ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.105 by root, Mon Nov 12 01:02:09 2007 UTC vs.
Revision 1.312 by root, Wed Aug 12 18:48:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
45# endif 79# endif
46# endif 80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
50# endif 88# endif
51 89
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) && !defined (__APPLE__) 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
54# endif 96# endif
55 97
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
58# endif 104# endif
59 105
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) && !defined (__APPLE__) 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
62# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
64#endif 154#endif
65 155
66#include <math.h> 156#include <math.h>
67#include <stdlib.h> 157#include <stdlib.h>
68#include <fcntl.h> 158#include <fcntl.h>
75#include <sys/types.h> 165#include <sys/types.h>
76#include <time.h> 166#include <time.h>
77 167
78#include <signal.h> 168#include <signal.h>
79 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
80#ifndef _WIN32 176#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 177# include <sys/time.h>
83# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
84#else 180#else
181# include <io.h>
85# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 183# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
89# endif 186# endif
90#endif 187#endif
91 188
92/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
93 225
94#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
95# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
232#endif
233
234#ifndef EV_USE_REALTIME
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
96#endif 244#endif
97 245
98#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 248#endif
102 249
103#ifndef EV_USE_POLL 250#ifndef EV_USE_POLL
104# ifdef _WIN32 251# ifdef _WIN32
105# define EV_USE_POLL 0 252# define EV_USE_POLL 0
107# define EV_USE_POLL 1 254# define EV_USE_POLL 1
108# endif 255# endif
109#endif 256#endif
110 257
111#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
112# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
113#endif 264#endif
114 265
115#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
117#endif 268#endif
118 269
119#ifndef EV_USE_REALTIME 270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
121#endif 279# endif
280#endif
122 281
123/**/ 282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
124 347
125#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
126# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
127# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
128#endif 351#endif
130#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
133#endif 356#endif
134 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
135#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 381# include <winsock.h>
137#endif 382#endif
138 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
139/**/ 410/**/
140 411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
417
418/*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
427
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
145 431
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 432#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 434# define noinline __attribute__ ((noinline))
155#else 435#else
156# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
157# define inline static 437# define noinline
438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439# define inline
440# endif
158#endif 441#endif
159 442
160#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 444#define expect_true(expr) expect ((expr) != 0, 1)
445#define inline_size static inline
162 446
447#if EV_MINIMAL
448# define inline_speed static noinline
449#else
450# define inline_speed static inline
451#endif
452
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
165 460
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
462#define EMPTY2(a,b) /* used to suppress some warnings */
167 463
168typedef struct ev_watcher *W; 464typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
171 467
468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
173 480
174#ifdef _WIN32 481#ifdef _WIN32
175# include "ev_win32.c" 482# include "ev_win32.c"
176#endif 483#endif
177 484
178/*****************************************************************************/ 485/*****************************************************************************/
179 486
180static void (*syserr_cb)(const char *msg); 487static void (*syserr_cb)(const char *msg);
181 488
489void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 490ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 491{
184 syserr_cb = cb; 492 syserr_cb = cb;
185} 493}
186 494
187static void 495static void noinline
188syserr (const char *msg) 496ev_syserr (const char *msg)
189{ 497{
190 if (!msg) 498 if (!msg)
191 msg = "(libev) system error"; 499 msg = "(libev) system error";
192 500
193 if (syserr_cb) 501 if (syserr_cb)
197 perror (msg); 505 perror (msg);
198 abort (); 506 abort ();
199 } 507 }
200} 508}
201 509
510static void *
511ev_realloc_emul (void *ptr, long size)
512{
513 /* some systems, notably openbsd and darwin, fail to properly
514 * implement realloc (x, 0) (as required by both ansi c-98 and
515 * the single unix specification, so work around them here.
516 */
517
518 if (size)
519 return realloc (ptr, size);
520
521 free (ptr);
522 return 0;
523}
524
202static void *(*alloc)(void *ptr, long size); 525static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
203 526
527void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 528ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 529{
206 alloc = cb; 530 alloc = cb;
207} 531}
208 532
209static void * 533inline_speed void *
210ev_realloc (void *ptr, long size) 534ev_realloc (void *ptr, long size)
211{ 535{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 536 ptr = alloc (ptr, size);
213 537
214 if (!ptr && size) 538 if (!ptr && size)
215 { 539 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 540 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort (); 541 abort ();
223#define ev_malloc(size) ev_realloc (0, (size)) 547#define ev_malloc(size) ev_realloc (0, (size))
224#define ev_free(ptr) ev_realloc ((ptr), 0) 548#define ev_free(ptr) ev_realloc ((ptr), 0)
225 549
226/*****************************************************************************/ 550/*****************************************************************************/
227 551
552/* set in reify when reification needed */
553#define EV_ANFD_REIFY 1
554
555/* file descriptor info structure */
228typedef struct 556typedef struct
229{ 557{
230 WL head; 558 WL head;
231 unsigned char events; 559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
232 unsigned char reify; 562 unsigned char unused;
563#if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565#endif
233#if EV_SELECT_IS_WINSOCKET 566#if EV_SELECT_IS_WINSOCKET
234 SOCKET handle; 567 SOCKET handle;
235#endif 568#endif
236} ANFD; 569} ANFD;
237 570
571/* stores the pending event set for a given watcher */
238typedef struct 572typedef struct
239{ 573{
240 W w; 574 W w;
241 int events; 575 int events; /* the pending event set for the given watcher */
242} ANPENDING; 576} ANPENDING;
577
578#if EV_USE_INOTIFY
579/* hash table entry per inotify-id */
580typedef struct
581{
582 WL head;
583} ANFS;
584#endif
585
586/* Heap Entry */
587#if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597#else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
604#endif
243 605
244#if EV_MULTIPLICITY 606#if EV_MULTIPLICITY
245 607
246 struct ev_loop 608 struct ev_loop
247 { 609 {
251 #include "ev_vars.h" 613 #include "ev_vars.h"
252 #undef VAR 614 #undef VAR
253 }; 615 };
254 #include "ev_wrap.h" 616 #include "ev_wrap.h"
255 617
256 struct ev_loop default_loop_struct; 618 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 619 struct ev_loop *ev_default_loop_ptr;
258 620
259#else 621#else
260 622
261 ev_tstamp ev_rt_now; 623 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 624 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 625 #include "ev_vars.h"
264 #undef VAR 626 #undef VAR
265 627
266 static int default_loop; 628 static int ev_default_loop_ptr;
267 629
268#endif 630#endif
631
632#if EV_MINIMAL < 2
633# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635# define EV_INVOKE_PENDING invoke_cb (EV_A)
636#else
637# define EV_RELEASE_CB (void)0
638# define EV_ACQUIRE_CB (void)0
639# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640#endif
641
642#define EVUNLOOP_RECURSE 0x80
269 643
270/*****************************************************************************/ 644/*****************************************************************************/
271 645
646#ifndef EV_HAVE_EV_TIME
272ev_tstamp 647ev_tstamp
273ev_time (void) 648ev_time (void)
274{ 649{
275#if EV_USE_REALTIME 650#if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
276 struct timespec ts; 653 struct timespec ts;
277 clock_gettime (CLOCK_REALTIME, &ts); 654 clock_gettime (CLOCK_REALTIME, &ts);
278 return ts.tv_sec + ts.tv_nsec * 1e-9; 655 return ts.tv_sec + ts.tv_nsec * 1e-9;
279#else 656 }
657#endif
658
280 struct timeval tv; 659 struct timeval tv;
281 gettimeofday (&tv, 0); 660 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 661 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif
284} 662}
663#endif
285 664
286inline ev_tstamp 665inline_size ev_tstamp
287get_clock (void) 666get_clock (void)
288{ 667{
289#if EV_USE_MONOTONIC 668#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 669 if (expect_true (have_monotonic))
291 { 670 {
304{ 683{
305 return ev_rt_now; 684 return ev_rt_now;
306} 685}
307#endif 686#endif
308 687
309#define array_roundsize(type,n) ((n) | 4 & ~3) 688void
689ev_sleep (ev_tstamp delay)
690{
691 if (delay > 0.)
692 {
693#if EV_USE_NANOSLEEP
694 struct timespec ts;
695
696 ts.tv_sec = (time_t)delay;
697 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
698
699 nanosleep (&ts, 0);
700#elif defined(_WIN32)
701 Sleep ((unsigned long)(delay * 1e3));
702#else
703 struct timeval tv;
704
705 tv.tv_sec = (time_t)delay;
706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
711 select (0, 0, 0, 0, &tv);
712#endif
713 }
714}
715
716/*****************************************************************************/
717
718#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
719
720/* find a suitable new size for the given array, */
721/* hopefully by rounding to a ncie-to-malloc size */
722inline_size int
723array_nextsize (int elem, int cur, int cnt)
724{
725 int ncur = cur + 1;
726
727 do
728 ncur <<= 1;
729 while (cnt > ncur);
730
731 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
732 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
733 {
734 ncur *= elem;
735 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
736 ncur = ncur - sizeof (void *) * 4;
737 ncur /= elem;
738 }
739
740 return ncur;
741}
742
743static noinline void *
744array_realloc (int elem, void *base, int *cur, int cnt)
745{
746 *cur = array_nextsize (elem, *cur, cnt);
747 return ev_realloc (base, elem * *cur);
748}
749
750#define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
310 752
311#define array_needsize(type,base,cur,cnt,init) \ 753#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 754 if (expect_false ((cnt) > (cur))) \
313 { \ 755 { \
314 int newcnt = cur; \ 756 int ocur_ = (cur); \
315 do \ 757 (base) = (type *)array_realloc \
316 { \ 758 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 759 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 760 }
325 761
762#if 0
326#define array_slim(type,stem) \ 763#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 764 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 765 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 766 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 767 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 769 }
770#endif
333 771
334#define array_free(stem, idx) \ 772#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
336 774
337/*****************************************************************************/ 775/*****************************************************************************/
338 776
339static void 777/* dummy callback for pending events */
340anfds_init (ANFD *base, int count) 778static void noinline
779pendingcb (EV_P_ ev_prepare *w, int revents)
341{ 780{
342 while (count--)
343 {
344 base->head = 0;
345 base->events = EV_NONE;
346 base->reify = 0;
347
348 ++base;
349 }
350} 781}
351 782
352void 783void noinline
353ev_feed_event (EV_P_ void *w, int revents) 784ev_feed_event (EV_P_ void *w, int revents)
354{ 785{
355 W w_ = (W)w; 786 W w_ = (W)w;
787 int pri = ABSPRI (w_);
356 788
357 if (w_->pending) 789 if (expect_false (w_->pending))
790 pendings [pri][w_->pending - 1].events |= revents;
791 else
358 { 792 {
793 w_->pending = ++pendingcnt [pri];
794 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
795 pendings [pri][w_->pending - 1].w = w_;
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 796 pendings [pri][w_->pending - 1].events = revents;
360 return;
361 } 797 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367} 798}
368 799
369static void 800inline_speed void
801feed_reverse (EV_P_ W w)
802{
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805}
806
807inline_size void
808feed_reverse_done (EV_P_ int revents)
809{
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813}
814
815inline_speed void
370queue_events (EV_P_ W *events, int eventcnt, int type) 816queue_events (EV_P_ W *events, int eventcnt, int type)
371{ 817{
372 int i; 818 int i;
373 819
374 for (i = 0; i < eventcnt; ++i) 820 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type); 821 ev_feed_event (EV_A_ events [i], type);
376} 822}
377 823
824/*****************************************************************************/
825
378inline void 826inline_speed void
379fd_event (EV_P_ int fd, int revents) 827fd_event_nc (EV_P_ int fd, int revents)
380{ 828{
381 ANFD *anfd = anfds + fd; 829 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 830 ev_io *w;
383 831
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 833 {
386 int ev = w->events & revents; 834 int ev = w->events & revents;
387 835
388 if (ev) 836 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 837 ev_feed_event (EV_A_ (W)w, ev);
390 } 838 }
391} 839}
392 840
841/* do not submit kernel events for fds that have reify set */
842/* because that means they changed while we were polling for new events */
843inline_speed void
844fd_event (EV_P_ int fd, int revents)
845{
846 ANFD *anfd = anfds + fd;
847
848 if (expect_true (!anfd->reify))
849 fd_event_nc (EV_A_ fd, revents);
850}
851
393void 852void
394ev_feed_fd_event (EV_P_ int fd, int revents) 853ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 854{
855 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 856 fd_event_nc (EV_A_ fd, revents);
397} 857}
398 858
399/*****************************************************************************/ 859/* make sure the external fd watch events are in-sync */
400 860/* with the kernel/libev internal state */
401static void 861inline_size void
402fd_reify (EV_P) 862fd_reify (EV_P)
403{ 863{
404 int i; 864 int i;
405 865
406 for (i = 0; i < fdchangecnt; ++i) 866 for (i = 0; i < fdchangecnt; ++i)
407 { 867 {
408 int fd = fdchanges [i]; 868 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 869 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 870 ev_io *w;
411 871
412 int events = 0; 872 unsigned char events = 0;
413 873
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 875 events |= (unsigned char)w->events;
416 876
417#if EV_SELECT_IS_WINSOCKET 877#if EV_SELECT_IS_WINSOCKET
418 if (events) 878 if (events)
419 { 879 {
420 unsigned long argp; 880 unsigned long arg;
881 #ifdef EV_FD_TO_WIN32_HANDLE
882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
883 #else
421 anfd->handle = _get_osfhandle (fd); 884 anfd->handle = _get_osfhandle (fd);
885 #endif
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
423 } 887 }
424#endif 888#endif
425 889
890 {
891 unsigned char o_events = anfd->events;
892 unsigned char o_reify = anfd->reify;
893
426 anfd->reify = 0; 894 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 895 anfd->events = events;
896
897 if (o_events != events || o_reify & EV__IOFDSET)
898 backend_modify (EV_A_ fd, o_events, events);
899 }
430 } 900 }
431 901
432 fdchangecnt = 0; 902 fdchangecnt = 0;
433} 903}
434 904
435static void 905/* something about the given fd changed */
906inline_size void
436fd_change (EV_P_ int fd) 907fd_change (EV_P_ int fd, int flags)
437{ 908{
438 if (anfds [fd].reify) 909 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 910 anfds [fd].reify |= flags;
442 911
912 if (expect_true (!reify))
913 {
443 ++fdchangecnt; 914 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 916 fdchanges [fdchangecnt - 1] = fd;
917 }
446} 918}
447 919
448static void 920/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921inline_speed void
449fd_kill (EV_P_ int fd) 922fd_kill (EV_P_ int fd)
450{ 923{
451 struct ev_io *w; 924 ev_io *w;
452 925
453 while ((w = (struct ev_io *)anfds [fd].head)) 926 while ((w = (ev_io *)anfds [fd].head))
454 { 927 {
455 ev_io_stop (EV_A_ w); 928 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 930 }
458} 931}
459 932
460static int 933/* check whether the given fd is atcually valid, for error recovery */
934inline_size int
461fd_valid (int fd) 935fd_valid (int fd)
462{ 936{
463#ifdef _WIN32 937#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 938 return _get_osfhandle (fd) != -1;
465#else 939#else
466 return fcntl (fd, F_GETFD) != -1; 940 return fcntl (fd, F_GETFD) != -1;
467#endif 941#endif
468} 942}
469 943
470/* called on EBADF to verify fds */ 944/* called on EBADF to verify fds */
471static void 945static void noinline
472fd_ebadf (EV_P) 946fd_ebadf (EV_P)
473{ 947{
474 int fd; 948 int fd;
475 949
476 for (fd = 0; fd < anfdmax; ++fd) 950 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events) 951 if (anfds [fd].events)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 952 if (!fd_valid (fd) && errno == EBADF)
479 fd_kill (EV_A_ fd); 953 fd_kill (EV_A_ fd);
480} 954}
481 955
482/* called on ENOMEM in select/poll to kill some fds and retry */ 956/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 957static void noinline
484fd_enomem (EV_P) 958fd_enomem (EV_P)
485{ 959{
486 int fd; 960 int fd;
487 961
488 for (fd = anfdmax; fd--; ) 962 for (fd = anfdmax; fd--; )
489 if (anfds [fd].events) 963 if (anfds [fd].events)
490 { 964 {
491 fd_kill (EV_A_ fd); 965 fd_kill (EV_A_ fd);
492 return; 966 break;
493 } 967 }
494} 968}
495 969
496/* usually called after fork if method needs to re-arm all fds from scratch */ 970/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 971static void noinline
498fd_rearm_all (EV_P) 972fd_rearm_all (EV_P)
499{ 973{
500 int fd; 974 int fd;
501 975
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 976 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 977 if (anfds [fd].events)
505 { 978 {
506 anfds [fd].events = 0; 979 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 980 anfds [fd].emask = 0;
981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
508 } 982 }
509} 983}
510 984
511/*****************************************************************************/ 985/*****************************************************************************/
512 986
513static void 987/*
514upheap (WT *heap, int k) 988 * the heap functions want a real array index. array index 0 uis guaranteed to not
515{ 989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
516 WT w = heap [k]; 990 * the branching factor of the d-tree.
991 */
517 992
518 while (k && heap [k >> 1]->at > w->at) 993/*
519 { 994 * at the moment we allow libev the luxury of two heaps,
520 heap [k] = heap [k >> 1]; 995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
521 ((W)heap [k])->active = k + 1; 996 * which is more cache-efficient.
522 k >>= 1; 997 * the difference is about 5% with 50000+ watchers.
523 } 998 */
999#if EV_USE_4HEAP
524 1000
525 heap [k] = w; 1001#define DHEAP 4
526 ((W)heap [k])->active = k + 1; 1002#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004#define UPHEAP_DONE(p,k) ((p) == (k))
527 1005
528} 1006/* away from the root */
529 1007inline_speed void
530static void
531downheap (WT *heap, int N, int k) 1008downheap (ANHE *heap, int N, int k)
532{ 1009{
533 WT w = heap [k]; 1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
534 1012
535 while (k < (N >> 1)) 1013 for (;;)
536 { 1014 {
537 int j = k << 1; 1015 ev_tstamp minat;
1016 ANHE *minpos;
1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
538 1018
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1019 /* find minimum child */
1020 if (expect_true (pos + DHEAP - 1 < E))
540 ++j; 1021 {
541 1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
542 if (w->at <= heap [j]->at) 1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1033 }
1034 else
543 break; 1035 break;
544 1036
1037 if (ANHE_at (he) <= minat)
1038 break;
1039
1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
1042
1043 k = minpos - heap;
1044 }
1045
1046 heap [k] = he;
1047 ev_active (ANHE_w (he)) = k;
1048}
1049
1050#else /* 4HEAP */
1051
1052#define HEAP0 1
1053#define HPARENT(k) ((k) >> 1)
1054#define UPHEAP_DONE(p,k) (!(p))
1055
1056/* away from the root */
1057inline_speed void
1058downheap (ANHE *heap, int N, int k)
1059{
1060 ANHE he = heap [k];
1061
1062 for (;;)
1063 {
1064 int c = k << 1;
1065
1066 if (c >= N + HEAP0)
1067 break;
1068
1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1070 ? 1 : 0;
1071
1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
1073 break;
1074
545 heap [k] = heap [j]; 1075 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 1076 ev_active (ANHE_w (heap [k])) = k;
1077
547 k = j; 1078 k = c;
548 } 1079 }
549 1080
550 heap [k] = w; 1081 heap [k] = he;
551 ((W)heap [k])->active = k + 1; 1082 ev_active (ANHE_w (he)) = k;
552} 1083}
1084#endif
553 1085
1086/* towards the root */
1087inline_speed void
1088upheap (ANHE *heap, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
1099 heap [k] = heap [p];
1100 ev_active (ANHE_w (heap [k])) = k;
1101 k = p;
1102 }
1103
1104 heap [k] = he;
1105 ev_active (ANHE_w (he)) = k;
1106}
1107
1108/* move an element suitably so it is in a correct place */
554inline void 1109inline_size void
555adjustheap (WT *heap, int N, int k) 1110adjustheap (ANHE *heap, int N, int k)
556{ 1111{
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
557 upheap (heap, k); 1113 upheap (heap, k);
1114 else
558 downheap (heap, N, k); 1115 downheap (heap, N, k);
1116}
1117
1118/* rebuild the heap: this function is used only once and executed rarely */
1119inline_size void
1120reheap (ANHE *heap, int N)
1121{
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
559} 1128}
560 1129
561/*****************************************************************************/ 1130/*****************************************************************************/
562 1131
1132/* associate signal watchers to a signal signal */
563typedef struct 1133typedef struct
564{ 1134{
1135 EV_ATOMIC_T pending;
1136#if EV_MULTIPLICITY
1137 EV_P;
1138#endif
565 WL head; 1139 WL head;
566 sig_atomic_t volatile gotsig;
567} ANSIG; 1140} ANSIG;
568 1141
569static ANSIG *signals; 1142static ANSIG signals [EV_NSIG - 1];
570static int signalmax;
571 1143
572static int sigpipe [2]; 1144/*****************************************************************************/
573static sig_atomic_t volatile gotsig;
574static struct ev_io sigev;
575 1145
576static void 1146/* used to prepare libev internal fd's */
577signals_init (ANSIG *base, int count) 1147/* this is not fork-safe */
578{
579 while (count--)
580 {
581 base->head = 0;
582 base->gotsig = 0;
583
584 ++base;
585 }
586}
587
588static void
589sighandler (int signum)
590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594
595 signals [signum - 1].gotsig = 1;
596
597 if (!gotsig)
598 {
599 int old_errno = errno;
600 gotsig = 1;
601 write (sigpipe [1], &signum, 1);
602 errno = old_errno;
603 }
604}
605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
626static void
627sigcb (EV_P_ struct ev_io *iow, int revents)
628{
629 int signum;
630
631 read (sigpipe [0], &revents, 1);
632 gotsig = 0;
633
634 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1);
637}
638
639inline void 1148inline_speed void
640fd_intern (int fd) 1149fd_intern (int fd)
641{ 1150{
642#ifdef _WIN32 1151#ifdef _WIN32
643 int arg = 1; 1152 unsigned long arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
645#else 1154#else
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 1156 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 1157#endif
649} 1158}
650 1159
1160static void noinline
1161evpipe_init (EV_P)
1162{
1163 if (!ev_is_active (&pipe_w))
1164 {
1165#if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
1171 {
1172 evpipe [0] = -1;
1173 fd_intern (evfd); /* doing it twice doesn't hurt */
1174 ev_io_set (&pipe_w, evfd, EV_READ);
1175 }
1176 else
1177#endif
1178 {
1179 while (pipe (evpipe))
1180 ev_syserr ("(libev) error creating signal/async pipe");
1181
1182 fd_intern (evpipe [0]);
1183 fd_intern (evpipe [1]);
1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1185 }
1186
1187 ev_io_start (EV_A_ &pipe_w);
1188 ev_unref (EV_A); /* watcher should not keep loop alive */
1189 }
1190}
1191
1192inline_size void
1193evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1194{
1195 if (!*flag)
1196 {
1197 int old_errno = errno; /* save errno because write might clobber it */
1198
1199 *flag = 1;
1200
1201#if EV_USE_EVENTFD
1202 if (evfd >= 0)
1203 {
1204 uint64_t counter = 1;
1205 write (evfd, &counter, sizeof (uint64_t));
1206 }
1207 else
1208#endif
1209 write (evpipe [1], &old_errno, 1);
1210
1211 errno = old_errno;
1212 }
1213}
1214
1215/* called whenever the libev signal pipe */
1216/* got some events (signal, async) */
651static void 1217static void
652siginit (EV_P) 1218pipecb (EV_P_ ev_io *iow, int revents)
653{ 1219{
654 fd_intern (sigpipe [0]); 1220 int i;
655 fd_intern (sigpipe [1]);
656 1221
657 ev_io_set (&sigev, sigpipe [0], EV_READ); 1222#if EV_USE_EVENTFD
658 ev_io_start (EV_A_ &sigev); 1223 if (evfd >= 0)
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1224 {
1225 uint64_t counter;
1226 read (evfd, &counter, sizeof (uint64_t));
1227 }
1228 else
1229#endif
1230 {
1231 char dummy;
1232 read (evpipe [0], &dummy, 1);
1233 }
1234
1235 if (sig_pending)
1236 {
1237 sig_pending = 0;
1238
1239 for (i = EV_NSIG - 1; i--; )
1240 if (expect_false (signals [i].pending))
1241 ev_feed_signal_event (EV_A_ i + 1);
1242 }
1243
1244#if EV_ASYNC_ENABLE
1245 if (async_pending)
1246 {
1247 async_pending = 0;
1248
1249 for (i = asynccnt; i--; )
1250 if (asyncs [i]->sent)
1251 {
1252 asyncs [i]->sent = 0;
1253 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1254 }
1255 }
1256#endif
660} 1257}
661 1258
662/*****************************************************************************/ 1259/*****************************************************************************/
663 1260
664static struct ev_child *childs [PID_HASHSIZE]; 1261static void
1262ev_sighandler (int signum)
1263{
1264#if EV_MULTIPLICITY
1265 EV_P = signals [signum - 1].loop;
1266#endif
1267
1268#if _WIN32
1269 signal (signum, ev_sighandler);
1270#endif
1271
1272 signals [signum - 1].pending = 1;
1273 evpipe_write (EV_A_ &sig_pending);
1274}
1275
1276void noinline
1277ev_feed_signal_event (EV_P_ int signum)
1278{
1279 WL w;
1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
1286#if EV_MULTIPLICITY
1287 /* it is permissible to try to feed a signal to the wrong loop */
1288 /* or, likely more useful, feeding a signal nobody is waiting for */
1289
1290 if (expect_false (signals [signum].loop != EV_A))
1291 return;
1292#endif
1293
1294 signals [signum].pending = 0;
1295
1296 for (w = signals [signum].head; w; w = w->next)
1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1298}
1299
1300#if EV_USE_SIGNALFD
1301static void
1302sigfdcb (EV_P_ ev_io *iow, int revents)
1303{
1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1305
1306 for (;;)
1307 {
1308 ssize_t res = read (sigfd, si, sizeof (si));
1309
1310 /* not ISO-C, as res might be -1, but works with SuS */
1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1313
1314 if (res < (ssize_t)sizeof (si))
1315 break;
1316 }
1317}
1318#endif
1319
1320/*****************************************************************************/
1321
1322static WL childs [EV_PID_HASHSIZE];
665 1323
666#ifndef _WIN32 1324#ifndef _WIN32
667 1325
668static struct ev_signal childev; 1326static ev_signal childev;
1327
1328#ifndef WIFCONTINUED
1329# define WIFCONTINUED(status) 0
1330#endif
1331
1332/* handle a single child status event */
1333inline_speed void
1334child_reap (EV_P_ int chain, int pid, int status)
1335{
1336 ev_child *w;
1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1338
1339 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1340 {
1341 if ((w->pid == pid || !w->pid)
1342 && (!traced || (w->flags & 1)))
1343 {
1344 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1345 w->rpid = pid;
1346 w->rstatus = status;
1347 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1348 }
1349 }
1350}
669 1351
670#ifndef WCONTINUED 1352#ifndef WCONTINUED
671# define WCONTINUED 0 1353# define WCONTINUED 0
672#endif 1354#endif
673 1355
1356/* called on sigchld etc., calls waitpid */
674static void 1357static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 1358childcb (EV_P_ ev_signal *sw, int revents)
691{ 1359{
692 int pid, status; 1360 int pid, status;
693 1361
1362 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1363 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 1364 if (!WCONTINUED
1365 || errno != EINVAL
1366 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1367 return;
1368
696 /* make sure we are called again until all childs have been reaped */ 1369 /* make sure we are called again until all children have been reaped */
1370 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1371 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 1372
699 child_reap (EV_A_ sw, pid, pid, status); 1373 child_reap (EV_A_ pid, pid, status);
1374 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1375 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 1376}
703 1377
704#endif 1378#endif
705 1379
706/*****************************************************************************/ 1380/*****************************************************************************/
707 1381
1382#if EV_USE_PORT
1383# include "ev_port.c"
1384#endif
708#if EV_USE_KQUEUE 1385#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 1386# include "ev_kqueue.c"
710#endif 1387#endif
711#if EV_USE_EPOLL 1388#if EV_USE_EPOLL
712# include "ev_epoll.c" 1389# include "ev_epoll.c"
729{ 1406{
730 return EV_VERSION_MINOR; 1407 return EV_VERSION_MINOR;
731} 1408}
732 1409
733/* return true if we are running with elevated privileges and should ignore env variables */ 1410/* return true if we are running with elevated privileges and should ignore env variables */
734static int 1411int inline_size
735enable_secure (void) 1412enable_secure (void)
736{ 1413{
737#ifdef _WIN32 1414#ifdef _WIN32
738 return 0; 1415 return 0;
739#else 1416#else
740 return getuid () != geteuid () 1417 return getuid () != geteuid ()
741 || getgid () != getegid (); 1418 || getgid () != getegid ();
742#endif 1419#endif
743} 1420}
744 1421
745int 1422unsigned int
746ev_method (EV_P) 1423ev_supported_backends (void)
747{ 1424{
748 return method; 1425 unsigned int flags = 0;
749}
750 1426
751static void 1427 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 1428 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1429 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1430 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1431 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1432
1433 return flags;
1434}
1435
1436unsigned int
1437ev_recommended_backends (void)
753{ 1438{
754 if (!method) 1439 unsigned int flags = ev_supported_backends ();
1440
1441#ifndef __NetBSD__
1442 /* kqueue is borked on everything but netbsd apparently */
1443 /* it usually doesn't work correctly on anything but sockets and pipes */
1444 flags &= ~EVBACKEND_KQUEUE;
1445#endif
1446#ifdef __APPLE__
1447 /* only select works correctly on that "unix-certified" platform */
1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1450#endif
1451
1452 return flags;
1453}
1454
1455unsigned int
1456ev_embeddable_backends (void)
1457{
1458 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1459
1460 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1461 /* please fix it and tell me how to detect the fix */
1462 flags &= ~EVBACKEND_EPOLL;
1463
1464 return flags;
1465}
1466
1467unsigned int
1468ev_backend (EV_P)
1469{
1470 return backend;
1471}
1472
1473#if EV_MINIMAL < 2
1474unsigned int
1475ev_loop_count (EV_P)
1476{
1477 return loop_count;
1478}
1479
1480unsigned int
1481ev_loop_depth (EV_P)
1482{
1483 return loop_depth;
1484}
1485
1486void
1487ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 io_blocktime = interval;
1490}
1491
1492void
1493ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 timeout_blocktime = interval;
1496}
1497
1498void
1499ev_set_userdata (EV_P_ void *data)
1500{
1501 userdata = data;
1502}
1503
1504void *
1505ev_userdata (EV_P)
1506{
1507 return userdata;
1508}
1509
1510void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511{
1512 invoke_cb = invoke_pending_cb;
1513}
1514
1515void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516{
1517 release_cb = release;
1518 acquire_cb = acquire;
1519}
1520#endif
1521
1522/* initialise a loop structure, must be zero-initialised */
1523static void noinline
1524loop_init (EV_P_ unsigned int flags)
1525{
1526 if (!backend)
755 { 1527 {
1528#if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536#endif
1537
756#if EV_USE_MONOTONIC 1538#if EV_USE_MONOTONIC
1539 if (!have_monotonic)
757 { 1540 {
758 struct timespec ts; 1541 struct timespec ts;
1542
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
760 have_monotonic = 1; 1544 have_monotonic = 1;
761 } 1545 }
762#endif 1546#endif
763 1547
1548 /* pid check not overridable via env */
1549#ifndef _WIN32
1550 if (flags & EVFLAG_FORKCHECK)
1551 curpid = getpid ();
1552#endif
1553
1554 if (!(flags & EVFLAG_NOENV)
1555 && !enable_secure ()
1556 && getenv ("LIBEV_FLAGS"))
1557 flags = atoi (getenv ("LIBEV_FLAGS"));
1558
764 ev_rt_now = ev_time (); 1559 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1560 mn_now = get_clock ();
766 now_floor = mn_now; 1561 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1562 rtmn_diff = ev_rt_now - mn_now;
1563#if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565#endif
768 1566
769 if (methods == EVMETHOD_AUTO) 1567 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1568 timeout_blocktime = 0.;
771 methods = atoi (getenv ("LIBEV_METHODS")); 1569 backend = 0;
772 else 1570 backend_fd = -1;
773 methods = EVMETHOD_ANY; 1571 sig_pending = 0;
1572#if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574#endif
1575#if EV_USE_INOTIFY
1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1577#endif
1578#if EV_USE_SIGNALFD
1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1580#endif
774 1581
775 method = 0; 1582 if (!(flags & 0x0000ffffU))
1583 flags |= ev_recommended_backends ();
1584
1585#if EV_USE_PORT
1586 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1587#endif
776#if EV_USE_KQUEUE 1588#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1589 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1590#endif
779#if EV_USE_EPOLL 1591#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1592 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1593#endif
782#if EV_USE_POLL 1594#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1595 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1596#endif
785#if EV_USE_SELECT 1597#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1599#endif
788 1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
789 ev_init (&sigev, sigcb); 1603 ev_init (&pipe_w, pipecb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1604 ev_set_priority (&pipe_w, EV_MAXPRI);
791 } 1605 }
792} 1606}
793 1607
794void 1608/* free up a loop structure */
1609static void noinline
795loop_destroy (EV_P) 1610loop_destroy (EV_P)
796{ 1611{
797 int i; 1612 int i;
798 1613
1614 if (ev_is_active (&pipe_w))
1615 {
1616 /*ev_ref (EV_A);*/
1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1618
1619#if EV_USE_EVENTFD
1620 if (evfd >= 0)
1621 close (evfd);
1622#endif
1623
1624 if (evpipe [0] >= 0)
1625 {
1626 close (evpipe [0]);
1627 close (evpipe [1]);
1628 }
1629 }
1630
1631#if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639#endif
1640
1641#if EV_USE_INOTIFY
1642 if (fs_fd >= 0)
1643 close (fs_fd);
1644#endif
1645
1646 if (backend_fd >= 0)
1647 close (backend_fd);
1648
1649#if EV_USE_PORT
1650 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1651#endif
799#if EV_USE_KQUEUE 1652#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1653 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1654#endif
802#if EV_USE_EPOLL 1655#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1656 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1657#endif
805#if EV_USE_POLL 1658#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1659 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1660#endif
808#if EV_USE_SELECT 1661#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1662 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1663#endif
811 1664
812 for (i = NUMPRI; i--; ) 1665 for (i = NUMPRI; i--; )
1666 {
813 array_free (pending, [i]); 1667 array_free (pending, [i]);
1668#if EV_IDLE_ENABLE
1669 array_free (idle, [i]);
1670#endif
1671 }
1672
1673 ev_free (anfds); anfds = 0; anfdmax = 0;
814 1674
815 /* have to use the microsoft-never-gets-it-right macro */ 1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
816 array_free (fdchange, EMPTY); 1677 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1678 array_free (timer, EMPTY);
818#if EV_PERIODICS 1679#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1680 array_free (periodic, EMPTY);
820#endif 1681#endif
1682#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1683 array_free (fork, EMPTY);
1684#endif
822 array_free (prepare, EMPTY); 1685 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1686 array_free (check, EMPTY);
1687#if EV_ASYNC_ENABLE
1688 array_free (async, EMPTY);
1689#endif
824 1690
825 method = 0; 1691 backend = 0;
826} 1692}
827 1693
828static void 1694#if EV_USE_INOTIFY
1695inline_size void infy_fork (EV_P);
1696#endif
1697
1698inline_size void
829loop_fork (EV_P) 1699loop_fork (EV_P)
830{ 1700{
1701#if EV_USE_PORT
1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1703#endif
1704#if EV_USE_KQUEUE
1705 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1706#endif
831#if EV_USE_EPOLL 1707#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1708 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1709#endif
834#if EV_USE_KQUEUE 1710#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1711 infy_fork (EV_A);
836#endif 1712#endif
837 1713
838 if (ev_is_active (&sigev)) 1714 if (ev_is_active (&pipe_w))
839 { 1715 {
840 /* default loop */ 1716 /* this "locks" the handlers against writing to the pipe */
1717 /* while we modify the fd vars */
1718 sig_pending = 1;
1719#if EV_ASYNC_ENABLE
1720 async_pending = 1;
1721#endif
841 1722
842 ev_ref (EV_A); 1723 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev); 1724 ev_io_stop (EV_A_ &pipe_w);
1725
1726#if EV_USE_EVENTFD
1727 if (evfd >= 0)
1728 close (evfd);
1729#endif
1730
1731 if (evpipe [0] >= 0)
1732 {
844 close (sigpipe [0]); 1733 close (evpipe [0]);
845 close (sigpipe [1]); 1734 close (evpipe [1]);
1735 }
846 1736
847 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe");
849
850 siginit (EV_A); 1737 evpipe_init (EV_A);
1738 /* now iterate over everything, in case we missed something */
1739 pipecb (EV_A_ &pipe_w, EV_READ);
851 } 1740 }
852 1741
853 postfork = 0; 1742 postfork = 0;
854} 1743}
1744
1745#if EV_MULTIPLICITY
1746
1747struct ev_loop *
1748ev_loop_new (unsigned int flags)
1749{
1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1751
1752 memset (EV_A, 0, sizeof (struct ev_loop));
1753 loop_init (EV_A_ flags);
1754
1755 if (ev_backend (EV_A))
1756 return EV_A;
1757
1758 return 0;
1759}
1760
1761void
1762ev_loop_destroy (EV_P)
1763{
1764 loop_destroy (EV_A);
1765 ev_free (loop);
1766}
1767
1768void
1769ev_loop_fork (EV_P)
1770{
1771 postfork = 1; /* must be in line with ev_default_fork */
1772}
1773#endif /* multiplicity */
1774
1775#if EV_VERIFY
1776static void noinline
1777verify_watcher (EV_P_ W w)
1778{
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783}
1784
1785static void noinline
1786verify_heap (EV_P_ ANHE *heap, int N)
1787{
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798}
1799
1800static void noinline
1801array_verify (EV_P_ W *ws, int cnt)
1802{
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808}
1809#endif
1810
1811#if EV_MINIMAL < 2
1812void
1813ev_loop_verify (EV_P)
1814{
1815#if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
1828 {
1829 verify_watcher (EV_A_ (W)w);
1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837#if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840#endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845#if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849#endif
1850 }
1851
1852#if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855#endif
1856
1857#if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860#endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868# if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1871# endif
1872#endif
1873}
1874#endif
855 1875
856#if EV_MULTIPLICITY 1876#if EV_MULTIPLICITY
857struct ev_loop * 1877struct ev_loop *
858ev_loop_new (int methods) 1878ev_default_loop_init (unsigned int flags)
859{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861
862 memset (loop, 0, sizeof (struct ev_loop));
863
864 loop_init (EV_A_ methods);
865
866 if (ev_method (EV_A))
867 return loop;
868
869 return 0;
870}
871
872void
873ev_loop_destroy (EV_P)
874{
875 loop_destroy (EV_A);
876 ev_free (loop);
877}
878
879void
880ev_loop_fork (EV_P)
881{
882 postfork = 1;
883}
884
885#endif
886
887#if EV_MULTIPLICITY
888struct ev_loop *
889#else 1879#else
890int 1880int
1881ev_default_loop (unsigned int flags)
891#endif 1882#endif
892ev_default_loop (int methods)
893{ 1883{
894 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe))
896 return 0;
897
898 if (!default_loop) 1884 if (!ev_default_loop_ptr)
899 { 1885 {
900#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
902#else 1888#else
903 default_loop = 1; 1889 ev_default_loop_ptr = 1;
904#endif 1890#endif
905 1891
906 loop_init (EV_A_ methods); 1892 loop_init (EV_A_ flags);
907 1893
908 if (ev_method (EV_A)) 1894 if (ev_backend (EV_A))
909 { 1895 {
910 siginit (EV_A);
911
912#ifndef _WIN32 1896#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1897 ev_signal_init (&childev, childcb, SIGCHLD);
914 ev_set_priority (&childev, EV_MAXPRI); 1898 ev_set_priority (&childev, EV_MAXPRI);
915 ev_signal_start (EV_A_ &childev); 1899 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1900 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1901#endif
918 } 1902 }
919 else 1903 else
920 default_loop = 0; 1904 ev_default_loop_ptr = 0;
921 } 1905 }
922 1906
923 return default_loop; 1907 return ev_default_loop_ptr;
924} 1908}
925 1909
926void 1910void
927ev_default_destroy (void) 1911ev_default_destroy (void)
928{ 1912{
929#if EV_MULTIPLICITY 1913#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1914 EV_P = ev_default_loop_ptr;
931#endif 1915#endif
1916
1917 ev_default_loop_ptr = 0;
932 1918
933#ifndef _WIN32 1919#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1920 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1921 ev_signal_stop (EV_A_ &childev);
936#endif 1922#endif
937 1923
938 ev_ref (EV_A); /* signal watcher */
939 ev_io_stop (EV_A_ &sigev);
940
941 close (sigpipe [0]); sigpipe [0] = 0;
942 close (sigpipe [1]); sigpipe [1] = 0;
943
944 loop_destroy (EV_A); 1924 loop_destroy (EV_A);
945} 1925}
946 1926
947void 1927void
948ev_default_fork (void) 1928ev_default_fork (void)
949{ 1929{
950#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1931 EV_P = ev_default_loop_ptr;
952#endif 1932#endif
953 1933
954 if (method) 1934 postfork = 1; /* must be in line with ev_loop_fork */
955 postfork = 1;
956} 1935}
957 1936
958/*****************************************************************************/ 1937/*****************************************************************************/
959 1938
960static int 1939void
961any_pending (EV_P) 1940ev_invoke (EV_P_ void *w, int revents)
1941{
1942 EV_CB_INVOKE ((W)w, revents);
1943}
1944
1945unsigned int
1946ev_pending_count (EV_P)
962{ 1947{
963 int pri; 1948 int pri;
1949 unsigned int count = 0;
964 1950
965 for (pri = NUMPRI; pri--; ) 1951 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri]) 1952 count += pendingcnt [pri];
967 return 1;
968 1953
969 return 0; 1954 return count;
970} 1955}
971 1956
972static void 1957void noinline
973call_pending (EV_P) 1958ev_invoke_pending (EV_P)
974{ 1959{
975 int pri; 1960 int pri;
976 1961
977 for (pri = NUMPRI; pri--; ) 1962 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1963 while (pendingcnt [pri])
979 { 1964 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1966
982 if (p->w) 1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
983 { 1968 /* ^ this is no longer true, as pending_w could be here */
1969
984 p->w->pending = 0; 1970 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1971 EV_CB_INVOKE (p->w, p->events);
986 } 1972 EV_FREQUENT_CHECK;
987 } 1973 }
988} 1974}
989 1975
990static void 1976#if EV_IDLE_ENABLE
1977/* make idle watchers pending. this handles the "call-idle */
1978/* only when higher priorities are idle" logic */
1979inline_size void
1980idle_reify (EV_P)
1981{
1982 if (expect_false (idleall))
1983 {
1984 int pri;
1985
1986 for (pri = NUMPRI; pri--; )
1987 {
1988 if (pendingcnt [pri])
1989 break;
1990
1991 if (idlecnt [pri])
1992 {
1993 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1994 break;
1995 }
1996 }
1997 }
1998}
1999#endif
2000
2001/* make timers pending */
2002inline_size void
991timers_reify (EV_P) 2003timers_reify (EV_P)
992{ 2004{
2005 EV_FREQUENT_CHECK;
2006
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
994 { 2008 {
995 struct ev_timer *w = timers [0]; 2009 do
996
997 assert (("inactive timer on timer heap detected", ev_is_active (w)));
998
999 /* first reschedule or stop timer */
1000 if (w->repeat)
1001 { 2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 2023
1004 ((WT)w)->at += w->repeat; 2024 ANHE_at_cache (timers [HEAP0]);
1005 if (((WT)w)->at < mn_now)
1006 ((WT)w)->at = mn_now;
1007
1008 downheap ((WT *)timers, timercnt, 0); 2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
1009 } 2032 }
1010 else 2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 2034
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
1014 } 2036 }
1015} 2037}
1016 2038
1017#if EV_PERIODICS 2039#if EV_PERIODIC_ENABLE
1018static void 2040/* make periodics pending */
2041inline_size void
1019periodics_reify (EV_P) 2042periodics_reify (EV_P)
1020{ 2043{
2044 EV_FREQUENT_CHECK;
2045
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1022 { 2047 {
1023 struct ev_periodic *w = periodics [0]; 2048 int feed_count = 0;
1024 2049
2050 do
2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 2055
1027 /* first reschedule or stop timer */ 2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
2090 }
2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2092
2093 feed_reverse_done (EV_A_ EV_PERIODIC);
2094 }
2095}
2096
2097/* simply recalculate all periodics */
2098/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2099static void noinline
2100periodics_reschedule (EV_P)
2101{
2102 int i;
2103
2104 /* adjust periodics after time jump */
2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2108
1028 if (w->reschedule_cb) 2109 if (w->reschedule_cb)
2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2111 else if (w->interval)
2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118}
2119#endif
2120
2121/* adjust all timers by a given offset */
2122static void noinline
2123timers_reschedule (EV_P_ ev_tstamp adjust)
2124{
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
2128 {
2129 ANHE *he = timers + i + HEAP0;
2130 ANHE_w (*he)->at += adjust;
2131 ANHE_at_cache (*he);
2132 }
2133}
2134
2135/* fetch new monotonic and realtime times from the kernel */
2136/* also detetc if there was a timejump, and act accordingly */
2137inline_speed void
2138time_update (EV_P_ ev_tstamp max_block)
2139{
2140#if EV_USE_MONOTONIC
2141 if (expect_true (have_monotonic))
2142 {
2143 int i;
2144 ev_tstamp odiff = rtmn_diff;
2145
2146 mn_now = get_clock ();
2147
2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2149 /* interpolate in the meantime */
2150 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1029 { 2151 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2152 ev_rt_now = rtmn_diff + mn_now;
1031 2153 return;
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0);
1034 } 2154 }
1035 else if (w->interval)
1036 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0);
1040 }
1041 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 2155
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 }
1046}
1047
1048static void
1049periodics_reschedule (EV_P)
1050{
1051 int i;
1052
1053 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i)
1055 {
1056 struct ev_periodic *w = periodics [i];
1057
1058 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1062 }
1063
1064 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i);
1067}
1068#endif
1069
1070inline int
1071time_update_monotonic (EV_P)
1072{
1073 mn_now = get_clock ();
1074
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 {
1077 ev_rt_now = rtmn_diff + mn_now;
1078 return 0;
1079 }
1080 else
1081 {
1082 now_floor = mn_now; 2156 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 2157 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 2158
1088static void 2159 /* loop a few times, before making important decisions.
1089time_update (EV_P) 2160 * on the choice of "4": one iteration isn't enough,
1090{ 2161 * in case we get preempted during the calls to
1091 int i; 2162 * ev_time and get_clock. a second call is almost guaranteed
1092 2163 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 2164 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 2165 * in the unlikely event of having been preempted here.
1095 { 2166 */
1096 if (time_update_monotonic (EV_A)) 2167 for (i = 4; --i; )
1097 { 2168 {
1098 ev_tstamp odiff = rtmn_diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 2169 rtmn_diff = ev_rt_now - mn_now;
1103 2170
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2171 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1105 return; /* all is well */ 2172 return; /* all is well */
1106 2173
1107 ev_rt_now = ev_time (); 2174 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 2175 mn_now = get_clock ();
1109 now_floor = mn_now; 2176 now_floor = mn_now;
1110 } 2177 }
1111 2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112# if EV_PERIODICS 2181# if EV_PERIODIC_ENABLE
2182 periodics_reschedule (EV_A);
2183# endif
2184 }
2185 else
2186#endif
2187 {
2188 ev_rt_now = ev_time ();
2189
2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2191 {
2192 /* adjust timers. this is easy, as the offset is the same for all of them */
2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2194#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 2195 periodics_reschedule (EV_A);
1114# endif 2196#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1117 } 2197 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 }
1134 2198
1135 mn_now = ev_rt_now; 2199 mn_now = ev_rt_now;
1136 } 2200 }
1137} 2201}
1138 2202
1139void 2203void
1140ev_ref (EV_P)
1141{
1142 ++activecnt;
1143}
1144
1145void
1146ev_unref (EV_P)
1147{
1148 --activecnt;
1149}
1150
1151static int loop_done;
1152
1153void
1154ev_loop (EV_P_ int flags) 2204ev_loop (EV_P_ int flags)
1155{ 2205{
1156 double block; 2206#if EV_MINIMAL < 2
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2207 ++loop_depth;
2208#endif
2209
2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
2212 loop_done = EVUNLOOP_CANCEL;
2213
2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1158 2215
1159 do 2216 do
1160 { 2217 {
2218#if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220#endif
2221
2222#ifndef _WIN32
2223 if (expect_false (curpid)) /* penalise the forking check even more */
2224 if (expect_false (getpid () != curpid))
2225 {
2226 curpid = getpid ();
2227 postfork = 1;
2228 }
2229#endif
2230
2231#if EV_FORK_ENABLE
2232 /* we might have forked, so queue fork handlers */
2233 if (expect_false (postfork))
2234 if (forkcnt)
2235 {
2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2237 EV_INVOKE_PENDING;
2238 }
2239#endif
2240
1161 /* queue check watchers (and execute them) */ 2241 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 2242 if (expect_false (preparecnt))
1163 { 2243 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 2245 EV_INVOKE_PENDING;
1166 } 2246 }
2247
2248 if (expect_false (loop_done))
2249 break;
1167 2250
1168 /* we might have forked, so reify kernel state if necessary */ 2251 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 2252 if (expect_false (postfork))
1170 loop_fork (EV_A); 2253 loop_fork (EV_A);
1171 2254
1172 /* update fd-related kernel structures */ 2255 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 2256 fd_reify (EV_A);
1174 2257
1175 /* calculate blocking time */ 2258 /* calculate blocking time */
2259 {
2260 ev_tstamp waittime = 0.;
2261 ev_tstamp sleeptime = 0.;
1176 2262
1177 /* we only need this for !monotonic clock or timers, but as we basically 2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 2264 {
1185 ev_rt_now = ev_time (); 2265 /* remember old timestamp for io_blocktime calculation */
1186 mn_now = ev_rt_now; 2266 ev_tstamp prev_mn_now = mn_now;
1187 }
1188 2267
1189 if (flags & EVLOOP_NONBLOCK || idlecnt) 2268 /* update time to cancel out callback processing overhead */
1190 block = 0.; 2269 time_update (EV_A_ 1e100);
1191 else 2270
1192 {
1193 block = MAX_BLOCKTIME; 2271 waittime = MAX_BLOCKTIME;
1194 2272
1195 if (timercnt) 2273 if (timercnt)
1196 { 2274 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1198 if (block > to) block = to; 2276 if (waittime > to) waittime = to;
1199 } 2277 }
1200 2278
1201#if EV_PERIODICS 2279#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 2280 if (periodiccnt)
1203 { 2281 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 2283 if (waittime > to) waittime = to;
1206 } 2284 }
1207#endif 2285#endif
1208 2286
1209 if (block < 0.) block = 0.; 2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
2288 if (expect_false (waittime < timeout_blocktime))
2289 waittime = timeout_blocktime;
2290
2291 /* extra check because io_blocktime is commonly 0 */
2292 if (expect_false (io_blocktime))
2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
2301 ev_sleep (sleeptime);
2302 waittime -= sleeptime;
2303 }
2304 }
1210 } 2305 }
1211 2306
1212 method_poll (EV_A_ block); 2307#if EV_MINIMAL < 2
2308 ++loop_count;
2309#endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1213 2313
1214 /* update ev_rt_now, do magic */ 2314 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 2315 time_update (EV_A_ waittime + sleeptime);
2316 }
1216 2317
1217 /* queue pending timers and reschedule them */ 2318 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 2319 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 2320#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 2321 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 2322#endif
1222 2323
2324#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 2325 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 2326 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2327#endif
1226 2328
1227 /* queue check watchers, to be executed first */ 2329 /* queue check watchers, to be executed first */
1228 if (checkcnt) 2330 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 2332
1231 call_pending (EV_A); 2333 EV_INVOKE_PENDING;
1232 } 2334 }
1233 while (activecnt && !loop_done); 2335 while (expect_true (
2336 activecnt
2337 && !loop_done
2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2339 ));
1234 2340
1235 if (loop_done != 2) 2341 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 2342 loop_done = EVUNLOOP_CANCEL;
2343
2344#if EV_MINIMAL < 2
2345 --loop_depth;
2346#endif
1237} 2347}
1238 2348
1239void 2349void
1240ev_unloop (EV_P_ int how) 2350ev_unloop (EV_P_ int how)
1241{ 2351{
1242 loop_done = how; 2352 loop_done = how;
1243} 2353}
1244 2354
2355void
2356ev_ref (EV_P)
2357{
2358 ++activecnt;
2359}
2360
2361void
2362ev_unref (EV_P)
2363{
2364 --activecnt;
2365}
2366
2367void
2368ev_now_update (EV_P)
2369{
2370 time_update (EV_A_ 1e100);
2371}
2372
2373void
2374ev_suspend (EV_P)
2375{
2376 ev_now_update (EV_A);
2377}
2378
2379void
2380ev_resume (EV_P)
2381{
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386#if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389#endif
2390}
2391
1245/*****************************************************************************/ 2392/*****************************************************************************/
2393/* singly-linked list management, used when the expected list length is short */
1246 2394
1247inline void 2395inline_size void
1248wlist_add (WL *head, WL elem) 2396wlist_add (WL *head, WL elem)
1249{ 2397{
1250 elem->next = *head; 2398 elem->next = *head;
1251 *head = elem; 2399 *head = elem;
1252} 2400}
1253 2401
1254inline void 2402inline_size void
1255wlist_del (WL *head, WL elem) 2403wlist_del (WL *head, WL elem)
1256{ 2404{
1257 while (*head) 2405 while (*head)
1258 { 2406 {
1259 if (*head == elem) 2407 if (expect_true (*head == elem))
1260 { 2408 {
1261 *head = elem->next; 2409 *head = elem->next;
1262 return; 2410 break;
1263 } 2411 }
1264 2412
1265 head = &(*head)->next; 2413 head = &(*head)->next;
1266 } 2414 }
1267} 2415}
1268 2416
2417/* internal, faster, version of ev_clear_pending */
1269inline void 2418inline_speed void
1270ev_clear_pending (EV_P_ W w) 2419clear_pending (EV_P_ W w)
1271{ 2420{
1272 if (w->pending) 2421 if (w->pending)
1273 { 2422 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1275 w->pending = 0; 2424 w->pending = 0;
1276 } 2425 }
1277} 2426}
1278 2427
2428int
2429ev_clear_pending (EV_P_ void *w)
2430{
2431 W w_ = (W)w;
2432 int pending = w_->pending;
2433
2434 if (expect_true (pending))
2435 {
2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
2438 w_->pending = 0;
2439 return p->events;
2440 }
2441 else
2442 return 0;
2443}
2444
1279inline void 2445inline_size void
2446pri_adjust (EV_P_ W w)
2447{
2448 int pri = ev_priority (w);
2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2451 ev_set_priority (w, pri);
2452}
2453
2454inline_speed void
1280ev_start (EV_P_ W w, int active) 2455ev_start (EV_P_ W w, int active)
1281{ 2456{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2457 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 2458 w->active = active;
1286 ev_ref (EV_A); 2459 ev_ref (EV_A);
1287} 2460}
1288 2461
1289inline void 2462inline_size void
1290ev_stop (EV_P_ W w) 2463ev_stop (EV_P_ W w)
1291{ 2464{
1292 ev_unref (EV_A); 2465 ev_unref (EV_A);
1293 w->active = 0; 2466 w->active = 0;
1294} 2467}
1295 2468
1296/*****************************************************************************/ 2469/*****************************************************************************/
1297 2470
1298void 2471void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 2472ev_io_start (EV_P_ ev_io *w)
1300{ 2473{
1301 int fd = w->fd; 2474 int fd = w->fd;
1302 2475
1303 if (ev_is_active (w)) 2476 if (expect_false (ev_is_active (w)))
1304 return; 2477 return;
1305 2478
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
1307 2483
1308 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2486 wlist_add (&anfds[fd].head, (WL)w);
1311 2487
1312 fd_change (EV_A_ fd); 2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1313} 2489 w->events &= ~EV__IOFDSET;
1314 2490
1315void 2491 EV_FREQUENT_CHECK;
2492}
2493
2494void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 2495ev_io_stop (EV_P_ ev_io *w)
1317{ 2496{
1318 ev_clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 2498 if (expect_false (!ev_is_active (w)))
1320 return; 2499 return;
1321 2500
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 2502
2503 EV_FREQUENT_CHECK;
2504
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2505 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 2506 ev_stop (EV_A_ (W)w);
1326 2507
1327 fd_change (EV_A_ w->fd); 2508 fd_change (EV_A_ w->fd, 1);
1328}
1329 2509
1330void 2510 EV_FREQUENT_CHECK;
2511}
2512
2513void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 2514ev_timer_start (EV_P_ ev_timer *w)
1332{ 2515{
1333 if (ev_is_active (w)) 2516 if (expect_false (ev_is_active (w)))
1334 return; 2517 return;
1335 2518
1336 ((WT)w)->at += mn_now; 2519 ev_at (w) += mn_now;
1337 2520
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
1340 ev_start (EV_A_ (W)w, ++timercnt); 2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1342 timers [timercnt - 1] = w; 2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 2529 ANHE_at_cache (timers [ev_active (w)]);
2530 upheap (timers, ev_active (w));
1344 2531
2532 EV_FREQUENT_CHECK;
2533
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1346} 2535}
1347 2536
1348void 2537void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 2538ev_timer_stop (EV_P_ ev_timer *w)
1350{ 2539{
1351 ev_clear_pending (EV_A_ (W)w); 2540 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 2541 if (expect_false (!ev_is_active (w)))
1353 return; 2542 return;
1354 2543
2544 EV_FREQUENT_CHECK;
2545
2546 {
2547 int active = ev_active (w);
2548
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1356 2550
1357 if (((W)w)->active < timercnt--) 2551 --timercnt;
2552
2553 if (expect_true (active < timercnt + HEAP0))
1358 { 2554 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 2555 timers [active] = timers [timercnt + HEAP0];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2556 adjustheap (timers, timercnt, active);
1361 } 2557 }
2558 }
1362 2559
1363 ((WT)w)->at -= mn_now; 2560 EV_FREQUENT_CHECK;
2561
2562 ev_at (w) -= mn_now;
1364 2563
1365 ev_stop (EV_A_ (W)w); 2564 ev_stop (EV_A_ (W)w);
1366} 2565}
1367 2566
1368void 2567void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 2568ev_timer_again (EV_P_ ev_timer *w)
1370{ 2569{
2570 EV_FREQUENT_CHECK;
2571
1371 if (ev_is_active (w)) 2572 if (ev_is_active (w))
1372 { 2573 {
1373 if (w->repeat) 2574 if (w->repeat)
1374 { 2575 {
1375 ((WT)w)->at = mn_now + w->repeat; 2576 ev_at (w) = mn_now + w->repeat;
2577 ANHE_at_cache (timers [ev_active (w)]);
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2578 adjustheap (timers, timercnt, ev_active (w));
1377 } 2579 }
1378 else 2580 else
1379 ev_timer_stop (EV_A_ w); 2581 ev_timer_stop (EV_A_ w);
1380 } 2582 }
1381 else if (w->repeat) 2583 else if (w->repeat)
2584 {
2585 ev_at (w) = w->repeat;
1382 ev_timer_start (EV_A_ w); 2586 ev_timer_start (EV_A_ w);
1383} 2587 }
1384 2588
2589 EV_FREQUENT_CHECK;
2590}
2591
2592ev_tstamp
2593ev_timer_remaining (EV_P_ ev_timer *w)
2594{
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2596}
2597
1385#if EV_PERIODICS 2598#if EV_PERIODIC_ENABLE
1386void 2599void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 2600ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 2601{
1389 if (ev_is_active (w)) 2602 if (expect_false (ev_is_active (w)))
1390 return; 2603 return;
1391 2604
1392 if (w->reschedule_cb) 2605 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 2607 else if (w->interval)
1395 { 2608 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 2610 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 2612 }
2613 else
2614 ev_at (w) = w->offset;
1400 2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 2622 ANHE_at_cache (periodics [ev_active (w)]);
2623 upheap (periodics, ev_active (w));
1405 2624
2625 EV_FREQUENT_CHECK;
2626
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1407} 2628}
1408 2629
1409void 2630void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 2631ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 2632{
1412 ev_clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 2634 if (expect_false (!ev_is_active (w)))
1414 return; 2635 return;
1415 2636
2637 EV_FREQUENT_CHECK;
2638
2639 {
2640 int active = ev_active (w);
2641
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1417 2643
1418 if (((W)w)->active < periodiccnt--) 2644 --periodiccnt;
2645
2646 if (expect_true (active < periodiccnt + HEAP0))
1419 { 2647 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2648 periodics [active] = periodics [periodiccnt + HEAP0];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2649 adjustheap (periodics, periodiccnt, active);
1422 } 2650 }
2651 }
2652
2653 EV_FREQUENT_CHECK;
1423 2654
1424 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
1425} 2656}
1426 2657
1427void 2658void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 2659ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 2660{
1430 /* TODO: use adjustheap and recalculation */ 2661 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 2662 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 2663 ev_periodic_start (EV_A_ w);
1433} 2664}
1434#endif 2665#endif
1435 2666
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 2667#ifndef SA_RESTART
1503# define SA_RESTART 0 2668# define SA_RESTART 0
1504#endif 2669#endif
1505 2670
1506void 2671void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 2672ev_signal_start (EV_P_ ev_signal *w)
1508{ 2673{
2674 if (expect_false (ev_is_active (w)))
2675 return;
2676
2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2678
1509#if EV_MULTIPLICITY 2679#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2682
2683 signals [w->signum - 1].loop = EV_A;
2684#endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688#if EV_USE_SIGNALFD
2689 if (sigfd == -2)
2690 {
2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2692 if (sigfd < 0 && errno == EINVAL)
2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2694
2695 if (sigfd >= 0)
2696 {
2697 fd_intern (sigfd); /* doing it twice will not hurt */
2698
2699 sigemptyset (&sigfd_set);
2700
2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716#endif
2717
2718 ev_start (EV_A_ (W)w, 1);
2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
2720
2721 if (!((WL)w)->next)
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
1511#endif 2724# endif
1512 if (ev_is_active (w)) 2725 {
2726# if _WIN32
2727 signal (w->signum, ev_sighandler);
2728# else
2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
2733 sa.sa_handler = ev_sighandler;
2734 sigfillset (&sa.sa_mask);
2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2741#endif
2742 }
2743
2744 EV_FREQUENT_CHECK;
2745}
2746
2747void noinline
2748ev_signal_stop (EV_P_ ev_signal *w)
2749{
2750 clear_pending (EV_A_ (W)w);
2751 if (expect_false (!ev_is_active (w)))
1513 return; 2752 return;
1514 2753
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2754 EV_FREQUENT_CHECK;
2755
2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
2757 ev_stop (EV_A_ (W)w);
2758
2759 if (!signals [w->signum - 1].head)
2760 {
2761#if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763#endif
2764#if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
2772 }
2773 else
2774#endif
2775 signal (w->signum, SIG_DFL);
2776 }
2777
2778 EV_FREQUENT_CHECK;
2779}
2780
2781void
2782ev_child_start (EV_P_ ev_child *w)
2783{
2784#if EV_MULTIPLICITY
2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2786#endif
2787 if (expect_false (ev_is_active (w)))
2788 return;
2789
2790 EV_FREQUENT_CHECK;
1516 2791
1517 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1520 2794
1521 if (!((WL)w)->next) 2795 EV_FREQUENT_CHECK;
2796}
2797
2798void
2799ev_child_stop (EV_P_ ev_child *w)
2800{
2801 clear_pending (EV_A_ (W)w);
2802 if (expect_false (!ev_is_active (w)))
2803 return;
2804
2805 EV_FREQUENT_CHECK;
2806
2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2808 ev_stop (EV_A_ (W)w);
2809
2810 EV_FREQUENT_CHECK;
2811}
2812
2813#if EV_STAT_ENABLE
2814
2815# ifdef _WIN32
2816# undef lstat
2817# define lstat(a,b) _stati64 (a,b)
2818# endif
2819
2820#define DEF_STAT_INTERVAL 5.0074891
2821#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2822#define MIN_STAT_INTERVAL 0.1074891
2823
2824static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2825
2826#if EV_USE_INOTIFY
2827# define EV_INOTIFY_BUFSIZE 8192
2828
2829static void noinline
2830infy_add (EV_P_ ev_stat *w)
2831{
2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2833
2834 if (w->wd < 0)
2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2838
2839 /* monitor some parent directory for speedup hints */
2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2841 /* but an efficiency issue only */
2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2843 {
2844 char path [4096];
2845 strcpy (path, w->path);
2846
2847 do
2848 {
2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2851
2852 char *pend = strrchr (path, '/');
2853
2854 if (!pend || pend == path)
2855 break;
2856
2857 *pend = 0;
2858 w->wd = inotify_add_watch (fs_fd, path, mask);
2859 }
2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2861 }
1522 { 2862 }
2863
2864 if (w->wd >= 0)
2865 {
2866 struct statfs sfs;
2867
2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873
2874 if (fs_2625 && !statfs (w->path, &sfs))
2875 if (sfs.f_type == 0x1373 /* devfs */
2876 || sfs.f_type == 0xEF53 /* ext2/3 */
2877 || sfs.f_type == 0x3153464a /* jfs */
2878 || sfs.f_type == 0x52654973 /* reiser3 */
2879 || sfs.f_type == 0x01021994 /* tempfs */
2880 || sfs.f_type == 0x58465342 /* xfs */)
2881 return;
2882
2883 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2884 ev_timer_again (EV_A_ &w->timer);
2885 }
2886}
2887
2888static void noinline
2889infy_del (EV_P_ ev_stat *w)
2890{
2891 int slot;
2892 int wd = w->wd;
2893
2894 if (wd < 0)
2895 return;
2896
2897 w->wd = -2;
2898 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2899 wlist_del (&fs_hash [slot].head, (WL)w);
2900
2901 /* remove this watcher, if others are watching it, they will rearm */
2902 inotify_rm_watch (fs_fd, wd);
2903}
2904
2905static void noinline
2906infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2907{
2908 if (slot < 0)
2909 /* overflow, need to check for all hash slots */
2910 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2911 infy_wd (EV_A_ slot, wd, ev);
2912 else
2913 {
2914 WL w_;
2915
2916 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2917 {
2918 ev_stat *w = (ev_stat *)w_;
2919 w_ = w_->next; /* lets us remove this watcher and all before it */
2920
2921 if (w->wd == wd || wd == -1)
2922 {
2923 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2924 {
2925 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2926 w->wd = -1;
2927 infy_add (EV_A_ w); /* re-add, no matter what */
2928 }
2929
2930 stat_timer_cb (EV_A_ &w->timer, 0);
2931 }
2932 }
2933 }
2934}
2935
2936static void
2937infy_cb (EV_P_ ev_io *w, int revents)
2938{
2939 char buf [EV_INOTIFY_BUFSIZE];
2940 struct inotify_event *ev = (struct inotify_event *)buf;
2941 int ofs;
2942 int len = read (fs_fd, buf, sizeof (buf));
2943
2944 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2945 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2946}
2947
2948inline_size void
2949check_2625 (EV_P)
2950{
2951 /* kernels < 2.6.25 are borked
2952 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2953 */
2954 struct utsname buf;
2955 int major, minor, micro;
2956
2957 if (uname (&buf))
2958 return;
2959
2960 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2961 return;
2962
2963 if (major < 2
2964 || (major == 2 && minor < 6)
2965 || (major == 2 && minor == 6 && micro < 25))
2966 return;
2967
2968 fs_2625 = 1;
2969}
2970
2971inline_size void
2972infy_init (EV_P)
2973{
2974 if (fs_fd != -2)
2975 return;
2976
2977 fs_fd = -1;
2978
2979 check_2625 (EV_A);
2980
2981 fs_fd = inotify_init ();
2982
2983 if (fs_fd >= 0)
2984 {
2985 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2986 ev_set_priority (&fs_w, EV_MAXPRI);
2987 ev_io_start (EV_A_ &fs_w);
2988 }
2989}
2990
2991inline_size void
2992infy_fork (EV_P)
2993{
2994 int slot;
2995
2996 if (fs_fd < 0)
2997 return;
2998
2999 close (fs_fd);
3000 fs_fd = inotify_init ();
3001
3002 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3003 {
3004 WL w_ = fs_hash [slot].head;
3005 fs_hash [slot].head = 0;
3006
3007 while (w_)
3008 {
3009 ev_stat *w = (ev_stat *)w_;
3010 w_ = w_->next; /* lets us add this watcher */
3011
3012 w->wd = -1;
3013
3014 if (fs_fd >= 0)
3015 infy_add (EV_A_ w); /* re-add, no matter what */
3016 else
3017 ev_timer_again (EV_A_ &w->timer);
3018 }
3019 }
3020}
3021
3022#endif
3023
1523#if _WIN32 3024#ifdef _WIN32
1524 signal (w->signum, sighandler); 3025# define EV_LSTAT(p,b) _stati64 (p, b)
1525#else 3026#else
1526 struct sigaction sa; 3027# define EV_LSTAT(p,b) lstat (p, b)
1527 sa.sa_handler = sighandler;
1528 sigfillset (&sa.sa_mask);
1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1530 sigaction (w->signum, &sa, 0);
1531#endif 3028#endif
1532 }
1533}
1534 3029
1535void 3030void
1536ev_signal_stop (EV_P_ struct ev_signal *w) 3031ev_stat_stat (EV_P_ ev_stat *w)
1537{ 3032{
1538 ev_clear_pending (EV_A_ (W)w); 3033 if (lstat (w->path, &w->attr) < 0)
1539 if (!ev_is_active (w)) 3034 w->attr.st_nlink = 0;
3035 else if (!w->attr.st_nlink)
3036 w->attr.st_nlink = 1;
3037}
3038
3039static void noinline
3040stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3041{
3042 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3043
3044 /* we copy this here each the time so that */
3045 /* prev has the old value when the callback gets invoked */
3046 w->prev = w->attr;
3047 ev_stat_stat (EV_A_ w);
3048
3049 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3050 if (
3051 w->prev.st_dev != w->attr.st_dev
3052 || w->prev.st_ino != w->attr.st_ino
3053 || w->prev.st_mode != w->attr.st_mode
3054 || w->prev.st_nlink != w->attr.st_nlink
3055 || w->prev.st_uid != w->attr.st_uid
3056 || w->prev.st_gid != w->attr.st_gid
3057 || w->prev.st_rdev != w->attr.st_rdev
3058 || w->prev.st_size != w->attr.st_size
3059 || w->prev.st_atime != w->attr.st_atime
3060 || w->prev.st_mtime != w->attr.st_mtime
3061 || w->prev.st_ctime != w->attr.st_ctime
3062 ) {
3063 #if EV_USE_INOTIFY
3064 if (fs_fd >= 0)
3065 {
3066 infy_del (EV_A_ w);
3067 infy_add (EV_A_ w);
3068 ev_stat_stat (EV_A_ w); /* avoid race... */
3069 }
3070 #endif
3071
3072 ev_feed_event (EV_A_ w, EV_STAT);
3073 }
3074}
3075
3076void
3077ev_stat_start (EV_P_ ev_stat *w)
3078{
3079 if (expect_false (ev_is_active (w)))
1540 return; 3080 return;
1541 3081
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3082 ev_stat_stat (EV_A_ w);
3083
3084 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3085 w->interval = MIN_STAT_INTERVAL;
3086
3087 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3088 ev_set_priority (&w->timer, ev_priority (w));
3089
3090#if EV_USE_INOTIFY
3091 infy_init (EV_A);
3092
3093 if (fs_fd >= 0)
3094 infy_add (EV_A_ w);
3095 else
3096#endif
3097 ev_timer_again (EV_A_ &w->timer);
3098
3099 ev_start (EV_A_ (W)w, 1);
3100
3101 EV_FREQUENT_CHECK;
3102}
3103
3104void
3105ev_stat_stop (EV_P_ ev_stat *w)
3106{
3107 clear_pending (EV_A_ (W)w);
3108 if (expect_false (!ev_is_active (w)))
3109 return;
3110
3111 EV_FREQUENT_CHECK;
3112
3113#if EV_USE_INOTIFY
3114 infy_del (EV_A_ w);
3115#endif
3116 ev_timer_stop (EV_A_ &w->timer);
3117
1543 ev_stop (EV_A_ (W)w); 3118 ev_stop (EV_A_ (W)w);
1544 3119
1545 if (!signals [w->signum - 1].head) 3120 EV_FREQUENT_CHECK;
1546 signal (w->signum, SIG_DFL);
1547} 3121}
3122#endif
1548 3123
3124#if EV_IDLE_ENABLE
1549void 3125void
1550ev_child_start (EV_P_ struct ev_child *w) 3126ev_idle_start (EV_P_ ev_idle *w)
1551{ 3127{
1552#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop));
1554#endif
1555 if (ev_is_active (w)) 3128 if (expect_false (ev_is_active (w)))
1556 return; 3129 return;
1557 3130
3131 pri_adjust (EV_A_ (W)w);
3132
3133 EV_FREQUENT_CHECK;
3134
3135 {
3136 int active = ++idlecnt [ABSPRI (w)];
3137
3138 ++idleall;
3139 ev_start (EV_A_ (W)w, active);
3140
3141 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3142 idles [ABSPRI (w)][active - 1] = w;
3143 }
3144
3145 EV_FREQUENT_CHECK;
3146}
3147
3148void
3149ev_idle_stop (EV_P_ ev_idle *w)
3150{
3151 clear_pending (EV_A_ (W)w);
3152 if (expect_false (!ev_is_active (w)))
3153 return;
3154
3155 EV_FREQUENT_CHECK;
3156
3157 {
3158 int active = ev_active (w);
3159
3160 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3161 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3162
3163 ev_stop (EV_A_ (W)w);
3164 --idleall;
3165 }
3166
3167 EV_FREQUENT_CHECK;
3168}
3169#endif
3170
3171void
3172ev_prepare_start (EV_P_ ev_prepare *w)
3173{
3174 if (expect_false (ev_is_active (w)))
3175 return;
3176
3177 EV_FREQUENT_CHECK;
3178
3179 ev_start (EV_A_ (W)w, ++preparecnt);
3180 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3181 prepares [preparecnt - 1] = w;
3182
3183 EV_FREQUENT_CHECK;
3184}
3185
3186void
3187ev_prepare_stop (EV_P_ ev_prepare *w)
3188{
3189 clear_pending (EV_A_ (W)w);
3190 if (expect_false (!ev_is_active (w)))
3191 return;
3192
3193 EV_FREQUENT_CHECK;
3194
3195 {
3196 int active = ev_active (w);
3197
3198 prepares [active - 1] = prepares [--preparecnt];
3199 ev_active (prepares [active - 1]) = active;
3200 }
3201
3202 ev_stop (EV_A_ (W)w);
3203
3204 EV_FREQUENT_CHECK;
3205}
3206
3207void
3208ev_check_start (EV_P_ ev_check *w)
3209{
3210 if (expect_false (ev_is_active (w)))
3211 return;
3212
3213 EV_FREQUENT_CHECK;
3214
3215 ev_start (EV_A_ (W)w, ++checkcnt);
3216 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3217 checks [checkcnt - 1] = w;
3218
3219 EV_FREQUENT_CHECK;
3220}
3221
3222void
3223ev_check_stop (EV_P_ ev_check *w)
3224{
3225 clear_pending (EV_A_ (W)w);
3226 if (expect_false (!ev_is_active (w)))
3227 return;
3228
3229 EV_FREQUENT_CHECK;
3230
3231 {
3232 int active = ev_active (w);
3233
3234 checks [active - 1] = checks [--checkcnt];
3235 ev_active (checks [active - 1]) = active;
3236 }
3237
3238 ev_stop (EV_A_ (W)w);
3239
3240 EV_FREQUENT_CHECK;
3241}
3242
3243#if EV_EMBED_ENABLE
3244void noinline
3245ev_embed_sweep (EV_P_ ev_embed *w)
3246{
3247 ev_loop (w->other, EVLOOP_NONBLOCK);
3248}
3249
3250static void
3251embed_io_cb (EV_P_ ev_io *io, int revents)
3252{
3253 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3254
3255 if (ev_cb (w))
3256 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3257 else
3258 ev_loop (w->other, EVLOOP_NONBLOCK);
3259}
3260
3261static void
3262embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3263{
3264 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3265
3266 {
3267 EV_P = w->other;
3268
3269 while (fdchangecnt)
3270 {
3271 fd_reify (EV_A);
3272 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3273 }
3274 }
3275}
3276
3277static void
3278embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3279{
3280 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3281
3282 ev_embed_stop (EV_A_ w);
3283
3284 {
3285 EV_P = w->other;
3286
3287 ev_loop_fork (EV_A);
3288 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3289 }
3290
3291 ev_embed_start (EV_A_ w);
3292}
3293
3294#if 0
3295static void
3296embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3297{
3298 ev_idle_stop (EV_A_ idle);
3299}
3300#endif
3301
3302void
3303ev_embed_start (EV_P_ ev_embed *w)
3304{
3305 if (expect_false (ev_is_active (w)))
3306 return;
3307
3308 {
3309 EV_P = w->other;
3310 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3312 }
3313
3314 EV_FREQUENT_CHECK;
3315
3316 ev_set_priority (&w->io, ev_priority (w));
3317 ev_io_start (EV_A_ &w->io);
3318
3319 ev_prepare_init (&w->prepare, embed_prepare_cb);
3320 ev_set_priority (&w->prepare, EV_MINPRI);
3321 ev_prepare_start (EV_A_ &w->prepare);
3322
3323 ev_fork_init (&w->fork, embed_fork_cb);
3324 ev_fork_start (EV_A_ &w->fork);
3325
3326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3327
1558 ev_start (EV_A_ (W)w, 1); 3328 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1560}
1561 3329
3330 EV_FREQUENT_CHECK;
3331}
3332
1562void 3333void
1563ev_child_stop (EV_P_ struct ev_child *w) 3334ev_embed_stop (EV_P_ ev_embed *w)
1564{ 3335{
1565 ev_clear_pending (EV_A_ (W)w); 3336 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 3337 if (expect_false (!ev_is_active (w)))
1567 return; 3338 return;
1568 3339
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3340 EV_FREQUENT_CHECK;
3341
3342 ev_io_stop (EV_A_ &w->io);
3343 ev_prepare_stop (EV_A_ &w->prepare);
3344 ev_fork_stop (EV_A_ &w->fork);
3345
3346 EV_FREQUENT_CHECK;
3347}
3348#endif
3349
3350#if EV_FORK_ENABLE
3351void
3352ev_fork_start (EV_P_ ev_fork *w)
3353{
3354 if (expect_false (ev_is_active (w)))
3355 return;
3356
3357 EV_FREQUENT_CHECK;
3358
3359 ev_start (EV_A_ (W)w, ++forkcnt);
3360 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3361 forks [forkcnt - 1] = w;
3362
3363 EV_FREQUENT_CHECK;
3364}
3365
3366void
3367ev_fork_stop (EV_P_ ev_fork *w)
3368{
3369 clear_pending (EV_A_ (W)w);
3370 if (expect_false (!ev_is_active (w)))
3371 return;
3372
3373 EV_FREQUENT_CHECK;
3374
3375 {
3376 int active = ev_active (w);
3377
3378 forks [active - 1] = forks [--forkcnt];
3379 ev_active (forks [active - 1]) = active;
3380 }
3381
1570 ev_stop (EV_A_ (W)w); 3382 ev_stop (EV_A_ (W)w);
3383
3384 EV_FREQUENT_CHECK;
1571} 3385}
3386#endif
3387
3388#if EV_ASYNC_ENABLE
3389void
3390ev_async_start (EV_P_ ev_async *w)
3391{
3392 if (expect_false (ev_is_active (w)))
3393 return;
3394
3395 evpipe_init (EV_A);
3396
3397 EV_FREQUENT_CHECK;
3398
3399 ev_start (EV_A_ (W)w, ++asynccnt);
3400 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3401 asyncs [asynccnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
3404}
3405
3406void
3407ev_async_stop (EV_P_ ev_async *w)
3408{
3409 clear_pending (EV_A_ (W)w);
3410 if (expect_false (!ev_is_active (w)))
3411 return;
3412
3413 EV_FREQUENT_CHECK;
3414
3415 {
3416 int active = ev_active (w);
3417
3418 asyncs [active - 1] = asyncs [--asynccnt];
3419 ev_active (asyncs [active - 1]) = active;
3420 }
3421
3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
3425}
3426
3427void
3428ev_async_send (EV_P_ ev_async *w)
3429{
3430 w->sent = 1;
3431 evpipe_write (EV_A_ &async_pending);
3432}
3433#endif
1572 3434
1573/*****************************************************************************/ 3435/*****************************************************************************/
1574 3436
1575struct ev_once 3437struct ev_once
1576{ 3438{
1577 struct ev_io io; 3439 ev_io io;
1578 struct ev_timer to; 3440 ev_timer to;
1579 void (*cb)(int revents, void *arg); 3441 void (*cb)(int revents, void *arg);
1580 void *arg; 3442 void *arg;
1581}; 3443};
1582 3444
1583static void 3445static void
1584once_cb (EV_P_ struct ev_once *once, int revents) 3446once_cb (EV_P_ struct ev_once *once, int revents)
1585{ 3447{
1586 void (*cb)(int revents, void *arg) = once->cb; 3448 void (*cb)(int revents, void *arg) = once->cb;
1587 void *arg = once->arg; 3449 void *arg = once->arg;
1588 3450
1589 ev_io_stop (EV_A_ &once->io); 3451 ev_io_stop (EV_A_ &once->io);
1590 ev_timer_stop (EV_A_ &once->to); 3452 ev_timer_stop (EV_A_ &once->to);
1591 ev_free (once); 3453 ev_free (once);
1592 3454
1593 cb (revents, arg); 3455 cb (revents, arg);
1594} 3456}
1595 3457
1596static void 3458static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 3459once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 3460{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3461 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3462
3463 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1600} 3464}
1601 3465
1602static void 3466static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 3467once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 3468{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3469 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3470
3471 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1606} 3472}
1607 3473
1608void 3474void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3475ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 3476{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3477 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 3478
1613 if (!once) 3479 if (expect_false (!once))
3480 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3481 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 3482 return;
1616 { 3483 }
3484
1617 once->cb = cb; 3485 once->cb = cb;
1618 once->arg = arg; 3486 once->arg = arg;
1619 3487
1620 ev_init (&once->io, once_cb_io); 3488 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 3489 if (fd >= 0)
3490 {
3491 ev_io_set (&once->io, fd, events);
3492 ev_io_start (EV_A_ &once->io);
3493 }
3494
3495 ev_init (&once->to, once_cb_to);
3496 if (timeout >= 0.)
3497 {
3498 ev_timer_set (&once->to, timeout, 0.);
3499 ev_timer_start (EV_A_ &once->to);
3500 }
3501}
3502
3503/*****************************************************************************/
3504
3505#if EV_WALK_ENABLE
3506void
3507ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3508{
3509 int i, j;
3510 ev_watcher_list *wl, *wn;
3511
3512 if (types & (EV_IO | EV_EMBED))
3513 for (i = 0; i < anfdmax; ++i)
3514 for (wl = anfds [i].head; wl; )
1622 { 3515 {
1623 ev_io_set (&once->io, fd, events); 3516 wn = wl->next;
1624 ev_io_start (EV_A_ &once->io); 3517
3518#if EV_EMBED_ENABLE
3519 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3520 {
3521 if (types & EV_EMBED)
3522 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3523 }
3524 else
3525#endif
3526#if EV_USE_INOTIFY
3527 if (ev_cb ((ev_io *)wl) == infy_cb)
3528 ;
3529 else
3530#endif
3531 if ((ev_io *)wl != &pipe_w)
3532 if (types & EV_IO)
3533 cb (EV_A_ EV_IO, wl);
3534
3535 wl = wn;
1625 } 3536 }
1626 3537
1627 ev_init (&once->to, once_cb_to); 3538 if (types & (EV_TIMER | EV_STAT))
1628 if (timeout >= 0.) 3539 for (i = timercnt + HEAP0; i-- > HEAP0; )
3540#if EV_STAT_ENABLE
3541 /*TODO: timer is not always active*/
3542 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1629 { 3543 {
1630 ev_timer_set (&once->to, timeout, 0.); 3544 if (types & EV_STAT)
1631 ev_timer_start (EV_A_ &once->to); 3545 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1632 } 3546 }
1633 } 3547 else
3548#endif
3549 if (types & EV_TIMER)
3550 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3551
3552#if EV_PERIODIC_ENABLE
3553 if (types & EV_PERIODIC)
3554 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3555 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3556#endif
3557
3558#if EV_IDLE_ENABLE
3559 if (types & EV_IDLE)
3560 for (j = NUMPRI; i--; )
3561 for (i = idlecnt [j]; i--; )
3562 cb (EV_A_ EV_IDLE, idles [j][i]);
3563#endif
3564
3565#if EV_FORK_ENABLE
3566 if (types & EV_FORK)
3567 for (i = forkcnt; i--; )
3568 if (ev_cb (forks [i]) != embed_fork_cb)
3569 cb (EV_A_ EV_FORK, forks [i]);
3570#endif
3571
3572#if EV_ASYNC_ENABLE
3573 if (types & EV_ASYNC)
3574 for (i = asynccnt; i--; )
3575 cb (EV_A_ EV_ASYNC, asyncs [i]);
3576#endif
3577
3578 if (types & EV_PREPARE)
3579 for (i = preparecnt; i--; )
3580#if EV_EMBED_ENABLE
3581 if (ev_cb (prepares [i]) != embed_prepare_cb)
3582#endif
3583 cb (EV_A_ EV_PREPARE, prepares [i]);
3584
3585 if (types & EV_CHECK)
3586 for (i = checkcnt; i--; )
3587 cb (EV_A_ EV_CHECK, checks [i]);
3588
3589 if (types & EV_SIGNAL)
3590 for (i = 0; i < EV_NSIG - 1; ++i)
3591 for (wl = signals [i].head; wl; )
3592 {
3593 wn = wl->next;
3594 cb (EV_A_ EV_SIGNAL, wl);
3595 wl = wn;
3596 }
3597
3598 if (types & EV_CHILD)
3599 for (i = EV_PID_HASHSIZE; i--; )
3600 for (wl = childs [i]; wl; )
3601 {
3602 wn = wl->next;
3603 cb (EV_A_ EV_CHILD, wl);
3604 wl = wn;
3605 }
3606/* EV_STAT 0x00001000 /* stat data changed */
3607/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1634} 3608}
3609#endif
3610
3611#if EV_MULTIPLICITY
3612 #include "ev_wrap.h"
3613#endif
1635 3614
1636#ifdef __cplusplus 3615#ifdef __cplusplus
1637} 3616}
1638#endif 3617#endif
1639 3618

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines