_P = w->other;
3267
3268 while (fdchangecnt)
3269 {
3270 fd_reify (EV_A);
3271 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3272 }
3273 }
3274}
3275
3276static void
3277embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3278{
3279 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3280
3281 ev_embed_stop (EV_A_ w);
3282
3283 {
3284 EV_P = w->other;
3285
3286 ev_loop_fork (EV_A);
3287 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3288 }
3289
3290 ev_embed_start (EV_A_ w);
3291}
3292
3293#if 0
3294static void
3295embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3296{
3297 ev_idle_stop (EV_A_ idle);
3298}
3299#endif
1818 3300
1819void 3301void
1820ev_embed_start (EV_P_ ev_embed *w) 3302ev_embed_start (EV_P_ ev_embed *w)
1821{ 3303{
1822 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
1823 return; 3305 return;
1824 3306
1825 { 3307 {
1826 struct ev_loop *loop = w->loop; 3308 EV_P = w->other;
1827 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3309 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1828 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3310 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1829 } 3311 }
3312
3313 EV_FREQUENT_CHECK;
1830 3314
1831 ev_set_priority (&w->io, ev_priority (w)); 3315 ev_set_priority (&w->io, ev_priority (w));
1832 ev_io_start (EV_A_ &w->io); 3316 ev_io_start (EV_A_ &w->io);
1833 3317
3318 ev_prepare_init (&w->prepare, embed_prepare_cb);
3319 ev_set_priority (&w->prepare, EV_MINPRI);
3320 ev_prepare_start (EV_A_ &w->prepare);
3321
3322 ev_fork_init (&w->fork, embed_fork_cb);
3323 ev_fork_start (EV_A_ &w->fork);
3324
3325 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3326
1834 ev_start (EV_A_ (W)w, 1); 3327 ev_start (EV_A_ (W)w, 1);
3328
3329 EV_FREQUENT_CHECK;
1835} 3330}
1836 3331
1837void 3332void
1838ev_embed_stop (EV_P_ ev_embed *w) 3333ev_embed_stop (EV_P_ ev_embed *w)
1839{ 3334{
1840 ev_clear_pending (EV_A_ (W)w); 3335 clear_pending (EV_A_ (W)w);
1841 if (expect_false (!ev_is_active (w))) 3336 if (expect_false (!ev_is_active (w)))
1842 return; 3337 return;
1843 3338
3339 EV_FREQUENT_CHECK;
3340
1844 ev_io_stop (EV_A_ &w->io); 3341 ev_io_stop (EV_A_ &w->io);
3342 ev_prepare_stop (EV_A_ &w->prepare);
3343 ev_fork_stop (EV_A_ &w->fork);
1845 3344
1846 ev_stop (EV_A_ (W)w); 3345 EV_FREQUENT_CHECK;
1847} 3346}
1848#endif 3347#endif
1849 3348
1850#if EV_FORK_ENABLE 3349#if EV_FORK_ENABLE
1851void 3350void
1852ev_fork_start (EV_P_ ev_fork *w) 3351ev_fork_start (EV_P_ ev_fork *w)
1853{ 3352{
1854 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
1855 return; 3354 return;
3355
3356 EV_FREQUENT_CHECK;
1856 3357
1857 ev_start (EV_A_ (W)w, ++forkcnt); 3358 ev_start (EV_A_ (W)w, ++forkcnt);
1858 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3359 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
1859 forks [forkcnt - 1] = w; 3360 forks [forkcnt - 1] = w;
3361
3362 EV_FREQUENT_CHECK;
1860} 3363}
1861 3364
1862void 3365void
1863ev_fork_stop (EV_P_ ev_fork *w) 3366ev_fork_stop (EV_P_ ev_fork *w)
1864{ 3367{
1865 ev_clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
1867 return; 3370 return;
1868 3371
3372 EV_FREQUENT_CHECK;
3373
1869 { 3374 {
1870 int active = ((W)w)->active; 3375 int active = ev_active (w);
3376
1871 forks [active - 1] = forks [--forkcnt]; 3377 forks [active - 1] = forks [--forkcnt];
1872 ((W)forks [active - 1])->active = active; 3378 ev_active (forks [active - 1]) = active;
1873 } 3379 }
1874 3380
1875 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
3382
3383 EV_FREQUENT_CHECK;
3384}
3385#endif
3386
3387#if EV_ASYNC_ENABLE
3388void
3389ev_async_start (EV_P_ ev_async *w)
3390{
3391 if (expect_false (ev_is_active (w)))
3392 return;
3393
3394 evpipe_init (EV_A);
3395
3396 EV_FREQUENT_CHECK;
3397
3398 ev_start (EV_A_ (W)w, ++asynccnt);
3399 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3400 asyncs [asynccnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
3403}
3404
3405void
3406ev_async_stop (EV_P_ ev_async *w)
3407{
3408 clear_pending (EV_A_ (W)w);
3409 if (expect_false (!ev_is_active (w)))
3410 return;
3411
3412 EV_FREQUENT_CHECK;
3413
3414 {
3415 int active = ev_active (w);
3416
3417 asyncs [active - 1] = asyncs [--asynccnt];
3418 ev_active (asyncs [active - 1]) = active;
3419 }
3420
3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
3424}
3425
3426void
3427ev_async_send (EV_P_ ev_async *w)
3428{
3429 w->sent = 1;
3430 evpipe_write (EV_A_ &async_pending);
1876} 3431}
1877#endif 3432#endif
1878 3433
1879/*****************************************************************************/ 3434/*****************************************************************************/
1880 3435
1890once_cb (EV_P_ struct ev_once *once, int revents) 3445once_cb (EV_P_ struct ev_once *once, int revents)
1891{ 3446{
1892 void (*cb)(int revents, void *arg) = once->cb; 3447 void (*cb)(int revents, void *arg) = once->cb;
1893 void *arg = once->arg; 3448 void *arg = once->arg;
1894 3449
1895 ev_io_stop (EV_A_ &once->io); 3450 ev_io_stop (EV_A_ &once->io);
1896 ev_timer_stop (EV_A_ &once->to); 3451 ev_timer_stop (EV_A_ &once->to);
1897 ev_free (once); 3452 ev_free (once);
1898 3453
1899 cb (revents, arg); 3454 cb (revents, arg);
1900} 3455}
1901 3456
1902static void 3457static void
1903once_cb_io (EV_P_ ev_io *w, int revents) 3458once_cb_io (EV_P_ ev_io *w, int revents)
1904{ 3459{
1905 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3460 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3461
3462 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1906} 3463}
1907 3464
1908static void 3465static void
1909once_cb_to (EV_P_ ev_timer *w, int revents) 3466once_cb_to (EV_P_ ev_timer *w, int revents)
1910{ 3467{
1911 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3468 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3469
3470 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1912} 3471}
1913 3472
1914void 3473void
1915ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3474ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1916{ 3475{
1938 ev_timer_set (&once->to, timeout, 0.); 3497 ev_timer_set (&once->to, timeout, 0.);
1939 ev_timer_start (EV_A_ &once->to); 3498 ev_timer_start (EV_A_ &once->to);
1940 } 3499 }
1941} 3500}
1942 3501
3502/*****************************************************************************/
3503
3504#if EV_WALK_ENABLE
3505void
3506ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3507{
3508 int i, j;
3509 ev_watcher_list *wl, *wn;
3510
3511 if (types & (EV_IO | EV_EMBED))
3512 for (i = 0; i < anfdmax; ++i)
3513 for (wl = anfds [i].head; wl; )
3514 {
3515 wn = wl->next;
3516
3517#if EV_EMBED_ENABLE
3518 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3519 {
3520 if (types & EV_EMBED)
3521 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3522 }
3523 else
3524#endif
3525#if EV_USE_INOTIFY
3526 if (ev_cb ((ev_io *)wl) == infy_cb)
3527 ;
3528 else
3529#endif
3530 if ((ev_io *)wl != &pipe_w)
3531 if (types & EV_IO)
3532 cb (EV_A_ EV_IO, wl);
3533
3534 wl = wn;
3535 }
3536
3537 if (types & (EV_TIMER | EV_STAT))
3538 for (i = timercnt + HEAP0; i-- > HEAP0; )
3539#if EV_STAT_ENABLE
3540 /*TODO: timer is not always active*/
3541 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3542 {
3543 if (types & EV_STAT)
3544 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3545 }
3546 else
3547#endif
3548 if (types & EV_TIMER)
3549 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3550
3551#if EV_PERIODIC_ENABLE
3552 if (types & EV_PERIODIC)
3553 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3554 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3555#endif
3556
3557#if EV_IDLE_ENABLE
3558 if (types & EV_IDLE)
3559 for (j = NUMPRI; i--; )
3560 for (i = idlecnt [j]; i--; )
3561 cb (EV_A_ EV_IDLE, idles [j][i]);
3562#endif
3563
3564#if EV_FORK_ENABLE
3565 if (types & EV_FORK)
3566 for (i = forkcnt; i--; )
3567 if (ev_cb (forks [i]) != embed_fork_cb)
3568 cb (EV_A_ EV_FORK, forks [i]);
3569#endif
3570
3571#if EV_ASYNC_ENABLE
3572 if (types & EV_ASYNC)
3573 for (i = asynccnt; i--; )
3574 cb (EV_A_ EV_ASYNC, asyncs [i]);
3575#endif
3576
3577 if (types & EV_PREPARE)
3578 for (i = preparecnt; i--; )
3579#if EV_EMBED_ENABLE
3580 if (ev_cb (prepares [i]) != embed_prepare_cb)
3581#endif
3582 cb (EV_A_ EV_PREPARE, prepares [i]);
3583
3584 if (types & EV_CHECK)
3585 for (i = checkcnt; i--; )
3586 cb (EV_A_ EV_CHECK, checks [i]);
3587
3588 if (types & EV_SIGNAL)
3589 for (i = 0; i < EV_NSIG - 1; ++i)
3590 for (wl = signals [i].head; wl; )
3591 {
3592 wn = wl->next;
3593 cb (EV_A_ EV_SIGNAL, wl);
3594 wl = wn;
3595 }
3596
3597 if (types & EV_CHILD)
3598 for (i = EV_PID_HASHSIZE; i--; )
3599 for (wl = childs [i]; wl; )
3600 {
3601 wn = wl->next;
3602 cb (EV_A_ EV_CHILD, wl);
3603 wl = wn;
3604 }
3605/* EV_STAT 0x00001000 /* stat data changed */
3606/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3607}
3608#endif
3609
3610#if EV_MULTIPLICITY
3611 #include "ev_wrap.h"
3612#endif
3613
1943#ifdef __cplusplus 3614#ifdef __cplusplus
1944} 3615}
1945#endif 3616#endif
1946 3617

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines