ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.55 by root, Sun Nov 4 00:39:24 2007 UTC vs.
Revision 1.311 by root, Wed Jul 29 09:36:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
33#endif 154#endif
34 155
35#include <math.h> 156#include <math.h>
36#include <stdlib.h> 157#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 158#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 159#include <stddef.h>
41 160
42#include <stdio.h> 161#include <stdio.h>
43 162
44#include <assert.h> 163#include <assert.h>
45#include <errno.h> 164#include <errno.h>
46#include <sys/types.h> 165#include <sys/types.h>
166#include <time.h>
167
168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
47#ifndef WIN32 176#ifndef _WIN32
177# include <sys/time.h>
48# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
49#endif 186# endif
50#include <sys/time.h> 187#endif
51#include <time.h>
52 188
53/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
54 225
55#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
56# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
232#endif
233
234#ifndef EV_USE_REALTIME
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
57#endif 244#endif
58 245
59#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
61#endif 248#endif
62 249
63#ifndef EV_USEV_POLL 250#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 251# ifdef _WIN32
252# define EV_USE_POLL 0
253# else
254# define EV_USE_POLL 1
255# endif
65#endif 256#endif
66 257
67#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
68# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
69#endif 264#endif
70 265
71#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
73#endif 268#endif
74 269
75#ifndef EV_USE_REALTIME 270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
77#endif 279# endif
280#endif
78 281
79/**/ 282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 347
81#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
84#endif 351#endif
86#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
89#endif 356#endif
90 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
91/**/ 410/**/
92 411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
417
418/*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
427
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 431
98#include "ev.h"
99
100#if __GNUC__ >= 3 432#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 434# define noinline __attribute__ ((noinline))
103#else 435#else
104# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
105# define inline static 437# define noinline
438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439# define inline
440# endif
106#endif 441#endif
107 442
108#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 444#define expect_true(expr) expect ((expr) != 0, 1)
445#define inline_size static inline
110 446
447#if EV_MINIMAL
448# define inline_speed static noinline
449#else
450# define inline_speed static inline
451#endif
452
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
113 460
461#define EMPTY /* required for microsofts broken pseudo-c compiler */
462#define EMPTY2(a,b) /* used to suppress some warnings */
463
114typedef struct ev_watcher *W; 464typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
117 467
468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
480
481#ifdef _WIN32
482# include "ev_win32.c"
483#endif
119 484
120/*****************************************************************************/ 485/*****************************************************************************/
121 486
487static void (*syserr_cb)(const char *msg);
488
489void
490ev_set_syserr_cb (void (*cb)(const char *msg))
491{
492 syserr_cb = cb;
493}
494
495static void noinline
496ev_syserr (const char *msg)
497{
498 if (!msg)
499 msg = "(libev) system error";
500
501 if (syserr_cb)
502 syserr_cb (msg);
503 else
504 {
505 perror (msg);
506 abort ();
507 }
508}
509
510static void *
511ev_realloc_emul (void *ptr, long size)
512{
513 /* some systems, notably openbsd and darwin, fail to properly
514 * implement realloc (x, 0) (as required by both ansi c-98 and
515 * the single unix specification, so work around them here.
516 */
517
518 if (size)
519 return realloc (ptr, size);
520
521 free (ptr);
522 return 0;
523}
524
525static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
526
527void
528ev_set_allocator (void *(*cb)(void *ptr, long size))
529{
530 alloc = cb;
531}
532
533inline_speed void *
534ev_realloc (void *ptr, long size)
535{
536 ptr = alloc (ptr, size);
537
538 if (!ptr && size)
539 {
540 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
541 abort ();
542 }
543
544 return ptr;
545}
546
547#define ev_malloc(size) ev_realloc (0, (size))
548#define ev_free(ptr) ev_realloc ((ptr), 0)
549
550/*****************************************************************************/
551
552/* set in reify when reification needed */
553#define EV_ANFD_REIFY 1
554
555/* file descriptor info structure */
122typedef struct 556typedef struct
123{ 557{
124 struct ev_watcher_list *head; 558 WL head;
125 unsigned char events; 559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
126 unsigned char reify; 562 unsigned char unused;
563#if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565#endif
566#if EV_SELECT_IS_WINSOCKET
567 SOCKET handle;
568#endif
127} ANFD; 569} ANFD;
128 570
571/* stores the pending event set for a given watcher */
129typedef struct 572typedef struct
130{ 573{
131 W w; 574 W w;
132 int events; 575 int events; /* the pending event set for the given watcher */
133} ANPENDING; 576} ANPENDING;
134 577
578#if EV_USE_INOTIFY
579/* hash table entry per inotify-id */
580typedef struct
581{
582 WL head;
583} ANFS;
584#endif
585
586/* Heap Entry */
587#if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597#else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
604#endif
605
135#if EV_MULTIPLICITY 606#if EV_MULTIPLICITY
136 607
137struct ev_loop 608 struct ev_loop
138{ 609 {
610 ev_tstamp ev_rt_now;
611 #define ev_rt_now ((loop)->ev_rt_now)
139# define VAR(name,decl) decl; 612 #define VAR(name,decl) decl;
140# include "ev_vars.h" 613 #include "ev_vars.h"
141};
142# undef VAR 614 #undef VAR
615 };
143# include "ev_wrap.h" 616 #include "ev_wrap.h"
617
618 static struct ev_loop default_loop_struct;
619 struct ev_loop *ev_default_loop_ptr;
144 620
145#else 621#else
146 622
623 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 624 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 625 #include "ev_vars.h"
149# undef VAR 626 #undef VAR
150 627
628 static int ev_default_loop_ptr;
629
151#endif 630#endif
631
632#if EV_MINIMAL < 2
633# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635# define EV_INVOKE_PENDING invoke_cb (EV_A)
636#else
637# define EV_RELEASE_CB (void)0
638# define EV_ACQUIRE_CB (void)0
639# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640#endif
641
642#define EVUNLOOP_RECURSE 0x80
152 643
153/*****************************************************************************/ 644/*****************************************************************************/
154 645
155inline ev_tstamp 646#ifndef EV_HAVE_EV_TIME
647ev_tstamp
156ev_time (void) 648ev_time (void)
157{ 649{
158#if EV_USE_REALTIME 650#if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
159 struct timespec ts; 653 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 654 clock_gettime (CLOCK_REALTIME, &ts);
161 return ts.tv_sec + ts.tv_nsec * 1e-9; 655 return ts.tv_sec + ts.tv_nsec * 1e-9;
162#else 656 }
657#endif
658
163 struct timeval tv; 659 struct timeval tv;
164 gettimeofday (&tv, 0); 660 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 661 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif
167} 662}
663#endif
168 664
169inline ev_tstamp 665inline_size ev_tstamp
170get_clock (void) 666get_clock (void)
171{ 667{
172#if EV_USE_MONOTONIC 668#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 669 if (expect_true (have_monotonic))
174 { 670 {
179#endif 675#endif
180 676
181 return ev_time (); 677 return ev_time ();
182} 678}
183 679
680#if EV_MULTIPLICITY
184ev_tstamp 681ev_tstamp
185ev_now (EV_P) 682ev_now (EV_P)
186{ 683{
187 return rt_now; 684 return ev_rt_now;
188} 685}
686#endif
189 687
190#define array_roundsize(base,n) ((n) | 4 & ~3) 688void
191 689ev_sleep (ev_tstamp delay)
192#define array_needsize(base,cur,cnt,init) \ 690{
193 if (expect_false ((cnt) > cur)) \ 691 if (delay > 0.)
194 { \
195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \
203 init (base + cur, newcnt - cur); \
204 cur = newcnt; \
205 } 692 {
693#if EV_USE_NANOSLEEP
694 struct timespec ts;
695
696 ts.tv_sec = (time_t)delay;
697 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
698
699 nanosleep (&ts, 0);
700#elif defined(_WIN32)
701 Sleep ((unsigned long)(delay * 1e3));
702#else
703 struct timeval tv;
704
705 tv.tv_sec = (time_t)delay;
706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
711 select (0, 0, 0, 0, &tv);
712#endif
713 }
714}
206 715
207/*****************************************************************************/ 716/*****************************************************************************/
208 717
209static void 718#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
210anfds_init (ANFD *base, int count)
211{
212 while (count--)
213 {
214 base->head = 0;
215 base->events = EV_NONE;
216 base->reify = 0;
217 719
218 ++base; 720/* find a suitable new size for the given array, */
721/* hopefully by rounding to a ncie-to-malloc size */
722inline_size int
723array_nextsize (int elem, int cur, int cnt)
724{
725 int ncur = cur + 1;
726
727 do
728 ncur <<= 1;
729 while (cnt > ncur);
730
731 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
732 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
219 } 733 {
220} 734 ncur *= elem;
221 735 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
222static void 736 ncur = ncur - sizeof (void *) * 4;
223event (EV_P_ W w, int events) 737 ncur /= elem;
224{
225 if (w->pending)
226 { 738 }
739
740 return ncur;
741}
742
743static noinline void *
744array_realloc (int elem, void *base, int *cur, int cnt)
745{
746 *cur = array_nextsize (elem, *cur, cnt);
747 return ev_realloc (base, elem * *cur);
748}
749
750#define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
752
753#define array_needsize(type,base,cur,cnt,init) \
754 if (expect_false ((cnt) > (cur))) \
755 { \
756 int ocur_ = (cur); \
757 (base) = (type *)array_realloc \
758 (sizeof (type), (base), &(cur), (cnt)); \
759 init ((base) + (ocur_), (cur) - ocur_); \
760 }
761
762#if 0
763#define array_slim(type,stem) \
764 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
765 { \
766 stem ## max = array_roundsize (stem ## cnt >> 1); \
767 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
769 }
770#endif
771
772#define array_free(stem, idx) \
773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
774
775/*****************************************************************************/
776
777/* dummy callback for pending events */
778static void noinline
779pendingcb (EV_P_ ev_prepare *w, int revents)
780{
781}
782
783void noinline
784ev_feed_event (EV_P_ void *w, int revents)
785{
786 W w_ = (W)w;
787 int pri = ABSPRI (w_);
788
789 if (expect_false (w_->pending))
790 pendings [pri][w_->pending - 1].events |= revents;
791 else
792 {
793 w_->pending = ++pendingcnt [pri];
794 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
795 pendings [pri][w_->pending - 1].w = w_;
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 796 pendings [pri][w_->pending - 1].events = revents;
228 return;
229 } 797 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235} 798}
236 799
237static void 800inline_speed void
801feed_reverse (EV_P_ W w)
802{
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805}
806
807inline_size void
808feed_reverse_done (EV_P_ int revents)
809{
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813}
814
815inline_speed void
238queue_events (EV_P_ W *events, int eventcnt, int type) 816queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 817{
240 int i; 818 int i;
241 819
242 for (i = 0; i < eventcnt; ++i) 820 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 821 ev_feed_event (EV_A_ events [i], type);
244} 822}
245 823
246static void 824/*****************************************************************************/
825
826inline_speed void
247fd_event (EV_P_ int fd, int events) 827fd_event_nc (EV_P_ int fd, int revents)
248{ 828{
249 ANFD *anfd = anfds + fd; 829 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 830 ev_io *w;
251 831
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 833 {
254 int ev = w->events & events; 834 int ev = w->events & revents;
255 835
256 if (ev) 836 if (ev)
257 event (EV_A_ (W)w, ev); 837 ev_feed_event (EV_A_ (W)w, ev);
258 } 838 }
259} 839}
260 840
261/*****************************************************************************/ 841/* do not submit kernel events for fds that have reify set */
842/* because that means they changed while we were polling for new events */
843inline_speed void
844fd_event (EV_P_ int fd, int revents)
845{
846 ANFD *anfd = anfds + fd;
262 847
263static void 848 if (expect_true (!anfd->reify))
849 fd_event_nc (EV_A_ fd, revents);
850}
851
852void
853ev_feed_fd_event (EV_P_ int fd, int revents)
854{
855 if (fd >= 0 && fd < anfdmax)
856 fd_event_nc (EV_A_ fd, revents);
857}
858
859/* make sure the external fd watch events are in-sync */
860/* with the kernel/libev internal state */
861inline_size void
264fd_reify (EV_P) 862fd_reify (EV_P)
265{ 863{
266 int i; 864 int i;
267 865
268 for (i = 0; i < fdchangecnt; ++i) 866 for (i = 0; i < fdchangecnt; ++i)
269 { 867 {
270 int fd = fdchanges [i]; 868 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 869 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 870 ev_io *w;
273 871
274 int events = 0; 872 unsigned char events = 0;
275 873
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 875 events |= (unsigned char)w->events;
278 876
279 anfd->reify = 0; 877#if EV_SELECT_IS_WINSOCKET
280 878 if (events)
281 if (anfd->events != events)
282 { 879 {
283 method_modify (EV_A_ fd, anfd->events, events); 880 unsigned long arg;
284 anfd->events = events; 881 #ifdef EV_FD_TO_WIN32_HANDLE
882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
883 #else
884 anfd->handle = _get_osfhandle (fd);
885 #endif
886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
285 } 887 }
888#endif
889
890 {
891 unsigned char o_events = anfd->events;
892 unsigned char o_reify = anfd->reify;
893
894 anfd->reify = 0;
895 anfd->events = events;
896
897 if (o_events != events || o_reify & EV__IOFDSET)
898 backend_modify (EV_A_ fd, o_events, events);
899 }
286 } 900 }
287 901
288 fdchangecnt = 0; 902 fdchangecnt = 0;
289} 903}
290 904
291static void 905/* something about the given fd changed */
906inline_size void
292fd_change (EV_P_ int fd) 907fd_change (EV_P_ int fd, int flags)
293{ 908{
294 if (anfds [fd].reify || fdchangecnt < 0) 909 unsigned char reify = anfds [fd].reify;
295 return;
296
297 anfds [fd].reify = 1; 910 anfds [fd].reify |= flags;
298 911
912 if (expect_true (!reify))
913 {
299 ++fdchangecnt; 914 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 916 fdchanges [fdchangecnt - 1] = fd;
917 }
302} 918}
303 919
304static void 920/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921inline_speed void
305fd_kill (EV_P_ int fd) 922fd_kill (EV_P_ int fd)
306{ 923{
307 struct ev_io *w; 924 ev_io *w;
308 925
309 while ((w = (struct ev_io *)anfds [fd].head)) 926 while ((w = (ev_io *)anfds [fd].head))
310 { 927 {
311 ev_io_stop (EV_A_ w); 928 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 930 }
931}
932
933/* check whether the given fd is atcually valid, for error recovery */
934inline_size int
935fd_valid (int fd)
936{
937#ifdef _WIN32
938 return _get_osfhandle (fd) != -1;
939#else
940 return fcntl (fd, F_GETFD) != -1;
941#endif
314} 942}
315 943
316/* called on EBADF to verify fds */ 944/* called on EBADF to verify fds */
317static void 945static void noinline
318fd_ebadf (EV_P) 946fd_ebadf (EV_P)
319{ 947{
320 int fd; 948 int fd;
321 949
322 for (fd = 0; fd < anfdmax; ++fd) 950 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 951 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 952 if (!fd_valid (fd) && errno == EBADF)
325 fd_kill (EV_A_ fd); 953 fd_kill (EV_A_ fd);
326} 954}
327 955
328/* called on ENOMEM in select/poll to kill some fds and retry */ 956/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 957static void noinline
330fd_enomem (EV_P) 958fd_enomem (EV_P)
331{ 959{
332 int fd = anfdmax; 960 int fd;
333 961
334 while (fd--) 962 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 963 if (anfds [fd].events)
336 { 964 {
337 close (fd);
338 fd_kill (EV_A_ fd); 965 fd_kill (EV_A_ fd);
339 return; 966 break;
340 } 967 }
341} 968}
342 969
970/* usually called after fork if backend needs to re-arm all fds from scratch */
971static void noinline
972fd_rearm_all (EV_P)
973{
974 int fd;
975
976 for (fd = 0; fd < anfdmax; ++fd)
977 if (anfds [fd].events)
978 {
979 anfds [fd].events = 0;
980 anfds [fd].emask = 0;
981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
982 }
983}
984
343/*****************************************************************************/ 985/*****************************************************************************/
344 986
987/*
988 * the heap functions want a real array index. array index 0 uis guaranteed to not
989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
990 * the branching factor of the d-tree.
991 */
992
993/*
994 * at the moment we allow libev the luxury of two heaps,
995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
996 * which is more cache-efficient.
997 * the difference is about 5% with 50000+ watchers.
998 */
999#if EV_USE_4HEAP
1000
1001#define DHEAP 4
1002#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004#define UPHEAP_DONE(p,k) ((p) == (k))
1005
1006/* away from the root */
1007inline_speed void
1008downheap (ANHE *heap, int N, int k)
1009{
1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
1012
1013 for (;;)
1014 {
1015 ev_tstamp minat;
1016 ANHE *minpos;
1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1018
1019 /* find minimum child */
1020 if (expect_true (pos + DHEAP - 1 < E))
1021 {
1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1033 }
1034 else
1035 break;
1036
1037 if (ANHE_at (he) <= minat)
1038 break;
1039
1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
1042
1043 k = minpos - heap;
1044 }
1045
1046 heap [k] = he;
1047 ev_active (ANHE_w (he)) = k;
1048}
1049
1050#else /* 4HEAP */
1051
1052#define HEAP0 1
1053#define HPARENT(k) ((k) >> 1)
1054#define UPHEAP_DONE(p,k) (!(p))
1055
1056/* away from the root */
1057inline_speed void
1058downheap (ANHE *heap, int N, int k)
1059{
1060 ANHE he = heap [k];
1061
1062 for (;;)
1063 {
1064 int c = k << 1;
1065
1066 if (c >= N + HEAP0)
1067 break;
1068
1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1070 ? 1 : 0;
1071
1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
1073 break;
1074
1075 heap [k] = heap [c];
1076 ev_active (ANHE_w (heap [k])) = k;
1077
1078 k = c;
1079 }
1080
1081 heap [k] = he;
1082 ev_active (ANHE_w (he)) = k;
1083}
1084#endif
1085
1086/* towards the root */
1087inline_speed void
1088upheap (ANHE *heap, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
1099 heap [k] = heap [p];
1100 ev_active (ANHE_w (heap [k])) = k;
1101 k = p;
1102 }
1103
1104 heap [k] = he;
1105 ev_active (ANHE_w (he)) = k;
1106}
1107
1108/* move an element suitably so it is in a correct place */
1109inline_size void
1110adjustheap (ANHE *heap, int N, int k)
1111{
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1113 upheap (heap, k);
1114 else
1115 downheap (heap, N, k);
1116}
1117
1118/* rebuild the heap: this function is used only once and executed rarely */
1119inline_size void
1120reheap (ANHE *heap, int N)
1121{
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
1128}
1129
1130/*****************************************************************************/
1131
1132/* associate signal watchers to a signal signal */
1133typedef struct
1134{
1135 EV_ATOMIC_T pending;
1136#if EV_MULTIPLICITY
1137 EV_P;
1138#endif
1139 WL head;
1140} ANSIG;
1141
1142static ANSIG signals [EV_NSIG - 1];
1143
1144/*****************************************************************************/
1145
1146/* used to prepare libev internal fd's */
1147/* this is not fork-safe */
1148inline_speed void
1149fd_intern (int fd)
1150{
1151#ifdef _WIN32
1152 unsigned long arg = 1;
1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1154#else
1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
1156 fcntl (fd, F_SETFL, O_NONBLOCK);
1157#endif
1158}
1159
1160static void noinline
1161evpipe_init (EV_P)
1162{
1163 if (!ev_is_active (&pipe_w))
1164 {
1165#if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
1171 {
1172 evpipe [0] = -1;
1173 fd_intern (evfd); /* doing it twice doesn't hurt */
1174 ev_io_set (&pipe_w, evfd, EV_READ);
1175 }
1176 else
1177#endif
1178 {
1179 while (pipe (evpipe))
1180 ev_syserr ("(libev) error creating signal/async pipe");
1181
1182 fd_intern (evpipe [0]);
1183 fd_intern (evpipe [1]);
1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1185 }
1186
1187 ev_io_start (EV_A_ &pipe_w);
1188 ev_unref (EV_A); /* watcher should not keep loop alive */
1189 }
1190}
1191
1192inline_size void
1193evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1194{
1195 if (!*flag)
1196 {
1197 int old_errno = errno; /* save errno because write might clobber it */
1198
1199 *flag = 1;
1200
1201#if EV_USE_EVENTFD
1202 if (evfd >= 0)
1203 {
1204 uint64_t counter = 1;
1205 write (evfd, &counter, sizeof (uint64_t));
1206 }
1207 else
1208#endif
1209 write (evpipe [1], &old_errno, 1);
1210
1211 errno = old_errno;
1212 }
1213}
1214
1215/* called whenever the libev signal pipe */
1216/* got some events (signal, async) */
345static void 1217static void
346upheap (WT *heap, int k) 1218pipecb (EV_P_ ev_io *iow, int revents)
347{ 1219{
348 WT w = heap [k]; 1220 int i;
349 1221
350 while (k && heap [k >> 1]->at > w->at) 1222#if EV_USE_EVENTFD
351 { 1223 if (evfd >= 0)
352 heap [k] = heap [k >> 1];
353 heap [k]->active = k + 1;
354 k >>= 1;
355 } 1224 {
1225 uint64_t counter;
1226 read (evfd, &counter, sizeof (uint64_t));
1227 }
1228 else
1229#endif
1230 {
1231 char dummy;
1232 read (evpipe [0], &dummy, 1);
1233 }
356 1234
357 heap [k] = w; 1235 if (sig_pending)
358 heap [k]->active = k + 1; 1236 {
1237 sig_pending = 0;
359 1238
1239 for (i = EV_NSIG - 1; i--; )
1240 if (expect_false (signals [i].pending))
1241 ev_feed_signal_event (EV_A_ i + 1);
1242 }
1243
1244#if EV_ASYNC_ENABLE
1245 if (async_pending)
1246 {
1247 async_pending = 0;
1248
1249 for (i = asynccnt; i--; )
1250 if (asyncs [i]->sent)
1251 {
1252 asyncs [i]->sent = 0;
1253 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1254 }
1255 }
1256#endif
360} 1257}
1258
1259/*****************************************************************************/
361 1260
362static void 1261static void
363downheap (WT *heap, int N, int k) 1262ev_sighandler (int signum)
364{ 1263{
365 WT w = heap [k]; 1264#if EV_MULTIPLICITY
1265 EV_P = signals [signum - 1].loop;
1266#endif
366 1267
367 while (k < (N >> 1)) 1268#if _WIN32
368 { 1269 signal (signum, ev_sighandler);
369 int j = k << 1; 1270#endif
370 1271
371 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1272 signals [signum - 1].pending = 1;
372 ++j; 1273 evpipe_write (EV_A_ &sig_pending);
1274}
373 1275
374 if (w->at <= heap [j]->at) 1276void noinline
1277ev_feed_signal_event (EV_P_ int signum)
1278{
1279 WL w;
1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
1286#if EV_MULTIPLICITY
1287 /* it is permissible to try to feed a signal to the wrong loop */
1288 /* or, likely more useful, feeding a signal nobody is waiting for */
1289
1290 if (expect_false (signals [signum].loop != EV_A))
1291 return;
1292#endif
1293
1294 signals [signum].pending = 0;
1295
1296 for (w = signals [signum].head; w; w = w->next)
1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1298}
1299
1300#if EV_USE_SIGNALFD
1301static void
1302sigfdcb (EV_P_ ev_io *iow, int revents)
1303{
1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1305
1306 for (;;)
1307 {
1308 ssize_t res = read (sigfd, si, sizeof (si));
1309
1310 /* not ISO-C, as res might be -1, but works with SuS */
1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1313
1314 if (res < (ssize_t)sizeof (si))
375 break; 1315 break;
376
377 heap [k] = heap [j];
378 heap [k]->active = k + 1;
379 k = j;
380 } 1316 }
381
382 heap [k] = w;
383 heap [k]->active = k + 1;
384} 1317}
1318#endif
385 1319
386/*****************************************************************************/ 1320/*****************************************************************************/
387 1321
388typedef struct 1322static WL childs [EV_PID_HASHSIZE];
389{
390 struct ev_watcher_list *head;
391 sig_atomic_t volatile gotsig;
392} ANSIG;
393 1323
394static ANSIG *signals;
395static int signalmax;
396
397static int sigpipe [2];
398static sig_atomic_t volatile gotsig;
399
400static void
401signals_init (ANSIG *base, int count)
402{
403 while (count--)
404 {
405 base->head = 0;
406 base->gotsig = 0;
407
408 ++base;
409 }
410}
411
412static void
413sighandler (int signum)
414{
415 signals [signum - 1].gotsig = 1;
416
417 if (!gotsig)
418 {
419 int old_errno = errno;
420 gotsig = 1;
421 write (sigpipe [1], &signum, 1);
422 errno = old_errno;
423 }
424}
425
426static void
427sigcb (EV_P_ struct ev_io *iow, int revents)
428{
429 struct ev_watcher_list *w;
430 int signum;
431
432 read (sigpipe [0], &revents, 1);
433 gotsig = 0;
434
435 for (signum = signalmax; signum--; )
436 if (signals [signum].gotsig)
437 {
438 signals [signum].gotsig = 0;
439
440 for (w = signals [signum].head; w; w = w->next)
441 event (EV_A_ (W)w, EV_SIGNAL);
442 }
443}
444
445static void
446siginit (EV_P)
447{
448#ifndef WIN32 1324#ifndef _WIN32
449 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
450 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
451 1325
452 /* rather than sort out wether we really need nb, set it */ 1326static ev_signal childev;
453 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
454 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
455#endif
456 1327
457 ev_io_set (&sigev, sigpipe [0], EV_READ); 1328#ifndef WIFCONTINUED
458 ev_io_start (EV_A_ &sigev); 1329# define WIFCONTINUED(status) 0
459 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1330#endif
460}
461 1331
462/*****************************************************************************/ 1332/* handle a single child status event */
1333inline_speed void
1334child_reap (EV_P_ int chain, int pid, int status)
1335{
1336 ev_child *w;
1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
463 1338
464#ifndef WIN32 1339 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1340 {
1341 if ((w->pid == pid || !w->pid)
1342 && (!traced || (w->flags & 1)))
1343 {
1344 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1345 w->rpid = pid;
1346 w->rstatus = status;
1347 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1348 }
1349 }
1350}
465 1351
466#ifndef WCONTINUED 1352#ifndef WCONTINUED
467# define WCONTINUED 0 1353# define WCONTINUED 0
468#endif 1354#endif
469 1355
1356/* called on sigchld etc., calls waitpid */
470static void 1357static void
471child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472{
473 struct ev_child *w;
474
475 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 if (w->pid == pid || !w->pid)
477 {
478 w->priority = sw->priority; /* need to do it *now* */
479 w->rpid = pid;
480 w->rstatus = status;
481 event (EV_A_ (W)w, EV_CHILD);
482 }
483}
484
485static void
486childcb (EV_P_ struct ev_signal *sw, int revents) 1358childcb (EV_P_ ev_signal *sw, int revents)
487{ 1359{
488 int pid, status; 1360 int pid, status;
489 1361
1362 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
490 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1363 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
491 { 1364 if (!WCONTINUED
1365 || errno != EINVAL
1366 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1367 return;
1368
492 /* make sure we are called again until all childs have been reaped */ 1369 /* make sure we are called again until all children have been reaped */
1370 /* we need to do it this way so that the callback gets called before we continue */
493 event (EV_A_ (W)sw, EV_SIGNAL); 1371 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
494 1372
495 child_reap (EV_A_ sw, pid, pid, status); 1373 child_reap (EV_A_ pid, pid, status);
1374 if (EV_PID_HASHSIZE > 1)
496 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1375 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
497 }
498} 1376}
499 1377
500#endif 1378#endif
501 1379
502/*****************************************************************************/ 1380/*****************************************************************************/
503 1381
1382#if EV_USE_PORT
1383# include "ev_port.c"
1384#endif
504#if EV_USE_KQUEUE 1385#if EV_USE_KQUEUE
505# include "ev_kqueue.c" 1386# include "ev_kqueue.c"
506#endif 1387#endif
507#if EV_USE_EPOLL 1388#if EV_USE_EPOLL
508# include "ev_epoll.c" 1389# include "ev_epoll.c"
509#endif 1390#endif
510#if EV_USEV_POLL 1391#if EV_USE_POLL
511# include "ev_poll.c" 1392# include "ev_poll.c"
512#endif 1393#endif
513#if EV_USE_SELECT 1394#if EV_USE_SELECT
514# include "ev_select.c" 1395# include "ev_select.c"
515#endif 1396#endif
525{ 1406{
526 return EV_VERSION_MINOR; 1407 return EV_VERSION_MINOR;
527} 1408}
528 1409
529/* return true if we are running with elevated privileges and should ignore env variables */ 1410/* return true if we are running with elevated privileges and should ignore env variables */
530static int 1411int inline_size
531enable_secure (void) 1412enable_secure (void)
532{ 1413{
533#ifdef WIN32 1414#ifdef _WIN32
534 return 0; 1415 return 0;
535#else 1416#else
536 return getuid () != geteuid () 1417 return getuid () != geteuid ()
537 || getgid () != getegid (); 1418 || getgid () != getegid ();
538#endif 1419#endif
539} 1420}
540 1421
1422unsigned int
1423ev_supported_backends (void)
1424{
1425 unsigned int flags = 0;
1426
1427 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1428 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1429 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1430 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1431 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1432
1433 return flags;
1434}
1435
1436unsigned int
1437ev_recommended_backends (void)
1438{
1439 unsigned int flags = ev_supported_backends ();
1440
1441#ifndef __NetBSD__
1442 /* kqueue is borked on everything but netbsd apparently */
1443 /* it usually doesn't work correctly on anything but sockets and pipes */
1444 flags &= ~EVBACKEND_KQUEUE;
1445#endif
1446#ifdef __APPLE__
1447 /* only select works correctly on that "unix-certified" platform */
1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1450#endif
1451
1452 return flags;
1453}
1454
1455unsigned int
1456ev_embeddable_backends (void)
1457{
1458 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1459
1460 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1461 /* please fix it and tell me how to detect the fix */
1462 flags &= ~EVBACKEND_EPOLL;
1463
1464 return flags;
1465}
1466
1467unsigned int
1468ev_backend (EV_P)
1469{
1470 return backend;
1471}
1472
1473#if EV_MINIMAL < 2
1474unsigned int
1475ev_loop_count (EV_P)
1476{
1477 return loop_count;
1478}
1479
1480unsigned int
1481ev_loop_depth (EV_P)
1482{
1483 return loop_depth;
1484}
1485
1486void
1487ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 io_blocktime = interval;
1490}
1491
1492void
1493ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 timeout_blocktime = interval;
1496}
1497
1498void
1499ev_set_userdata (EV_P_ void *data)
1500{
1501 userdata = data;
1502}
1503
1504void *
1505ev_userdata (EV_P)
1506{
1507 return userdata;
1508}
1509
1510void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511{
1512 invoke_cb = invoke_pending_cb;
1513}
1514
1515void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516{
1517 release_cb = release;
1518 acquire_cb = acquire;
1519}
1520#endif
1521
1522/* initialise a loop structure, must be zero-initialised */
1523static void noinline
1524loop_init (EV_P_ unsigned int flags)
1525{
1526 if (!backend)
1527 {
1528#if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536#endif
1537
1538#if EV_USE_MONOTONIC
1539 if (!have_monotonic)
1540 {
1541 struct timespec ts;
1542
1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1544 have_monotonic = 1;
1545 }
1546#endif
1547
1548 /* pid check not overridable via env */
1549#ifndef _WIN32
1550 if (flags & EVFLAG_FORKCHECK)
1551 curpid = getpid ();
1552#endif
1553
1554 if (!(flags & EVFLAG_NOENV)
1555 && !enable_secure ()
1556 && getenv ("LIBEV_FLAGS"))
1557 flags = atoi (getenv ("LIBEV_FLAGS"));
1558
1559 ev_rt_now = ev_time ();
1560 mn_now = get_clock ();
1561 now_floor = mn_now;
1562 rtmn_diff = ev_rt_now - mn_now;
1563#if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565#endif
1566
1567 io_blocktime = 0.;
1568 timeout_blocktime = 0.;
1569 backend = 0;
1570 backend_fd = -1;
1571 sig_pending = 0;
1572#if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574#endif
1575#if EV_USE_INOTIFY
1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1577#endif
1578#if EV_USE_SIGNALFD
1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1580#endif
1581
1582 if (!(flags & 0x0000ffffU))
1583 flags |= ev_recommended_backends ();
1584
1585#if EV_USE_PORT
1586 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1587#endif
1588#if EV_USE_KQUEUE
1589 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1590#endif
1591#if EV_USE_EPOLL
1592 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1593#endif
1594#if EV_USE_POLL
1595 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1596#endif
1597#if EV_USE_SELECT
1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1599#endif
1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
1603 ev_init (&pipe_w, pipecb);
1604 ev_set_priority (&pipe_w, EV_MAXPRI);
1605 }
1606}
1607
1608/* free up a loop structure */
1609static void noinline
1610loop_destroy (EV_P)
1611{
1612 int i;
1613
1614 if (ev_is_active (&pipe_w))
1615 {
1616 /*ev_ref (EV_A);*/
1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1618
1619#if EV_USE_EVENTFD
1620 if (evfd >= 0)
1621 close (evfd);
1622#endif
1623
1624 if (evpipe [0] >= 0)
1625 {
1626 close (evpipe [0]);
1627 close (evpipe [1]);
1628 }
1629 }
1630
1631#if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639#endif
1640
1641#if EV_USE_INOTIFY
1642 if (fs_fd >= 0)
1643 close (fs_fd);
1644#endif
1645
1646 if (backend_fd >= 0)
1647 close (backend_fd);
1648
1649#if EV_USE_PORT
1650 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1651#endif
1652#if EV_USE_KQUEUE
1653 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1654#endif
1655#if EV_USE_EPOLL
1656 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1657#endif
1658#if EV_USE_POLL
1659 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1660#endif
1661#if EV_USE_SELECT
1662 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1663#endif
1664
1665 for (i = NUMPRI; i--; )
1666 {
1667 array_free (pending, [i]);
1668#if EV_IDLE_ENABLE
1669 array_free (idle, [i]);
1670#endif
1671 }
1672
1673 ev_free (anfds); anfds = 0; anfdmax = 0;
1674
1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
1677 array_free (fdchange, EMPTY);
1678 array_free (timer, EMPTY);
1679#if EV_PERIODIC_ENABLE
1680 array_free (periodic, EMPTY);
1681#endif
1682#if EV_FORK_ENABLE
1683 array_free (fork, EMPTY);
1684#endif
1685 array_free (prepare, EMPTY);
1686 array_free (check, EMPTY);
1687#if EV_ASYNC_ENABLE
1688 array_free (async, EMPTY);
1689#endif
1690
1691 backend = 0;
1692}
1693
1694#if EV_USE_INOTIFY
1695inline_size void infy_fork (EV_P);
1696#endif
1697
1698inline_size void
1699loop_fork (EV_P)
1700{
1701#if EV_USE_PORT
1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1703#endif
1704#if EV_USE_KQUEUE
1705 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1706#endif
1707#if EV_USE_EPOLL
1708 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1709#endif
1710#if EV_USE_INOTIFY
1711 infy_fork (EV_A);
1712#endif
1713
1714 if (ev_is_active (&pipe_w))
1715 {
1716 /* this "locks" the handlers against writing to the pipe */
1717 /* while we modify the fd vars */
1718 sig_pending = 1;
1719#if EV_ASYNC_ENABLE
1720 async_pending = 1;
1721#endif
1722
1723 ev_ref (EV_A);
1724 ev_io_stop (EV_A_ &pipe_w);
1725
1726#if EV_USE_EVENTFD
1727 if (evfd >= 0)
1728 close (evfd);
1729#endif
1730
1731 if (evpipe [0] >= 0)
1732 {
1733 close (evpipe [0]);
1734 close (evpipe [1]);
1735 }
1736
1737 evpipe_init (EV_A);
1738 /* now iterate over everything, in case we missed something */
1739 pipecb (EV_A_ &pipe_w, EV_READ);
1740 }
1741
1742 postfork = 0;
1743}
1744
1745#if EV_MULTIPLICITY
1746
1747struct ev_loop *
1748ev_loop_new (unsigned int flags)
1749{
1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1751
1752 memset (EV_A, 0, sizeof (struct ev_loop));
1753 loop_init (EV_A_ flags);
1754
1755 if (ev_backend (EV_A))
1756 return EV_A;
1757
1758 return 0;
1759}
1760
1761void
1762ev_loop_destroy (EV_P)
1763{
1764 loop_destroy (EV_A);
1765 ev_free (loop);
1766}
1767
1768void
1769ev_loop_fork (EV_P)
1770{
1771 postfork = 1; /* must be in line with ev_default_fork */
1772}
1773#endif /* multiplicity */
1774
1775#if EV_VERIFY
1776static void noinline
1777verify_watcher (EV_P_ W w)
1778{
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783}
1784
1785static void noinline
1786verify_heap (EV_P_ ANHE *heap, int N)
1787{
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798}
1799
1800static void noinline
1801array_verify (EV_P_ W *ws, int cnt)
1802{
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808}
1809#endif
1810
1811#if EV_MINIMAL < 2
1812void
1813ev_loop_verify (EV_P)
1814{
1815#if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
1828 {
1829 verify_watcher (EV_A_ (W)w);
1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837#if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840#endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845#if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849#endif
1850 }
1851
1852#if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855#endif
1856
1857#if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860#endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868# if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1871# endif
1872#endif
1873}
1874#endif
1875
1876#if EV_MULTIPLICITY
1877struct ev_loop *
1878ev_default_loop_init (unsigned int flags)
1879#else
541int 1880int
542ev_method (EV_P) 1881ev_default_loop (unsigned int flags)
1882#endif
543{ 1883{
544 return method; 1884 if (!ev_default_loop_ptr)
545}
546
547inline int
548loop_init (EV_P_ int methods)
549{
550 if (!method)
551 {
552#if EV_USE_MONOTONIC
553 { 1885 {
554 struct timespec ts; 1886#if EV_MULTIPLICITY
555 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
556 have_monotonic = 1; 1888#else
557 } 1889 ev_default_loop_ptr = 1;
558#endif 1890#endif
559 1891
560 rt_now = ev_time (); 1892 loop_init (EV_A_ flags);
561 mn_now = get_clock ();
562 now_floor = mn_now;
563 rtmn_diff = rt_now - mn_now;
564 1893
565 if (pipe (sigpipe)) 1894 if (ev_backend (EV_A))
566 return 0;
567
568 if (methods == EVMETHOD_AUTO)
569 if (!enable_secure () && getenv ("LIBmethodS"))
570 methods = atoi (getenv ("LIBmethodS"));
571 else
572 methods = EVMETHOD_ANY;
573
574 method = 0;
575#if EV_USE_KQUEUE
576 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
577#endif
578#if EV_USE_EPOLL
579 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
580#endif
581#if EV_USEV_POLL
582 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
583#endif
584#if EV_USE_SELECT
585 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
586#endif
587
588 if (method)
589 { 1895 {
590 ev_watcher_init (&sigev, sigcb);
591 ev_set_priority (&sigev, EV_MAXPRI);
592 siginit (EV_A);
593
594#ifndef WIN32 1896#ifndef _WIN32
595 ev_signal_init (&childev, childcb, SIGCHLD); 1897 ev_signal_init (&childev, childcb, SIGCHLD);
596 ev_set_priority (&childev, EV_MAXPRI); 1898 ev_set_priority (&childev, EV_MAXPRI);
597 ev_signal_start (EV_A_ &childev); 1899 ev_signal_start (EV_A_ &childev);
598 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1900 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 1901#endif
600 } 1902 }
1903 else
1904 ev_default_loop_ptr = 0;
601 } 1905 }
602 1906
603 return method; 1907 return ev_default_loop_ptr;
604} 1908}
605 1909
1910void
1911ev_default_destroy (void)
1912{
606#if EV_MULTIPLICITY 1913#if EV_MULTIPLICITY
607 1914 EV_P = ev_default_loop_ptr;
608struct ev_loop *
609ev_loop_new (int methods)
610{
611 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
612
613 if (loop_init (EV_A_ methods))
614 return loop;
615
616 ev_loop_delete (loop);
617
618 return 0;
619}
620
621void
622ev_loop_delete (EV_P)
623{
624 /*TODO*/
625 free (loop);
626}
627
628#else
629
630int
631ev_init (int methods)
632{
633 return loop_init (methods);
634}
635
636#endif 1915#endif
1916
1917 ev_default_loop_ptr = 0;
1918
1919#ifndef _WIN32
1920 ev_ref (EV_A); /* child watcher */
1921 ev_signal_stop (EV_A_ &childev);
1922#endif
1923
1924 loop_destroy (EV_A);
1925}
1926
1927void
1928ev_default_fork (void)
1929{
1930#if EV_MULTIPLICITY
1931 EV_P = ev_default_loop_ptr;
1932#endif
1933
1934 postfork = 1; /* must be in line with ev_loop_fork */
1935}
637 1936
638/*****************************************************************************/ 1937/*****************************************************************************/
639 1938
640void 1939void
641ev_fork_prepare (void) 1940ev_invoke (EV_P_ void *w, int revents)
642{ 1941{
643 /* nop */ 1942 EV_CB_INVOKE ((W)w, revents);
644} 1943}
645 1944
646void 1945unsigned int
647ev_fork_parent (void) 1946ev_pending_count (EV_P)
648{ 1947{
649 /* nop */ 1948 int pri;
650} 1949 unsigned int count = 0;
651 1950
652void 1951 for (pri = NUMPRI; pri--; )
653ev_fork_child (void) 1952 count += pendingcnt [pri];
654{
655 /*TODO*/
656#if !EV_MULTIPLICITY
657#if EV_USE_EPOLL
658 if (method == EVMETHOD_EPOLL)
659 epoll_postfork_child (EV_A);
660#endif
661 1953
662 ev_io_stop (EV_A_ &sigev); 1954 return count;
663 close (sigpipe [0]);
664 close (sigpipe [1]);
665 pipe (sigpipe);
666 siginit (EV_A);
667#endif
668} 1955}
669 1956
670/*****************************************************************************/ 1957void noinline
671 1958ev_invoke_pending (EV_P)
672static void
673call_pending (EV_P)
674{ 1959{
675 int pri; 1960 int pri;
676 1961
677 for (pri = NUMPRI; pri--; ) 1962 for (pri = NUMPRI; pri--; )
678 while (pendingcnt [pri]) 1963 while (pendingcnt [pri])
679 { 1964 {
680 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
681 1966
682 if (p->w) 1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
683 { 1968 /* ^ this is no longer true, as pending_w could be here */
1969
684 p->w->pending = 0; 1970 p->w->pending = 0;
685 p->w->cb (EV_A_ p->w, p->events); 1971 EV_CB_INVOKE (p->w, p->events);
686 } 1972 EV_FREQUENT_CHECK;
687 } 1973 }
688} 1974}
689 1975
690static void 1976#if EV_IDLE_ENABLE
1977/* make idle watchers pending. this handles the "call-idle */
1978/* only when higher priorities are idle" logic */
1979inline_size void
691timers_reify (EV_P) 1980idle_reify (EV_P)
692{ 1981{
693 while (timercnt && timers [0]->at <= mn_now) 1982 if (expect_false (idleall))
694 { 1983 {
695 struct ev_timer *w = timers [0]; 1984 int pri;
696 1985
697 /* first reschedule or stop timer */ 1986 for (pri = NUMPRI; pri--; )
698 if (w->repeat)
699 { 1987 {
700 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1988 if (pendingcnt [pri])
701 w->at = mn_now + w->repeat; 1989 break;
702 downheap ((WT *)timers, timercnt, 0);
703 }
704 else
705 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
706 1990
707 event (EV_A_ (W)w, EV_TIMEOUT); 1991 if (idlecnt [pri])
708 }
709}
710
711static void
712periodics_reify (EV_P)
713{
714 while (periodiccnt && periodics [0]->at <= rt_now)
715 {
716 struct ev_periodic *w = periodics [0];
717
718 /* first reschedule or stop timer */
719 if (w->interval)
720 {
721 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
722 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
723 downheap ((WT *)periodics, periodiccnt, 0);
724 }
725 else
726 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
727
728 event (EV_A_ (W)w, EV_PERIODIC);
729 }
730}
731
732static void
733periodics_reschedule (EV_P)
734{
735 int i;
736
737 /* adjust periodics after time jump */
738 for (i = 0; i < periodiccnt; ++i)
739 {
740 struct ev_periodic *w = periodics [i];
741
742 if (w->interval)
743 {
744 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
745
746 if (fabs (diff) >= 1e-4)
747 { 1992 {
748 ev_periodic_stop (EV_A_ w); 1993 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
749 ev_periodic_start (EV_A_ w); 1994 break;
750
751 i = 0; /* restart loop, inefficient, but time jumps should be rare */
752 } 1995 }
753 } 1996 }
754 } 1997 }
755} 1998}
1999#endif
756 2000
757inline int 2001/* make timers pending */
758time_update_monotonic (EV_P) 2002inline_size void
2003timers_reify (EV_P)
759{ 2004{
760 mn_now = get_clock (); 2005 EV_FREQUENT_CHECK;
761 2006
762 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
763 {
764 rt_now = rtmn_diff + mn_now;
765 return 0;
766 } 2008 {
767 else 2009 do
2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2023
2024 ANHE_at_cache (timers [HEAP0]);
2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
2032 }
2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2034
2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
768 { 2036 }
769 now_floor = mn_now; 2037}
770 rt_now = ev_time (); 2038
771 return 1; 2039#if EV_PERIODIC_ENABLE
2040/* make periodics pending */
2041inline_size void
2042periodics_reify (EV_P)
2043{
2044 EV_FREQUENT_CHECK;
2045
2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
772 } 2047 {
773} 2048 int feed_count = 0;
774 2049
775static void 2050 do
776time_update (EV_P) 2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2055
2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
2090 }
2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2092
2093 feed_reverse_done (EV_A_ EV_PERIODIC);
2094 }
2095}
2096
2097/* simply recalculate all periodics */
2098/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2099static void noinline
2100periodics_reschedule (EV_P)
777{ 2101{
778 int i; 2102 int i;
779 2103
2104 /* adjust periodics after time jump */
2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2108
2109 if (w->reschedule_cb)
2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2111 else if (w->interval)
2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118}
2119#endif
2120
2121/* adjust all timers by a given offset */
2122static void noinline
2123timers_reschedule (EV_P_ ev_tstamp adjust)
2124{
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
2128 {
2129 ANHE *he = timers + i + HEAP0;
2130 ANHE_w (*he)->at += adjust;
2131 ANHE_at_cache (*he);
2132 }
2133}
2134
2135/* fetch new monotonic and realtime times from the kernel */
2136/* also detetc if there was a timejump, and act accordingly */
2137inline_speed void
2138time_update (EV_P_ ev_tstamp max_block)
2139{
780#if EV_USE_MONOTONIC 2140#if EV_USE_MONOTONIC
781 if (expect_true (have_monotonic)) 2141 if (expect_true (have_monotonic))
782 { 2142 {
783 if (time_update_monotonic (EV_A)) 2143 int i;
2144 ev_tstamp odiff = rtmn_diff;
2145
2146 mn_now = get_clock ();
2147
2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2149 /* interpolate in the meantime */
2150 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
784 { 2151 {
785 ev_tstamp odiff = rtmn_diff; 2152 ev_rt_now = rtmn_diff + mn_now;
2153 return;
2154 }
786 2155
2156 now_floor = mn_now;
2157 ev_rt_now = ev_time ();
2158
787 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2159 /* loop a few times, before making important decisions.
2160 * on the choice of "4": one iteration isn't enough,
2161 * in case we get preempted during the calls to
2162 * ev_time and get_clock. a second call is almost guaranteed
2163 * to succeed in that case, though. and looping a few more times
2164 * doesn't hurt either as we only do this on time-jumps or
2165 * in the unlikely event of having been preempted here.
2166 */
2167 for (i = 4; --i; )
788 { 2168 {
789 rtmn_diff = rt_now - mn_now; 2169 rtmn_diff = ev_rt_now - mn_now;
790 2170
791 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2171 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
792 return; /* all is well */ 2172 return; /* all is well */
793 2173
794 rt_now = ev_time (); 2174 ev_rt_now = ev_time ();
795 mn_now = get_clock (); 2175 mn_now = get_clock ();
796 now_floor = mn_now; 2176 now_floor = mn_now;
797 } 2177 }
798 2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2181# if EV_PERIODIC_ENABLE
2182 periodics_reschedule (EV_A);
2183# endif
2184 }
2185 else
2186#endif
2187 {
2188 ev_rt_now = ev_time ();
2189
2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2191 {
2192 /* adjust timers. this is easy, as the offset is the same for all of them */
2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2194#if EV_PERIODIC_ENABLE
799 periodics_reschedule (EV_A); 2195 periodics_reschedule (EV_A);
800 /* no timer adjustment, as the monotonic clock doesn't jump */ 2196#endif
801 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
802 } 2197 }
803 }
804 else
805#endif
806 {
807 rt_now = ev_time ();
808 2198
809 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
810 {
811 periodics_reschedule (EV_A);
812
813 /* adjust timers. this is easy, as the offset is the same for all */
814 for (i = 0; i < timercnt; ++i)
815 timers [i]->at += rt_now - mn_now;
816 }
817
818 mn_now = rt_now; 2199 mn_now = ev_rt_now;
819 } 2200 }
820} 2201}
821
822void
823ev_ref (EV_P)
824{
825 ++activecnt;
826}
827
828void
829ev_unref (EV_P)
830{
831 --activecnt;
832}
833
834static int loop_done;
835 2202
836void 2203void
837ev_loop (EV_P_ int flags) 2204ev_loop (EV_P_ int flags)
838{ 2205{
839 double block; 2206#if EV_MINIMAL < 2
840 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2207 ++loop_depth;
2208#endif
2209
2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
2212 loop_done = EVUNLOOP_CANCEL;
2213
2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
841 2215
842 do 2216 do
843 { 2217 {
2218#if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220#endif
2221
2222#ifndef _WIN32
2223 if (expect_false (curpid)) /* penalise the forking check even more */
2224 if (expect_false (getpid () != curpid))
2225 {
2226 curpid = getpid ();
2227 postfork = 1;
2228 }
2229#endif
2230
2231#if EV_FORK_ENABLE
2232 /* we might have forked, so queue fork handlers */
2233 if (expect_false (postfork))
2234 if (forkcnt)
2235 {
2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2237 EV_INVOKE_PENDING;
2238 }
2239#endif
2240
844 /* queue check watchers (and execute them) */ 2241 /* queue prepare watchers (and execute them) */
845 if (expect_false (preparecnt)) 2242 if (expect_false (preparecnt))
846 { 2243 {
847 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
848 call_pending (EV_A); 2245 EV_INVOKE_PENDING;
849 } 2246 }
2247
2248 if (expect_false (loop_done))
2249 break;
2250
2251 /* we might have forked, so reify kernel state if necessary */
2252 if (expect_false (postfork))
2253 loop_fork (EV_A);
850 2254
851 /* update fd-related kernel structures */ 2255 /* update fd-related kernel structures */
852 fd_reify (EV_A); 2256 fd_reify (EV_A);
853 2257
854 /* calculate blocking time */ 2258 /* calculate blocking time */
2259 {
2260 ev_tstamp waittime = 0.;
2261 ev_tstamp sleeptime = 0.;
855 2262
856 /* we only need this for !monotonic clockor timers, but as we basically 2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
857 always have timers, we just calculate it always */
858#if EV_USE_MONOTONIC
859 if (expect_true (have_monotonic))
860 time_update_monotonic (EV_A);
861 else
862#endif
863 { 2264 {
864 rt_now = ev_time (); 2265 /* remember old timestamp for io_blocktime calculation */
865 mn_now = rt_now; 2266 ev_tstamp prev_mn_now = mn_now;
866 }
867 2267
868 if (flags & EVLOOP_NONBLOCK || idlecnt) 2268 /* update time to cancel out callback processing overhead */
869 block = 0.; 2269 time_update (EV_A_ 1e100);
870 else 2270
871 {
872 block = MAX_BLOCKTIME; 2271 waittime = MAX_BLOCKTIME;
873 2272
874 if (timercnt) 2273 if (timercnt)
875 { 2274 {
876 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
877 if (block > to) block = to; 2276 if (waittime > to) waittime = to;
878 } 2277 }
879 2278
2279#if EV_PERIODIC_ENABLE
880 if (periodiccnt) 2280 if (periodiccnt)
881 { 2281 {
882 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
883 if (block > to) block = to; 2283 if (waittime > to) waittime = to;
884 } 2284 }
2285#endif
885 2286
886 if (block < 0.) block = 0.; 2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
2288 if (expect_false (waittime < timeout_blocktime))
2289 waittime = timeout_blocktime;
2290
2291 /* extra check because io_blocktime is commonly 0 */
2292 if (expect_false (io_blocktime))
2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
2301 ev_sleep (sleeptime);
2302 waittime -= sleeptime;
2303 }
2304 }
887 } 2305 }
888 2306
889 method_poll (EV_A_ block); 2307#if EV_MINIMAL < 2
2308 ++loop_count;
2309#endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
890 2313
891 /* update rt_now, do magic */ 2314 /* update ev_rt_now, do magic */
892 time_update (EV_A); 2315 time_update (EV_A_ waittime + sleeptime);
2316 }
893 2317
894 /* queue pending timers and reschedule them */ 2318 /* queue pending timers and reschedule them */
895 timers_reify (EV_A); /* relative timers called last */ 2319 timers_reify (EV_A); /* relative timers called last */
2320#if EV_PERIODIC_ENABLE
896 periodics_reify (EV_A); /* absolute timers called first */ 2321 periodics_reify (EV_A); /* absolute timers called first */
2322#endif
897 2323
2324#if EV_IDLE_ENABLE
898 /* queue idle watchers unless io or timers are pending */ 2325 /* queue idle watchers unless other events are pending */
899 if (!pendingcnt) 2326 idle_reify (EV_A);
900 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2327#endif
901 2328
902 /* queue check watchers, to be executed first */ 2329 /* queue check watchers, to be executed first */
903 if (checkcnt) 2330 if (expect_false (checkcnt))
904 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
905 2332
906 call_pending (EV_A); 2333 EV_INVOKE_PENDING;
907 } 2334 }
908 while (activecnt && !loop_done); 2335 while (expect_true (
2336 activecnt
2337 && !loop_done
2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2339 ));
909 2340
910 if (loop_done != 2) 2341 if (loop_done == EVUNLOOP_ONE)
911 loop_done = 0; 2342 loop_done = EVUNLOOP_CANCEL;
2343
2344#if EV_MINIMAL < 2
2345 --loop_depth;
2346#endif
912} 2347}
913 2348
914void 2349void
915ev_unloop (EV_P_ int how) 2350ev_unloop (EV_P_ int how)
916{ 2351{
917 loop_done = how; 2352 loop_done = how;
918} 2353}
919 2354
2355void
2356ev_ref (EV_P)
2357{
2358 ++activecnt;
2359}
2360
2361void
2362ev_unref (EV_P)
2363{
2364 --activecnt;
2365}
2366
2367void
2368ev_now_update (EV_P)
2369{
2370 time_update (EV_A_ 1e100);
2371}
2372
2373void
2374ev_suspend (EV_P)
2375{
2376 ev_now_update (EV_A);
2377}
2378
2379void
2380ev_resume (EV_P)
2381{
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386#if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389#endif
2390}
2391
920/*****************************************************************************/ 2392/*****************************************************************************/
2393/* singly-linked list management, used when the expected list length is short */
921 2394
922inline void 2395inline_size void
923wlist_add (WL *head, WL elem) 2396wlist_add (WL *head, WL elem)
924{ 2397{
925 elem->next = *head; 2398 elem->next = *head;
926 *head = elem; 2399 *head = elem;
927} 2400}
928 2401
929inline void 2402inline_size void
930wlist_del (WL *head, WL elem) 2403wlist_del (WL *head, WL elem)
931{ 2404{
932 while (*head) 2405 while (*head)
933 { 2406 {
934 if (*head == elem) 2407 if (expect_true (*head == elem))
935 { 2408 {
936 *head = elem->next; 2409 *head = elem->next;
937 return; 2410 break;
938 } 2411 }
939 2412
940 head = &(*head)->next; 2413 head = &(*head)->next;
941 } 2414 }
942} 2415}
943 2416
2417/* internal, faster, version of ev_clear_pending */
944inline void 2418inline_speed void
945ev_clear_pending (EV_P_ W w) 2419clear_pending (EV_P_ W w)
946{ 2420{
947 if (w->pending) 2421 if (w->pending)
948 { 2422 {
949 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
950 w->pending = 0; 2424 w->pending = 0;
951 } 2425 }
952} 2426}
953 2427
2428int
2429ev_clear_pending (EV_P_ void *w)
2430{
2431 W w_ = (W)w;
2432 int pending = w_->pending;
2433
2434 if (expect_true (pending))
2435 {
2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
2438 w_->pending = 0;
2439 return p->events;
2440 }
2441 else
2442 return 0;
2443}
2444
954inline void 2445inline_size void
2446pri_adjust (EV_P_ W w)
2447{
2448 int pri = ev_priority (w);
2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2451 ev_set_priority (w, pri);
2452}
2453
2454inline_speed void
955ev_start (EV_P_ W w, int active) 2455ev_start (EV_P_ W w, int active)
956{ 2456{
957 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2457 pri_adjust (EV_A_ w);
958 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
959
960 w->active = active; 2458 w->active = active;
961 ev_ref (EV_A); 2459 ev_ref (EV_A);
962} 2460}
963 2461
964inline void 2462inline_size void
965ev_stop (EV_P_ W w) 2463ev_stop (EV_P_ W w)
966{ 2464{
967 ev_unref (EV_A); 2465 ev_unref (EV_A);
968 w->active = 0; 2466 w->active = 0;
969} 2467}
970 2468
971/*****************************************************************************/ 2469/*****************************************************************************/
972 2470
973void 2471void noinline
974ev_io_start (EV_P_ struct ev_io *w) 2472ev_io_start (EV_P_ ev_io *w)
975{ 2473{
976 int fd = w->fd; 2474 int fd = w->fd;
977 2475
978 if (ev_is_active (w)) 2476 if (expect_false (ev_is_active (w)))
979 return; 2477 return;
980 2478
981 assert (("ev_io_start called with negative fd", fd >= 0)); 2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
982 2483
983 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
984 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
985 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2486 wlist_add (&anfds[fd].head, (WL)w);
986 2487
987 fd_change (EV_A_ fd); 2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
988} 2489 w->events &= ~EV__IOFDSET;
989 2490
990void 2491 EV_FREQUENT_CHECK;
2492}
2493
2494void noinline
991ev_io_stop (EV_P_ struct ev_io *w) 2495ev_io_stop (EV_P_ ev_io *w)
992{ 2496{
993 ev_clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
994 if (!ev_is_active (w)) 2498 if (expect_false (!ev_is_active (w)))
995 return; 2499 return;
996 2500
2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2502
2503 EV_FREQUENT_CHECK;
2504
997 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2505 wlist_del (&anfds[w->fd].head, (WL)w);
998 ev_stop (EV_A_ (W)w); 2506 ev_stop (EV_A_ (W)w);
999 2507
1000 fd_change (EV_A_ w->fd); 2508 fd_change (EV_A_ w->fd, 1);
1001}
1002 2509
1003void 2510 EV_FREQUENT_CHECK;
2511}
2512
2513void noinline
1004ev_timer_start (EV_P_ struct ev_timer *w) 2514ev_timer_start (EV_P_ ev_timer *w)
1005{ 2515{
1006 if (ev_is_active (w)) 2516 if (expect_false (ev_is_active (w)))
1007 return; 2517 return;
1008 2518
1009 w->at += mn_now; 2519 ev_at (w) += mn_now;
1010 2520
1011 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1012 2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
1013 ev_start (EV_A_ (W)w, ++timercnt); 2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1014 array_needsize (timers, timermax, timercnt, ); 2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1015 timers [timercnt - 1] = w; 2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
1016 upheap ((WT *)timers, timercnt - 1); 2529 ANHE_at_cache (timers [ev_active (w)]);
1017} 2530 upheap (timers, ev_active (w));
1018 2531
1019void 2532 EV_FREQUENT_CHECK;
2533
2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2535}
2536
2537void noinline
1020ev_timer_stop (EV_P_ struct ev_timer *w) 2538ev_timer_stop (EV_P_ ev_timer *w)
1021{ 2539{
1022 ev_clear_pending (EV_A_ (W)w); 2540 clear_pending (EV_A_ (W)w);
1023 if (!ev_is_active (w)) 2541 if (expect_false (!ev_is_active (w)))
1024 return; 2542 return;
1025 2543
1026 if (w->active < timercnt--) 2544 EV_FREQUENT_CHECK;
2545
2546 {
2547 int active = ev_active (w);
2548
2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2550
2551 --timercnt;
2552
2553 if (expect_true (active < timercnt + HEAP0))
1027 { 2554 {
1028 timers [w->active - 1] = timers [timercnt]; 2555 timers [active] = timers [timercnt + HEAP0];
1029 downheap ((WT *)timers, timercnt, w->active - 1); 2556 adjustheap (timers, timercnt, active);
1030 } 2557 }
2558 }
1031 2559
1032 w->at = w->repeat; 2560 EV_FREQUENT_CHECK;
2561
2562 ev_at (w) -= mn_now;
1033 2563
1034 ev_stop (EV_A_ (W)w); 2564 ev_stop (EV_A_ (W)w);
1035} 2565}
1036 2566
1037void 2567void noinline
1038ev_timer_again (EV_P_ struct ev_timer *w) 2568ev_timer_again (EV_P_ ev_timer *w)
1039{ 2569{
2570 EV_FREQUENT_CHECK;
2571
1040 if (ev_is_active (w)) 2572 if (ev_is_active (w))
1041 { 2573 {
1042 if (w->repeat) 2574 if (w->repeat)
1043 { 2575 {
1044 w->at = mn_now + w->repeat; 2576 ev_at (w) = mn_now + w->repeat;
2577 ANHE_at_cache (timers [ev_active (w)]);
1045 downheap ((WT *)timers, timercnt, w->active - 1); 2578 adjustheap (timers, timercnt, ev_active (w));
1046 } 2579 }
1047 else 2580 else
1048 ev_timer_stop (EV_A_ w); 2581 ev_timer_stop (EV_A_ w);
1049 } 2582 }
1050 else if (w->repeat) 2583 else if (w->repeat)
2584 {
2585 ev_at (w) = w->repeat;
1051 ev_timer_start (EV_A_ w); 2586 ev_timer_start (EV_A_ w);
1052} 2587 }
1053 2588
1054void 2589 EV_FREQUENT_CHECK;
2590}
2591
2592ev_tstamp
2593ev_timer_remaining (EV_P_ ev_timer *w)
2594{
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2596}
2597
2598#if EV_PERIODIC_ENABLE
2599void noinline
1055ev_periodic_start (EV_P_ struct ev_periodic *w) 2600ev_periodic_start (EV_P_ ev_periodic *w)
1056{ 2601{
1057 if (ev_is_active (w)) 2602 if (expect_false (ev_is_active (w)))
1058 return; 2603 return;
1059 2604
2605 if (w->reschedule_cb)
2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2607 else if (w->interval)
2608 {
1060 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1061
1062 /* this formula differs from the one in periodic_reify because we do not always round up */ 2610 /* this formula differs from the one in periodic_reify because we do not always round up */
1063 if (w->interval)
1064 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2612 }
2613 else
2614 ev_at (w) = w->offset;
1065 2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
1066 ev_start (EV_A_ (W)w, ++periodiccnt); 2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1067 array_needsize (periodics, periodicmax, periodiccnt, ); 2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1068 periodics [periodiccnt - 1] = w; 2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1069 upheap ((WT *)periodics, periodiccnt - 1); 2622 ANHE_at_cache (periodics [ev_active (w)]);
1070} 2623 upheap (periodics, ev_active (w));
1071 2624
1072void 2625 EV_FREQUENT_CHECK;
2626
2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2628}
2629
2630void noinline
1073ev_periodic_stop (EV_P_ struct ev_periodic *w) 2631ev_periodic_stop (EV_P_ ev_periodic *w)
1074{ 2632{
1075 ev_clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1076 if (!ev_is_active (w)) 2634 if (expect_false (!ev_is_active (w)))
1077 return; 2635 return;
1078 2636
1079 if (w->active < periodiccnt--) 2637 EV_FREQUENT_CHECK;
2638
2639 {
2640 int active = ev_active (w);
2641
2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2643
2644 --periodiccnt;
2645
2646 if (expect_true (active < periodiccnt + HEAP0))
1080 { 2647 {
1081 periodics [w->active - 1] = periodics [periodiccnt]; 2648 periodics [active] = periodics [periodiccnt + HEAP0];
1082 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2649 adjustheap (periodics, periodiccnt, active);
1083 } 2650 }
2651 }
2652
2653 EV_FREQUENT_CHECK;
1084 2654
1085 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
1086} 2656}
2657
2658void noinline
2659ev_periodic_again (EV_P_ ev_periodic *w)
2660{
2661 /* TODO: use adjustheap and recalculation */
2662 ev_periodic_stop (EV_A_ w);
2663 ev_periodic_start (EV_A_ w);
2664}
2665#endif
1087 2666
1088#ifndef SA_RESTART 2667#ifndef SA_RESTART
1089# define SA_RESTART 0 2668# define SA_RESTART 0
1090#endif 2669#endif
1091 2670
1092void 2671void noinline
1093ev_signal_start (EV_P_ struct ev_signal *w) 2672ev_signal_start (EV_P_ ev_signal *w)
1094{ 2673{
1095 if (ev_is_active (w)) 2674 if (expect_false (ev_is_active (w)))
1096 return; 2675 return;
1097 2676
1098 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2678
2679#if EV_MULTIPLICITY
2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2682
2683 signals [w->signum - 1].loop = EV_A;
2684#endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688#if EV_USE_SIGNALFD
2689 if (sigfd == -2)
2690 {
2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2692 if (sigfd < 0 && errno == EINVAL)
2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2694
2695 if (sigfd >= 0)
2696 {
2697 fd_intern (sigfd); /* doing it twice will not hurt */
2698
2699 sigemptyset (&sigfd_set);
2700
2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716#endif
1099 2717
1100 ev_start (EV_A_ (W)w, 1); 2718 ev_start (EV_A_ (W)w, 1);
1101 array_needsize (signals, signalmax, w->signum, signals_init);
1102 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
1103 2720
1104 if (!w->next) 2721 if (!((WL)w)->next)
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
2724# endif
1105 { 2725 {
2726# if _WIN32
2727 signal (w->signum, ev_sighandler);
2728# else
1106 struct sigaction sa; 2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
1107 sa.sa_handler = sighandler; 2733 sa.sa_handler = ev_sighandler;
1108 sigfillset (&sa.sa_mask); 2734 sigfillset (&sa.sa_mask);
1109 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1110 sigaction (w->signum, &sa, 0); 2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2741#endif
1111 } 2742 }
1112}
1113 2743
1114void 2744 EV_FREQUENT_CHECK;
2745}
2746
2747void noinline
1115ev_signal_stop (EV_P_ struct ev_signal *w) 2748ev_signal_stop (EV_P_ ev_signal *w)
1116{ 2749{
1117 ev_clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
1118 if (!ev_is_active (w)) 2751 if (expect_false (!ev_is_active (w)))
1119 return; 2752 return;
1120 2753
2754 EV_FREQUENT_CHECK;
2755
1121 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
1122 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
1123 2758
1124 if (!signals [w->signum - 1].head) 2759 if (!signals [w->signum - 1].head)
2760 {
2761#if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763#endif
2764#if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
2772 }
2773 else
2774#endif
1125 signal (w->signum, SIG_DFL); 2775 signal (w->signum, SIG_DFL);
1126} 2776 }
1127 2777
2778 EV_FREQUENT_CHECK;
2779}
2780
1128void 2781void
1129ev_idle_start (EV_P_ struct ev_idle *w) 2782ev_child_start (EV_P_ ev_child *w)
1130{ 2783{
2784#if EV_MULTIPLICITY
2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2786#endif
1131 if (ev_is_active (w)) 2787 if (expect_false (ev_is_active (w)))
1132 return; 2788 return;
1133 2789
2790 EV_FREQUENT_CHECK;
2791
1134 ev_start (EV_A_ (W)w, ++idlecnt); 2792 ev_start (EV_A_ (W)w, 1);
1135 array_needsize (idles, idlemax, idlecnt, ); 2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1136 idles [idlecnt - 1] = w;
1137}
1138 2794
2795 EV_FREQUENT_CHECK;
2796}
2797
1139void 2798void
1140ev_idle_stop (EV_P_ struct ev_idle *w) 2799ev_child_stop (EV_P_ ev_child *w)
1141{ 2800{
1142 ev_clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
1143 if (ev_is_active (w)) 2802 if (expect_false (!ev_is_active (w)))
1144 return; 2803 return;
1145 2804
1146 idles [w->active - 1] = idles [--idlecnt]; 2805 EV_FREQUENT_CHECK;
2806
2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1147 ev_stop (EV_A_ (W)w); 2808 ev_stop (EV_A_ (W)w);
1148}
1149 2809
1150void 2810 EV_FREQUENT_CHECK;
1151ev_prepare_start (EV_P_ struct ev_prepare *w) 2811}
2812
2813#if EV_STAT_ENABLE
2814
2815# ifdef _WIN32
2816# undef lstat
2817# define lstat(a,b) _stati64 (a,b)
2818# endif
2819
2820#define DEF_STAT_INTERVAL 5.0074891
2821#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2822#define MIN_STAT_INTERVAL 0.1074891
2823
2824static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2825
2826#if EV_USE_INOTIFY
2827# define EV_INOTIFY_BUFSIZE 8192
2828
2829static void noinline
2830infy_add (EV_P_ ev_stat *w)
1152{ 2831{
1153 if (ev_is_active (w)) 2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2833
2834 if (w->wd < 0)
2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2838
2839 /* monitor some parent directory for speedup hints */
2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2841 /* but an efficiency issue only */
2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2843 {
2844 char path [4096];
2845 strcpy (path, w->path);
2846
2847 do
2848 {
2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2851
2852 char *pend = strrchr (path, '/');
2853
2854 if (!pend || pend == path)
2855 break;
2856
2857 *pend = 0;
2858 w->wd = inotify_add_watch (fs_fd, path, mask);
2859 }
2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2861 }
2862 }
2863
2864 if (w->wd >= 0)
2865 {
2866 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2867
2868 /* now local changes will be tracked by inotify, but remote changes won't */
2869 /* unless the filesystem it known to be local, we therefore still poll */
2870 /* also do poll on <2.6.25, but with normal frequency */
2871 struct statfs sfs;
2872
2873 if (fs_2625 && !statfs (w->path, &sfs))
2874 if (sfs.f_type == 0x1373 /* devfs */
2875 || sfs.f_type == 0xEF53 /* ext2/3 */
2876 || sfs.f_type == 0x3153464a /* jfs */
2877 || sfs.f_type == 0x52654973 /* reiser3 */
2878 || sfs.f_type == 0x01021994 /* tempfs */
2879 || sfs.f_type == 0x58465342 /* xfs */)
2880 return;
2881
2882 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2883 ev_timer_again (EV_A_ &w->timer);
2884 }
2885}
2886
2887static void noinline
2888infy_del (EV_P_ ev_stat *w)
2889{
2890 int slot;
2891 int wd = w->wd;
2892
2893 if (wd < 0)
1154 return; 2894 return;
1155 2895
2896 w->wd = -2;
2897 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2898 wlist_del (&fs_hash [slot].head, (WL)w);
2899
2900 /* remove this watcher, if others are watching it, they will rearm */
2901 inotify_rm_watch (fs_fd, wd);
2902}
2903
2904static void noinline
2905infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2906{
2907 if (slot < 0)
2908 /* overflow, need to check for all hash slots */
2909 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2910 infy_wd (EV_A_ slot, wd, ev);
2911 else
2912 {
2913 WL w_;
2914
2915 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2916 {
2917 ev_stat *w = (ev_stat *)w_;
2918 w_ = w_->next; /* lets us remove this watcher and all before it */
2919
2920 if (w->wd == wd || wd == -1)
2921 {
2922 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2923 {
2924 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2925 w->wd = -1;
2926 infy_add (EV_A_ w); /* re-add, no matter what */
2927 }
2928
2929 stat_timer_cb (EV_A_ &w->timer, 0);
2930 }
2931 }
2932 }
2933}
2934
2935static void
2936infy_cb (EV_P_ ev_io *w, int revents)
2937{
2938 char buf [EV_INOTIFY_BUFSIZE];
2939 struct inotify_event *ev = (struct inotify_event *)buf;
2940 int ofs;
2941 int len = read (fs_fd, buf, sizeof (buf));
2942
2943 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2944 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2945}
2946
2947inline_size void
2948check_2625 (EV_P)
2949{
2950 /* kernels < 2.6.25 are borked
2951 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2952 */
2953 struct utsname buf;
2954 int major, minor, micro;
2955
2956 if (uname (&buf))
2957 return;
2958
2959 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2960 return;
2961
2962 if (major < 2
2963 || (major == 2 && minor < 6)
2964 || (major == 2 && minor == 6 && micro < 25))
2965 return;
2966
2967 fs_2625 = 1;
2968}
2969
2970inline_size void
2971infy_init (EV_P)
2972{
2973 if (fs_fd != -2)
2974 return;
2975
2976 fs_fd = -1;
2977
2978 check_2625 (EV_A);
2979
2980 fs_fd = inotify_init ();
2981
2982 if (fs_fd >= 0)
2983 {
2984 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2985 ev_set_priority (&fs_w, EV_MAXPRI);
2986 ev_io_start (EV_A_ &fs_w);
2987 }
2988}
2989
2990inline_size void
2991infy_fork (EV_P)
2992{
2993 int slot;
2994
2995 if (fs_fd < 0)
2996 return;
2997
2998 close (fs_fd);
2999 fs_fd = inotify_init ();
3000
3001 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3002 {
3003 WL w_ = fs_hash [slot].head;
3004 fs_hash [slot].head = 0;
3005
3006 while (w_)
3007 {
3008 ev_stat *w = (ev_stat *)w_;
3009 w_ = w_->next; /* lets us add this watcher */
3010
3011 w->wd = -1;
3012
3013 if (fs_fd >= 0)
3014 infy_add (EV_A_ w); /* re-add, no matter what */
3015 else
3016 ev_timer_again (EV_A_ &w->timer);
3017 }
3018 }
3019}
3020
3021#endif
3022
3023#ifdef _WIN32
3024# define EV_LSTAT(p,b) _stati64 (p, b)
3025#else
3026# define EV_LSTAT(p,b) lstat (p, b)
3027#endif
3028
3029void
3030ev_stat_stat (EV_P_ ev_stat *w)
3031{
3032 if (lstat (w->path, &w->attr) < 0)
3033 w->attr.st_nlink = 0;
3034 else if (!w->attr.st_nlink)
3035 w->attr.st_nlink = 1;
3036}
3037
3038static void noinline
3039stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3040{
3041 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3042
3043 /* we copy this here each the time so that */
3044 /* prev has the old value when the callback gets invoked */
3045 w->prev = w->attr;
3046 ev_stat_stat (EV_A_ w);
3047
3048 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3049 if (
3050 w->prev.st_dev != w->attr.st_dev
3051 || w->prev.st_ino != w->attr.st_ino
3052 || w->prev.st_mode != w->attr.st_mode
3053 || w->prev.st_nlink != w->attr.st_nlink
3054 || w->prev.st_uid != w->attr.st_uid
3055 || w->prev.st_gid != w->attr.st_gid
3056 || w->prev.st_rdev != w->attr.st_rdev
3057 || w->prev.st_size != w->attr.st_size
3058 || w->prev.st_atime != w->attr.st_atime
3059 || w->prev.st_mtime != w->attr.st_mtime
3060 || w->prev.st_ctime != w->attr.st_ctime
3061 ) {
3062 #if EV_USE_INOTIFY
3063 if (fs_fd >= 0)
3064 {
3065 infy_del (EV_A_ w);
3066 infy_add (EV_A_ w);
3067 ev_stat_stat (EV_A_ w); /* avoid race... */
3068 }
3069 #endif
3070
3071 ev_feed_event (EV_A_ w, EV_STAT);
3072 }
3073}
3074
3075void
3076ev_stat_start (EV_P_ ev_stat *w)
3077{
3078 if (expect_false (ev_is_active (w)))
3079 return;
3080
3081 ev_stat_stat (EV_A_ w);
3082
3083 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3084 w->interval = MIN_STAT_INTERVAL;
3085
3086 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3087 ev_set_priority (&w->timer, ev_priority (w));
3088
3089#if EV_USE_INOTIFY
3090 infy_init (EV_A);
3091
3092 if (fs_fd >= 0)
3093 infy_add (EV_A_ w);
3094 else
3095#endif
3096 ev_timer_again (EV_A_ &w->timer);
3097
3098 ev_start (EV_A_ (W)w, 1);
3099
3100 EV_FREQUENT_CHECK;
3101}
3102
3103void
3104ev_stat_stop (EV_P_ ev_stat *w)
3105{
3106 clear_pending (EV_A_ (W)w);
3107 if (expect_false (!ev_is_active (w)))
3108 return;
3109
3110 EV_FREQUENT_CHECK;
3111
3112#if EV_USE_INOTIFY
3113 infy_del (EV_A_ w);
3114#endif
3115 ev_timer_stop (EV_A_ &w->timer);
3116
3117 ev_stop (EV_A_ (W)w);
3118
3119 EV_FREQUENT_CHECK;
3120}
3121#endif
3122
3123#if EV_IDLE_ENABLE
3124void
3125ev_idle_start (EV_P_ ev_idle *w)
3126{
3127 if (expect_false (ev_is_active (w)))
3128 return;
3129
3130 pri_adjust (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
3133
3134 {
3135 int active = ++idlecnt [ABSPRI (w)];
3136
3137 ++idleall;
3138 ev_start (EV_A_ (W)w, active);
3139
3140 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3141 idles [ABSPRI (w)][active - 1] = w;
3142 }
3143
3144 EV_FREQUENT_CHECK;
3145}
3146
3147void
3148ev_idle_stop (EV_P_ ev_idle *w)
3149{
3150 clear_pending (EV_A_ (W)w);
3151 if (expect_false (!ev_is_active (w)))
3152 return;
3153
3154 EV_FREQUENT_CHECK;
3155
3156 {
3157 int active = ev_active (w);
3158
3159 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3160 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3161
3162 ev_stop (EV_A_ (W)w);
3163 --idleall;
3164 }
3165
3166 EV_FREQUENT_CHECK;
3167}
3168#endif
3169
3170void
3171ev_prepare_start (EV_P_ ev_prepare *w)
3172{
3173 if (expect_false (ev_is_active (w)))
3174 return;
3175
3176 EV_FREQUENT_CHECK;
3177
1156 ev_start (EV_A_ (W)w, ++preparecnt); 3178 ev_start (EV_A_ (W)w, ++preparecnt);
1157 array_needsize (prepares, preparemax, preparecnt, ); 3179 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1158 prepares [preparecnt - 1] = w; 3180 prepares [preparecnt - 1] = w;
1159}
1160 3181
3182 EV_FREQUENT_CHECK;
3183}
3184
1161void 3185void
1162ev_prepare_stop (EV_P_ struct ev_prepare *w) 3186ev_prepare_stop (EV_P_ ev_prepare *w)
1163{ 3187{
1164 ev_clear_pending (EV_A_ (W)w); 3188 clear_pending (EV_A_ (W)w);
1165 if (ev_is_active (w)) 3189 if (expect_false (!ev_is_active (w)))
1166 return; 3190 return;
1167 3191
3192 EV_FREQUENT_CHECK;
3193
3194 {
3195 int active = ev_active (w);
3196
1168 prepares [w->active - 1] = prepares [--preparecnt]; 3197 prepares [active - 1] = prepares [--preparecnt];
3198 ev_active (prepares [active - 1]) = active;
3199 }
3200
1169 ev_stop (EV_A_ (W)w); 3201 ev_stop (EV_A_ (W)w);
1170}
1171 3202
3203 EV_FREQUENT_CHECK;
3204}
3205
1172void 3206void
1173ev_check_start (EV_P_ struct ev_check *w) 3207ev_check_start (EV_P_ ev_check *w)
1174{ 3208{
1175 if (ev_is_active (w)) 3209 if (expect_false (ev_is_active (w)))
1176 return; 3210 return;
1177 3211
3212 EV_FREQUENT_CHECK;
3213
1178 ev_start (EV_A_ (W)w, ++checkcnt); 3214 ev_start (EV_A_ (W)w, ++checkcnt);
1179 array_needsize (checks, checkmax, checkcnt, ); 3215 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1180 checks [checkcnt - 1] = w; 3216 checks [checkcnt - 1] = w;
1181}
1182 3217
3218 EV_FREQUENT_CHECK;
3219}
3220
1183void 3221void
1184ev_check_stop (EV_P_ struct ev_check *w) 3222ev_check_stop (EV_P_ ev_check *w)
1185{ 3223{
1186 ev_clear_pending (EV_A_ (W)w); 3224 clear_pending (EV_A_ (W)w);
1187 if (ev_is_active (w)) 3225 if (expect_false (!ev_is_active (w)))
1188 return; 3226 return;
1189 3227
3228 EV_FREQUENT_CHECK;
3229
3230 {
3231 int active = ev_active (w);
3232
1190 checks [w->active - 1] = checks [--checkcnt]; 3233 checks [active - 1] = checks [--checkcnt];
3234 ev_active (checks [active - 1]) = active;
3235 }
3236
1191 ev_stop (EV_A_ (W)w); 3237 ev_stop (EV_A_ (W)w);
1192}
1193 3238
1194void 3239 EV_FREQUENT_CHECK;
1195ev_child_start (EV_P_ struct ev_child *w) 3240}
3241
3242#if EV_EMBED_ENABLE
3243void noinline
3244ev_embed_sweep (EV_P_ ev_embed *w)
1196{ 3245{
3246 ev_loop (w->other, EVLOOP_NONBLOCK);
3247}
3248
3249static void
3250embed_io_cb (EV_P_ ev_io *io, int revents)
3251{
3252 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3253
1197 if (ev_is_active (w)) 3254 if (ev_cb (w))
3255 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3256 else
3257 ev_loop (w->other, EVLOOP_NONBLOCK);
3258}
3259
3260static void
3261embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3262{
3263 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3264
3265 {
3266 EV_P = w->other;
3267
3268 while (fdchangecnt)
3269 {
3270 fd_reify (EV_A);
3271 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3272 }
3273 }
3274}
3275
3276static void
3277embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3278{
3279 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3280
3281 ev_embed_stop (EV_A_ w);
3282
3283 {
3284 EV_P = w->other;
3285
3286 ev_loop_fork (EV_A);
3287 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3288 }
3289
3290 ev_embed_start (EV_A_ w);
3291}
3292
3293#if 0
3294static void
3295embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3296{
3297 ev_idle_stop (EV_A_ idle);
3298}
3299#endif
3300
3301void
3302ev_embed_start (EV_P_ ev_embed *w)
3303{
3304 if (expect_false (ev_is_active (w)))
1198 return; 3305 return;
1199 3306
3307 {
3308 EV_P = w->other;
3309 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3310 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3311 }
3312
3313 EV_FREQUENT_CHECK;
3314
3315 ev_set_priority (&w->io, ev_priority (w));
3316 ev_io_start (EV_A_ &w->io);
3317
3318 ev_prepare_init (&w->prepare, embed_prepare_cb);
3319 ev_set_priority (&w->prepare, EV_MINPRI);
3320 ev_prepare_start (EV_A_ &w->prepare);
3321
3322 ev_fork_init (&w->fork, embed_fork_cb);
3323 ev_fork_start (EV_A_ &w->fork);
3324
3325 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3326
1200 ev_start (EV_A_ (W)w, 1); 3327 ev_start (EV_A_ (W)w, 1);
1201 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1202}
1203 3328
3329 EV_FREQUENT_CHECK;
3330}
3331
1204void 3332void
1205ev_child_stop (EV_P_ struct ev_child *w) 3333ev_embed_stop (EV_P_ ev_embed *w)
1206{ 3334{
1207 ev_clear_pending (EV_A_ (W)w); 3335 clear_pending (EV_A_ (W)w);
1208 if (ev_is_active (w)) 3336 if (expect_false (!ev_is_active (w)))
1209 return; 3337 return;
1210 3338
1211 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3339 EV_FREQUENT_CHECK;
3340
3341 ev_io_stop (EV_A_ &w->io);
3342 ev_prepare_stop (EV_A_ &w->prepare);
3343 ev_fork_stop (EV_A_ &w->fork);
3344
3345 EV_FREQUENT_CHECK;
3346}
3347#endif
3348
3349#if EV_FORK_ENABLE
3350void
3351ev_fork_start (EV_P_ ev_fork *w)
3352{
3353 if (expect_false (ev_is_active (w)))
3354 return;
3355
3356 EV_FREQUENT_CHECK;
3357
3358 ev_start (EV_A_ (W)w, ++forkcnt);
3359 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3360 forks [forkcnt - 1] = w;
3361
3362 EV_FREQUENT_CHECK;
3363}
3364
3365void
3366ev_fork_stop (EV_P_ ev_fork *w)
3367{
3368 clear_pending (EV_A_ (W)w);
3369 if (expect_false (!ev_is_active (w)))
3370 return;
3371
3372 EV_FREQUENT_CHECK;
3373
3374 {
3375 int active = ev_active (w);
3376
3377 forks [active - 1] = forks [--forkcnt];
3378 ev_active (forks [active - 1]) = active;
3379 }
3380
1212 ev_stop (EV_A_ (W)w); 3381 ev_stop (EV_A_ (W)w);
3382
3383 EV_FREQUENT_CHECK;
1213} 3384}
3385#endif
3386
3387#if EV_ASYNC_ENABLE
3388void
3389ev_async_start (EV_P_ ev_async *w)
3390{
3391 if (expect_false (ev_is_active (w)))
3392 return;
3393
3394 evpipe_init (EV_A);
3395
3396 EV_FREQUENT_CHECK;
3397
3398 ev_start (EV_A_ (W)w, ++asynccnt);
3399 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3400 asyncs [asynccnt - 1] = w;
3401
3402 EV_FREQUENT_CHECK;
3403}
3404
3405void
3406ev_async_stop (EV_P_ ev_async *w)
3407{
3408 clear_pending (EV_A_ (W)w);
3409 if (expect_false (!ev_is_active (w)))
3410 return;
3411
3412 EV_FREQUENT_CHECK;
3413
3414 {
3415 int active = ev_active (w);
3416
3417 asyncs [active - 1] = asyncs [--asynccnt];
3418 ev_active (asyncs [active - 1]) = active;
3419 }
3420
3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
3424}
3425
3426void
3427ev_async_send (EV_P_ ev_async *w)
3428{
3429 w->sent = 1;
3430 evpipe_write (EV_A_ &async_pending);
3431}
3432#endif
1214 3433
1215/*****************************************************************************/ 3434/*****************************************************************************/
1216 3435
1217struct ev_once 3436struct ev_once
1218{ 3437{
1219 struct ev_io io; 3438 ev_io io;
1220 struct ev_timer to; 3439 ev_timer to;
1221 void (*cb)(int revents, void *arg); 3440 void (*cb)(int revents, void *arg);
1222 void *arg; 3441 void *arg;
1223}; 3442};
1224 3443
1225static void 3444static void
1226once_cb (EV_P_ struct ev_once *once, int revents) 3445once_cb (EV_P_ struct ev_once *once, int revents)
1227{ 3446{
1228 void (*cb)(int revents, void *arg) = once->cb; 3447 void (*cb)(int revents, void *arg) = once->cb;
1229 void *arg = once->arg; 3448 void *arg = once->arg;
1230 3449
1231 ev_io_stop (EV_A_ &once->io); 3450 ev_io_stop (EV_A_ &once->io);
1232 ev_timer_stop (EV_A_ &once->to); 3451 ev_timer_stop (EV_A_ &once->to);
1233 free (once); 3452 ev_free (once);
1234 3453
1235 cb (revents, arg); 3454 cb (revents, arg);
1236} 3455}
1237 3456
1238static void 3457static void
1239once_cb_io (EV_P_ struct ev_io *w, int revents) 3458once_cb_io (EV_P_ ev_io *w, int revents)
1240{ 3459{
1241 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3460 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3461
3462 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1242} 3463}
1243 3464
1244static void 3465static void
1245once_cb_to (EV_P_ struct ev_timer *w, int revents) 3466once_cb_to (EV_P_ ev_timer *w, int revents)
1246{ 3467{
1247 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3468 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3469
3470 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1248} 3471}
1249 3472
1250void 3473void
1251ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3474ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1252{ 3475{
1253 struct ev_once *once = malloc (sizeof (struct ev_once)); 3476 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1254 3477
1255 if (!once) 3478 if (expect_false (!once))
3479 {
1256 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3480 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1257 else 3481 return;
1258 { 3482 }
3483
1259 once->cb = cb; 3484 once->cb = cb;
1260 once->arg = arg; 3485 once->arg = arg;
1261 3486
1262 ev_watcher_init (&once->io, once_cb_io); 3487 ev_init (&once->io, once_cb_io);
1263 if (fd >= 0) 3488 if (fd >= 0)
3489 {
3490 ev_io_set (&once->io, fd, events);
3491 ev_io_start (EV_A_ &once->io);
3492 }
3493
3494 ev_init (&once->to, once_cb_to);
3495 if (timeout >= 0.)
3496 {
3497 ev_timer_set (&once->to, timeout, 0.);
3498 ev_timer_start (EV_A_ &once->to);
3499 }
3500}
3501
3502/*****************************************************************************/
3503
3504#if EV_WALK_ENABLE
3505void
3506ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3507{
3508 int i, j;
3509 ev_watcher_list *wl, *wn;
3510
3511 if (types & (EV_IO | EV_EMBED))
3512 for (i = 0; i < anfdmax; ++i)
3513 for (wl = anfds [i].head; wl; )
1264 { 3514 {
1265 ev_io_set (&once->io, fd, events); 3515 wn = wl->next;
1266 ev_io_start (EV_A_ &once->io); 3516
3517#if EV_EMBED_ENABLE
3518 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3519 {
3520 if (types & EV_EMBED)
3521 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3522 }
3523 else
3524#endif
3525#if EV_USE_INOTIFY
3526 if (ev_cb ((ev_io *)wl) == infy_cb)
3527 ;
3528 else
3529#endif
3530 if ((ev_io *)wl != &pipe_w)
3531 if (types & EV_IO)
3532 cb (EV_A_ EV_IO, wl);
3533
3534 wl = wn;
1267 } 3535 }
1268 3536
1269 ev_watcher_init (&once->to, once_cb_to); 3537 if (types & (EV_TIMER | EV_STAT))
1270 if (timeout >= 0.) 3538 for (i = timercnt + HEAP0; i-- > HEAP0; )
3539#if EV_STAT_ENABLE
3540 /*TODO: timer is not always active*/
3541 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1271 { 3542 {
1272 ev_timer_set (&once->to, timeout, 0.); 3543 if (types & EV_STAT)
1273 ev_timer_start (EV_A_ &once->to); 3544 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1274 } 3545 }
1275 } 3546 else
1276} 3547#endif
3548 if (types & EV_TIMER)
3549 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1277 3550
1278/*****************************************************************************/ 3551#if EV_PERIODIC_ENABLE
3552 if (types & EV_PERIODIC)
3553 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3554 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3555#endif
1279 3556
1280#if 0 3557#if EV_IDLE_ENABLE
3558 if (types & EV_IDLE)
3559 for (j = NUMPRI; i--; )
3560 for (i = idlecnt [j]; i--; )
3561 cb (EV_A_ EV_IDLE, idles [j][i]);
3562#endif
1281 3563
1282struct ev_io wio; 3564#if EV_FORK_ENABLE
3565 if (types & EV_FORK)
3566 for (i = forkcnt; i--; )
3567 if (ev_cb (forks [i]) != embed_fork_cb)
3568 cb (EV_A_ EV_FORK, forks [i]);
3569#endif
1283 3570
1284static void 3571#if EV_ASYNC_ENABLE
1285sin_cb (struct ev_io *w, int revents) 3572 if (types & EV_ASYNC)
1286{ 3573 for (i = asynccnt; i--; )
1287 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3574 cb (EV_A_ EV_ASYNC, asyncs [i]);
1288} 3575#endif
1289 3576
1290static void 3577 if (types & EV_PREPARE)
1291ocb (struct ev_timer *w, int revents) 3578 for (i = preparecnt; i--; )
1292{ 3579#if EV_EMBED_ENABLE
1293 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3580 if (ev_cb (prepares [i]) != embed_prepare_cb)
1294 ev_timer_stop (w); 3581#endif
1295 ev_timer_start (w); 3582 cb (EV_A_ EV_PREPARE, prepares [i]);
1296}
1297 3583
1298static void 3584 if (types & EV_CHECK)
1299scb (struct ev_signal *w, int revents) 3585 for (i = checkcnt; i--; )
1300{ 3586 cb (EV_A_ EV_CHECK, checks [i]);
1301 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1302 ev_io_stop (&wio);
1303 ev_io_start (&wio);
1304}
1305 3587
1306static void 3588 if (types & EV_SIGNAL)
1307gcb (struct ev_signal *w, int revents)
1308{
1309 fprintf (stderr, "generic %x\n", revents);
1310
1311}
1312
1313int main (void)
1314{
1315 ev_init (0);
1316
1317 ev_io_init (&wio, sin_cb, 0, EV_READ);
1318 ev_io_start (&wio);
1319
1320 struct ev_timer t[10000];
1321
1322#if 0
1323 int i;
1324 for (i = 0; i < 10000; ++i) 3589 for (i = 0; i < EV_NSIG - 1; ++i)
1325 { 3590 for (wl = signals [i].head; wl; )
1326 struct ev_timer *w = t + i; 3591 {
1327 ev_watcher_init (w, ocb, i); 3592 wn = wl->next;
1328 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3593 cb (EV_A_ EV_SIGNAL, wl);
1329 ev_timer_start (w); 3594 wl = wn;
1330 if (drand48 () < 0.5) 3595 }
1331 ev_timer_stop (w);
1332 }
1333#endif
1334 3596
1335 struct ev_timer t1; 3597 if (types & EV_CHILD)
1336 ev_timer_init (&t1, ocb, 5, 10); 3598 for (i = EV_PID_HASHSIZE; i--; )
1337 ev_timer_start (&t1); 3599 for (wl = childs [i]; wl; )
1338 3600 {
1339 struct ev_signal sig; 3601 wn = wl->next;
1340 ev_signal_init (&sig, scb, SIGQUIT); 3602 cb (EV_A_ EV_CHILD, wl);
1341 ev_signal_start (&sig); 3603 wl = wn;
1342 3604 }
1343 struct ev_check cw; 3605/* EV_STAT 0x00001000 /* stat data changed */
1344 ev_check_init (&cw, gcb); 3606/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1345 ev_check_start (&cw);
1346
1347 struct ev_idle iw;
1348 ev_idle_init (&iw, gcb);
1349 ev_idle_start (&iw);
1350
1351 ev_loop (0);
1352
1353 return 0;
1354} 3607}
1355
1356#endif 3608#endif
1357 3609
3610#if EV_MULTIPLICITY
3611 #include "ev_wrap.h"
3612#endif
1358 3613
3614#ifdef __cplusplus
3615}
3616#endif
1359 3617
1360

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines