ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.35 by root, Thu Nov 1 11:55:54 2007 UTC vs.
Revision 1.311 by root, Wed Jul 29 09:36:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
29#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
30# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
31#endif 154#endif
32 155
33#include <math.h> 156#include <math.h>
34#include <stdlib.h> 157#include <stdlib.h>
35#include <unistd.h>
36#include <fcntl.h> 158#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 159#include <stddef.h>
39 160
40#include <stdio.h> 161#include <stdio.h>
41 162
42#include <assert.h> 163#include <assert.h>
43#include <errno.h> 164#include <errno.h>
44#include <sys/types.h> 165#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 166#include <time.h>
48 167
168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
176#ifndef _WIN32
177# include <sys/time.h>
178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
186# endif
187#endif
188
189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
49#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC 227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
51# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
232#endif
233
234#ifndef EV_USE_REALTIME
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
52# endif 243# endif
53#endif 244#endif
54 245
55#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
57#endif 248#endif
58 249
250#ifndef EV_USE_POLL
251# ifdef _WIN32
252# define EV_USE_POLL 0
253# else
254# define EV_USE_POLL 1
255# endif
256#endif
257
59#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
60# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
264#endif
265
266#ifndef EV_USE_KQUEUE
267# define EV_USE_KQUEUE 0
268#endif
269
270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
279# endif
280#endif
281
282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
347
348#ifndef CLOCK_MONOTONIC
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 0
61#endif 351#endif
62 352
63#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
354# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
65#endif 356#endif
66#ifndef EV_USE_REALTIME 357
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
68#endif 366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
417
418/*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
69 427
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
74 431
75#include "ev.h" 432#if __GNUC__ >= 4
433# define expect(expr,value) __builtin_expect ((expr),(value))
434# define noinline __attribute__ ((noinline))
435#else
436# define expect(expr,value) (expr)
437# define noinline
438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439# define inline
440# endif
441#endif
76 442
443#define expect_false(expr) expect ((expr) != 0, 0)
444#define expect_true(expr) expect ((expr) != 0, 1)
445#define inline_size static inline
446
447#if EV_MINIMAL
448# define inline_speed static noinline
449#else
450# define inline_speed static inline
451#endif
452
453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
460
461#define EMPTY /* required for microsofts broken pseudo-c compiler */
462#define EMPTY2(a,b) /* used to suppress some warnings */
463
77typedef struct ev_watcher *W; 464typedef ev_watcher *W;
78typedef struct ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
80 467
81static ev_tstamp now, diff; /* monotonic clock */ 468#define ev_active(w) ((W)(w))->active
82ev_tstamp ev_now; 469#define ev_at(w) ((WT)(w))->at
83int ev_method;
84 470
85static int have_monotonic; /* runtime */ 471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
86 476
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 477#if EV_USE_MONOTONIC
88static void (*method_modify)(int fd, int oev, int nev); 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
89static void (*method_poll)(ev_tstamp timeout); 479#endif
480
481#ifdef _WIN32
482# include "ev_win32.c"
483#endif
90 484
91/*****************************************************************************/ 485/*****************************************************************************/
92 486
487static void (*syserr_cb)(const char *msg);
488
489void
490ev_set_syserr_cb (void (*cb)(const char *msg))
491{
492 syserr_cb = cb;
493}
494
495static void noinline
496ev_syserr (const char *msg)
497{
498 if (!msg)
499 msg = "(libev) system error";
500
501 if (syserr_cb)
502 syserr_cb (msg);
503 else
504 {
505 perror (msg);
506 abort ();
507 }
508}
509
510static void *
511ev_realloc_emul (void *ptr, long size)
512{
513 /* some systems, notably openbsd and darwin, fail to properly
514 * implement realloc (x, 0) (as required by both ansi c-98 and
515 * the single unix specification, so work around them here.
516 */
517
518 if (size)
519 return realloc (ptr, size);
520
521 free (ptr);
522 return 0;
523}
524
525static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
526
527void
528ev_set_allocator (void *(*cb)(void *ptr, long size))
529{
530 alloc = cb;
531}
532
533inline_speed void *
534ev_realloc (void *ptr, long size)
535{
536 ptr = alloc (ptr, size);
537
538 if (!ptr && size)
539 {
540 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
541 abort ();
542 }
543
544 return ptr;
545}
546
547#define ev_malloc(size) ev_realloc (0, (size))
548#define ev_free(ptr) ev_realloc ((ptr), 0)
549
550/*****************************************************************************/
551
552/* set in reify when reification needed */
553#define EV_ANFD_REIFY 1
554
555/* file descriptor info structure */
556typedef struct
557{
558 WL head;
559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
562 unsigned char unused;
563#if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565#endif
566#if EV_SELECT_IS_WINSOCKET
567 SOCKET handle;
568#endif
569} ANFD;
570
571/* stores the pending event set for a given watcher */
572typedef struct
573{
574 W w;
575 int events; /* the pending event set for the given watcher */
576} ANPENDING;
577
578#if EV_USE_INOTIFY
579/* hash table entry per inotify-id */
580typedef struct
581{
582 WL head;
583} ANFS;
584#endif
585
586/* Heap Entry */
587#if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597#else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
604#endif
605
606#if EV_MULTIPLICITY
607
608 struct ev_loop
609 {
610 ev_tstamp ev_rt_now;
611 #define ev_rt_now ((loop)->ev_rt_now)
612 #define VAR(name,decl) decl;
613 #include "ev_vars.h"
614 #undef VAR
615 };
616 #include "ev_wrap.h"
617
618 static struct ev_loop default_loop_struct;
619 struct ev_loop *ev_default_loop_ptr;
620
621#else
622
623 ev_tstamp ev_rt_now;
624 #define VAR(name,decl) static decl;
625 #include "ev_vars.h"
626 #undef VAR
627
628 static int ev_default_loop_ptr;
629
630#endif
631
632#if EV_MINIMAL < 2
633# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635# define EV_INVOKE_PENDING invoke_cb (EV_A)
636#else
637# define EV_RELEASE_CB (void)0
638# define EV_ACQUIRE_CB (void)0
639# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640#endif
641
642#define EVUNLOOP_RECURSE 0x80
643
644/*****************************************************************************/
645
646#ifndef EV_HAVE_EV_TIME
93ev_tstamp 647ev_tstamp
94ev_time (void) 648ev_time (void)
95{ 649{
96#if EV_USE_REALTIME 650#if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
97 struct timespec ts; 653 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 654 clock_gettime (CLOCK_REALTIME, &ts);
99 return ts.tv_sec + ts.tv_nsec * 1e-9; 655 return ts.tv_sec + ts.tv_nsec * 1e-9;
100#else 656 }
657#endif
658
101 struct timeval tv; 659 struct timeval tv;
102 gettimeofday (&tv, 0); 660 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 661 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif
105} 662}
663#endif
106 664
107static ev_tstamp 665inline_size ev_tstamp
108get_clock (void) 666get_clock (void)
109{ 667{
110#if EV_USE_MONOTONIC 668#if EV_USE_MONOTONIC
111 if (have_monotonic) 669 if (expect_true (have_monotonic))
112 { 670 {
113 struct timespec ts; 671 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 672 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 673 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 674 }
117#endif 675#endif
118 676
119 return ev_time (); 677 return ev_time ();
120} 678}
121 679
122#define array_roundsize(base,n) ((n) | 4 & ~3) 680#if EV_MULTIPLICITY
681ev_tstamp
682ev_now (EV_P)
683{
684 return ev_rt_now;
685}
686#endif
123 687
124#define array_needsize(base,cur,cnt,init) \ 688void
125 if ((cnt) > cur) \ 689ev_sleep (ev_tstamp delay)
126 { \ 690{
127 int newcnt = cur; \ 691 if (delay > 0.)
128 do \
129 { \
130 newcnt = array_roundsize (base, newcnt << 1); \
131 } \
132 while ((cnt) > newcnt); \
133 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \
136 cur = newcnt; \
137 } 692 {
693#if EV_USE_NANOSLEEP
694 struct timespec ts;
695
696 ts.tv_sec = (time_t)delay;
697 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
698
699 nanosleep (&ts, 0);
700#elif defined(_WIN32)
701 Sleep ((unsigned long)(delay * 1e3));
702#else
703 struct timeval tv;
704
705 tv.tv_sec = (time_t)delay;
706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
711 select (0, 0, 0, 0, &tv);
712#endif
713 }
714}
138 715
139/*****************************************************************************/ 716/*****************************************************************************/
140 717
141typedef struct 718#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147 719
148static ANFD *anfds; 720/* find a suitable new size for the given array, */
149static int anfdmax; 721/* hopefully by rounding to a ncie-to-malloc size */
150 722inline_size int
151static void 723array_nextsize (int elem, int cur, int cnt)
152anfds_init (ANFD *base, int count)
153{ 724{
154 while (count--) 725 int ncur = cur + 1;
155 {
156 base->head = 0;
157 base->events = EV_NONE;
158 base->reify = 0;
159 726
160 ++base; 727 do
728 ncur <<= 1;
729 while (cnt > ncur);
730
731 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
732 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
161 } 733 {
162} 734 ncur *= elem;
163 735 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
164typedef struct 736 ncur = ncur - sizeof (void *) * 4;
165{ 737 ncur /= elem;
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void
174event (W w, int events)
175{
176 if (w->pending)
177 { 738 }
739
740 return ncur;
741}
742
743static noinline void *
744array_realloc (int elem, void *base, int *cur, int cnt)
745{
746 *cur = array_nextsize (elem, *cur, cnt);
747 return ev_realloc (base, elem * *cur);
748}
749
750#define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
752
753#define array_needsize(type,base,cur,cnt,init) \
754 if (expect_false ((cnt) > (cur))) \
755 { \
756 int ocur_ = (cur); \
757 (base) = (type *)array_realloc \
758 (sizeof (type), (base), &(cur), (cnt)); \
759 init ((base) + (ocur_), (cur) - ocur_); \
760 }
761
762#if 0
763#define array_slim(type,stem) \
764 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
765 { \
766 stem ## max = array_roundsize (stem ## cnt >> 1); \
767 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
769 }
770#endif
771
772#define array_free(stem, idx) \
773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
774
775/*****************************************************************************/
776
777/* dummy callback for pending events */
778static void noinline
779pendingcb (EV_P_ ev_prepare *w, int revents)
780{
781}
782
783void noinline
784ev_feed_event (EV_P_ void *w, int revents)
785{
786 W w_ = (W)w;
787 int pri = ABSPRI (w_);
788
789 if (expect_false (w_->pending))
790 pendings [pri][w_->pending - 1].events |= revents;
791 else
792 {
793 w_->pending = ++pendingcnt [pri];
794 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
795 pendings [pri][w_->pending - 1].w = w_;
178 pendings [w->pending - 1].events |= events; 796 pendings [pri][w_->pending - 1].events = revents;
179 return;
180 } 797 }
181
182 w->pending = ++pendingcnt;
183 array_needsize (pendings, pendingmax, pendingcnt, );
184 pendings [pendingcnt - 1].w = w;
185 pendings [pendingcnt - 1].events = events;
186} 798}
187 799
188static void 800inline_speed void
801feed_reverse (EV_P_ W w)
802{
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805}
806
807inline_size void
808feed_reverse_done (EV_P_ int revents)
809{
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813}
814
815inline_speed void
189queue_events (W *events, int eventcnt, int type) 816queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 817{
191 int i; 818 int i;
192 819
193 for (i = 0; i < eventcnt; ++i) 820 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 821 ev_feed_event (EV_A_ events [i], type);
195} 822}
196 823
197static void 824/*****************************************************************************/
825
826inline_speed void
198fd_event (int fd, int events) 827fd_event_nc (EV_P_ int fd, int revents)
199{ 828{
200 ANFD *anfd = anfds + fd; 829 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 830 ev_io *w;
202 831
203 for (w = anfd->head; w; w = w->next) 832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
204 { 833 {
205 int ev = w->events & events; 834 int ev = w->events & revents;
206 835
207 if (ev) 836 if (ev)
208 event ((W)w, ev); 837 ev_feed_event (EV_A_ (W)w, ev);
209 } 838 }
210} 839}
211 840
212/*****************************************************************************/ 841/* do not submit kernel events for fds that have reify set */
842/* because that means they changed while we were polling for new events */
843inline_speed void
844fd_event (EV_P_ int fd, int revents)
845{
846 ANFD *anfd = anfds + fd;
213 847
214static int *fdchanges; 848 if (expect_true (!anfd->reify))
215static int fdchangemax, fdchangecnt; 849 fd_event_nc (EV_A_ fd, revents);
850}
216 851
217static void 852void
218fd_reify (void) 853ev_feed_fd_event (EV_P_ int fd, int revents)
854{
855 if (fd >= 0 && fd < anfdmax)
856 fd_event_nc (EV_A_ fd, revents);
857}
858
859/* make sure the external fd watch events are in-sync */
860/* with the kernel/libev internal state */
861inline_size void
862fd_reify (EV_P)
219{ 863{
220 int i; 864 int i;
221 865
222 for (i = 0; i < fdchangecnt; ++i) 866 for (i = 0; i < fdchangecnt; ++i)
223 { 867 {
224 int fd = fdchanges [i]; 868 int fd = fdchanges [i];
225 ANFD *anfd = anfds + fd; 869 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 870 ev_io *w;
227 871
228 int events = 0; 872 unsigned char events = 0;
229 873
230 for (w = anfd->head; w; w = w->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
231 events |= w->events; 875 events |= (unsigned char)w->events;
232 876
233 anfd->reify = 0; 877#if EV_SELECT_IS_WINSOCKET
234 878 if (events)
235 if (anfd->events != events)
236 { 879 {
237 method_modify (fd, anfd->events, events); 880 unsigned long arg;
238 anfd->events = events; 881 #ifdef EV_FD_TO_WIN32_HANDLE
882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
883 #else
884 anfd->handle = _get_osfhandle (fd);
885 #endif
886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
239 } 887 }
888#endif
889
890 {
891 unsigned char o_events = anfd->events;
892 unsigned char o_reify = anfd->reify;
893
894 anfd->reify = 0;
895 anfd->events = events;
896
897 if (o_events != events || o_reify & EV__IOFDSET)
898 backend_modify (EV_A_ fd, o_events, events);
899 }
240 } 900 }
241 901
242 fdchangecnt = 0; 902 fdchangecnt = 0;
243} 903}
244 904
245static void 905/* something about the given fd changed */
246fd_change (int fd) 906inline_size void
907fd_change (EV_P_ int fd, int flags)
247{ 908{
248 if (anfds [fd].reify || fdchangecnt < 0) 909 unsigned char reify = anfds [fd].reify;
249 return;
250
251 anfds [fd].reify = 1; 910 anfds [fd].reify |= flags;
252 911
912 if (expect_true (!reify))
913 {
253 ++fdchangecnt; 914 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
255 fdchanges [fdchangecnt - 1] = fd; 916 fdchanges [fdchangecnt - 1] = fd;
917 }
918}
919
920/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921inline_speed void
922fd_kill (EV_P_ int fd)
923{
924 ev_io *w;
925
926 while ((w = (ev_io *)anfds [fd].head))
927 {
928 ev_io_stop (EV_A_ w);
929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
930 }
931}
932
933/* check whether the given fd is atcually valid, for error recovery */
934inline_size int
935fd_valid (int fd)
936{
937#ifdef _WIN32
938 return _get_osfhandle (fd) != -1;
939#else
940 return fcntl (fd, F_GETFD) != -1;
941#endif
256} 942}
257 943
258/* called on EBADF to verify fds */ 944/* called on EBADF to verify fds */
259static void 945static void noinline
260fd_recheck (void) 946fd_ebadf (EV_P)
261{ 947{
262 int fd; 948 int fd;
263 949
264 for (fd = 0; fd < anfdmax; ++fd) 950 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 951 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 952 if (!fd_valid (fd) && errno == EBADF)
267 while (anfds [fd].head) 953 fd_kill (EV_A_ fd);
954}
955
956/* called on ENOMEM in select/poll to kill some fds and retry */
957static void noinline
958fd_enomem (EV_P)
959{
960 int fd;
961
962 for (fd = anfdmax; fd--; )
963 if (anfds [fd].events)
964 {
965 fd_kill (EV_A_ fd);
966 break;
967 }
968}
969
970/* usually called after fork if backend needs to re-arm all fds from scratch */
971static void noinline
972fd_rearm_all (EV_P)
973{
974 int fd;
975
976 for (fd = 0; fd < anfdmax; ++fd)
977 if (anfds [fd].events)
978 {
979 anfds [fd].events = 0;
980 anfds [fd].emask = 0;
981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
982 }
983}
984
985/*****************************************************************************/
986
987/*
988 * the heap functions want a real array index. array index 0 uis guaranteed to not
989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
990 * the branching factor of the d-tree.
991 */
992
993/*
994 * at the moment we allow libev the luxury of two heaps,
995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
996 * which is more cache-efficient.
997 * the difference is about 5% with 50000+ watchers.
998 */
999#if EV_USE_4HEAP
1000
1001#define DHEAP 4
1002#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004#define UPHEAP_DONE(p,k) ((p) == (k))
1005
1006/* away from the root */
1007inline_speed void
1008downheap (ANHE *heap, int N, int k)
1009{
1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
1012
1013 for (;;)
1014 {
1015 ev_tstamp minat;
1016 ANHE *minpos;
1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1018
1019 /* find minimum child */
1020 if (expect_true (pos + DHEAP - 1 < E))
1021 {
1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1033 }
1034 else
1035 break;
1036
1037 if (ANHE_at (he) <= minat)
1038 break;
1039
1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
1042
1043 k = minpos - heap;
1044 }
1045
1046 heap [k] = he;
1047 ev_active (ANHE_w (he)) = k;
1048}
1049
1050#else /* 4HEAP */
1051
1052#define HEAP0 1
1053#define HPARENT(k) ((k) >> 1)
1054#define UPHEAP_DONE(p,k) (!(p))
1055
1056/* away from the root */
1057inline_speed void
1058downheap (ANHE *heap, int N, int k)
1059{
1060 ANHE he = heap [k];
1061
1062 for (;;)
1063 {
1064 int c = k << 1;
1065
1066 if (c >= N + HEAP0)
1067 break;
1068
1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1070 ? 1 : 0;
1071
1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
1073 break;
1074
1075 heap [k] = heap [c];
1076 ev_active (ANHE_w (heap [k])) = k;
1077
1078 k = c;
1079 }
1080
1081 heap [k] = he;
1082 ev_active (ANHE_w (he)) = k;
1083}
1084#endif
1085
1086/* towards the root */
1087inline_speed void
1088upheap (ANHE *heap, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
1099 heap [k] = heap [p];
1100 ev_active (ANHE_w (heap [k])) = k;
1101 k = p;
1102 }
1103
1104 heap [k] = he;
1105 ev_active (ANHE_w (he)) = k;
1106}
1107
1108/* move an element suitably so it is in a correct place */
1109inline_size void
1110adjustheap (ANHE *heap, int N, int k)
1111{
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1113 upheap (heap, k);
1114 else
1115 downheap (heap, N, k);
1116}
1117
1118/* rebuild the heap: this function is used only once and executed rarely */
1119inline_size void
1120reheap (ANHE *heap, int N)
1121{
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
1128}
1129
1130/*****************************************************************************/
1131
1132/* associate signal watchers to a signal signal */
1133typedef struct
1134{
1135 EV_ATOMIC_T pending;
1136#if EV_MULTIPLICITY
1137 EV_P;
1138#endif
1139 WL head;
1140} ANSIG;
1141
1142static ANSIG signals [EV_NSIG - 1];
1143
1144/*****************************************************************************/
1145
1146/* used to prepare libev internal fd's */
1147/* this is not fork-safe */
1148inline_speed void
1149fd_intern (int fd)
1150{
1151#ifdef _WIN32
1152 unsigned long arg = 1;
1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1154#else
1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
1156 fcntl (fd, F_SETFL, O_NONBLOCK);
1157#endif
1158}
1159
1160static void noinline
1161evpipe_init (EV_P)
1162{
1163 if (!ev_is_active (&pipe_w))
1164 {
1165#if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
1171 {
1172 evpipe [0] = -1;
1173 fd_intern (evfd); /* doing it twice doesn't hurt */
1174 ev_io_set (&pipe_w, evfd, EV_READ);
1175 }
1176 else
1177#endif
1178 {
1179 while (pipe (evpipe))
1180 ev_syserr ("(libev) error creating signal/async pipe");
1181
1182 fd_intern (evpipe [0]);
1183 fd_intern (evpipe [1]);
1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1185 }
1186
1187 ev_io_start (EV_A_ &pipe_w);
1188 ev_unref (EV_A); /* watcher should not keep loop alive */
1189 }
1190}
1191
1192inline_size void
1193evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1194{
1195 if (!*flag)
1196 {
1197 int old_errno = errno; /* save errno because write might clobber it */
1198
1199 *flag = 1;
1200
1201#if EV_USE_EVENTFD
1202 if (evfd >= 0)
1203 {
1204 uint64_t counter = 1;
1205 write (evfd, &counter, sizeof (uint64_t));
1206 }
1207 else
1208#endif
1209 write (evpipe [1], &old_errno, 1);
1210
1211 errno = old_errno;
1212 }
1213}
1214
1215/* called whenever the libev signal pipe */
1216/* got some events (signal, async) */
1217static void
1218pipecb (EV_P_ ev_io *iow, int revents)
1219{
1220 int i;
1221
1222#if EV_USE_EVENTFD
1223 if (evfd >= 0)
1224 {
1225 uint64_t counter;
1226 read (evfd, &counter, sizeof (uint64_t));
1227 }
1228 else
1229#endif
1230 {
1231 char dummy;
1232 read (evpipe [0], &dummy, 1);
1233 }
1234
1235 if (sig_pending)
1236 {
1237 sig_pending = 0;
1238
1239 for (i = EV_NSIG - 1; i--; )
1240 if (expect_false (signals [i].pending))
1241 ev_feed_signal_event (EV_A_ i + 1);
1242 }
1243
1244#if EV_ASYNC_ENABLE
1245 if (async_pending)
1246 {
1247 async_pending = 0;
1248
1249 for (i = asynccnt; i--; )
1250 if (asyncs [i]->sent)
268 { 1251 {
269 ev_io_stop (anfds [fd].head); 1252 asyncs [i]->sent = 0;
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 1253 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
271 } 1254 }
1255 }
1256#endif
272} 1257}
273 1258
274/*****************************************************************************/ 1259/*****************************************************************************/
275 1260
276static struct ev_timer **timers;
277static int timermax, timercnt;
278
279static struct ev_periodic **periodics;
280static int periodicmax, periodiccnt;
281
282static void 1261static void
283upheap (WT *timers, int k) 1262ev_sighandler (int signum)
284{ 1263{
285 WT w = timers [k]; 1264#if EV_MULTIPLICITY
1265 EV_P = signals [signum - 1].loop;
1266#endif
286 1267
287 while (k && timers [k >> 1]->at > w->at) 1268#if _WIN32
288 { 1269 signal (signum, ev_sighandler);
289 timers [k] = timers [k >> 1]; 1270#endif
290 timers [k]->active = k + 1;
291 k >>= 1;
292 }
293 1271
294 timers [k] = w; 1272 signals [signum - 1].pending = 1;
295 timers [k]->active = k + 1; 1273 evpipe_write (EV_A_ &sig_pending);
296
297} 1274}
298 1275
1276void noinline
1277ev_feed_signal_event (EV_P_ int signum)
1278{
1279 WL w;
1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
1286#if EV_MULTIPLICITY
1287 /* it is permissible to try to feed a signal to the wrong loop */
1288 /* or, likely more useful, feeding a signal nobody is waiting for */
1289
1290 if (expect_false (signals [signum].loop != EV_A))
1291 return;
1292#endif
1293
1294 signals [signum].pending = 0;
1295
1296 for (w = signals [signum].head; w; w = w->next)
1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1298}
1299
1300#if EV_USE_SIGNALFD
299static void 1301static void
300downheap (WT *timers, int N, int k) 1302sigfdcb (EV_P_ ev_io *iow, int revents)
301{ 1303{
302 WT w = timers [k]; 1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
303 1305
304 while (k < (N >> 1)) 1306 for (;;)
305 { 1307 {
306 int j = k << 1; 1308 ssize_t res = read (sigfd, si, sizeof (si));
307 1309
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1310 /* not ISO-C, as res might be -1, but works with SuS */
309 ++j; 1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
310 1313
311 if (w->at <= timers [j]->at) 1314 if (res < (ssize_t)sizeof (si))
312 break; 1315 break;
313
314 timers [k] = timers [j];
315 timers [k]->active = k + 1;
316 k = j;
317 } 1316 }
318
319 timers [k] = w;
320 timers [k]->active = k + 1;
321} 1317}
1318#endif
322 1319
323/*****************************************************************************/ 1320/*****************************************************************************/
324 1321
325typedef struct 1322static WL childs [EV_PID_HASHSIZE];
326{
327 struct ev_signal *head;
328 sig_atomic_t volatile gotsig;
329} ANSIG;
330 1323
331static ANSIG *signals; 1324#ifndef _WIN32
332static int signalmax;
333 1325
334static int sigpipe [2];
335static sig_atomic_t volatile gotsig;
336static struct ev_io sigev;
337
338static void
339signals_init (ANSIG *base, int count)
340{
341 while (count--)
342 {
343 base->head = 0;
344 base->gotsig = 0;
345
346 ++base;
347 }
348}
349
350static void
351sighandler (int signum)
352{
353 signals [signum - 1].gotsig = 1;
354
355 if (!gotsig)
356 {
357 gotsig = 1;
358 write (sigpipe [1], &signum, 1);
359 }
360}
361
362static void
363sigcb (struct ev_io *iow, int revents)
364{
365 struct ev_signal *w;
366 int sig;
367
368 read (sigpipe [0], &revents, 1);
369 gotsig = 0;
370
371 for (sig = signalmax; sig--; )
372 if (signals [sig].gotsig)
373 {
374 signals [sig].gotsig = 0;
375
376 for (w = signals [sig].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL);
378 }
379}
380
381static void
382siginit (void)
383{
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386
387 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
390
391 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev);
393}
394
395/*****************************************************************************/
396
397static struct ev_idle **idles;
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407
408static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 1326static ev_signal childev;
1327
1328#ifndef WIFCONTINUED
1329# define WIFCONTINUED(status) 0
1330#endif
1331
1332/* handle a single child status event */
1333inline_speed void
1334child_reap (EV_P_ int chain, int pid, int status)
1335{
1336 ev_child *w;
1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1338
1339 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1340 {
1341 if ((w->pid == pid || !w->pid)
1342 && (!traced || (w->flags & 1)))
1343 {
1344 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1345 w->rpid = pid;
1346 w->rstatus = status;
1347 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1348 }
1349 }
1350}
410 1351
411#ifndef WCONTINUED 1352#ifndef WCONTINUED
412# define WCONTINUED 0 1353# define WCONTINUED 0
413#endif 1354#endif
414 1355
1356/* called on sigchld etc., calls waitpid */
415static void 1357static void
416childcb (struct ev_signal *sw, int revents) 1358childcb (EV_P_ ev_signal *sw, int revents)
417{ 1359{
418 struct ev_child *w;
419 int pid, status; 1360 int pid, status;
420 1361
1362 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1363 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1364 if (!WCONTINUED
423 if (w->pid == pid || w->pid == -1) 1365 || errno != EINVAL
424 { 1366 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
425 w->status = status; 1367 return;
426 event ((W)w, EV_CHILD); 1368
427 } 1369 /* make sure we are called again until all children have been reaped */
1370 /* we need to do it this way so that the callback gets called before we continue */
1371 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1372
1373 child_reap (EV_A_ pid, pid, status);
1374 if (EV_PID_HASHSIZE > 1)
1375 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
428} 1376}
1377
1378#endif
429 1379
430/*****************************************************************************/ 1380/*****************************************************************************/
431 1381
1382#if EV_USE_PORT
1383# include "ev_port.c"
1384#endif
1385#if EV_USE_KQUEUE
1386# include "ev_kqueue.c"
1387#endif
432#if EV_USE_EPOLL 1388#if EV_USE_EPOLL
433# include "ev_epoll.c" 1389# include "ev_epoll.c"
434#endif 1390#endif
1391#if EV_USE_POLL
1392# include "ev_poll.c"
1393#endif
435#if EV_USE_SELECT 1394#if EV_USE_SELECT
436# include "ev_select.c" 1395# include "ev_select.c"
437#endif 1396#endif
438 1397
439int 1398int
446ev_version_minor (void) 1405ev_version_minor (void)
447{ 1406{
448 return EV_VERSION_MINOR; 1407 return EV_VERSION_MINOR;
449} 1408}
450 1409
451int ev_init (int flags) 1410/* return true if we are running with elevated privileges and should ignore env variables */
1411int inline_size
1412enable_secure (void)
452{ 1413{
453 if (!ev_method) 1414#ifdef _WIN32
1415 return 0;
1416#else
1417 return getuid () != geteuid ()
1418 || getgid () != getegid ();
1419#endif
1420}
1421
1422unsigned int
1423ev_supported_backends (void)
1424{
1425 unsigned int flags = 0;
1426
1427 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1428 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1429 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1430 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1431 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1432
1433 return flags;
1434}
1435
1436unsigned int
1437ev_recommended_backends (void)
1438{
1439 unsigned int flags = ev_supported_backends ();
1440
1441#ifndef __NetBSD__
1442 /* kqueue is borked on everything but netbsd apparently */
1443 /* it usually doesn't work correctly on anything but sockets and pipes */
1444 flags &= ~EVBACKEND_KQUEUE;
1445#endif
1446#ifdef __APPLE__
1447 /* only select works correctly on that "unix-certified" platform */
1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1450#endif
1451
1452 return flags;
1453}
1454
1455unsigned int
1456ev_embeddable_backends (void)
1457{
1458 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1459
1460 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1461 /* please fix it and tell me how to detect the fix */
1462 flags &= ~EVBACKEND_EPOLL;
1463
1464 return flags;
1465}
1466
1467unsigned int
1468ev_backend (EV_P)
1469{
1470 return backend;
1471}
1472
1473#if EV_MINIMAL < 2
1474unsigned int
1475ev_loop_count (EV_P)
1476{
1477 return loop_count;
1478}
1479
1480unsigned int
1481ev_loop_depth (EV_P)
1482{
1483 return loop_depth;
1484}
1485
1486void
1487ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 io_blocktime = interval;
1490}
1491
1492void
1493ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 timeout_blocktime = interval;
1496}
1497
1498void
1499ev_set_userdata (EV_P_ void *data)
1500{
1501 userdata = data;
1502}
1503
1504void *
1505ev_userdata (EV_P)
1506{
1507 return userdata;
1508}
1509
1510void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511{
1512 invoke_cb = invoke_pending_cb;
1513}
1514
1515void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516{
1517 release_cb = release;
1518 acquire_cb = acquire;
1519}
1520#endif
1521
1522/* initialise a loop structure, must be zero-initialised */
1523static void noinline
1524loop_init (EV_P_ unsigned int flags)
1525{
1526 if (!backend)
454 { 1527 {
1528#if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536#endif
1537
455#if EV_USE_MONOTONIC 1538#if EV_USE_MONOTONIC
1539 if (!have_monotonic)
1540 {
1541 struct timespec ts;
1542
1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1544 have_monotonic = 1;
1545 }
1546#endif
1547
1548 /* pid check not overridable via env */
1549#ifndef _WIN32
1550 if (flags & EVFLAG_FORKCHECK)
1551 curpid = getpid ();
1552#endif
1553
1554 if (!(flags & EVFLAG_NOENV)
1555 && !enable_secure ()
1556 && getenv ("LIBEV_FLAGS"))
1557 flags = atoi (getenv ("LIBEV_FLAGS"));
1558
1559 ev_rt_now = ev_time ();
1560 mn_now = get_clock ();
1561 now_floor = mn_now;
1562 rtmn_diff = ev_rt_now - mn_now;
1563#if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565#endif
1566
1567 io_blocktime = 0.;
1568 timeout_blocktime = 0.;
1569 backend = 0;
1570 backend_fd = -1;
1571 sig_pending = 0;
1572#if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574#endif
1575#if EV_USE_INOTIFY
1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1577#endif
1578#if EV_USE_SIGNALFD
1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1580#endif
1581
1582 if (!(flags & 0x0000ffffU))
1583 flags |= ev_recommended_backends ();
1584
1585#if EV_USE_PORT
1586 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1587#endif
1588#if EV_USE_KQUEUE
1589 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1590#endif
1591#if EV_USE_EPOLL
1592 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1593#endif
1594#if EV_USE_POLL
1595 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1596#endif
1597#if EV_USE_SELECT
1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1599#endif
1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
1603 ev_init (&pipe_w, pipecb);
1604 ev_set_priority (&pipe_w, EV_MAXPRI);
1605 }
1606}
1607
1608/* free up a loop structure */
1609static void noinline
1610loop_destroy (EV_P)
1611{
1612 int i;
1613
1614 if (ev_is_active (&pipe_w))
1615 {
1616 /*ev_ref (EV_A);*/
1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1618
1619#if EV_USE_EVENTFD
1620 if (evfd >= 0)
1621 close (evfd);
1622#endif
1623
1624 if (evpipe [0] >= 0)
1625 {
1626 close (evpipe [0]);
1627 close (evpipe [1]);
1628 }
1629 }
1630
1631#if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639#endif
1640
1641#if EV_USE_INOTIFY
1642 if (fs_fd >= 0)
1643 close (fs_fd);
1644#endif
1645
1646 if (backend_fd >= 0)
1647 close (backend_fd);
1648
1649#if EV_USE_PORT
1650 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1651#endif
1652#if EV_USE_KQUEUE
1653 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1654#endif
1655#if EV_USE_EPOLL
1656 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1657#endif
1658#if EV_USE_POLL
1659 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1660#endif
1661#if EV_USE_SELECT
1662 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1663#endif
1664
1665 for (i = NUMPRI; i--; )
1666 {
1667 array_free (pending, [i]);
1668#if EV_IDLE_ENABLE
1669 array_free (idle, [i]);
1670#endif
1671 }
1672
1673 ev_free (anfds); anfds = 0; anfdmax = 0;
1674
1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
1677 array_free (fdchange, EMPTY);
1678 array_free (timer, EMPTY);
1679#if EV_PERIODIC_ENABLE
1680 array_free (periodic, EMPTY);
1681#endif
1682#if EV_FORK_ENABLE
1683 array_free (fork, EMPTY);
1684#endif
1685 array_free (prepare, EMPTY);
1686 array_free (check, EMPTY);
1687#if EV_ASYNC_ENABLE
1688 array_free (async, EMPTY);
1689#endif
1690
1691 backend = 0;
1692}
1693
1694#if EV_USE_INOTIFY
1695inline_size void infy_fork (EV_P);
1696#endif
1697
1698inline_size void
1699loop_fork (EV_P)
1700{
1701#if EV_USE_PORT
1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1703#endif
1704#if EV_USE_KQUEUE
1705 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1706#endif
1707#if EV_USE_EPOLL
1708 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1709#endif
1710#if EV_USE_INOTIFY
1711 infy_fork (EV_A);
1712#endif
1713
1714 if (ev_is_active (&pipe_w))
1715 {
1716 /* this "locks" the handlers against writing to the pipe */
1717 /* while we modify the fd vars */
1718 sig_pending = 1;
1719#if EV_ASYNC_ENABLE
1720 async_pending = 1;
1721#endif
1722
1723 ev_ref (EV_A);
1724 ev_io_stop (EV_A_ &pipe_w);
1725
1726#if EV_USE_EVENTFD
1727 if (evfd >= 0)
1728 close (evfd);
1729#endif
1730
1731 if (evpipe [0] >= 0)
1732 {
1733 close (evpipe [0]);
1734 close (evpipe [1]);
1735 }
1736
1737 evpipe_init (EV_A);
1738 /* now iterate over everything, in case we missed something */
1739 pipecb (EV_A_ &pipe_w, EV_READ);
1740 }
1741
1742 postfork = 0;
1743}
1744
1745#if EV_MULTIPLICITY
1746
1747struct ev_loop *
1748ev_loop_new (unsigned int flags)
1749{
1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1751
1752 memset (EV_A, 0, sizeof (struct ev_loop));
1753 loop_init (EV_A_ flags);
1754
1755 if (ev_backend (EV_A))
1756 return EV_A;
1757
1758 return 0;
1759}
1760
1761void
1762ev_loop_destroy (EV_P)
1763{
1764 loop_destroy (EV_A);
1765 ev_free (loop);
1766}
1767
1768void
1769ev_loop_fork (EV_P)
1770{
1771 postfork = 1; /* must be in line with ev_default_fork */
1772}
1773#endif /* multiplicity */
1774
1775#if EV_VERIFY
1776static void noinline
1777verify_watcher (EV_P_ W w)
1778{
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783}
1784
1785static void noinline
1786verify_heap (EV_P_ ANHE *heap, int N)
1787{
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798}
1799
1800static void noinline
1801array_verify (EV_P_ W *ws, int cnt)
1802{
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808}
1809#endif
1810
1811#if EV_MINIMAL < 2
1812void
1813ev_loop_verify (EV_P)
1814{
1815#if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
456 { 1828 {
457 struct timespec ts; 1829 verify_watcher (EV_A_ (W)w);
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
459 have_monotonic = 1; 1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
460 } 1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837#if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840#endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845#if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849#endif
1850 }
1851
1852#if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855#endif
1856
1857#if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860#endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868# if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
461#endif 1871# endif
462
463 ev_now = ev_time ();
464 now = get_clock ();
465 diff = ev_now - now;
466
467 if (pipe (sigpipe))
468 return 0;
469
470 ev_method = EVMETHOD_NONE;
471#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
473#endif 1872#endif
474#if EV_USE_SELECT 1873}
475 if (ev_method == EVMETHOD_NONE) select_init (flags);
476#endif 1874#endif
477 1875
478 if (ev_method) 1876#if EV_MULTIPLICITY
1877struct ev_loop *
1878ev_default_loop_init (unsigned int flags)
1879#else
1880int
1881ev_default_loop (unsigned int flags)
1882#endif
1883{
1884 if (!ev_default_loop_ptr)
1885 {
1886#if EV_MULTIPLICITY
1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
1888#else
1889 ev_default_loop_ptr = 1;
1890#endif
1891
1892 loop_init (EV_A_ flags);
1893
1894 if (ev_backend (EV_A))
479 { 1895 {
480 ev_watcher_init (&sigev, sigcb); 1896#ifndef _WIN32
481 siginit ();
482
483 ev_signal_init (&childev, childcb, SIGCHLD); 1897 ev_signal_init (&childev, childcb, SIGCHLD);
1898 ev_set_priority (&childev, EV_MAXPRI);
484 ev_signal_start (&childev); 1899 ev_signal_start (EV_A_ &childev);
1900 ev_unref (EV_A); /* child watcher should not keep loop alive */
1901#endif
485 } 1902 }
1903 else
1904 ev_default_loop_ptr = 0;
486 } 1905 }
487 1906
488 return ev_method; 1907 return ev_default_loop_ptr;
1908}
1909
1910void
1911ev_default_destroy (void)
1912{
1913#if EV_MULTIPLICITY
1914 EV_P = ev_default_loop_ptr;
1915#endif
1916
1917 ev_default_loop_ptr = 0;
1918
1919#ifndef _WIN32
1920 ev_ref (EV_A); /* child watcher */
1921 ev_signal_stop (EV_A_ &childev);
1922#endif
1923
1924 loop_destroy (EV_A);
1925}
1926
1927void
1928ev_default_fork (void)
1929{
1930#if EV_MULTIPLICITY
1931 EV_P = ev_default_loop_ptr;
1932#endif
1933
1934 postfork = 1; /* must be in line with ev_loop_fork */
489} 1935}
490 1936
491/*****************************************************************************/ 1937/*****************************************************************************/
492 1938
493void 1939void
494ev_fork_prepare (void) 1940ev_invoke (EV_P_ void *w, int revents)
495{ 1941{
496 /* nop */ 1942 EV_CB_INVOKE ((W)w, revents);
497} 1943}
498 1944
499void 1945unsigned int
500ev_fork_parent (void) 1946ev_pending_count (EV_P)
501{ 1947{
502 /* nop */ 1948 int pri;
503} 1949 unsigned int count = 0;
504 1950
505void 1951 for (pri = NUMPRI; pri--; )
506ev_fork_child (void) 1952 count += pendingcnt [pri];
1953
1954 return count;
1955}
1956
1957void noinline
1958ev_invoke_pending (EV_P)
507{ 1959{
508#if EV_USE_EPOLL 1960 int pri;
509 if (ev_method == EVMETHOD_EPOLL) 1961
510 epoll_postfork_child (); 1962 for (pri = NUMPRI; pri--; )
1963 while (pendingcnt [pri])
1964 {
1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1966
1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1968 /* ^ this is no longer true, as pending_w could be here */
1969
1970 p->w->pending = 0;
1971 EV_CB_INVOKE (p->w, p->events);
1972 EV_FREQUENT_CHECK;
1973 }
1974}
1975
1976#if EV_IDLE_ENABLE
1977/* make idle watchers pending. this handles the "call-idle */
1978/* only when higher priorities are idle" logic */
1979inline_size void
1980idle_reify (EV_P)
1981{
1982 if (expect_false (idleall))
1983 {
1984 int pri;
1985
1986 for (pri = NUMPRI; pri--; )
1987 {
1988 if (pendingcnt [pri])
1989 break;
1990
1991 if (idlecnt [pri])
1992 {
1993 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1994 break;
1995 }
1996 }
1997 }
1998}
1999#endif
2000
2001/* make timers pending */
2002inline_size void
2003timers_reify (EV_P)
2004{
2005 EV_FREQUENT_CHECK;
2006
2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2008 {
2009 do
2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2023
2024 ANHE_at_cache (timers [HEAP0]);
2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
2032 }
2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2034
2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
2036 }
2037}
2038
2039#if EV_PERIODIC_ENABLE
2040/* make periodics pending */
2041inline_size void
2042periodics_reify (EV_P)
2043{
2044 EV_FREQUENT_CHECK;
2045
2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2047 {
2048 int feed_count = 0;
2049
2050 do
2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2055
2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
2090 }
2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2092
2093 feed_reverse_done (EV_A_ EV_PERIODIC);
2094 }
2095}
2096
2097/* simply recalculate all periodics */
2098/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2099static void noinline
2100periodics_reschedule (EV_P)
2101{
2102 int i;
2103
2104 /* adjust periodics after time jump */
2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2108
2109 if (w->reschedule_cb)
2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2111 else if (w->interval)
2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118}
2119#endif
2120
2121/* adjust all timers by a given offset */
2122static void noinline
2123timers_reschedule (EV_P_ ev_tstamp adjust)
2124{
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
2128 {
2129 ANHE *he = timers + i + HEAP0;
2130 ANHE_w (*he)->at += adjust;
2131 ANHE_at_cache (*he);
2132 }
2133}
2134
2135/* fetch new monotonic and realtime times from the kernel */
2136/* also detetc if there was a timejump, and act accordingly */
2137inline_speed void
2138time_update (EV_P_ ev_tstamp max_block)
2139{
2140#if EV_USE_MONOTONIC
2141 if (expect_true (have_monotonic))
2142 {
2143 int i;
2144 ev_tstamp odiff = rtmn_diff;
2145
2146 mn_now = get_clock ();
2147
2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2149 /* interpolate in the meantime */
2150 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2151 {
2152 ev_rt_now = rtmn_diff + mn_now;
2153 return;
2154 }
2155
2156 now_floor = mn_now;
2157 ev_rt_now = ev_time ();
2158
2159 /* loop a few times, before making important decisions.
2160 * on the choice of "4": one iteration isn't enough,
2161 * in case we get preempted during the calls to
2162 * ev_time and get_clock. a second call is almost guaranteed
2163 * to succeed in that case, though. and looping a few more times
2164 * doesn't hurt either as we only do this on time-jumps or
2165 * in the unlikely event of having been preempted here.
2166 */
2167 for (i = 4; --i; )
2168 {
2169 rtmn_diff = ev_rt_now - mn_now;
2170
2171 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2172 return; /* all is well */
2173
2174 ev_rt_now = ev_time ();
2175 mn_now = get_clock ();
2176 now_floor = mn_now;
2177 }
2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2181# if EV_PERIODIC_ENABLE
2182 periodics_reschedule (EV_A);
511#endif 2183# endif
2184 }
2185 else
2186#endif
2187 {
2188 ev_rt_now = ev_time ();
512 2189
513 ev_io_stop (&sigev); 2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
514 close (sigpipe [0]); 2191 {
515 close (sigpipe [1]); 2192 /* adjust timers. this is easy, as the offset is the same for all of them */
516 pipe (sigpipe); 2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
517 siginit (); 2194#if EV_PERIODIC_ENABLE
2195 periodics_reschedule (EV_A);
2196#endif
2197 }
2198
2199 mn_now = ev_rt_now;
2200 }
2201}
2202
2203void
2204ev_loop (EV_P_ int flags)
2205{
2206#if EV_MINIMAL < 2
2207 ++loop_depth;
2208#endif
2209
2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
2212 loop_done = EVUNLOOP_CANCEL;
2213
2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2215
2216 do
2217 {
2218#if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220#endif
2221
2222#ifndef _WIN32
2223 if (expect_false (curpid)) /* penalise the forking check even more */
2224 if (expect_false (getpid () != curpid))
2225 {
2226 curpid = getpid ();
2227 postfork = 1;
2228 }
2229#endif
2230
2231#if EV_FORK_ENABLE
2232 /* we might have forked, so queue fork handlers */
2233 if (expect_false (postfork))
2234 if (forkcnt)
2235 {
2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2237 EV_INVOKE_PENDING;
2238 }
2239#endif
2240
2241 /* queue prepare watchers (and execute them) */
2242 if (expect_false (preparecnt))
2243 {
2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2245 EV_INVOKE_PENDING;
2246 }
2247
2248 if (expect_false (loop_done))
2249 break;
2250
2251 /* we might have forked, so reify kernel state if necessary */
2252 if (expect_false (postfork))
2253 loop_fork (EV_A);
2254
2255 /* update fd-related kernel structures */
2256 fd_reify (EV_A);
2257
2258 /* calculate blocking time */
2259 {
2260 ev_tstamp waittime = 0.;
2261 ev_tstamp sleeptime = 0.;
2262
2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2264 {
2265 /* remember old timestamp for io_blocktime calculation */
2266 ev_tstamp prev_mn_now = mn_now;
2267
2268 /* update time to cancel out callback processing overhead */
2269 time_update (EV_A_ 1e100);
2270
2271 waittime = MAX_BLOCKTIME;
2272
2273 if (timercnt)
2274 {
2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2276 if (waittime > to) waittime = to;
2277 }
2278
2279#if EV_PERIODIC_ENABLE
2280 if (periodiccnt)
2281 {
2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2283 if (waittime > to) waittime = to;
2284 }
2285#endif
2286
2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
2288 if (expect_false (waittime < timeout_blocktime))
2289 waittime = timeout_blocktime;
2290
2291 /* extra check because io_blocktime is commonly 0 */
2292 if (expect_false (io_blocktime))
2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
2301 ev_sleep (sleeptime);
2302 waittime -= sleeptime;
2303 }
2304 }
2305 }
2306
2307#if EV_MINIMAL < 2
2308 ++loop_count;
2309#endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2313
2314 /* update ev_rt_now, do magic */
2315 time_update (EV_A_ waittime + sleeptime);
2316 }
2317
2318 /* queue pending timers and reschedule them */
2319 timers_reify (EV_A); /* relative timers called last */
2320#if EV_PERIODIC_ENABLE
2321 periodics_reify (EV_A); /* absolute timers called first */
2322#endif
2323
2324#if EV_IDLE_ENABLE
2325 /* queue idle watchers unless other events are pending */
2326 idle_reify (EV_A);
2327#endif
2328
2329 /* queue check watchers, to be executed first */
2330 if (expect_false (checkcnt))
2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2332
2333 EV_INVOKE_PENDING;
2334 }
2335 while (expect_true (
2336 activecnt
2337 && !loop_done
2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2339 ));
2340
2341 if (loop_done == EVUNLOOP_ONE)
2342 loop_done = EVUNLOOP_CANCEL;
2343
2344#if EV_MINIMAL < 2
2345 --loop_depth;
2346#endif
2347}
2348
2349void
2350ev_unloop (EV_P_ int how)
2351{
2352 loop_done = how;
2353}
2354
2355void
2356ev_ref (EV_P)
2357{
2358 ++activecnt;
2359}
2360
2361void
2362ev_unref (EV_P)
2363{
2364 --activecnt;
2365}
2366
2367void
2368ev_now_update (EV_P)
2369{
2370 time_update (EV_A_ 1e100);
2371}
2372
2373void
2374ev_suspend (EV_P)
2375{
2376 ev_now_update (EV_A);
2377}
2378
2379void
2380ev_resume (EV_P)
2381{
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386#if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389#endif
518} 2390}
519 2391
520/*****************************************************************************/ 2392/*****************************************************************************/
2393/* singly-linked list management, used when the expected list length is short */
521 2394
522static void 2395inline_size void
523call_pending (void) 2396wlist_add (WL *head, WL elem)
524{ 2397{
525 while (pendingcnt) 2398 elem->next = *head;
526 { 2399 *head = elem;
527 ANPENDING *p = pendings + --pendingcnt; 2400}
528 2401
529 if (p->w) 2402inline_size void
2403wlist_del (WL *head, WL elem)
2404{
2405 while (*head)
2406 {
2407 if (expect_true (*head == elem))
530 { 2408 {
531 p->w->pending = 0; 2409 *head = elem->next;
532 p->w->cb (p->w, p->events); 2410 break;
533 } 2411 }
2412
2413 head = &(*head)->next;
2414 }
2415}
2416
2417/* internal, faster, version of ev_clear_pending */
2418inline_speed void
2419clear_pending (EV_P_ W w)
2420{
2421 if (w->pending)
534 } 2422 {
2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2424 w->pending = 0;
2425 }
535} 2426}
536 2427
537static void 2428int
538timers_reify (void) 2429ev_clear_pending (EV_P_ void *w)
539{ 2430{
540 while (timercnt && timers [0]->at <= now) 2431 W w_ = (W)w;
2432 int pending = w_->pending;
2433
2434 if (expect_true (pending))
2435 {
2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
2438 w_->pending = 0;
2439 return p->events;
2440 }
2441 else
2442 return 0;
2443}
2444
2445inline_size void
2446pri_adjust (EV_P_ W w)
2447{
2448 int pri = ev_priority (w);
2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2451 ev_set_priority (w, pri);
2452}
2453
2454inline_speed void
2455ev_start (EV_P_ W w, int active)
2456{
2457 pri_adjust (EV_A_ w);
2458 w->active = active;
2459 ev_ref (EV_A);
2460}
2461
2462inline_size void
2463ev_stop (EV_P_ W w)
2464{
2465 ev_unref (EV_A);
2466 w->active = 0;
2467}
2468
2469/*****************************************************************************/
2470
2471void noinline
2472ev_io_start (EV_P_ ev_io *w)
2473{
2474 int fd = w->fd;
2475
2476 if (expect_false (ev_is_active (w)))
2477 return;
2478
2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
2483
2484 ev_start (EV_A_ (W)w, 1);
2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2486 wlist_add (&anfds[fd].head, (WL)w);
2487
2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2489 w->events &= ~EV__IOFDSET;
2490
2491 EV_FREQUENT_CHECK;
2492}
2493
2494void noinline
2495ev_io_stop (EV_P_ ev_io *w)
2496{
2497 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w)))
2499 return;
2500
2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2502
2503 EV_FREQUENT_CHECK;
2504
2505 wlist_del (&anfds[w->fd].head, (WL)w);
2506 ev_stop (EV_A_ (W)w);
2507
2508 fd_change (EV_A_ w->fd, 1);
2509
2510 EV_FREQUENT_CHECK;
2511}
2512
2513void noinline
2514ev_timer_start (EV_P_ ev_timer *w)
2515{
2516 if (expect_false (ev_is_active (w)))
2517 return;
2518
2519 ev_at (w) += mn_now;
2520
2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
2529 ANHE_at_cache (timers [ev_active (w)]);
2530 upheap (timers, ev_active (w));
2531
2532 EV_FREQUENT_CHECK;
2533
2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2535}
2536
2537void noinline
2538ev_timer_stop (EV_P_ ev_timer *w)
2539{
2540 clear_pending (EV_A_ (W)w);
2541 if (expect_false (!ev_is_active (w)))
2542 return;
2543
2544 EV_FREQUENT_CHECK;
2545
2546 {
2547 int active = ev_active (w);
2548
2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2550
2551 --timercnt;
2552
2553 if (expect_true (active < timercnt + HEAP0))
541 { 2554 {
542 struct ev_timer *w = timers [0]; 2555 timers [active] = timers [timercnt + HEAP0];
2556 adjustheap (timers, timercnt, active);
2557 }
2558 }
543 2559
544 /* first reschedule or stop timer */ 2560 EV_FREQUENT_CHECK;
2561
2562 ev_at (w) -= mn_now;
2563
2564 ev_stop (EV_A_ (W)w);
2565}
2566
2567void noinline
2568ev_timer_again (EV_P_ ev_timer *w)
2569{
2570 EV_FREQUENT_CHECK;
2571
2572 if (ev_is_active (w))
2573 {
545 if (w->repeat) 2574 if (w->repeat)
546 { 2575 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 2576 ev_at (w) = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 2577 ANHE_at_cache (timers [ev_active (w)]);
2578 adjustheap (timers, timercnt, ev_active (w));
550 } 2579 }
551 else 2580 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 2581 ev_timer_stop (EV_A_ w);
553
554 event ((W)w, EV_TIMEOUT);
555 }
556}
557
558static void
559periodics_reify (void)
560{
561 while (periodiccnt && periodics [0]->at <= ev_now)
562 { 2582 }
563 struct ev_periodic *w = periodics [0]; 2583 else if (w->repeat)
2584 {
2585 ev_at (w) = w->repeat;
2586 ev_timer_start (EV_A_ w);
2587 }
564 2588
565 /* first reschedule or stop timer */ 2589 EV_FREQUENT_CHECK;
2590}
2591
2592ev_tstamp
2593ev_timer_remaining (EV_P_ ev_timer *w)
2594{
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2596}
2597
2598#if EV_PERIODIC_ENABLE
2599void noinline
2600ev_periodic_start (EV_P_ ev_periodic *w)
2601{
2602 if (expect_false (ev_is_active (w)))
2603 return;
2604
2605 if (w->reschedule_cb)
2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
566 if (w->interval) 2607 else if (w->interval)
2608 {
2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2610 /* this formula differs from the one in periodic_reify because we do not always round up */
2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2612 }
2613 else
2614 ev_at (w) = w->offset;
2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2622 ANHE_at_cache (periodics [ev_active (w)]);
2623 upheap (periodics, ev_active (w));
2624
2625 EV_FREQUENT_CHECK;
2626
2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2628}
2629
2630void noinline
2631ev_periodic_stop (EV_P_ ev_periodic *w)
2632{
2633 clear_pending (EV_A_ (W)w);
2634 if (expect_false (!ev_is_active (w)))
2635 return;
2636
2637 EV_FREQUENT_CHECK;
2638
2639 {
2640 int active = ev_active (w);
2641
2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2643
2644 --periodiccnt;
2645
2646 if (expect_true (active < periodiccnt + HEAP0))
2647 {
2648 periodics [active] = periodics [periodiccnt + HEAP0];
2649 adjustheap (periodics, periodiccnt, active);
2650 }
2651 }
2652
2653 EV_FREQUENT_CHECK;
2654
2655 ev_stop (EV_A_ (W)w);
2656}
2657
2658void noinline
2659ev_periodic_again (EV_P_ ev_periodic *w)
2660{
2661 /* TODO: use adjustheap and recalculation */
2662 ev_periodic_stop (EV_A_ w);
2663 ev_periodic_start (EV_A_ w);
2664}
2665#endif
2666
2667#ifndef SA_RESTART
2668# define SA_RESTART 0
2669#endif
2670
2671void noinline
2672ev_signal_start (EV_P_ ev_signal *w)
2673{
2674 if (expect_false (ev_is_active (w)))
2675 return;
2676
2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2678
2679#if EV_MULTIPLICITY
2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2682
2683 signals [w->signum - 1].loop = EV_A;
2684#endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688#if EV_USE_SIGNALFD
2689 if (sigfd == -2)
2690 {
2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2692 if (sigfd < 0 && errno == EINVAL)
2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2694
2695 if (sigfd >= 0)
567 { 2696 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 2697 fd_intern (sigfd); /* doing it twice will not hurt */
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 2698
570 downheap ((WT *)periodics, periodiccnt, 0); 2699 sigemptyset (&sigfd_set);
2700
2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716#endif
2717
2718 ev_start (EV_A_ (W)w, 1);
2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
2720
2721 if (!((WL)w)->next)
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
2724# endif
2725 {
2726# if _WIN32
2727 signal (w->signum, ev_sighandler);
2728# else
2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
2733 sa.sa_handler = ev_sighandler;
2734 sigfillset (&sa.sa_mask);
2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2741#endif
2742 }
2743
2744 EV_FREQUENT_CHECK;
2745}
2746
2747void noinline
2748ev_signal_stop (EV_P_ ev_signal *w)
2749{
2750 clear_pending (EV_A_ (W)w);
2751 if (expect_false (!ev_is_active (w)))
2752 return;
2753
2754 EV_FREQUENT_CHECK;
2755
2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
2757 ev_stop (EV_A_ (W)w);
2758
2759 if (!signals [w->signum - 1].head)
2760 {
2761#if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763#endif
2764#if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
571 } 2772 }
572 else 2773 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 2774#endif
574 2775 signal (w->signum, SIG_DFL);
575 event ((W)w, EV_PERIODIC);
576 }
577}
578
579static void
580periodics_reschedule (ev_tstamp diff)
581{
582 int i;
583
584 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i)
586 { 2776 }
587 struct ev_periodic *w = periodics [i];
588 2777
589 if (w->interval) 2778 EV_FREQUENT_CHECK;
2779}
2780
2781void
2782ev_child_start (EV_P_ ev_child *w)
2783{
2784#if EV_MULTIPLICITY
2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2786#endif
2787 if (expect_false (ev_is_active (w)))
2788 return;
2789
2790 EV_FREQUENT_CHECK;
2791
2792 ev_start (EV_A_ (W)w, 1);
2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2794
2795 EV_FREQUENT_CHECK;
2796}
2797
2798void
2799ev_child_stop (EV_P_ ev_child *w)
2800{
2801 clear_pending (EV_A_ (W)w);
2802 if (expect_false (!ev_is_active (w)))
2803 return;
2804
2805 EV_FREQUENT_CHECK;
2806
2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2808 ev_stop (EV_A_ (W)w);
2809
2810 EV_FREQUENT_CHECK;
2811}
2812
2813#if EV_STAT_ENABLE
2814
2815# ifdef _WIN32
2816# undef lstat
2817# define lstat(a,b) _stati64 (a,b)
2818# endif
2819
2820#define DEF_STAT_INTERVAL 5.0074891
2821#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2822#define MIN_STAT_INTERVAL 0.1074891
2823
2824static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2825
2826#if EV_USE_INOTIFY
2827# define EV_INOTIFY_BUFSIZE 8192
2828
2829static void noinline
2830infy_add (EV_P_ ev_stat *w)
2831{
2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2833
2834 if (w->wd < 0)
2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2838
2839 /* monitor some parent directory for speedup hints */
2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2841 /* but an efficiency issue only */
2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
590 { 2843 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 2844 char path [4096];
2845 strcpy (path, w->path);
592 2846
593 if (fabs (diff) >= 1e-4) 2847 do
594 { 2848 {
595 ev_periodic_stop (w); 2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
596 ev_periodic_start (w); 2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
597 2851
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 2852 char *pend = strrchr (path, '/');
2853
2854 if (!pend || pend == path)
2855 break;
2856
2857 *pend = 0;
2858 w->wd = inotify_add_watch (fs_fd, path, mask);
2859 }
2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2861 }
2862 }
2863
2864 if (w->wd >= 0)
2865 {
2866 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2867
2868 /* now local changes will be tracked by inotify, but remote changes won't */
2869 /* unless the filesystem it known to be local, we therefore still poll */
2870 /* also do poll on <2.6.25, but with normal frequency */
2871 struct statfs sfs;
2872
2873 if (fs_2625 && !statfs (w->path, &sfs))
2874 if (sfs.f_type == 0x1373 /* devfs */
2875 || sfs.f_type == 0xEF53 /* ext2/3 */
2876 || sfs.f_type == 0x3153464a /* jfs */
2877 || sfs.f_type == 0x52654973 /* reiser3 */
2878 || sfs.f_type == 0x01021994 /* tempfs */
2879 || sfs.f_type == 0x58465342 /* xfs */)
2880 return;
2881
2882 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2883 ev_timer_again (EV_A_ &w->timer);
2884 }
2885}
2886
2887static void noinline
2888infy_del (EV_P_ ev_stat *w)
2889{
2890 int slot;
2891 int wd = w->wd;
2892
2893 if (wd < 0)
2894 return;
2895
2896 w->wd = -2;
2897 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2898 wlist_del (&fs_hash [slot].head, (WL)w);
2899
2900 /* remove this watcher, if others are watching it, they will rearm */
2901 inotify_rm_watch (fs_fd, wd);
2902}
2903
2904static void noinline
2905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2906{
2907 if (slot < 0)
2908 /* overflow, need to check for all hash slots */
2909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2910 infy_wd (EV_A_ slot, wd, ev);
2911 else
2912 {
2913 WL w_;
2914
2915 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2916 {
2917 ev_stat *w = (ev_stat *)w_;
2918 w_ = w_->next; /* lets us remove this watcher and all before it */
2919
2920 if (w->wd == wd || wd == -1)
2921 {
2922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2923 {
2924 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2925 w->wd = -1;
2926 infy_add (EV_A_ w); /* re-add, no matter what */
2927 }
2928
2929 stat_timer_cb (EV_A_ &w->timer, 0);
599 } 2930 }
600 } 2931 }
601 } 2932 }
602} 2933}
603 2934
604static void 2935static void
605time_update (void) 2936infy_cb (EV_P_ ev_io *w, int revents)
606{ 2937{
2938 char buf [EV_INOTIFY_BUFSIZE];
2939 struct inotify_event *ev = (struct inotify_event *)buf;
607 int i; 2940 int ofs;
2941 int len = read (fs_fd, buf, sizeof (buf));
608 2942
609 ev_now = ev_time (); 2943 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2944 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2945}
610 2946
611 if (have_monotonic) 2947inline_size void
2948check_2625 (EV_P)
2949{
2950 /* kernels < 2.6.25 are borked
2951 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2952 */
2953 struct utsname buf;
2954 int major, minor, micro;
2955
2956 if (uname (&buf))
2957 return;
2958
2959 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2960 return;
2961
2962 if (major < 2
2963 || (major == 2 && minor < 6)
2964 || (major == 2 && minor == 6 && micro < 25))
2965 return;
2966
2967 fs_2625 = 1;
2968}
2969
2970inline_size void
2971infy_init (EV_P)
2972{
2973 if (fs_fd != -2)
2974 return;
2975
2976 fs_fd = -1;
2977
2978 check_2625 (EV_A);
2979
2980 fs_fd = inotify_init ();
2981
2982 if (fs_fd >= 0)
2983 {
2984 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2985 ev_set_priority (&fs_w, EV_MAXPRI);
2986 ev_io_start (EV_A_ &fs_w);
612 { 2987 }
613 ev_tstamp odiff = diff; 2988}
614 2989
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2990inline_size void
2991infy_fork (EV_P)
2992{
2993 int slot;
2994
2995 if (fs_fd < 0)
2996 return;
2997
2998 close (fs_fd);
2999 fs_fd = inotify_init ();
3000
3001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3002 {
3003 WL w_ = fs_hash [slot].head;
3004 fs_hash [slot].head = 0;
3005
3006 while (w_)
616 { 3007 {
617 now = get_clock (); 3008 ev_stat *w = (ev_stat *)w_;
618 diff = ev_now - now; 3009 w_ = w_->next; /* lets us add this watcher */
619 3010
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 3011 w->wd = -1;
621 return; /* all is well */
622 3012
623 ev_now = ev_time (); 3013 if (fs_fd >= 0)
3014 infy_add (EV_A_ w); /* re-add, no matter what */
3015 else
3016 ev_timer_again (EV_A_ &w->timer);
624 } 3017 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 3018 }
3019}
3020
3021#endif
3022
3023#ifdef _WIN32
3024# define EV_LSTAT(p,b) _stati64 (p, b)
3025#else
3026# define EV_LSTAT(p,b) lstat (p, b)
3027#endif
3028
3029void
3030ev_stat_stat (EV_P_ ev_stat *w)
3031{
3032 if (lstat (w->path, &w->attr) < 0)
3033 w->attr.st_nlink = 0;
3034 else if (!w->attr.st_nlink)
3035 w->attr.st_nlink = 1;
3036}
3037
3038static void noinline
3039stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3040{
3041 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3042
3043 /* we copy this here each the time so that */
3044 /* prev has the old value when the callback gets invoked */
3045 w->prev = w->attr;
3046 ev_stat_stat (EV_A_ w);
3047
3048 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3049 if (
3050 w->prev.st_dev != w->attr.st_dev
3051 || w->prev.st_ino != w->attr.st_ino
3052 || w->prev.st_mode != w->attr.st_mode
3053 || w->prev.st_nlink != w->attr.st_nlink
3054 || w->prev.st_uid != w->attr.st_uid
3055 || w->prev.st_gid != w->attr.st_gid
3056 || w->prev.st_rdev != w->attr.st_rdev
3057 || w->prev.st_size != w->attr.st_size
3058 || w->prev.st_atime != w->attr.st_atime
3059 || w->prev.st_mtime != w->attr.st_mtime
3060 || w->prev.st_ctime != w->attr.st_ctime
3061 ) {
3062 #if EV_USE_INOTIFY
3063 if (fs_fd >= 0)
3064 {
3065 infy_del (EV_A_ w);
3066 infy_add (EV_A_ w);
3067 ev_stat_stat (EV_A_ w); /* avoid race... */
3068 }
3069 #endif
3070
3071 ev_feed_event (EV_A_ w, EV_STAT);
3072 }
3073}
3074
3075void
3076ev_stat_start (EV_P_ ev_stat *w)
3077{
3078 if (expect_false (ev_is_active (w)))
3079 return;
3080
3081 ev_stat_stat (EV_A_ w);
3082
3083 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3084 w->interval = MIN_STAT_INTERVAL;
3085
3086 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3087 ev_set_priority (&w->timer, ev_priority (w));
3088
3089#if EV_USE_INOTIFY
3090 infy_init (EV_A);
3091
3092 if (fs_fd >= 0)
3093 infy_add (EV_A_ w);
629 else 3094 else
3095#endif
3096 ev_timer_again (EV_A_ &w->timer);
3097
3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
3101}
3102
3103void
3104ev_stat_stop (EV_P_ ev_stat *w)
3105{
3106 clear_pending (EV_A_ (W)w);
3107 if (expect_false (!ev_is_active (w)))
3108 return;
3109
3110 EV_FREQUENT_CHECK;
3111
3112#if EV_USE_INOTIFY
3113 infy_del (EV_A_ w);
3114#endif
3115 ev_timer_stop (EV_A_ &w->timer);
3116
3117 ev_stop (EV_A_ (W)w);
3118
3119 EV_FREQUENT_CHECK;
3120}
3121#endif
3122
3123#if EV_IDLE_ENABLE
3124void
3125ev_idle_start (EV_P_ ev_idle *w)
3126{
3127 if (expect_false (ev_is_active (w)))
3128 return;
3129
3130 pri_adjust (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
3133
630 { 3134 {
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 3135 int active = ++idlecnt [ABSPRI (w)];
3136
3137 ++idleall;
3138 ev_start (EV_A_ (W)w, active);
3139
3140 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3141 idles [ABSPRI (w)][active - 1] = w;
3142 }
3143
3144 EV_FREQUENT_CHECK;
3145}
3146
3147void
3148ev_idle_stop (EV_P_ ev_idle *w)
3149{
3150 clear_pending (EV_A_ (W)w);
3151 if (expect_false (!ev_is_active (w)))
3152 return;
3153
3154 EV_FREQUENT_CHECK;
3155
3156 {
3157 int active = ev_active (w);
3158
3159 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3160 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3161
3162 ev_stop (EV_A_ (W)w);
3163 --idleall;
3164 }
3165
3166 EV_FREQUENT_CHECK;
3167}
3168#endif
3169
3170void
3171ev_prepare_start (EV_P_ ev_prepare *w)
3172{
3173 if (expect_false (ev_is_active (w)))
3174 return;
3175
3176 EV_FREQUENT_CHECK;
3177
3178 ev_start (EV_A_ (W)w, ++preparecnt);
3179 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3180 prepares [preparecnt - 1] = w;
3181
3182 EV_FREQUENT_CHECK;
3183}
3184
3185void
3186ev_prepare_stop (EV_P_ ev_prepare *w)
3187{
3188 clear_pending (EV_A_ (W)w);
3189 if (expect_false (!ev_is_active (w)))
3190 return;
3191
3192 EV_FREQUENT_CHECK;
3193
3194 {
3195 int active = ev_active (w);
3196
3197 prepares [active - 1] = prepares [--preparecnt];
3198 ev_active (prepares [active - 1]) = active;
3199 }
3200
3201 ev_stop (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
3204}
3205
3206void
3207ev_check_start (EV_P_ ev_check *w)
3208{
3209 if (expect_false (ev_is_active (w)))
3210 return;
3211
3212 EV_FREQUENT_CHECK;
3213
3214 ev_start (EV_A_ (W)w, ++checkcnt);
3215 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3216 checks [checkcnt - 1] = w;
3217
3218 EV_FREQUENT_CHECK;
3219}
3220
3221void
3222ev_check_stop (EV_P_ ev_check *w)
3223{
3224 clear_pending (EV_A_ (W)w);
3225 if (expect_false (!ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230 {
3231 int active = ev_active (w);
3232
3233 checks [active - 1] = checks [--checkcnt];
3234 ev_active (checks [active - 1]) = active;
3235 }
3236
3237 ev_stop (EV_A_ (W)w);
3238
3239 EV_FREQUENT_CHECK;
3240}
3241
3242#if EV_EMBED_ENABLE
3243void noinline
3244ev_embed_sweep (EV_P_ ev_embed *w)
3245{
3246 ev_loop (w->other, EVLOOP_NONBLOCK);
3247}
3248
3249static void
3250embed_io_cb (EV_P_ ev_io *io, int revents)
3251{
3252 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3253
3254 if (ev_cb (w))
3255 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3256 else
3257 ev_loop (w->other, EVLOOP_NONBLOCK);
3258}
3259
3260static void
3261embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3262{
3263 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3264
3265 {
3266 EV_P = w->other;
3267
3268 while (fdchangecnt)
632 { 3269 {
633 periodics_reschedule (ev_now - now); 3270 fd_reify (EV_A);
634 3271 ev_loop (EV_A_ EVLOOP_NONBLOCK);
635 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff;
638 } 3272 }
639
640 now = ev_now;
641 } 3273 }
642} 3274}
643 3275
644int ev_loop_done; 3276static void
645 3277embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
646void ev_loop (int flags)
647{ 3278{
648 double block; 3279 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 3280
651 do 3281 ev_embed_stop (EV_A_ w);
3282
652 { 3283 {
653 /* queue check watchers (and execute them) */ 3284 EV_P = w->other;
654 if (preparecnt)
655 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
657 call_pending ();
658 }
659 3285
660 /* update fd-related kernel structures */ 3286 ev_loop_fork (EV_A);
661 fd_reify (); 3287 ev_loop (EV_A_ EVLOOP_NONBLOCK);
662
663 /* calculate blocking time */
664
665 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */
667 ev_now = ev_time ();
668
669 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.;
671 else
672 {
673 block = MAX_BLOCKTIME;
674
675 if (timercnt)
676 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
678 if (block > to) block = to;
679 }
680
681 if (periodiccnt)
682 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
684 if (block > to) block = to;
685 }
686
687 if (block < 0.) block = 0.;
688 }
689
690 method_poll (block);
691
692 /* update ev_now, do magic */
693 time_update ();
694
695 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */
698
699 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE);
702
703 /* queue check watchers, to be executed first */
704 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK);
706
707 call_pending ();
708 } 3288 }
709 while (!ev_loop_done);
710 3289
711 if (ev_loop_done != 2) 3290 ev_embed_start (EV_A_ w);
712 ev_loop_done = 0;
713} 3291}
3292
3293#if 0
3294static void
3295embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3296{
3297 ev_idle_stop (EV_A_ idle);
3298}
3299#endif
3300
3301void
3302ev_embed_start (EV_P_ ev_embed *w)
3303{
3304 if (expect_false (ev_is_active (w)))
3305 return;
3306
3307 {
3308 EV_P = w->other;
3309 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3310 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3311 }
3312
3313 EV_FREQUENT_CHECK;
3314
3315 ev_set_priority (&w->io, ev_priority (w));
3316 ev_io_start (EV_A_ &w->io);
3317
3318 ev_prepare_init (&w->prepare, embed_prepare_cb);
3319 ev_set_priority (&w->prepare, EV_MINPRI);
3320 ev_prepare_start (EV_A_ &w->prepare);
3321
3322 ev_fork_init (&w->fork, embed_fork_cb);
3323 ev_fork_start (EV_A_ &w->fork);
3324
3325 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3326
3327 ev_start (EV_A_ (W)w, 1);
3328
3329 EV_FREQUENT_CHECK;
3330}
3331
3332void
3333ev_embed_stop (EV_P_ ev_embed *w)
3334{
3335 clear_pending (EV_A_ (W)w);
3336 if (expect_false (!ev_is_active (w)))
3337 return;
3338
3339 EV_FREQUENT_CHECK;
3340
3341 ev_io_stop (EV_A_ &w->io);
3342 ev_prepare_stop (EV_A_ &w->prepare);
3343 ev_fork_stop (EV_A_ &w->fork);
3344
3345 EV_FREQUENT_CHECK;
3346}
3347#endif
3348
3349#if EV_FORK_ENABLE
3350void
3351ev_fork_start (EV_P_ ev_fork *w)
3352{
3353 if (expect_false (ev_is_active (w)))
3354 return;
3355
3356 EV_FREQUENT_CHECK;
3357
3358 ev_start (EV_A_ (W)w, ++forkcnt);
3359 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3360 forks [forkcnt - 1] = w;
3361
3362 EV_FREQUENT_CHECK;
3363}
3364
3365void
3366ev_fork_stop (EV_P_ ev_fork *w)
3367{
3368 clear_pending (EV_A_ (W)w);
3369 if (expect_false (!ev_is_active (w)))
3370 return;
3371
3372 EV_FREQUENT_CHECK;
3373
3374 {
3375 int active = ev_active (w);
3376
3377 forks [active - 1] = forks [--forkcnt];
3378 ev_active (forks [active - 1]) = active;
3379 }
3380
3381 ev_stop (EV_A_ (W)w);
3382
3383 EV_FREQUENT_CHECK;
3384}
3385#endif
3386
3387#if EV_ASYNC_ENABLE
3388void
3389ev_async_start (EV_P_ ev_async *w)
3390{
3391 if (expect_false (ev_is_active (w)))
3392 return;
3393
3394 evpipe_init (EV_A);
3395
3396 EV_FREQUENT_CHECK;
3397
3398 ev_start (EV_A_ (W)w, ++asynccnt);
3399 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3400 asyncs [asynccnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
3403}
3404
3405void
3406ev_async_stop (EV_P_ ev_async *w)
3407{
3408 clear_pending (EV_A_ (W)w);
3409 if (expect_false (!ev_is_active (w)))
3410 return;
3411
3412 EV_FREQUENT_CHECK;
3413
3414 {
3415 int active = ev_active (w);
3416
3417 asyncs [active - 1] = asyncs [--asynccnt];
3418 ev_active (asyncs [active - 1]) = active;
3419 }
3420
3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
3424}
3425
3426void
3427ev_async_send (EV_P_ ev_async *w)
3428{
3429 w->sent = 1;
3430 evpipe_write (EV_A_ &async_pending);
3431}
3432#endif
714 3433
715/*****************************************************************************/ 3434/*****************************************************************************/
716 3435
717static void
718wlist_add (WL *head, WL elem)
719{
720 elem->next = *head;
721 *head = elem;
722}
723
724static void
725wlist_del (WL *head, WL elem)
726{
727 while (*head)
728 {
729 if (*head == elem)
730 {
731 *head = elem->next;
732 return;
733 }
734
735 head = &(*head)->next;
736 }
737}
738
739static void
740ev_clear_pending (W w)
741{
742 if (w->pending)
743 {
744 pendings [w->pending - 1].w = 0;
745 w->pending = 0;
746 }
747}
748
749static void
750ev_start (W w, int active)
751{
752 w->active = active;
753}
754
755static void
756ev_stop (W w)
757{
758 w->active = 0;
759}
760
761/*****************************************************************************/
762
763void
764ev_io_start (struct ev_io *w)
765{
766 if (ev_is_active (w))
767 return;
768
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0));
772
773 ev_start ((W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776
777 fd_change (fd);
778}
779
780void
781ev_io_stop (struct ev_io *w)
782{
783 ev_clear_pending ((W)w);
784 if (!ev_is_active (w))
785 return;
786
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w);
789
790 fd_change (w->fd);
791}
792
793void
794ev_timer_start (struct ev_timer *w)
795{
796 if (ev_is_active (w))
797 return;
798
799 w->at += now;
800
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802
803 ev_start ((W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1);
807}
808
809void
810ev_timer_stop (struct ev_timer *w)
811{
812 ev_clear_pending ((W)w);
813 if (!ev_is_active (w))
814 return;
815
816 if (w->active < timercnt--)
817 {
818 timers [w->active - 1] = timers [timercnt];
819 downheap ((WT *)timers, timercnt, w->active - 1);
820 }
821
822 w->at = w->repeat;
823
824 ev_stop ((W)w);
825}
826
827void
828ev_timer_again (struct ev_timer *w)
829{
830 if (ev_is_active (w))
831 {
832 if (w->repeat)
833 {
834 w->at = now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1);
836 }
837 else
838 ev_timer_stop (w);
839 }
840 else if (w->repeat)
841 ev_timer_start (w);
842}
843
844void
845ev_periodic_start (struct ev_periodic *w)
846{
847 if (ev_is_active (w))
848 return;
849
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851
852 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
855
856 ev_start ((W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, );
858 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1);
860}
861
862void
863ev_periodic_stop (struct ev_periodic *w)
864{
865 ev_clear_pending ((W)w);
866 if (!ev_is_active (w))
867 return;
868
869 if (w->active < periodiccnt--)
870 {
871 periodics [w->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1);
873 }
874
875 ev_stop ((W)w);
876}
877
878void
879ev_signal_start (struct ev_signal *w)
880{
881 if (ev_is_active (w))
882 return;
883
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885
886 ev_start ((W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889
890 if (!w->next)
891 {
892 struct sigaction sa;
893 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0;
896 sigaction (w->signum, &sa, 0);
897 }
898}
899
900void
901ev_signal_stop (struct ev_signal *w)
902{
903 ev_clear_pending ((W)w);
904 if (!ev_is_active (w))
905 return;
906
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w);
909
910 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL);
912}
913
914void
915ev_idle_start (struct ev_idle *w)
916{
917 if (ev_is_active (w))
918 return;
919
920 ev_start ((W)w, ++idlecnt);
921 array_needsize (idles, idlemax, idlecnt, );
922 idles [idlecnt - 1] = w;
923}
924
925void
926ev_idle_stop (struct ev_idle *w)
927{
928 ev_clear_pending ((W)w);
929 if (ev_is_active (w))
930 return;
931
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w);
999}
1000
1001/*****************************************************************************/
1002
1003struct ev_once 3436struct ev_once
1004{ 3437{
1005 struct ev_io io; 3438 ev_io io;
1006 struct ev_timer to; 3439 ev_timer to;
1007 void (*cb)(int revents, void *arg); 3440 void (*cb)(int revents, void *arg);
1008 void *arg; 3441 void *arg;
1009}; 3442};
1010 3443
1011static void 3444static void
1012once_cb (struct ev_once *once, int revents) 3445once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 3446{
1014 void (*cb)(int revents, void *arg) = once->cb; 3447 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 3448 void *arg = once->arg;
1016 3449
1017 ev_io_stop (&once->io); 3450 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 3451 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 3452 ev_free (once);
1020 3453
1021 cb (revents, arg); 3454 cb (revents, arg);
1022} 3455}
1023 3456
1024static void 3457static void
1025once_cb_io (struct ev_io *w, int revents) 3458once_cb_io (EV_P_ ev_io *w, int revents)
1026{ 3459{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3460 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3461
3462 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1028} 3463}
1029 3464
1030static void 3465static void
1031once_cb_to (struct ev_timer *w, int revents) 3466once_cb_to (EV_P_ ev_timer *w, int revents)
1032{ 3467{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3468 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1034}
1035 3469
3470 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3471}
3472
1036void 3473void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3474ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 3475{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 3476 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1040 3477
1041 if (!once) 3478 if (expect_false (!once))
3479 {
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3480 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1043 else 3481 return;
1044 { 3482 }
3483
1045 once->cb = cb; 3484 once->cb = cb;
1046 once->arg = arg; 3485 once->arg = arg;
1047 3486
1048 ev_watcher_init (&once->io, once_cb_io); 3487 ev_init (&once->io, once_cb_io);
1049 if (fd >= 0) 3488 if (fd >= 0)
3489 {
3490 ev_io_set (&once->io, fd, events);
3491 ev_io_start (EV_A_ &once->io);
3492 }
3493
3494 ev_init (&once->to, once_cb_to);
3495 if (timeout >= 0.)
3496 {
3497 ev_timer_set (&once->to, timeout, 0.);
3498 ev_timer_start (EV_A_ &once->to);
3499 }
3500}
3501
3502/*****************************************************************************/
3503
3504#if EV_WALK_ENABLE
3505void
3506ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3507{
3508 int i, j;
3509 ev_watcher_list *wl, *wn;
3510
3511 if (types & (EV_IO | EV_EMBED))
3512 for (i = 0; i < anfdmax; ++i)
3513 for (wl = anfds [i].head; wl; )
1050 { 3514 {
1051 ev_io_set (&once->io, fd, events); 3515 wn = wl->next;
1052 ev_io_start (&once->io); 3516
3517#if EV_EMBED_ENABLE
3518 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3519 {
3520 if (types & EV_EMBED)
3521 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3522 }
3523 else
3524#endif
3525#if EV_USE_INOTIFY
3526 if (ev_cb ((ev_io *)wl) == infy_cb)
3527 ;
3528 else
3529#endif
3530 if ((ev_io *)wl != &pipe_w)
3531 if (types & EV_IO)
3532 cb (EV_A_ EV_IO, wl);
3533
3534 wl = wn;
1053 } 3535 }
1054 3536
1055 ev_watcher_init (&once->to, once_cb_to); 3537 if (types & (EV_TIMER | EV_STAT))
1056 if (timeout >= 0.) 3538 for (i = timercnt + HEAP0; i-- > HEAP0; )
3539#if EV_STAT_ENABLE
3540 /*TODO: timer is not always active*/
3541 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1057 { 3542 {
1058 ev_timer_set (&once->to, timeout, 0.); 3543 if (types & EV_STAT)
1059 ev_timer_start (&once->to); 3544 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1060 } 3545 }
1061 } 3546 else
1062} 3547#endif
3548 if (types & EV_TIMER)
3549 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1063 3550
1064/*****************************************************************************/ 3551#if EV_PERIODIC_ENABLE
3552 if (types & EV_PERIODIC)
3553 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3554 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3555#endif
1065 3556
1066#if 0 3557#if EV_IDLE_ENABLE
3558 if (types & EV_IDLE)
3559 for (j = NUMPRI; i--; )
3560 for (i = idlecnt [j]; i--; )
3561 cb (EV_A_ EV_IDLE, idles [j][i]);
3562#endif
1067 3563
1068struct ev_io wio; 3564#if EV_FORK_ENABLE
3565 if (types & EV_FORK)
3566 for (i = forkcnt; i--; )
3567 if (ev_cb (forks [i]) != embed_fork_cb)
3568 cb (EV_A_ EV_FORK, forks [i]);
3569#endif
1069 3570
1070static void 3571#if EV_ASYNC_ENABLE
1071sin_cb (struct ev_io *w, int revents) 3572 if (types & EV_ASYNC)
1072{ 3573 for (i = asynccnt; i--; )
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3574 cb (EV_A_ EV_ASYNC, asyncs [i]);
1074} 3575#endif
1075 3576
1076static void 3577 if (types & EV_PREPARE)
1077ocb (struct ev_timer *w, int revents) 3578 for (i = preparecnt; i--; )
1078{ 3579#if EV_EMBED_ENABLE
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3580 if (ev_cb (prepares [i]) != embed_prepare_cb)
1080 ev_timer_stop (w); 3581#endif
1081 ev_timer_start (w); 3582 cb (EV_A_ EV_PREPARE, prepares [i]);
1082}
1083 3583
1084static void 3584 if (types & EV_CHECK)
1085scb (struct ev_signal *w, int revents) 3585 for (i = checkcnt; i--; )
1086{ 3586 cb (EV_A_ EV_CHECK, checks [i]);
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091 3587
1092static void 3588 if (types & EV_SIGNAL)
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i) 3589 for (i = 0; i < EV_NSIG - 1; ++i)
1111 { 3590 for (wl = signals [i].head; wl; )
1112 struct ev_timer *w = t + i; 3591 {
1113 ev_watcher_init (w, ocb, i); 3592 wn = wl->next;
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3593 cb (EV_A_ EV_SIGNAL, wl);
1115 ev_timer_start (w); 3594 wl = wn;
1116 if (drand48 () < 0.5) 3595 }
1117 ev_timer_stop (w);
1118 }
1119#endif
1120 3596
1121 struct ev_timer t1; 3597 if (types & EV_CHILD)
1122 ev_timer_init (&t1, ocb, 5, 10); 3598 for (i = EV_PID_HASHSIZE; i--; )
1123 ev_timer_start (&t1); 3599 for (wl = childs [i]; wl; )
1124 3600 {
1125 struct ev_signal sig; 3601 wn = wl->next;
1126 ev_signal_init (&sig, scb, SIGQUIT); 3602 cb (EV_A_ EV_CHILD, wl);
1127 ev_signal_start (&sig); 3603 wl = wn;
1128 3604 }
1129 struct ev_check cw; 3605/* EV_STAT 0x00001000 /* stat data changed */
1130 ev_check_init (&cw, gcb); 3606/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140} 3607}
1141
1142#endif 3608#endif
1143 3609
3610#if EV_MULTIPLICITY
3611 #include "ev_wrap.h"
3612#endif
1144 3613
3614#ifdef __cplusplus
3615}
3616#endif
1145 3617
1146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines