ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC vs.
Revision 1.311 by root, Wed Jul 29 09:36:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
39 39
40#ifdef __cplusplus 40#ifdef __cplusplus
41extern "C" { 41extern "C" {
42#endif 42#endif
43 43
44/* this big block deduces configuration from config.h */
44#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
46# include EV_CONFIG_H 47# include EV_CONFIG_H
47# else 48# else
48# include "config.h" 49# include "config.h"
49# endif 50# endif
50 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
51# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
52# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
53# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
54# endif 69# endif
55# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
57# endif 72# endif
58# else 73# else
59# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
61# endif 76# endif
118# else 133# else
119# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
120# endif 135# endif
121# endif 136# endif
122 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
123#endif 154#endif
124 155
125#include <math.h> 156#include <math.h>
126#include <stdlib.h> 157#include <stdlib.h>
127#include <fcntl.h> 158#include <fcntl.h>
145#ifndef _WIN32 176#ifndef _WIN32
146# include <sys/time.h> 177# include <sys/time.h>
147# include <sys/wait.h> 178# include <sys/wait.h>
148# include <unistd.h> 179# include <unistd.h>
149#else 180#else
181# include <io.h>
150# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
151# include <windows.h> 183# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
154# endif 186# endif
155#endif 187#endif
156 188
157/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
158 225
159#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
160# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
161#endif 232#endif
162 233
163#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
165#endif 236#endif
166 237
167#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
168# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
169#endif 244#endif
170 245
171#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
173#endif 248#endif
179# define EV_USE_POLL 1 254# define EV_USE_POLL 1
180# endif 255# endif
181#endif 256#endif
182 257
183#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
184# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
185#endif 264#endif
186 265
187#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
189#endif 268#endif
191#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
192# define EV_USE_PORT 0 271# define EV_USE_PORT 0
193#endif 272#endif
194 273
195#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
196# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
197#endif 280#endif
198 281
199#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL 283# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
210# else 293# else
211# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
212# endif 295# endif
213#endif 296#endif
214 297
215/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
216 347
217#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
220#endif 351#endif
234# include <sys/select.h> 365# include <sys/select.h>
235# endif 366# endif
236#endif 367#endif
237 368
238#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
239# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
240#endif 378#endif
241 379
242#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h> 381# include <winsock.h>
244#endif 382#endif
245 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
246/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
247 417
248/* 418/*
249 * This is used to avoid floating point rounding problems. 419 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics 420 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding 421 * to ensure progress, time-wise, even when rounding
263# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
264# define noinline __attribute__ ((noinline)) 434# define noinline __attribute__ ((noinline))
265#else 435#else
266# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
267# define noinline 437# define noinline
268# if __STDC_VERSION__ < 199901L 438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
269# define inline 439# define inline
270# endif 440# endif
271#endif 441#endif
272 442
273#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
278# define inline_speed static noinline 448# define inline_speed static noinline
279#else 449#else
280# define inline_speed static inline 450# define inline_speed static inline
281#endif 451#endif
282 452
283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
285 460
286#define EMPTY /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
288 463
289typedef ev_watcher *W; 464typedef ev_watcher *W;
290typedef ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
291typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
292 467
293#if EV_USE_MONOTONIC 468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */ 473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif 479#endif
298 480
299#ifdef _WIN32 481#ifdef _WIN32
300# include "ev_win32.c" 482# include "ev_win32.c"
309{ 491{
310 syserr_cb = cb; 492 syserr_cb = cb;
311} 493}
312 494
313static void noinline 495static void noinline
314syserr (const char *msg) 496ev_syserr (const char *msg)
315{ 497{
316 if (!msg) 498 if (!msg)
317 msg = "(libev) system error"; 499 msg = "(libev) system error";
318 500
319 if (syserr_cb) 501 if (syserr_cb)
323 perror (msg); 505 perror (msg);
324 abort (); 506 abort ();
325 } 507 }
326} 508}
327 509
510static void *
511ev_realloc_emul (void *ptr, long size)
512{
513 /* some systems, notably openbsd and darwin, fail to properly
514 * implement realloc (x, 0) (as required by both ansi c-98 and
515 * the single unix specification, so work around them here.
516 */
517
518 if (size)
519 return realloc (ptr, size);
520
521 free (ptr);
522 return 0;
523}
524
328static void *(*alloc)(void *ptr, long size); 525static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
329 526
330void 527void
331ev_set_allocator (void *(*cb)(void *ptr, long size)) 528ev_set_allocator (void *(*cb)(void *ptr, long size))
332{ 529{
333 alloc = cb; 530 alloc = cb;
334} 531}
335 532
336inline_speed void * 533inline_speed void *
337ev_realloc (void *ptr, long size) 534ev_realloc (void *ptr, long size)
338{ 535{
339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 536 ptr = alloc (ptr, size);
340 537
341 if (!ptr && size) 538 if (!ptr && size)
342 { 539 {
343 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 540 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
344 abort (); 541 abort ();
350#define ev_malloc(size) ev_realloc (0, (size)) 547#define ev_malloc(size) ev_realloc (0, (size))
351#define ev_free(ptr) ev_realloc ((ptr), 0) 548#define ev_free(ptr) ev_realloc ((ptr), 0)
352 549
353/*****************************************************************************/ 550/*****************************************************************************/
354 551
552/* set in reify when reification needed */
553#define EV_ANFD_REIFY 1
554
555/* file descriptor info structure */
355typedef struct 556typedef struct
356{ 557{
357 WL head; 558 WL head;
358 unsigned char events; 559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
359 unsigned char reify; 562 unsigned char unused;
563#if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565#endif
360#if EV_SELECT_IS_WINSOCKET 566#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle; 567 SOCKET handle;
362#endif 568#endif
363} ANFD; 569} ANFD;
364 570
571/* stores the pending event set for a given watcher */
365typedef struct 572typedef struct
366{ 573{
367 W w; 574 W w;
368 int events; 575 int events; /* the pending event set for the given watcher */
369} ANPENDING; 576} ANPENDING;
370 577
371#if EV_USE_INOTIFY 578#if EV_USE_INOTIFY
579/* hash table entry per inotify-id */
372typedef struct 580typedef struct
373{ 581{
374 WL head; 582 WL head;
375} ANFS; 583} ANFS;
584#endif
585
586/* Heap Entry */
587#if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597#else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
376#endif 604#endif
377 605
378#if EV_MULTIPLICITY 606#if EV_MULTIPLICITY
379 607
380 struct ev_loop 608 struct ev_loop
399 627
400 static int ev_default_loop_ptr; 628 static int ev_default_loop_ptr;
401 629
402#endif 630#endif
403 631
632#if EV_MINIMAL < 2
633# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635# define EV_INVOKE_PENDING invoke_cb (EV_A)
636#else
637# define EV_RELEASE_CB (void)0
638# define EV_ACQUIRE_CB (void)0
639# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640#endif
641
642#define EVUNLOOP_RECURSE 0x80
643
404/*****************************************************************************/ 644/*****************************************************************************/
405 645
646#ifndef EV_HAVE_EV_TIME
406ev_tstamp 647ev_tstamp
407ev_time (void) 648ev_time (void)
408{ 649{
409#if EV_USE_REALTIME 650#if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
410 struct timespec ts; 653 struct timespec ts;
411 clock_gettime (CLOCK_REALTIME, &ts); 654 clock_gettime (CLOCK_REALTIME, &ts);
412 return ts.tv_sec + ts.tv_nsec * 1e-9; 655 return ts.tv_sec + ts.tv_nsec * 1e-9;
413#else 656 }
657#endif
658
414 struct timeval tv; 659 struct timeval tv;
415 gettimeofday (&tv, 0); 660 gettimeofday (&tv, 0);
416 return tv.tv_sec + tv.tv_usec * 1e-6; 661 return tv.tv_sec + tv.tv_usec * 1e-6;
417#endif
418} 662}
663#endif
419 664
420ev_tstamp inline_size 665inline_size ev_tstamp
421get_clock (void) 666get_clock (void)
422{ 667{
423#if EV_USE_MONOTONIC 668#if EV_USE_MONOTONIC
424 if (expect_true (have_monotonic)) 669 if (expect_true (have_monotonic))
425 { 670 {
451 ts.tv_sec = (time_t)delay; 696 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 697 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453 698
454 nanosleep (&ts, 0); 699 nanosleep (&ts, 0);
455#elif defined(_WIN32) 700#elif defined(_WIN32)
456 Sleep (delay * 1e3); 701 Sleep ((unsigned long)(delay * 1e3));
457#else 702#else
458 struct timeval tv; 703 struct timeval tv;
459 704
460 tv.tv_sec = (time_t)delay; 705 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462 707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
463 select (0, 0, 0, 0, &tv); 711 select (0, 0, 0, 0, &tv);
464#endif 712#endif
465 } 713 }
466} 714}
467 715
468/*****************************************************************************/ 716/*****************************************************************************/
469 717
470int inline_size 718#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
719
720/* find a suitable new size for the given array, */
721/* hopefully by rounding to a ncie-to-malloc size */
722inline_size int
471array_nextsize (int elem, int cur, int cnt) 723array_nextsize (int elem, int cur, int cnt)
472{ 724{
473 int ncur = cur + 1; 725 int ncur = cur + 1;
474 726
475 do 727 do
476 ncur <<= 1; 728 ncur <<= 1;
477 while (cnt > ncur); 729 while (cnt > ncur);
478 730
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 731 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096) 732 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
481 { 733 {
482 ncur *= elem; 734 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 735 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
484 ncur = ncur - sizeof (void *) * 4; 736 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem; 737 ncur /= elem;
486 } 738 }
487 739
488 return ncur; 740 return ncur;
492array_realloc (int elem, void *base, int *cur, int cnt) 744array_realloc (int elem, void *base, int *cur, int cnt)
493{ 745{
494 *cur = array_nextsize (elem, *cur, cnt); 746 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur); 747 return ev_realloc (base, elem * *cur);
496} 748}
749
750#define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
497 752
498#define array_needsize(type,base,cur,cnt,init) \ 753#define array_needsize(type,base,cur,cnt,init) \
499 if (expect_false ((cnt) > (cur))) \ 754 if (expect_false ((cnt) > (cur))) \
500 { \ 755 { \
501 int ocur_ = (cur); \ 756 int ocur_ = (cur); \
513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
514 } 769 }
515#endif 770#endif
516 771
517#define array_free(stem, idx) \ 772#define array_free(stem, idx) \
518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
519 774
520/*****************************************************************************/ 775/*****************************************************************************/
776
777/* dummy callback for pending events */
778static void noinline
779pendingcb (EV_P_ ev_prepare *w, int revents)
780{
781}
521 782
522void noinline 783void noinline
523ev_feed_event (EV_P_ void *w, int revents) 784ev_feed_event (EV_P_ void *w, int revents)
524{ 785{
525 W w_ = (W)w; 786 W w_ = (W)w;
534 pendings [pri][w_->pending - 1].w = w_; 795 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents; 796 pendings [pri][w_->pending - 1].events = revents;
536 } 797 }
537} 798}
538 799
539void inline_speed 800inline_speed void
801feed_reverse (EV_P_ W w)
802{
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805}
806
807inline_size void
808feed_reverse_done (EV_P_ int revents)
809{
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813}
814
815inline_speed void
540queue_events (EV_P_ W *events, int eventcnt, int type) 816queue_events (EV_P_ W *events, int eventcnt, int type)
541{ 817{
542 int i; 818 int i;
543 819
544 for (i = 0; i < eventcnt; ++i) 820 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type); 821 ev_feed_event (EV_A_ events [i], type);
546} 822}
547 823
548/*****************************************************************************/ 824/*****************************************************************************/
549 825
550void inline_size 826inline_speed void
551anfds_init (ANFD *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->events = EV_NONE;
557 base->reify = 0;
558
559 ++base;
560 }
561}
562
563void inline_speed
564fd_event (EV_P_ int fd, int revents) 827fd_event_nc (EV_P_ int fd, int revents)
565{ 828{
566 ANFD *anfd = anfds + fd; 829 ANFD *anfd = anfds + fd;
567 ev_io *w; 830 ev_io *w;
568 831
569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
573 if (ev) 836 if (ev)
574 ev_feed_event (EV_A_ (W)w, ev); 837 ev_feed_event (EV_A_ (W)w, ev);
575 } 838 }
576} 839}
577 840
841/* do not submit kernel events for fds that have reify set */
842/* because that means they changed while we were polling for new events */
843inline_speed void
844fd_event (EV_P_ int fd, int revents)
845{
846 ANFD *anfd = anfds + fd;
847
848 if (expect_true (!anfd->reify))
849 fd_event_nc (EV_A_ fd, revents);
850}
851
578void 852void
579ev_feed_fd_event (EV_P_ int fd, int revents) 853ev_feed_fd_event (EV_P_ int fd, int revents)
580{ 854{
581 if (fd >= 0 && fd < anfdmax) 855 if (fd >= 0 && fd < anfdmax)
582 fd_event (EV_A_ fd, revents); 856 fd_event_nc (EV_A_ fd, revents);
583} 857}
584 858
585void inline_size 859/* make sure the external fd watch events are in-sync */
860/* with the kernel/libev internal state */
861inline_size void
586fd_reify (EV_P) 862fd_reify (EV_P)
587{ 863{
588 int i; 864 int i;
589 865
590 for (i = 0; i < fdchangecnt; ++i) 866 for (i = 0; i < fdchangecnt; ++i)
599 events |= (unsigned char)w->events; 875 events |= (unsigned char)w->events;
600 876
601#if EV_SELECT_IS_WINSOCKET 877#if EV_SELECT_IS_WINSOCKET
602 if (events) 878 if (events)
603 { 879 {
604 unsigned long argp; 880 unsigned long arg;
605 #ifdef EV_FD_TO_WIN32_HANDLE 881 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else 883 #else
608 anfd->handle = _get_osfhandle (fd); 884 anfd->handle = _get_osfhandle (fd);
609 #endif 885 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
611 } 887 }
612#endif 888#endif
613 889
614 { 890 {
615 unsigned char o_events = anfd->events; 891 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify; 892 unsigned char o_reify = anfd->reify;
617 893
618 anfd->reify = 0; 894 anfd->reify = 0;
619 anfd->events = events; 895 anfd->events = events;
620 896
621 if (o_events != events || o_reify & EV_IOFDSET) 897 if (o_events != events || o_reify & EV__IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events); 898 backend_modify (EV_A_ fd, o_events, events);
623 } 899 }
624 } 900 }
625 901
626 fdchangecnt = 0; 902 fdchangecnt = 0;
627} 903}
628 904
629void inline_size 905/* something about the given fd changed */
906inline_size void
630fd_change (EV_P_ int fd, int flags) 907fd_change (EV_P_ int fd, int flags)
631{ 908{
632 unsigned char reify = anfds [fd].reify; 909 unsigned char reify = anfds [fd].reify;
633 anfds [fd].reify |= flags; 910 anfds [fd].reify |= flags;
634 911
638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
639 fdchanges [fdchangecnt - 1] = fd; 916 fdchanges [fdchangecnt - 1] = fd;
640 } 917 }
641} 918}
642 919
643void inline_speed 920/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921inline_speed void
644fd_kill (EV_P_ int fd) 922fd_kill (EV_P_ int fd)
645{ 923{
646 ev_io *w; 924 ev_io *w;
647 925
648 while ((w = (ev_io *)anfds [fd].head)) 926 while ((w = (ev_io *)anfds [fd].head))
650 ev_io_stop (EV_A_ w); 928 ev_io_stop (EV_A_ w);
651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
652 } 930 }
653} 931}
654 932
655int inline_size 933/* check whether the given fd is atcually valid, for error recovery */
934inline_size int
656fd_valid (int fd) 935fd_valid (int fd)
657{ 936{
658#ifdef _WIN32 937#ifdef _WIN32
659 return _get_osfhandle (fd) != -1; 938 return _get_osfhandle (fd) != -1;
660#else 939#else
668{ 947{
669 int fd; 948 int fd;
670 949
671 for (fd = 0; fd < anfdmax; ++fd) 950 for (fd = 0; fd < anfdmax; ++fd)
672 if (anfds [fd].events) 951 if (anfds [fd].events)
673 if (!fd_valid (fd) == -1 && errno == EBADF) 952 if (!fd_valid (fd) && errno == EBADF)
674 fd_kill (EV_A_ fd); 953 fd_kill (EV_A_ fd);
675} 954}
676 955
677/* called on ENOMEM in select/poll to kill some fds and retry */ 956/* called on ENOMEM in select/poll to kill some fds and retry */
678static void noinline 957static void noinline
682 961
683 for (fd = anfdmax; fd--; ) 962 for (fd = anfdmax; fd--; )
684 if (anfds [fd].events) 963 if (anfds [fd].events)
685 { 964 {
686 fd_kill (EV_A_ fd); 965 fd_kill (EV_A_ fd);
687 return; 966 break;
688 } 967 }
689} 968}
690 969
691/* usually called after fork if backend needs to re-arm all fds from scratch */ 970/* usually called after fork if backend needs to re-arm all fds from scratch */
692static void noinline 971static void noinline
696 975
697 for (fd = 0; fd < anfdmax; ++fd) 976 for (fd = 0; fd < anfdmax; ++fd)
698 if (anfds [fd].events) 977 if (anfds [fd].events)
699 { 978 {
700 anfds [fd].events = 0; 979 anfds [fd].events = 0;
980 anfds [fd].emask = 0;
701 fd_change (EV_A_ fd, EV_IOFDSET | 1); 981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
702 } 982 }
703} 983}
704 984
705/*****************************************************************************/ 985/*****************************************************************************/
706 986
707void inline_speed 987/*
708upheap (WT *heap, int k) 988 * the heap functions want a real array index. array index 0 uis guaranteed to not
709{ 989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
710 WT w = heap [k]; 990 * the branching factor of the d-tree.
991 */
711 992
712 while (k) 993/*
713 { 994 * at the moment we allow libev the luxury of two heaps,
714 int p = (k - 1) >> 1; 995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
996 * which is more cache-efficient.
997 * the difference is about 5% with 50000+ watchers.
998 */
999#if EV_USE_4HEAP
715 1000
716 if (heap [p]->at <= w->at) 1001#define DHEAP 4
1002#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004#define UPHEAP_DONE(p,k) ((p) == (k))
1005
1006/* away from the root */
1007inline_speed void
1008downheap (ANHE *heap, int N, int k)
1009{
1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
1012
1013 for (;;)
1014 {
1015 ev_tstamp minat;
1016 ANHE *minpos;
1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1018
1019 /* find minimum child */
1020 if (expect_true (pos + DHEAP - 1 < E))
1021 {
1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1033 }
1034 else
717 break; 1035 break;
718 1036
1037 if (ANHE_at (he) <= minat)
1038 break;
1039
1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
1042
1043 k = minpos - heap;
1044 }
1045
1046 heap [k] = he;
1047 ev_active (ANHE_w (he)) = k;
1048}
1049
1050#else /* 4HEAP */
1051
1052#define HEAP0 1
1053#define HPARENT(k) ((k) >> 1)
1054#define UPHEAP_DONE(p,k) (!(p))
1055
1056/* away from the root */
1057inline_speed void
1058downheap (ANHE *heap, int N, int k)
1059{
1060 ANHE he = heap [k];
1061
1062 for (;;)
1063 {
1064 int c = k << 1;
1065
1066 if (c >= N + HEAP0)
1067 break;
1068
1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1070 ? 1 : 0;
1071
1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
1073 break;
1074
1075 heap [k] = heap [c];
1076 ev_active (ANHE_w (heap [k])) = k;
1077
1078 k = c;
1079 }
1080
1081 heap [k] = he;
1082 ev_active (ANHE_w (he)) = k;
1083}
1084#endif
1085
1086/* towards the root */
1087inline_speed void
1088upheap (ANHE *heap, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
719 heap [k] = heap [p]; 1099 heap [k] = heap [p];
720 ((W)heap [k])->active = k + 1; 1100 ev_active (ANHE_w (heap [k])) = k;
721 k = p; 1101 k = p;
722 } 1102 }
723 1103
724 heap [k] = w; 1104 heap [k] = he;
725 ((W)heap [k])->active = k + 1; 1105 ev_active (ANHE_w (he)) = k;
726} 1106}
727 1107
728void inline_speed 1108/* move an element suitably so it is in a correct place */
729downheap (WT *heap, int N, int k) 1109inline_size void
730{
731 WT w = heap [k];
732
733 for (;;)
734 {
735 int c = (k << 1) + 1;
736
737 if (c >= N)
738 break;
739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
746 heap [k] = heap [c];
747 ((W)heap [k])->active = k + 1;
748
749 k = c;
750 }
751
752 heap [k] = w;
753 ((W)heap [k])->active = k + 1;
754}
755
756void inline_size
757adjustheap (WT *heap, int N, int k) 1110adjustheap (ANHE *heap, int N, int k)
758{ 1111{
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
759 upheap (heap, k); 1113 upheap (heap, k);
1114 else
760 downheap (heap, N, k); 1115 downheap (heap, N, k);
1116}
1117
1118/* rebuild the heap: this function is used only once and executed rarely */
1119inline_size void
1120reheap (ANHE *heap, int N)
1121{
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
761} 1128}
762 1129
763/*****************************************************************************/ 1130/*****************************************************************************/
764 1131
1132/* associate signal watchers to a signal signal */
765typedef struct 1133typedef struct
766{ 1134{
1135 EV_ATOMIC_T pending;
1136#if EV_MULTIPLICITY
1137 EV_P;
1138#endif
767 WL head; 1139 WL head;
768 EV_ATOMIC_T gotsig;
769} ANSIG; 1140} ANSIG;
770 1141
771static ANSIG *signals; 1142static ANSIG signals [EV_NSIG - 1];
772static int signalmax;
773
774static EV_ATOMIC_T gotsig;
775
776void inline_size
777signals_init (ANSIG *base, int count)
778{
779 while (count--)
780 {
781 base->head = 0;
782 base->gotsig = 0;
783
784 ++base;
785 }
786}
787 1143
788/*****************************************************************************/ 1144/*****************************************************************************/
789 1145
790void inline_speed 1146/* used to prepare libev internal fd's */
1147/* this is not fork-safe */
1148inline_speed void
791fd_intern (int fd) 1149fd_intern (int fd)
792{ 1150{
793#ifdef _WIN32 1151#ifdef _WIN32
794 int arg = 1; 1152 unsigned long arg = 1;
795 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
796#else 1154#else
797 fcntl (fd, F_SETFD, FD_CLOEXEC); 1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
798 fcntl (fd, F_SETFL, O_NONBLOCK); 1156 fcntl (fd, F_SETFL, O_NONBLOCK);
799#endif 1157#endif
800} 1158}
801 1159
802static void noinline 1160static void noinline
803evpipe_init (EV_P) 1161evpipe_init (EV_P)
804{ 1162{
805 if (!ev_is_active (&pipeev)) 1163 if (!ev_is_active (&pipe_w))
806 { 1164 {
1165#if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
1171 {
1172 evpipe [0] = -1;
1173 fd_intern (evfd); /* doing it twice doesn't hurt */
1174 ev_io_set (&pipe_w, evfd, EV_READ);
1175 }
1176 else
1177#endif
1178 {
807 while (pipe (evpipe)) 1179 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe"); 1180 ev_syserr ("(libev) error creating signal/async pipe");
809 1181
810 fd_intern (evpipe [0]); 1182 fd_intern (evpipe [0]);
811 fd_intern (evpipe [1]); 1183 fd_intern (evpipe [1]);
812
813 ev_io_set (&pipeev, evpipe [0], EV_READ); 1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1185 }
1186
814 ev_io_start (EV_A_ &pipeev); 1187 ev_io_start (EV_A_ &pipe_w);
815 ev_unref (EV_A); /* watcher should not keep loop alive */ 1188 ev_unref (EV_A); /* watcher should not keep loop alive */
816 } 1189 }
817} 1190}
818 1191
819void inline_size 1192inline_size void
820evpipe_write (EV_P_ int sig, int async) 1193evpipe_write (EV_P_ EV_ATOMIC_T *flag)
821{ 1194{
822 if (!(gotasync || gotsig)) 1195 if (!*flag)
823 { 1196 {
824 int old_errno = errno; /* save errno becaue write might clobber it */ 1197 int old_errno = errno; /* save errno because write might clobber it */
825 1198
826 if (sig) gotsig = 1; 1199 *flag = 1;
827 if (async) gotasync = 1;
828 1200
1201#if EV_USE_EVENTFD
1202 if (evfd >= 0)
1203 {
1204 uint64_t counter = 1;
1205 write (evfd, &counter, sizeof (uint64_t));
1206 }
1207 else
1208#endif
829 write (evpipe [1], &old_errno, 1); 1209 write (evpipe [1], &old_errno, 1);
830 1210
831 errno = old_errno; 1211 errno = old_errno;
832 } 1212 }
833} 1213}
834 1214
1215/* called whenever the libev signal pipe */
1216/* got some events (signal, async) */
835static void 1217static void
836pipecb (EV_P_ ev_io *iow, int revents) 1218pipecb (EV_P_ ev_io *iow, int revents)
837{ 1219{
1220 int i;
1221
1222#if EV_USE_EVENTFD
1223 if (evfd >= 0)
838 { 1224 {
839 int dummy; 1225 uint64_t counter;
1226 read (evfd, &counter, sizeof (uint64_t));
1227 }
1228 else
1229#endif
1230 {
1231 char dummy;
840 read (evpipe [0], &dummy, 1); 1232 read (evpipe [0], &dummy, 1);
841 } 1233 }
842 1234
843 if (gotsig) 1235 if (sig_pending)
844 { 1236 {
845 int signum; 1237 sig_pending = 0;
846 gotsig = 0;
847 1238
848 for (signum = signalmax; signum--; ) 1239 for (i = EV_NSIG - 1; i--; )
849 if (signals [signum].gotsig) 1240 if (expect_false (signals [i].pending))
850 ev_feed_signal_event (EV_A_ signum + 1); 1241 ev_feed_signal_event (EV_A_ i + 1);
851 } 1242 }
852 1243
853#if EV_ASYNC_ENABLE 1244#if EV_ASYNC_ENABLE
854 if (gotasync) 1245 if (async_pending)
855 { 1246 {
856 int i; 1247 async_pending = 0;
857 gotasync = 0;
858 1248
859 for (i = asynccnt; i--; ) 1249 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent) 1250 if (asyncs [i]->sent)
861 { 1251 {
862 asyncs [i]->sent = 0; 1252 asyncs [i]->sent = 0;
867} 1257}
868 1258
869/*****************************************************************************/ 1259/*****************************************************************************/
870 1260
871static void 1261static void
872sighandler (int signum) 1262ev_sighandler (int signum)
873{ 1263{
874#if EV_MULTIPLICITY 1264#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct; 1265 EV_P = signals [signum - 1].loop;
876#endif 1266#endif
877 1267
878#if _WIN32 1268#if _WIN32
879 signal (signum, sighandler); 1269 signal (signum, ev_sighandler);
880#endif 1270#endif
881 1271
882 signals [signum - 1].gotsig = 1; 1272 signals [signum - 1].pending = 1;
883 evpipe_write (EV_A_ 1, 0); 1273 evpipe_write (EV_A_ &sig_pending);
884} 1274}
885 1275
886void noinline 1276void noinline
887ev_feed_signal_event (EV_P_ int signum) 1277ev_feed_signal_event (EV_P_ int signum)
888{ 1278{
889 WL w; 1279 WL w;
890 1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
891#if EV_MULTIPLICITY 1286#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1287 /* it is permissible to try to feed a signal to the wrong loop */
893#endif 1288 /* or, likely more useful, feeding a signal nobody is waiting for */
894 1289
895 --signum; 1290 if (expect_false (signals [signum].loop != EV_A))
896
897 if (signum < 0 || signum >= signalmax)
898 return; 1291 return;
1292#endif
899 1293
900 signals [signum].gotsig = 0; 1294 signals [signum].pending = 0;
901 1295
902 for (w = signals [signum].head; w; w = w->next) 1296 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904} 1298}
905 1299
1300#if EV_USE_SIGNALFD
1301static void
1302sigfdcb (EV_P_ ev_io *iow, int revents)
1303{
1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1305
1306 for (;;)
1307 {
1308 ssize_t res = read (sigfd, si, sizeof (si));
1309
1310 /* not ISO-C, as res might be -1, but works with SuS */
1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1313
1314 if (res < (ssize_t)sizeof (si))
1315 break;
1316 }
1317}
1318#endif
1319
906/*****************************************************************************/ 1320/*****************************************************************************/
907 1321
908static WL childs [EV_PID_HASHSIZE]; 1322static WL childs [EV_PID_HASHSIZE];
909 1323
910#ifndef _WIN32 1324#ifndef _WIN32
913 1327
914#ifndef WIFCONTINUED 1328#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0 1329# define WIFCONTINUED(status) 0
916#endif 1330#endif
917 1331
918void inline_speed 1332/* handle a single child status event */
1333inline_speed void
919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1334child_reap (EV_P_ int chain, int pid, int status)
920{ 1335{
921 ev_child *w; 1336 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
923 1338
924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1339 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 { 1340 {
926 if ((w->pid == pid || !w->pid) 1341 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1))) 1342 && (!traced || (w->flags & 1)))
928 { 1343 {
929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1344 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
930 w->rpid = pid; 1345 w->rpid = pid;
931 w->rstatus = status; 1346 w->rstatus = status;
932 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1347 ev_feed_event (EV_A_ (W)w, EV_CHILD);
933 } 1348 }
934 } 1349 }
936 1351
937#ifndef WCONTINUED 1352#ifndef WCONTINUED
938# define WCONTINUED 0 1353# define WCONTINUED 0
939#endif 1354#endif
940 1355
1356/* called on sigchld etc., calls waitpid */
941static void 1357static void
942childcb (EV_P_ ev_signal *sw, int revents) 1358childcb (EV_P_ ev_signal *sw, int revents)
943{ 1359{
944 int pid, status; 1360 int pid, status;
945 1361
948 if (!WCONTINUED 1364 if (!WCONTINUED
949 || errno != EINVAL 1365 || errno != EINVAL
950 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1366 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
951 return; 1367 return;
952 1368
953 /* make sure we are called again until all childs have been reaped */ 1369 /* make sure we are called again until all children have been reaped */
954 /* we need to do it this way so that the callback gets called before we continue */ 1370 /* we need to do it this way so that the callback gets called before we continue */
955 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1371 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
956 1372
957 child_reap (EV_A_ sw, pid, pid, status); 1373 child_reap (EV_A_ pid, pid, status);
958 if (EV_PID_HASHSIZE > 1) 1374 if (EV_PID_HASHSIZE > 1)
959 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1375 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
960} 1376}
961 1377
962#endif 1378#endif
963 1379
964/*****************************************************************************/ 1380/*****************************************************************************/
1026 /* kqueue is borked on everything but netbsd apparently */ 1442 /* kqueue is borked on everything but netbsd apparently */
1027 /* it usually doesn't work correctly on anything but sockets and pipes */ 1443 /* it usually doesn't work correctly on anything but sockets and pipes */
1028 flags &= ~EVBACKEND_KQUEUE; 1444 flags &= ~EVBACKEND_KQUEUE;
1029#endif 1445#endif
1030#ifdef __APPLE__ 1446#ifdef __APPLE__
1031 // flags &= ~EVBACKEND_KQUEUE; for documentation 1447 /* only select works correctly on that "unix-certified" platform */
1032 flags &= ~EVBACKEND_POLL; 1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1033#endif 1450#endif
1034 1451
1035 return flags; 1452 return flags;
1036} 1453}
1037 1454
1051ev_backend (EV_P) 1468ev_backend (EV_P)
1052{ 1469{
1053 return backend; 1470 return backend;
1054} 1471}
1055 1472
1473#if EV_MINIMAL < 2
1056unsigned int 1474unsigned int
1057ev_loop_count (EV_P) 1475ev_loop_count (EV_P)
1058{ 1476{
1059 return loop_count; 1477 return loop_count;
1060} 1478}
1061 1479
1480unsigned int
1481ev_loop_depth (EV_P)
1482{
1483 return loop_depth;
1484}
1485
1062void 1486void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1487ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{ 1488{
1065 io_blocktime = interval; 1489 io_blocktime = interval;
1066} 1490}
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1493ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{ 1494{
1071 timeout_blocktime = interval; 1495 timeout_blocktime = interval;
1072} 1496}
1073 1497
1498void
1499ev_set_userdata (EV_P_ void *data)
1500{
1501 userdata = data;
1502}
1503
1504void *
1505ev_userdata (EV_P)
1506{
1507 return userdata;
1508}
1509
1510void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511{
1512 invoke_cb = invoke_pending_cb;
1513}
1514
1515void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516{
1517 release_cb = release;
1518 acquire_cb = acquire;
1519}
1520#endif
1521
1522/* initialise a loop structure, must be zero-initialised */
1074static void noinline 1523static void noinline
1075loop_init (EV_P_ unsigned int flags) 1524loop_init (EV_P_ unsigned int flags)
1076{ 1525{
1077 if (!backend) 1526 if (!backend)
1078 { 1527 {
1528#if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536#endif
1537
1079#if EV_USE_MONOTONIC 1538#if EV_USE_MONOTONIC
1539 if (!have_monotonic)
1080 { 1540 {
1081 struct timespec ts; 1541 struct timespec ts;
1542
1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1083 have_monotonic = 1; 1544 have_monotonic = 1;
1084 } 1545 }
1085#endif 1546#endif
1547
1548 /* pid check not overridable via env */
1549#ifndef _WIN32
1550 if (flags & EVFLAG_FORKCHECK)
1551 curpid = getpid ();
1552#endif
1553
1554 if (!(flags & EVFLAG_NOENV)
1555 && !enable_secure ()
1556 && getenv ("LIBEV_FLAGS"))
1557 flags = atoi (getenv ("LIBEV_FLAGS"));
1086 1558
1087 ev_rt_now = ev_time (); 1559 ev_rt_now = ev_time ();
1088 mn_now = get_clock (); 1560 mn_now = get_clock ();
1089 now_floor = mn_now; 1561 now_floor = mn_now;
1090 rtmn_diff = ev_rt_now - mn_now; 1562 rtmn_diff = ev_rt_now - mn_now;
1563#if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565#endif
1091 1566
1092 io_blocktime = 0.; 1567 io_blocktime = 0.;
1093 timeout_blocktime = 0.; 1568 timeout_blocktime = 0.;
1094 backend = 0; 1569 backend = 0;
1095 backend_fd = -1; 1570 backend_fd = -1;
1096 gotasync = 0; 1571 sig_pending = 0;
1572#if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574#endif
1097#if EV_USE_INOTIFY 1575#if EV_USE_INOTIFY
1098 fs_fd = -2; 1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1099#endif 1577#endif
1100 1578#if EV_USE_SIGNALFD
1101 /* pid check not overridable via env */ 1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1102#ifndef _WIN32
1103 if (flags & EVFLAG_FORKCHECK)
1104 curpid = getpid ();
1105#endif 1580#endif
1106 1581
1107 if (!(flags & EVFLAG_NOENV)
1108 && !enable_secure ()
1109 && getenv ("LIBEV_FLAGS"))
1110 flags = atoi (getenv ("LIBEV_FLAGS"));
1111
1112 if (!(flags & 0x0000ffffUL)) 1582 if (!(flags & 0x0000ffffU))
1113 flags |= ev_recommended_backends (); 1583 flags |= ev_recommended_backends ();
1114 1584
1115#if EV_USE_PORT 1585#if EV_USE_PORT
1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1586 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1117#endif 1587#endif
1126#endif 1596#endif
1127#if EV_USE_SELECT 1597#if EV_USE_SELECT
1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1129#endif 1599#endif
1130 1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
1131 ev_init (&pipeev, pipecb); 1603 ev_init (&pipe_w, pipecb);
1132 ev_set_priority (&pipeev, EV_MAXPRI); 1604 ev_set_priority (&pipe_w, EV_MAXPRI);
1133 } 1605 }
1134} 1606}
1135 1607
1608/* free up a loop structure */
1136static void noinline 1609static void noinline
1137loop_destroy (EV_P) 1610loop_destroy (EV_P)
1138{ 1611{
1139 int i; 1612 int i;
1140 1613
1141 if (ev_is_active (&pipeev)) 1614 if (ev_is_active (&pipe_w))
1142 { 1615 {
1143 ev_ref (EV_A); /* signal watcher */ 1616 /*ev_ref (EV_A);*/
1144 ev_io_stop (EV_A_ &pipeev); 1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1145 1618
1146 close (evpipe [0]); evpipe [0] = 0; 1619#if EV_USE_EVENTFD
1147 close (evpipe [1]); evpipe [1] = 0; 1620 if (evfd >= 0)
1621 close (evfd);
1622#endif
1623
1624 if (evpipe [0] >= 0)
1625 {
1626 close (evpipe [0]);
1627 close (evpipe [1]);
1628 }
1629 }
1630
1631#if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1148 } 1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639#endif
1149 1640
1150#if EV_USE_INOTIFY 1641#if EV_USE_INOTIFY
1151 if (fs_fd >= 0) 1642 if (fs_fd >= 0)
1152 close (fs_fd); 1643 close (fs_fd);
1153#endif 1644#endif
1177#if EV_IDLE_ENABLE 1668#if EV_IDLE_ENABLE
1178 array_free (idle, [i]); 1669 array_free (idle, [i]);
1179#endif 1670#endif
1180 } 1671 }
1181 1672
1182 ev_free (anfds); anfdmax = 0; 1673 ev_free (anfds); anfds = 0; anfdmax = 0;
1183 1674
1184 /* have to use the microsoft-never-gets-it-right macro */ 1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
1185 array_free (fdchange, EMPTY); 1677 array_free (fdchange, EMPTY);
1186 array_free (timer, EMPTY); 1678 array_free (timer, EMPTY);
1187#if EV_PERIODIC_ENABLE 1679#if EV_PERIODIC_ENABLE
1188 array_free (periodic, EMPTY); 1680 array_free (periodic, EMPTY);
1189#endif 1681#endif
1197#endif 1689#endif
1198 1690
1199 backend = 0; 1691 backend = 0;
1200} 1692}
1201 1693
1694#if EV_USE_INOTIFY
1202void inline_size infy_fork (EV_P); 1695inline_size void infy_fork (EV_P);
1696#endif
1203 1697
1204void inline_size 1698inline_size void
1205loop_fork (EV_P) 1699loop_fork (EV_P)
1206{ 1700{
1207#if EV_USE_PORT 1701#if EV_USE_PORT
1208 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1209#endif 1703#endif
1215#endif 1709#endif
1216#if EV_USE_INOTIFY 1710#if EV_USE_INOTIFY
1217 infy_fork (EV_A); 1711 infy_fork (EV_A);
1218#endif 1712#endif
1219 1713
1220 if (ev_is_active (&pipeev)) 1714 if (ev_is_active (&pipe_w))
1221 { 1715 {
1222 /* this "locks" the handlers against writing to the pipe */ 1716 /* this "locks" the handlers against writing to the pipe */
1223 gotsig = gotasync = 1; 1717 /* while we modify the fd vars */
1718 sig_pending = 1;
1719#if EV_ASYNC_ENABLE
1720 async_pending = 1;
1721#endif
1224 1722
1225 ev_ref (EV_A); 1723 ev_ref (EV_A);
1226 ev_io_stop (EV_A_ &pipeev); 1724 ev_io_stop (EV_A_ &pipe_w);
1725
1726#if EV_USE_EVENTFD
1727 if (evfd >= 0)
1728 close (evfd);
1729#endif
1730
1731 if (evpipe [0] >= 0)
1732 {
1227 close (evpipe [0]); 1733 close (evpipe [0]);
1228 close (evpipe [1]); 1734 close (evpipe [1]);
1735 }
1229 1736
1230 evpipe_init (EV_A); 1737 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */ 1738 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ); 1739 pipecb (EV_A_ &pipe_w, EV_READ);
1233 } 1740 }
1234 1741
1235 postfork = 0; 1742 postfork = 0;
1236} 1743}
1237 1744
1238#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
1746
1239struct ev_loop * 1747struct ev_loop *
1240ev_loop_new (unsigned int flags) 1748ev_loop_new (unsigned int flags)
1241{ 1749{
1242 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1243 1751
1244 memset (loop, 0, sizeof (struct ev_loop)); 1752 memset (EV_A, 0, sizeof (struct ev_loop));
1245
1246 loop_init (EV_A_ flags); 1753 loop_init (EV_A_ flags);
1247 1754
1248 if (ev_backend (EV_A)) 1755 if (ev_backend (EV_A))
1249 return loop; 1756 return EV_A;
1250 1757
1251 return 0; 1758 return 0;
1252} 1759}
1253 1760
1254void 1761void
1261void 1768void
1262ev_loop_fork (EV_P) 1769ev_loop_fork (EV_P)
1263{ 1770{
1264 postfork = 1; /* must be in line with ev_default_fork */ 1771 postfork = 1; /* must be in line with ev_default_fork */
1265} 1772}
1773#endif /* multiplicity */
1266 1774
1775#if EV_VERIFY
1776static void noinline
1777verify_watcher (EV_P_ W w)
1778{
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783}
1784
1785static void noinline
1786verify_heap (EV_P_ ANHE *heap, int N)
1787{
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798}
1799
1800static void noinline
1801array_verify (EV_P_ W *ws, int cnt)
1802{
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808}
1809#endif
1810
1811#if EV_MINIMAL < 2
1812void
1813ev_loop_verify (EV_P)
1814{
1815#if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
1828 {
1829 verify_watcher (EV_A_ (W)w);
1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837#if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840#endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845#if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849#endif
1850 }
1851
1852#if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855#endif
1856
1857#if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860#endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868# if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1871# endif
1872#endif
1873}
1267#endif 1874#endif
1268 1875
1269#if EV_MULTIPLICITY 1876#if EV_MULTIPLICITY
1270struct ev_loop * 1877struct ev_loop *
1271ev_default_loop_init (unsigned int flags) 1878ev_default_loop_init (unsigned int flags)
1275#endif 1882#endif
1276{ 1883{
1277 if (!ev_default_loop_ptr) 1884 if (!ev_default_loop_ptr)
1278 { 1885 {
1279#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
1280 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
1281#else 1888#else
1282 ev_default_loop_ptr = 1; 1889 ev_default_loop_ptr = 1;
1283#endif 1890#endif
1284 1891
1285 loop_init (EV_A_ flags); 1892 loop_init (EV_A_ flags);
1302 1909
1303void 1910void
1304ev_default_destroy (void) 1911ev_default_destroy (void)
1305{ 1912{
1306#if EV_MULTIPLICITY 1913#if EV_MULTIPLICITY
1307 struct ev_loop *loop = ev_default_loop_ptr; 1914 EV_P = ev_default_loop_ptr;
1308#endif 1915#endif
1916
1917 ev_default_loop_ptr = 0;
1309 1918
1310#ifndef _WIN32 1919#ifndef _WIN32
1311 ev_ref (EV_A); /* child watcher */ 1920 ev_ref (EV_A); /* child watcher */
1312 ev_signal_stop (EV_A_ &childev); 1921 ev_signal_stop (EV_A_ &childev);
1313#endif 1922#endif
1317 1926
1318void 1927void
1319ev_default_fork (void) 1928ev_default_fork (void)
1320{ 1929{
1321#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
1322 struct ev_loop *loop = ev_default_loop_ptr; 1931 EV_P = ev_default_loop_ptr;
1323#endif 1932#endif
1324 1933
1325 if (backend)
1326 postfork = 1; /* must be in line with ev_loop_fork */ 1934 postfork = 1; /* must be in line with ev_loop_fork */
1327} 1935}
1328 1936
1329/*****************************************************************************/ 1937/*****************************************************************************/
1330 1938
1331void 1939void
1332ev_invoke (EV_P_ void *w, int revents) 1940ev_invoke (EV_P_ void *w, int revents)
1333{ 1941{
1334 EV_CB_INVOKE ((W)w, revents); 1942 EV_CB_INVOKE ((W)w, revents);
1335} 1943}
1336 1944
1337void inline_speed 1945unsigned int
1338call_pending (EV_P) 1946ev_pending_count (EV_P)
1947{
1948 int pri;
1949 unsigned int count = 0;
1950
1951 for (pri = NUMPRI; pri--; )
1952 count += pendingcnt [pri];
1953
1954 return count;
1955}
1956
1957void noinline
1958ev_invoke_pending (EV_P)
1339{ 1959{
1340 int pri; 1960 int pri;
1341 1961
1342 for (pri = NUMPRI; pri--; ) 1962 for (pri = NUMPRI; pri--; )
1343 while (pendingcnt [pri]) 1963 while (pendingcnt [pri])
1344 { 1964 {
1345 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1346 1966
1347 if (expect_true (p->w))
1348 {
1349 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1968 /* ^ this is no longer true, as pending_w could be here */
1350 1969
1351 p->w->pending = 0; 1970 p->w->pending = 0;
1352 EV_CB_INVOKE (p->w, p->events); 1971 EV_CB_INVOKE (p->w, p->events);
1353 } 1972 EV_FREQUENT_CHECK;
1354 } 1973 }
1355} 1974}
1356 1975
1357void inline_size
1358timers_reify (EV_P)
1359{
1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1361 {
1362 ev_timer *w = (ev_timer *)timers [0];
1363
1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1365
1366 /* first reschedule or stop timer */
1367 if (w->repeat)
1368 {
1369 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1370
1371 ((WT)w)->at += w->repeat;
1372 if (((WT)w)->at < mn_now)
1373 ((WT)w)->at = mn_now;
1374
1375 downheap (timers, timercnt, 0);
1376 }
1377 else
1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1379
1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1381 }
1382}
1383
1384#if EV_PERIODIC_ENABLE
1385void inline_size
1386periodics_reify (EV_P)
1387{
1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1389 {
1390 ev_periodic *w = (ev_periodic *)periodics [0];
1391
1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1393
1394 /* first reschedule or stop timer */
1395 if (w->reschedule_cb)
1396 {
1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1399 downheap (periodics, periodiccnt, 0);
1400 }
1401 else if (w->interval)
1402 {
1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1406 downheap (periodics, periodiccnt, 0);
1407 }
1408 else
1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1410
1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1412 }
1413}
1414
1415static void noinline
1416periodics_reschedule (EV_P)
1417{
1418 int i;
1419
1420 /* adjust periodics after time jump */
1421 for (i = 0; i < periodiccnt; ++i)
1422 {
1423 ev_periodic *w = (ev_periodic *)periodics [i];
1424
1425 if (w->reschedule_cb)
1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1427 else if (w->interval)
1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1429 }
1430
1431 /* now rebuild the heap */
1432 for (i = periodiccnt >> 1; i--; )
1433 downheap (periodics, periodiccnt, i);
1434}
1435#endif
1436
1437#if EV_IDLE_ENABLE 1976#if EV_IDLE_ENABLE
1438void inline_size 1977/* make idle watchers pending. this handles the "call-idle */
1978/* only when higher priorities are idle" logic */
1979inline_size void
1439idle_reify (EV_P) 1980idle_reify (EV_P)
1440{ 1981{
1441 if (expect_false (idleall)) 1982 if (expect_false (idleall))
1442 { 1983 {
1443 int pri; 1984 int pri;
1455 } 1996 }
1456 } 1997 }
1457} 1998}
1458#endif 1999#endif
1459 2000
1460void inline_speed 2001/* make timers pending */
2002inline_size void
2003timers_reify (EV_P)
2004{
2005 EV_FREQUENT_CHECK;
2006
2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2008 {
2009 do
2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2023
2024 ANHE_at_cache (timers [HEAP0]);
2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
2032 }
2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2034
2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
2036 }
2037}
2038
2039#if EV_PERIODIC_ENABLE
2040/* make periodics pending */
2041inline_size void
2042periodics_reify (EV_P)
2043{
2044 EV_FREQUENT_CHECK;
2045
2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2047 {
2048 int feed_count = 0;
2049
2050 do
2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2055
2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
2090 }
2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2092
2093 feed_reverse_done (EV_A_ EV_PERIODIC);
2094 }
2095}
2096
2097/* simply recalculate all periodics */
2098/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2099static void noinline
2100periodics_reschedule (EV_P)
2101{
2102 int i;
2103
2104 /* adjust periodics after time jump */
2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2108
2109 if (w->reschedule_cb)
2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2111 else if (w->interval)
2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118}
2119#endif
2120
2121/* adjust all timers by a given offset */
2122static void noinline
2123timers_reschedule (EV_P_ ev_tstamp adjust)
2124{
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
2128 {
2129 ANHE *he = timers + i + HEAP0;
2130 ANHE_w (*he)->at += adjust;
2131 ANHE_at_cache (*he);
2132 }
2133}
2134
2135/* fetch new monotonic and realtime times from the kernel */
2136/* also detetc if there was a timejump, and act accordingly */
2137inline_speed void
1461time_update (EV_P_ ev_tstamp max_block) 2138time_update (EV_P_ ev_tstamp max_block)
1462{ 2139{
1463 int i;
1464
1465#if EV_USE_MONOTONIC 2140#if EV_USE_MONOTONIC
1466 if (expect_true (have_monotonic)) 2141 if (expect_true (have_monotonic))
1467 { 2142 {
2143 int i;
1468 ev_tstamp odiff = rtmn_diff; 2144 ev_tstamp odiff = rtmn_diff;
1469 2145
1470 mn_now = get_clock (); 2146 mn_now = get_clock ();
1471 2147
1472 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1490 */ 2166 */
1491 for (i = 4; --i; ) 2167 for (i = 4; --i; )
1492 { 2168 {
1493 rtmn_diff = ev_rt_now - mn_now; 2169 rtmn_diff = ev_rt_now - mn_now;
1494 2170
1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2171 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1496 return; /* all is well */ 2172 return; /* all is well */
1497 2173
1498 ev_rt_now = ev_time (); 2174 ev_rt_now = ev_time ();
1499 mn_now = get_clock (); 2175 mn_now = get_clock ();
1500 now_floor = mn_now; 2176 now_floor = mn_now;
1501 } 2177 }
1502 2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1503# if EV_PERIODIC_ENABLE 2181# if EV_PERIODIC_ENABLE
1504 periodics_reschedule (EV_A); 2182 periodics_reschedule (EV_A);
1505# endif 2183# endif
1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1508 } 2184 }
1509 else 2185 else
1510#endif 2186#endif
1511 { 2187 {
1512 ev_rt_now = ev_time (); 2188 ev_rt_now = ev_time ();
1513 2189
1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1515 { 2191 {
2192 /* adjust timers. this is easy, as the offset is the same for all of them */
2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1516#if EV_PERIODIC_ENABLE 2194#if EV_PERIODIC_ENABLE
1517 periodics_reschedule (EV_A); 2195 periodics_reschedule (EV_A);
1518#endif 2196#endif
1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1520 for (i = 0; i < timercnt; ++i)
1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1522 } 2197 }
1523 2198
1524 mn_now = ev_rt_now; 2199 mn_now = ev_rt_now;
1525 } 2200 }
1526} 2201}
1527 2202
1528void 2203void
1529ev_ref (EV_P)
1530{
1531 ++activecnt;
1532}
1533
1534void
1535ev_unref (EV_P)
1536{
1537 --activecnt;
1538}
1539
1540static int loop_done;
1541
1542void
1543ev_loop (EV_P_ int flags) 2204ev_loop (EV_P_ int flags)
1544{ 2205{
1545 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2206#if EV_MINIMAL < 2
1546 ? EVUNLOOP_ONE 2207 ++loop_depth;
1547 : EVUNLOOP_CANCEL; 2208#endif
1548 2209
2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
2212 loop_done = EVUNLOOP_CANCEL;
2213
1549 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1550 2215
1551 do 2216 do
1552 { 2217 {
2218#if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220#endif
2221
1553#ifndef _WIN32 2222#ifndef _WIN32
1554 if (expect_false (curpid)) /* penalise the forking check even more */ 2223 if (expect_false (curpid)) /* penalise the forking check even more */
1555 if (expect_false (getpid () != curpid)) 2224 if (expect_false (getpid () != curpid))
1556 { 2225 {
1557 curpid = getpid (); 2226 curpid = getpid ();
1563 /* we might have forked, so queue fork handlers */ 2232 /* we might have forked, so queue fork handlers */
1564 if (expect_false (postfork)) 2233 if (expect_false (postfork))
1565 if (forkcnt) 2234 if (forkcnt)
1566 { 2235 {
1567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1568 call_pending (EV_A); 2237 EV_INVOKE_PENDING;
1569 } 2238 }
1570#endif 2239#endif
1571 2240
1572 /* queue prepare watchers (and execute them) */ 2241 /* queue prepare watchers (and execute them) */
1573 if (expect_false (preparecnt)) 2242 if (expect_false (preparecnt))
1574 { 2243 {
1575 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1576 call_pending (EV_A); 2245 EV_INVOKE_PENDING;
1577 } 2246 }
1578 2247
1579 if (expect_false (!activecnt)) 2248 if (expect_false (loop_done))
1580 break; 2249 break;
1581 2250
1582 /* we might have forked, so reify kernel state if necessary */ 2251 /* we might have forked, so reify kernel state if necessary */
1583 if (expect_false (postfork)) 2252 if (expect_false (postfork))
1584 loop_fork (EV_A); 2253 loop_fork (EV_A);
1591 ev_tstamp waittime = 0.; 2260 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.; 2261 ev_tstamp sleeptime = 0.;
1593 2262
1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1595 { 2264 {
2265 /* remember old timestamp for io_blocktime calculation */
2266 ev_tstamp prev_mn_now = mn_now;
2267
1596 /* update time to cancel out callback processing overhead */ 2268 /* update time to cancel out callback processing overhead */
1597 time_update (EV_A_ 1e100); 2269 time_update (EV_A_ 1e100);
1598 2270
1599 waittime = MAX_BLOCKTIME; 2271 waittime = MAX_BLOCKTIME;
1600 2272
1601 if (timercnt) 2273 if (timercnt)
1602 { 2274 {
1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1604 if (waittime > to) waittime = to; 2276 if (waittime > to) waittime = to;
1605 } 2277 }
1606 2278
1607#if EV_PERIODIC_ENABLE 2279#if EV_PERIODIC_ENABLE
1608 if (periodiccnt) 2280 if (periodiccnt)
1609 { 2281 {
1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1611 if (waittime > to) waittime = to; 2283 if (waittime > to) waittime = to;
1612 } 2284 }
1613#endif 2285#endif
1614 2286
2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
1615 if (expect_false (waittime < timeout_blocktime)) 2288 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime; 2289 waittime = timeout_blocktime;
1617 2290
1618 sleeptime = waittime - backend_fudge; 2291 /* extra check because io_blocktime is commonly 0 */
1619
1620 if (expect_true (sleeptime > io_blocktime)) 2292 if (expect_false (io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 { 2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
1625 ev_sleep (sleeptime); 2301 ev_sleep (sleeptime);
1626 waittime -= sleeptime; 2302 waittime -= sleeptime;
2303 }
1627 } 2304 }
1628 } 2305 }
1629 2306
2307#if EV_MINIMAL < 2
1630 ++loop_count; 2308 ++loop_count;
2309#endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1631 backend_poll (EV_A_ waittime); 2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1632 2313
1633 /* update ev_rt_now, do magic */ 2314 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime); 2315 time_update (EV_A_ waittime + sleeptime);
1635 } 2316 }
1636 2317
1647 2328
1648 /* queue check watchers, to be executed first */ 2329 /* queue check watchers, to be executed first */
1649 if (expect_false (checkcnt)) 2330 if (expect_false (checkcnt))
1650 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1651 2332
1652 call_pending (EV_A); 2333 EV_INVOKE_PENDING;
1653
1654 } 2334 }
1655 while (expect_true (activecnt && !loop_done)); 2335 while (expect_true (
2336 activecnt
2337 && !loop_done
2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2339 ));
1656 2340
1657 if (loop_done == EVUNLOOP_ONE) 2341 if (loop_done == EVUNLOOP_ONE)
1658 loop_done = EVUNLOOP_CANCEL; 2342 loop_done = EVUNLOOP_CANCEL;
2343
2344#if EV_MINIMAL < 2
2345 --loop_depth;
2346#endif
1659} 2347}
1660 2348
1661void 2349void
1662ev_unloop (EV_P_ int how) 2350ev_unloop (EV_P_ int how)
1663{ 2351{
1664 loop_done = how; 2352 loop_done = how;
1665} 2353}
1666 2354
2355void
2356ev_ref (EV_P)
2357{
2358 ++activecnt;
2359}
2360
2361void
2362ev_unref (EV_P)
2363{
2364 --activecnt;
2365}
2366
2367void
2368ev_now_update (EV_P)
2369{
2370 time_update (EV_A_ 1e100);
2371}
2372
2373void
2374ev_suspend (EV_P)
2375{
2376 ev_now_update (EV_A);
2377}
2378
2379void
2380ev_resume (EV_P)
2381{
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386#if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389#endif
2390}
2391
1667/*****************************************************************************/ 2392/*****************************************************************************/
2393/* singly-linked list management, used when the expected list length is short */
1668 2394
1669void inline_size 2395inline_size void
1670wlist_add (WL *head, WL elem) 2396wlist_add (WL *head, WL elem)
1671{ 2397{
1672 elem->next = *head; 2398 elem->next = *head;
1673 *head = elem; 2399 *head = elem;
1674} 2400}
1675 2401
1676void inline_size 2402inline_size void
1677wlist_del (WL *head, WL elem) 2403wlist_del (WL *head, WL elem)
1678{ 2404{
1679 while (*head) 2405 while (*head)
1680 { 2406 {
1681 if (*head == elem) 2407 if (expect_true (*head == elem))
1682 { 2408 {
1683 *head = elem->next; 2409 *head = elem->next;
1684 return; 2410 break;
1685 } 2411 }
1686 2412
1687 head = &(*head)->next; 2413 head = &(*head)->next;
1688 } 2414 }
1689} 2415}
1690 2416
1691void inline_speed 2417/* internal, faster, version of ev_clear_pending */
2418inline_speed void
1692clear_pending (EV_P_ W w) 2419clear_pending (EV_P_ W w)
1693{ 2420{
1694 if (w->pending) 2421 if (w->pending)
1695 { 2422 {
1696 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1697 w->pending = 0; 2424 w->pending = 0;
1698 } 2425 }
1699} 2426}
1700 2427
1701int 2428int
1705 int pending = w_->pending; 2432 int pending = w_->pending;
1706 2433
1707 if (expect_true (pending)) 2434 if (expect_true (pending))
1708 { 2435 {
1709 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
1710 w_->pending = 0; 2438 w_->pending = 0;
1711 p->w = 0;
1712 return p->events; 2439 return p->events;
1713 } 2440 }
1714 else 2441 else
1715 return 0; 2442 return 0;
1716} 2443}
1717 2444
1718void inline_size 2445inline_size void
1719pri_adjust (EV_P_ W w) 2446pri_adjust (EV_P_ W w)
1720{ 2447{
1721 int pri = w->priority; 2448 int pri = ev_priority (w);
1722 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1723 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1724 w->priority = pri; 2451 ev_set_priority (w, pri);
1725} 2452}
1726 2453
1727void inline_speed 2454inline_speed void
1728ev_start (EV_P_ W w, int active) 2455ev_start (EV_P_ W w, int active)
1729{ 2456{
1730 pri_adjust (EV_A_ w); 2457 pri_adjust (EV_A_ w);
1731 w->active = active; 2458 w->active = active;
1732 ev_ref (EV_A); 2459 ev_ref (EV_A);
1733} 2460}
1734 2461
1735void inline_size 2462inline_size void
1736ev_stop (EV_P_ W w) 2463ev_stop (EV_P_ W w)
1737{ 2464{
1738 ev_unref (EV_A); 2465 ev_unref (EV_A);
1739 w->active = 0; 2466 w->active = 0;
1740} 2467}
1747 int fd = w->fd; 2474 int fd = w->fd;
1748 2475
1749 if (expect_false (ev_is_active (w))) 2476 if (expect_false (ev_is_active (w)))
1750 return; 2477 return;
1751 2478
1752 assert (("ev_io_start called with negative fd", fd >= 0)); 2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
1753 2483
1754 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1756 wlist_add (&anfds[fd].head, (WL)w); 2486 wlist_add (&anfds[fd].head, (WL)w);
1757 2487
1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1759 w->events &= ~EV_IOFDSET; 2489 w->events &= ~EV__IOFDSET;
2490
2491 EV_FREQUENT_CHECK;
1760} 2492}
1761 2493
1762void noinline 2494void noinline
1763ev_io_stop (EV_P_ ev_io *w) 2495ev_io_stop (EV_P_ ev_io *w)
1764{ 2496{
1765 clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
1766 if (expect_false (!ev_is_active (w))) 2498 if (expect_false (!ev_is_active (w)))
1767 return; 2499 return;
1768 2500
1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2502
2503 EV_FREQUENT_CHECK;
1770 2504
1771 wlist_del (&anfds[w->fd].head, (WL)w); 2505 wlist_del (&anfds[w->fd].head, (WL)w);
1772 ev_stop (EV_A_ (W)w); 2506 ev_stop (EV_A_ (W)w);
1773 2507
1774 fd_change (EV_A_ w->fd, 1); 2508 fd_change (EV_A_ w->fd, 1);
2509
2510 EV_FREQUENT_CHECK;
1775} 2511}
1776 2512
1777void noinline 2513void noinline
1778ev_timer_start (EV_P_ ev_timer *w) 2514ev_timer_start (EV_P_ ev_timer *w)
1779{ 2515{
1780 if (expect_false (ev_is_active (w))) 2516 if (expect_false (ev_is_active (w)))
1781 return; 2517 return;
1782 2518
1783 ((WT)w)->at += mn_now; 2519 ev_at (w) += mn_now;
1784 2520
1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1786 2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
1787 ev_start (EV_A_ (W)w, ++timercnt); 2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1789 timers [timercnt - 1] = (WT)w; 2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
1790 upheap (timers, timercnt - 1); 2529 ANHE_at_cache (timers [ev_active (w)]);
2530 upheap (timers, ev_active (w));
1791 2531
2532 EV_FREQUENT_CHECK;
2533
1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1793} 2535}
1794 2536
1795void noinline 2537void noinline
1796ev_timer_stop (EV_P_ ev_timer *w) 2538ev_timer_stop (EV_P_ ev_timer *w)
1797{ 2539{
1798 clear_pending (EV_A_ (W)w); 2540 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2541 if (expect_false (!ev_is_active (w)))
1800 return; 2542 return;
1801 2543
1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2544 EV_FREQUENT_CHECK;
1803 2545
1804 { 2546 {
1805 int active = ((W)w)->active; 2547 int active = ev_active (w);
1806 2548
2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2550
2551 --timercnt;
2552
1807 if (expect_true (--active < --timercnt)) 2553 if (expect_true (active < timercnt + HEAP0))
1808 { 2554 {
1809 timers [active] = timers [timercnt]; 2555 timers [active] = timers [timercnt + HEAP0];
1810 adjustheap (timers, timercnt, active); 2556 adjustheap (timers, timercnt, active);
1811 } 2557 }
1812 } 2558 }
1813 2559
1814 ((WT)w)->at -= mn_now; 2560 EV_FREQUENT_CHECK;
2561
2562 ev_at (w) -= mn_now;
1815 2563
1816 ev_stop (EV_A_ (W)w); 2564 ev_stop (EV_A_ (W)w);
1817} 2565}
1818 2566
1819void noinline 2567void noinline
1820ev_timer_again (EV_P_ ev_timer *w) 2568ev_timer_again (EV_P_ ev_timer *w)
1821{ 2569{
2570 EV_FREQUENT_CHECK;
2571
1822 if (ev_is_active (w)) 2572 if (ev_is_active (w))
1823 { 2573 {
1824 if (w->repeat) 2574 if (w->repeat)
1825 { 2575 {
1826 ((WT)w)->at = mn_now + w->repeat; 2576 ev_at (w) = mn_now + w->repeat;
2577 ANHE_at_cache (timers [ev_active (w)]);
1827 adjustheap (timers, timercnt, ((W)w)->active - 1); 2578 adjustheap (timers, timercnt, ev_active (w));
1828 } 2579 }
1829 else 2580 else
1830 ev_timer_stop (EV_A_ w); 2581 ev_timer_stop (EV_A_ w);
1831 } 2582 }
1832 else if (w->repeat) 2583 else if (w->repeat)
1833 { 2584 {
1834 w->at = w->repeat; 2585 ev_at (w) = w->repeat;
1835 ev_timer_start (EV_A_ w); 2586 ev_timer_start (EV_A_ w);
1836 } 2587 }
2588
2589 EV_FREQUENT_CHECK;
2590}
2591
2592ev_tstamp
2593ev_timer_remaining (EV_P_ ev_timer *w)
2594{
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1837} 2596}
1838 2597
1839#if EV_PERIODIC_ENABLE 2598#if EV_PERIODIC_ENABLE
1840void noinline 2599void noinline
1841ev_periodic_start (EV_P_ ev_periodic *w) 2600ev_periodic_start (EV_P_ ev_periodic *w)
1842{ 2601{
1843 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1844 return; 2603 return;
1845 2604
1846 if (w->reschedule_cb) 2605 if (w->reschedule_cb)
1847 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1848 else if (w->interval) 2607 else if (w->interval)
1849 { 2608 {
1850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1851 /* this formula differs from the one in periodic_reify because we do not always round up */ 2610 /* this formula differs from the one in periodic_reify because we do not always round up */
1852 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1853 } 2612 }
1854 else 2613 else
1855 ((WT)w)->at = w->offset; 2614 ev_at (w) = w->offset;
1856 2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
1857 ev_start (EV_A_ (W)w, ++periodiccnt); 2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1859 periodics [periodiccnt - 1] = (WT)w; 2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1860 upheap (periodics, periodiccnt - 1); 2622 ANHE_at_cache (periodics [ev_active (w)]);
2623 upheap (periodics, ev_active (w));
1861 2624
2625 EV_FREQUENT_CHECK;
2626
1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1863} 2628}
1864 2629
1865void noinline 2630void noinline
1866ev_periodic_stop (EV_P_ ev_periodic *w) 2631ev_periodic_stop (EV_P_ ev_periodic *w)
1867{ 2632{
1868 clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1869 if (expect_false (!ev_is_active (w))) 2634 if (expect_false (!ev_is_active (w)))
1870 return; 2635 return;
1871 2636
1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2637 EV_FREQUENT_CHECK;
1873 2638
1874 { 2639 {
1875 int active = ((W)w)->active; 2640 int active = ev_active (w);
1876 2641
2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2643
2644 --periodiccnt;
2645
1877 if (expect_true (--active < --periodiccnt)) 2646 if (expect_true (active < periodiccnt + HEAP0))
1878 { 2647 {
1879 periodics [active] = periodics [periodiccnt]; 2648 periodics [active] = periodics [periodiccnt + HEAP0];
1880 adjustheap (periodics, periodiccnt, active); 2649 adjustheap (periodics, periodiccnt, active);
1881 } 2650 }
1882 } 2651 }
1883 2652
2653 EV_FREQUENT_CHECK;
2654
1884 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
1885} 2656}
1886 2657
1887void noinline 2658void noinline
1888ev_periodic_again (EV_P_ ev_periodic *w) 2659ev_periodic_again (EV_P_ ev_periodic *w)
1898#endif 2669#endif
1899 2670
1900void noinline 2671void noinline
1901ev_signal_start (EV_P_ ev_signal *w) 2672ev_signal_start (EV_P_ ev_signal *w)
1902{ 2673{
1903#if EV_MULTIPLICITY
1904 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1905#endif
1906 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
1907 return; 2675 return;
1908 2676
1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1910 2678
1911 evpipe_init (EV_A); 2679#if EV_MULTIPLICITY
2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1912 2682
2683 signals [w->signum - 1].loop = EV_A;
2684#endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688#if EV_USE_SIGNALFD
2689 if (sigfd == -2)
1913 { 2690 {
1914#ifndef _WIN32 2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1915 sigset_t full, prev; 2692 if (sigfd < 0 && errno == EINVAL)
1916 sigfillset (&full); 2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1917 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif
1919 2694
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2695 if (sigfd >= 0)
2696 {
2697 fd_intern (sigfd); /* doing it twice will not hurt */
1921 2698
1922#ifndef _WIN32 2699 sigemptyset (&sigfd_set);
1923 sigprocmask (SIG_SETMASK, &prev, 0); 2700
1924#endif 2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
1925 } 2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716#endif
1926 2717
1927 ev_start (EV_A_ (W)w, 1); 2718 ev_start (EV_A_ (W)w, 1);
1928 wlist_add (&signals [w->signum - 1].head, (WL)w); 2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
1929 2720
1930 if (!((WL)w)->next) 2721 if (!((WL)w)->next)
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
2724# endif
1931 { 2725 {
1932#if _WIN32 2726# if _WIN32
1933 signal (w->signum, sighandler); 2727 signal (w->signum, ev_sighandler);
1934#else 2728# else
1935 struct sigaction sa; 2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
1936 sa.sa_handler = sighandler; 2733 sa.sa_handler = ev_sighandler;
1937 sigfillset (&sa.sa_mask); 2734 sigfillset (&sa.sa_mask);
1938 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1939 sigaction (w->signum, &sa, 0); 2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1940#endif 2741#endif
1941 } 2742 }
2743
2744 EV_FREQUENT_CHECK;
1942} 2745}
1943 2746
1944void noinline 2747void noinline
1945ev_signal_stop (EV_P_ ev_signal *w) 2748ev_signal_stop (EV_P_ ev_signal *w)
1946{ 2749{
1947 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
1948 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
1949 return; 2752 return;
1950 2753
2754 EV_FREQUENT_CHECK;
2755
1951 wlist_del (&signals [w->signum - 1].head, (WL)w); 2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
1952 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
1953 2758
1954 if (!signals [w->signum - 1].head) 2759 if (!signals [w->signum - 1].head)
2760 {
2761#if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763#endif
2764#if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
2772 }
2773 else
2774#endif
1955 signal (w->signum, SIG_DFL); 2775 signal (w->signum, SIG_DFL);
2776 }
2777
2778 EV_FREQUENT_CHECK;
1956} 2779}
1957 2780
1958void 2781void
1959ev_child_start (EV_P_ ev_child *w) 2782ev_child_start (EV_P_ ev_child *w)
1960{ 2783{
1961#if EV_MULTIPLICITY 2784#if EV_MULTIPLICITY
1962 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1963#endif 2786#endif
1964 if (expect_false (ev_is_active (w))) 2787 if (expect_false (ev_is_active (w)))
1965 return; 2788 return;
1966 2789
2790 EV_FREQUENT_CHECK;
2791
1967 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2794
2795 EV_FREQUENT_CHECK;
1969} 2796}
1970 2797
1971void 2798void
1972ev_child_stop (EV_P_ ev_child *w) 2799ev_child_stop (EV_P_ ev_child *w)
1973{ 2800{
1974 clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
1975 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
1976 return; 2803 return;
1977 2804
2805 EV_FREQUENT_CHECK;
2806
1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1979 ev_stop (EV_A_ (W)w); 2808 ev_stop (EV_A_ (W)w);
2809
2810 EV_FREQUENT_CHECK;
1980} 2811}
1981 2812
1982#if EV_STAT_ENABLE 2813#if EV_STAT_ENABLE
1983 2814
1984# ifdef _WIN32 2815# ifdef _WIN32
1985# undef lstat 2816# undef lstat
1986# define lstat(a,b) _stati64 (a,b) 2817# define lstat(a,b) _stati64 (a,b)
1987# endif 2818# endif
1988 2819
1989#define DEF_STAT_INTERVAL 5.0074891 2820#define DEF_STAT_INTERVAL 5.0074891
2821#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1990#define MIN_STAT_INTERVAL 0.1074891 2822#define MIN_STAT_INTERVAL 0.1074891
1991 2823
1992static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2824static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1993 2825
1994#if EV_USE_INOTIFY 2826#if EV_USE_INOTIFY
1995# define EV_INOTIFY_BUFSIZE 8192 2827# define EV_INOTIFY_BUFSIZE 8192
1999{ 2831{
2000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2001 2833
2002 if (w->wd < 0) 2834 if (w->wd < 0)
2003 { 2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2004 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2005 2838
2006 /* monitor some parent directory for speedup hints */ 2839 /* monitor some parent directory for speedup hints */
2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2841 /* but an efficiency issue only */
2007 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2008 { 2843 {
2009 char path [4096]; 2844 char path [4096];
2010 strcpy (path, w->path); 2845 strcpy (path, w->path);
2011 2846
2014 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2015 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2016 2851
2017 char *pend = strrchr (path, '/'); 2852 char *pend = strrchr (path, '/');
2018 2853
2019 if (!pend) 2854 if (!pend || pend == path)
2020 break; /* whoops, no '/', complain to your admin */ 2855 break;
2021 2856
2022 *pend = 0; 2857 *pend = 0;
2023 w->wd = inotify_add_watch (fs_fd, path, mask); 2858 w->wd = inotify_add_watch (fs_fd, path, mask);
2024 } 2859 }
2025 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2026 } 2861 }
2027 } 2862 }
2028 else
2029 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2030 2863
2031 if (w->wd >= 0) 2864 if (w->wd >= 0)
2865 {
2032 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2866 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2867
2868 /* now local changes will be tracked by inotify, but remote changes won't */
2869 /* unless the filesystem it known to be local, we therefore still poll */
2870 /* also do poll on <2.6.25, but with normal frequency */
2871 struct statfs sfs;
2872
2873 if (fs_2625 && !statfs (w->path, &sfs))
2874 if (sfs.f_type == 0x1373 /* devfs */
2875 || sfs.f_type == 0xEF53 /* ext2/3 */
2876 || sfs.f_type == 0x3153464a /* jfs */
2877 || sfs.f_type == 0x52654973 /* reiser3 */
2878 || sfs.f_type == 0x01021994 /* tempfs */
2879 || sfs.f_type == 0x58465342 /* xfs */)
2880 return;
2881
2882 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2883 ev_timer_again (EV_A_ &w->timer);
2884 }
2033} 2885}
2034 2886
2035static void noinline 2887static void noinline
2036infy_del (EV_P_ ev_stat *w) 2888infy_del (EV_P_ ev_stat *w)
2037{ 2889{
2051 2903
2052static void noinline 2904static void noinline
2053infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2054{ 2906{
2055 if (slot < 0) 2907 if (slot < 0)
2056 /* overflow, need to check for all hahs slots */ 2908 /* overflow, need to check for all hash slots */
2057 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2058 infy_wd (EV_A_ slot, wd, ev); 2910 infy_wd (EV_A_ slot, wd, ev);
2059 else 2911 else
2060 { 2912 {
2061 WL w_; 2913 WL w_;
2067 2919
2068 if (w->wd == wd || wd == -1) 2920 if (w->wd == wd || wd == -1)
2069 { 2921 {
2070 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2071 { 2923 {
2924 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2072 w->wd = -1; 2925 w->wd = -1;
2073 infy_add (EV_A_ w); /* re-add, no matter what */ 2926 infy_add (EV_A_ w); /* re-add, no matter what */
2074 } 2927 }
2075 2928
2076 stat_timer_cb (EV_A_ &w->timer, 0); 2929 stat_timer_cb (EV_A_ &w->timer, 0);
2089 2942
2090 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2943 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2091 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2944 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2092} 2945}
2093 2946
2094void inline_size 2947inline_size void
2948check_2625 (EV_P)
2949{
2950 /* kernels < 2.6.25 are borked
2951 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2952 */
2953 struct utsname buf;
2954 int major, minor, micro;
2955
2956 if (uname (&buf))
2957 return;
2958
2959 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2960 return;
2961
2962 if (major < 2
2963 || (major == 2 && minor < 6)
2964 || (major == 2 && minor == 6 && micro < 25))
2965 return;
2966
2967 fs_2625 = 1;
2968}
2969
2970inline_size void
2095infy_init (EV_P) 2971infy_init (EV_P)
2096{ 2972{
2097 if (fs_fd != -2) 2973 if (fs_fd != -2)
2098 return; 2974 return;
2975
2976 fs_fd = -1;
2977
2978 check_2625 (EV_A);
2099 2979
2100 fs_fd = inotify_init (); 2980 fs_fd = inotify_init ();
2101 2981
2102 if (fs_fd >= 0) 2982 if (fs_fd >= 0)
2103 { 2983 {
2105 ev_set_priority (&fs_w, EV_MAXPRI); 2985 ev_set_priority (&fs_w, EV_MAXPRI);
2106 ev_io_start (EV_A_ &fs_w); 2986 ev_io_start (EV_A_ &fs_w);
2107 } 2987 }
2108} 2988}
2109 2989
2110void inline_size 2990inline_size void
2111infy_fork (EV_P) 2991infy_fork (EV_P)
2112{ 2992{
2113 int slot; 2993 int slot;
2114 2994
2115 if (fs_fd < 0) 2995 if (fs_fd < 0)
2131 w->wd = -1; 3011 w->wd = -1;
2132 3012
2133 if (fs_fd >= 0) 3013 if (fs_fd >= 0)
2134 infy_add (EV_A_ w); /* re-add, no matter what */ 3014 infy_add (EV_A_ w); /* re-add, no matter what */
2135 else 3015 else
2136 ev_timer_start (EV_A_ &w->timer); 3016 ev_timer_again (EV_A_ &w->timer);
2137 } 3017 }
2138
2139 } 3018 }
2140} 3019}
2141 3020
3021#endif
3022
3023#ifdef _WIN32
3024# define EV_LSTAT(p,b) _stati64 (p, b)
3025#else
3026# define EV_LSTAT(p,b) lstat (p, b)
2142#endif 3027#endif
2143 3028
2144void 3029void
2145ev_stat_stat (EV_P_ ev_stat *w) 3030ev_stat_stat (EV_P_ ev_stat *w)
2146{ 3031{
2173 || w->prev.st_atime != w->attr.st_atime 3058 || w->prev.st_atime != w->attr.st_atime
2174 || w->prev.st_mtime != w->attr.st_mtime 3059 || w->prev.st_mtime != w->attr.st_mtime
2175 || w->prev.st_ctime != w->attr.st_ctime 3060 || w->prev.st_ctime != w->attr.st_ctime
2176 ) { 3061 ) {
2177 #if EV_USE_INOTIFY 3062 #if EV_USE_INOTIFY
3063 if (fs_fd >= 0)
3064 {
2178 infy_del (EV_A_ w); 3065 infy_del (EV_A_ w);
2179 infy_add (EV_A_ w); 3066 infy_add (EV_A_ w);
2180 ev_stat_stat (EV_A_ w); /* avoid race... */ 3067 ev_stat_stat (EV_A_ w); /* avoid race... */
3068 }
2181 #endif 3069 #endif
2182 3070
2183 ev_feed_event (EV_A_ w, EV_STAT); 3071 ev_feed_event (EV_A_ w, EV_STAT);
2184 } 3072 }
2185} 3073}
2188ev_stat_start (EV_P_ ev_stat *w) 3076ev_stat_start (EV_P_ ev_stat *w)
2189{ 3077{
2190 if (expect_false (ev_is_active (w))) 3078 if (expect_false (ev_is_active (w)))
2191 return; 3079 return;
2192 3080
2193 /* since we use memcmp, we need to clear any padding data etc. */
2194 memset (&w->prev, 0, sizeof (ev_statdata));
2195 memset (&w->attr, 0, sizeof (ev_statdata));
2196
2197 ev_stat_stat (EV_A_ w); 3081 ev_stat_stat (EV_A_ w);
2198 3082
3083 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2199 if (w->interval < MIN_STAT_INTERVAL) 3084 w->interval = MIN_STAT_INTERVAL;
2200 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2201 3085
2202 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3086 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2203 ev_set_priority (&w->timer, ev_priority (w)); 3087 ev_set_priority (&w->timer, ev_priority (w));
2204 3088
2205#if EV_USE_INOTIFY 3089#if EV_USE_INOTIFY
2206 infy_init (EV_A); 3090 infy_init (EV_A);
2207 3091
2208 if (fs_fd >= 0) 3092 if (fs_fd >= 0)
2209 infy_add (EV_A_ w); 3093 infy_add (EV_A_ w);
2210 else 3094 else
2211#endif 3095#endif
2212 ev_timer_start (EV_A_ &w->timer); 3096 ev_timer_again (EV_A_ &w->timer);
2213 3097
2214 ev_start (EV_A_ (W)w, 1); 3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
2215} 3101}
2216 3102
2217void 3103void
2218ev_stat_stop (EV_P_ ev_stat *w) 3104ev_stat_stop (EV_P_ ev_stat *w)
2219{ 3105{
2220 clear_pending (EV_A_ (W)w); 3106 clear_pending (EV_A_ (W)w);
2221 if (expect_false (!ev_is_active (w))) 3107 if (expect_false (!ev_is_active (w)))
2222 return; 3108 return;
2223 3109
3110 EV_FREQUENT_CHECK;
3111
2224#if EV_USE_INOTIFY 3112#if EV_USE_INOTIFY
2225 infy_del (EV_A_ w); 3113 infy_del (EV_A_ w);
2226#endif 3114#endif
2227 ev_timer_stop (EV_A_ &w->timer); 3115 ev_timer_stop (EV_A_ &w->timer);
2228 3116
2229 ev_stop (EV_A_ (W)w); 3117 ev_stop (EV_A_ (W)w);
3118
3119 EV_FREQUENT_CHECK;
2230} 3120}
2231#endif 3121#endif
2232 3122
2233#if EV_IDLE_ENABLE 3123#if EV_IDLE_ENABLE
2234void 3124void
2236{ 3126{
2237 if (expect_false (ev_is_active (w))) 3127 if (expect_false (ev_is_active (w)))
2238 return; 3128 return;
2239 3129
2240 pri_adjust (EV_A_ (W)w); 3130 pri_adjust (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
2241 3133
2242 { 3134 {
2243 int active = ++idlecnt [ABSPRI (w)]; 3135 int active = ++idlecnt [ABSPRI (w)];
2244 3136
2245 ++idleall; 3137 ++idleall;
2246 ev_start (EV_A_ (W)w, active); 3138 ev_start (EV_A_ (W)w, active);
2247 3139
2248 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3140 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2249 idles [ABSPRI (w)][active - 1] = w; 3141 idles [ABSPRI (w)][active - 1] = w;
2250 } 3142 }
3143
3144 EV_FREQUENT_CHECK;
2251} 3145}
2252 3146
2253void 3147void
2254ev_idle_stop (EV_P_ ev_idle *w) 3148ev_idle_stop (EV_P_ ev_idle *w)
2255{ 3149{
2256 clear_pending (EV_A_ (W)w); 3150 clear_pending (EV_A_ (W)w);
2257 if (expect_false (!ev_is_active (w))) 3151 if (expect_false (!ev_is_active (w)))
2258 return; 3152 return;
2259 3153
3154 EV_FREQUENT_CHECK;
3155
2260 { 3156 {
2261 int active = ((W)w)->active; 3157 int active = ev_active (w);
2262 3158
2263 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3159 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2264 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3160 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2265 3161
2266 ev_stop (EV_A_ (W)w); 3162 ev_stop (EV_A_ (W)w);
2267 --idleall; 3163 --idleall;
2268 } 3164 }
3165
3166 EV_FREQUENT_CHECK;
2269} 3167}
2270#endif 3168#endif
2271 3169
2272void 3170void
2273ev_prepare_start (EV_P_ ev_prepare *w) 3171ev_prepare_start (EV_P_ ev_prepare *w)
2274{ 3172{
2275 if (expect_false (ev_is_active (w))) 3173 if (expect_false (ev_is_active (w)))
2276 return; 3174 return;
3175
3176 EV_FREQUENT_CHECK;
2277 3177
2278 ev_start (EV_A_ (W)w, ++preparecnt); 3178 ev_start (EV_A_ (W)w, ++preparecnt);
2279 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3179 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2280 prepares [preparecnt - 1] = w; 3180 prepares [preparecnt - 1] = w;
3181
3182 EV_FREQUENT_CHECK;
2281} 3183}
2282 3184
2283void 3185void
2284ev_prepare_stop (EV_P_ ev_prepare *w) 3186ev_prepare_stop (EV_P_ ev_prepare *w)
2285{ 3187{
2286 clear_pending (EV_A_ (W)w); 3188 clear_pending (EV_A_ (W)w);
2287 if (expect_false (!ev_is_active (w))) 3189 if (expect_false (!ev_is_active (w)))
2288 return; 3190 return;
2289 3191
3192 EV_FREQUENT_CHECK;
3193
2290 { 3194 {
2291 int active = ((W)w)->active; 3195 int active = ev_active (w);
3196
2292 prepares [active - 1] = prepares [--preparecnt]; 3197 prepares [active - 1] = prepares [--preparecnt];
2293 ((W)prepares [active - 1])->active = active; 3198 ev_active (prepares [active - 1]) = active;
2294 } 3199 }
2295 3200
2296 ev_stop (EV_A_ (W)w); 3201 ev_stop (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
2297} 3204}
2298 3205
2299void 3206void
2300ev_check_start (EV_P_ ev_check *w) 3207ev_check_start (EV_P_ ev_check *w)
2301{ 3208{
2302 if (expect_false (ev_is_active (w))) 3209 if (expect_false (ev_is_active (w)))
2303 return; 3210 return;
3211
3212 EV_FREQUENT_CHECK;
2304 3213
2305 ev_start (EV_A_ (W)w, ++checkcnt); 3214 ev_start (EV_A_ (W)w, ++checkcnt);
2306 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3215 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2307 checks [checkcnt - 1] = w; 3216 checks [checkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
2308} 3219}
2309 3220
2310void 3221void
2311ev_check_stop (EV_P_ ev_check *w) 3222ev_check_stop (EV_P_ ev_check *w)
2312{ 3223{
2313 clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
2314 if (expect_false (!ev_is_active (w))) 3225 if (expect_false (!ev_is_active (w)))
2315 return; 3226 return;
2316 3227
3228 EV_FREQUENT_CHECK;
3229
2317 { 3230 {
2318 int active = ((W)w)->active; 3231 int active = ev_active (w);
3232
2319 checks [active - 1] = checks [--checkcnt]; 3233 checks [active - 1] = checks [--checkcnt];
2320 ((W)checks [active - 1])->active = active; 3234 ev_active (checks [active - 1]) = active;
2321 } 3235 }
2322 3236
2323 ev_stop (EV_A_ (W)w); 3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
2324} 3240}
2325 3241
2326#if EV_EMBED_ENABLE 3242#if EV_EMBED_ENABLE
2327void noinline 3243void noinline
2328ev_embed_sweep (EV_P_ ev_embed *w) 3244ev_embed_sweep (EV_P_ ev_embed *w)
2345embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3261embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2346{ 3262{
2347 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3263 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2348 3264
2349 { 3265 {
2350 struct ev_loop *loop = w->other; 3266 EV_P = w->other;
2351 3267
2352 while (fdchangecnt) 3268 while (fdchangecnt)
2353 { 3269 {
2354 fd_reify (EV_A); 3270 fd_reify (EV_A);
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3271 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2356 } 3272 }
2357 } 3273 }
2358} 3274}
2359 3275
3276static void
3277embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3278{
3279 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3280
3281 ev_embed_stop (EV_A_ w);
3282
3283 {
3284 EV_P = w->other;
3285
3286 ev_loop_fork (EV_A);
3287 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3288 }
3289
3290 ev_embed_start (EV_A_ w);
3291}
3292
2360#if 0 3293#if 0
2361static void 3294static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3295embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2363{ 3296{
2364 ev_idle_stop (EV_A_ idle); 3297 ev_idle_stop (EV_A_ idle);
2370{ 3303{
2371 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
2372 return; 3305 return;
2373 3306
2374 { 3307 {
2375 struct ev_loop *loop = w->other; 3308 EV_P = w->other;
2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3309 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3310 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2378 } 3311 }
3312
3313 EV_FREQUENT_CHECK;
2379 3314
2380 ev_set_priority (&w->io, ev_priority (w)); 3315 ev_set_priority (&w->io, ev_priority (w));
2381 ev_io_start (EV_A_ &w->io); 3316 ev_io_start (EV_A_ &w->io);
2382 3317
2383 ev_prepare_init (&w->prepare, embed_prepare_cb); 3318 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI); 3319 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare); 3320 ev_prepare_start (EV_A_ &w->prepare);
2386 3321
3322 ev_fork_init (&w->fork, embed_fork_cb);
3323 ev_fork_start (EV_A_ &w->fork);
3324
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3325 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388 3326
2389 ev_start (EV_A_ (W)w, 1); 3327 ev_start (EV_A_ (W)w, 1);
3328
3329 EV_FREQUENT_CHECK;
2390} 3330}
2391 3331
2392void 3332void
2393ev_embed_stop (EV_P_ ev_embed *w) 3333ev_embed_stop (EV_P_ ev_embed *w)
2394{ 3334{
2395 clear_pending (EV_A_ (W)w); 3335 clear_pending (EV_A_ (W)w);
2396 if (expect_false (!ev_is_active (w))) 3336 if (expect_false (!ev_is_active (w)))
2397 return; 3337 return;
2398 3338
3339 EV_FREQUENT_CHECK;
3340
2399 ev_io_stop (EV_A_ &w->io); 3341 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare); 3342 ev_prepare_stop (EV_A_ &w->prepare);
3343 ev_fork_stop (EV_A_ &w->fork);
2401 3344
2402 ev_stop (EV_A_ (W)w); 3345 EV_FREQUENT_CHECK;
2403} 3346}
2404#endif 3347#endif
2405 3348
2406#if EV_FORK_ENABLE 3349#if EV_FORK_ENABLE
2407void 3350void
2408ev_fork_start (EV_P_ ev_fork *w) 3351ev_fork_start (EV_P_ ev_fork *w)
2409{ 3352{
2410 if (expect_false (ev_is_active (w))) 3353 if (expect_false (ev_is_active (w)))
2411 return; 3354 return;
3355
3356 EV_FREQUENT_CHECK;
2412 3357
2413 ev_start (EV_A_ (W)w, ++forkcnt); 3358 ev_start (EV_A_ (W)w, ++forkcnt);
2414 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3359 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2415 forks [forkcnt - 1] = w; 3360 forks [forkcnt - 1] = w;
3361
3362 EV_FREQUENT_CHECK;
2416} 3363}
2417 3364
2418void 3365void
2419ev_fork_stop (EV_P_ ev_fork *w) 3366ev_fork_stop (EV_P_ ev_fork *w)
2420{ 3367{
2421 clear_pending (EV_A_ (W)w); 3368 clear_pending (EV_A_ (W)w);
2422 if (expect_false (!ev_is_active (w))) 3369 if (expect_false (!ev_is_active (w)))
2423 return; 3370 return;
2424 3371
3372 EV_FREQUENT_CHECK;
3373
2425 { 3374 {
2426 int active = ((W)w)->active; 3375 int active = ev_active (w);
3376
2427 forks [active - 1] = forks [--forkcnt]; 3377 forks [active - 1] = forks [--forkcnt];
2428 ((W)forks [active - 1])->active = active; 3378 ev_active (forks [active - 1]) = active;
2429 } 3379 }
2430 3380
2431 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
3382
3383 EV_FREQUENT_CHECK;
2432} 3384}
2433#endif 3385#endif
2434 3386
2435#if EV_ASYNC_ENABLE 3387#if EV_ASYNC_ENABLE
2436void 3388void
2438{ 3390{
2439 if (expect_false (ev_is_active (w))) 3391 if (expect_false (ev_is_active (w)))
2440 return; 3392 return;
2441 3393
2442 evpipe_init (EV_A); 3394 evpipe_init (EV_A);
3395
3396 EV_FREQUENT_CHECK;
2443 3397
2444 ev_start (EV_A_ (W)w, ++asynccnt); 3398 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3399 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w; 3400 asyncs [asynccnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
2447} 3403}
2448 3404
2449void 3405void
2450ev_async_stop (EV_P_ ev_async *w) 3406ev_async_stop (EV_P_ ev_async *w)
2451{ 3407{
2452 clear_pending (EV_A_ (W)w); 3408 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w))) 3409 if (expect_false (!ev_is_active (w)))
2454 return; 3410 return;
2455 3411
3412 EV_FREQUENT_CHECK;
3413
2456 { 3414 {
2457 int active = ((W)w)->active; 3415 int active = ev_active (w);
3416
2458 asyncs [active - 1] = asyncs [--asynccnt]; 3417 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active; 3418 ev_active (asyncs [active - 1]) = active;
2460 } 3419 }
2461 3420
2462 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
2463} 3424}
2464 3425
2465void 3426void
2466ev_async_send (EV_P_ ev_async *w) 3427ev_async_send (EV_P_ ev_async *w)
2467{ 3428{
2468 w->sent = 1; 3429 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1); 3430 evpipe_write (EV_A_ &async_pending);
2470} 3431}
2471#endif 3432#endif
2472 3433
2473/*****************************************************************************/ 3434/*****************************************************************************/
2474 3435
2484once_cb (EV_P_ struct ev_once *once, int revents) 3445once_cb (EV_P_ struct ev_once *once, int revents)
2485{ 3446{
2486 void (*cb)(int revents, void *arg) = once->cb; 3447 void (*cb)(int revents, void *arg) = once->cb;
2487 void *arg = once->arg; 3448 void *arg = once->arg;
2488 3449
2489 ev_io_stop (EV_A_ &once->io); 3450 ev_io_stop (EV_A_ &once->io);
2490 ev_timer_stop (EV_A_ &once->to); 3451 ev_timer_stop (EV_A_ &once->to);
2491 ev_free (once); 3452 ev_free (once);
2492 3453
2493 cb (revents, arg); 3454 cb (revents, arg);
2494} 3455}
2495 3456
2496static void 3457static void
2497once_cb_io (EV_P_ ev_io *w, int revents) 3458once_cb_io (EV_P_ ev_io *w, int revents)
2498{ 3459{
2499 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3460 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3461
3462 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2500} 3463}
2501 3464
2502static void 3465static void
2503once_cb_to (EV_P_ ev_timer *w, int revents) 3466once_cb_to (EV_P_ ev_timer *w, int revents)
2504{ 3467{
2505 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3468 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3469
3470 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2506} 3471}
2507 3472
2508void 3473void
2509ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3474ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2510{ 3475{
2532 ev_timer_set (&once->to, timeout, 0.); 3497 ev_timer_set (&once->to, timeout, 0.);
2533 ev_timer_start (EV_A_ &once->to); 3498 ev_timer_start (EV_A_ &once->to);
2534 } 3499 }
2535} 3500}
2536 3501
3502/*****************************************************************************/
3503
3504#if EV_WALK_ENABLE
3505void
3506ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3507{
3508 int i, j;
3509 ev_watcher_list *wl, *wn;
3510
3511 if (types & (EV_IO | EV_EMBED))
3512 for (i = 0; i < anfdmax; ++i)
3513 for (wl = anfds [i].head; wl; )
3514 {
3515 wn = wl->next;
3516
3517#if EV_EMBED_ENABLE
3518 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3519 {
3520 if (types & EV_EMBED)
3521 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3522 }
3523 else
3524#endif
3525#if EV_USE_INOTIFY
3526 if (ev_cb ((ev_io *)wl) == infy_cb)
3527 ;
3528 else
3529#endif
3530 if ((ev_io *)wl != &pipe_w)
3531 if (types & EV_IO)
3532 cb (EV_A_ EV_IO, wl);
3533
3534 wl = wn;
3535 }
3536
3537 if (types & (EV_TIMER | EV_STAT))
3538 for (i = timercnt + HEAP0; i-- > HEAP0; )
3539#if EV_STAT_ENABLE
3540 /*TODO: timer is not always active*/
3541 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3542 {
3543 if (types & EV_STAT)
3544 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3545 }
3546 else
3547#endif
3548 if (types & EV_TIMER)
3549 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3550
3551#if EV_PERIODIC_ENABLE
3552 if (types & EV_PERIODIC)
3553 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3554 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3555#endif
3556
3557#if EV_IDLE_ENABLE
3558 if (types & EV_IDLE)
3559 for (j = NUMPRI; i--; )
3560 for (i = idlecnt [j]; i--; )
3561 cb (EV_A_ EV_IDLE, idles [j][i]);
3562#endif
3563
3564#if EV_FORK_ENABLE
3565 if (types & EV_FORK)
3566 for (i = forkcnt; i--; )
3567 if (ev_cb (forks [i]) != embed_fork_cb)
3568 cb (EV_A_ EV_FORK, forks [i]);
3569#endif
3570
3571#if EV_ASYNC_ENABLE
3572 if (types & EV_ASYNC)
3573 for (i = asynccnt; i--; )
3574 cb (EV_A_ EV_ASYNC, asyncs [i]);
3575#endif
3576
3577 if (types & EV_PREPARE)
3578 for (i = preparecnt; i--; )
3579#if EV_EMBED_ENABLE
3580 if (ev_cb (prepares [i]) != embed_prepare_cb)
3581#endif
3582 cb (EV_A_ EV_PREPARE, prepares [i]);
3583
3584 if (types & EV_CHECK)
3585 for (i = checkcnt; i--; )
3586 cb (EV_A_ EV_CHECK, checks [i]);
3587
3588 if (types & EV_SIGNAL)
3589 for (i = 0; i < EV_NSIG - 1; ++i)
3590 for (wl = signals [i].head; wl; )
3591 {
3592 wn = wl->next;
3593 cb (EV_A_ EV_SIGNAL, wl);
3594 wl = wn;
3595 }
3596
3597 if (types & EV_CHILD)
3598 for (i = EV_PID_HASHSIZE; i--; )
3599 for (wl = childs [i]; wl; )
3600 {
3601 wn = wl->next;
3602 cb (EV_A_ EV_CHILD, wl);
3603 wl = wn;
3604 }
3605/* EV_STAT 0x00001000 /* stat data changed */
3606/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3607}
3608#endif
3609
2537#if EV_MULTIPLICITY 3610#if EV_MULTIPLICITY
2538 #include "ev_wrap.h" 3611 #include "ev_wrap.h"
2539#endif 3612#endif
2540 3613
2541#ifdef __cplusplus 3614#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines