ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.142 by root, Tue Nov 27 06:19:08 2007 UTC vs.
Revision 1.312 by root, Wed Aug 12 18:48:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
99#endif 154#endif
100 155
101#include <math.h> 156#include <math.h>
102#include <stdlib.h> 157#include <stdlib.h>
103#include <fcntl.h> 158#include <fcntl.h>
109#include <errno.h> 164#include <errno.h>
110#include <sys/types.h> 165#include <sys/types.h>
111#include <time.h> 166#include <time.h>
112 167
113#include <signal.h> 168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
114 175
115#ifndef _WIN32 176#ifndef _WIN32
116# include <sys/time.h> 177# include <sys/time.h>
117# include <sys/wait.h> 178# include <sys/wait.h>
118# include <unistd.h> 179# include <unistd.h>
119#else 180#else
181# include <io.h>
120# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 183# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
124# endif 186# endif
125#endif 187#endif
126 188
127/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
128 225
129#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
130# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
131#endif 232#endif
132 233
133#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
135#endif 244#endif
136 245
137#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
139#endif 248#endif
145# define EV_USE_POLL 1 254# define EV_USE_POLL 1
146# endif 255# endif
147#endif 256#endif
148 257
149#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
150# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
151#endif 264#endif
152 265
153#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
155#endif 268#endif
156 269
157#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 271# define EV_USE_PORT 0
159#endif 272#endif
160 273
161/**/ 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
279# endif
280#endif
281
282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 347
163#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
166#endif 351#endif
168#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
171#endif 356#endif
172 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
173#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 381# include <winsock.h>
175#endif 382#endif
176 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
177/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
417
418/*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 427
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 431
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 432#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 434# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 435#else
201# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 437# define noinline
438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439# define inline
440# endif
205#endif 441#endif
206 442
207#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 444#define expect_true(expr) expect ((expr) != 0, 1)
445#define inline_size static inline
209 446
447#if EV_MINIMAL
448# define inline_speed static noinline
449#else
450# define inline_speed static inline
451#endif
452
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
212 460
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
215 463
216typedef ev_watcher *W; 464typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
219 467
468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
221 480
222#ifdef _WIN32 481#ifdef _WIN32
223# include "ev_win32.c" 482# include "ev_win32.c"
224#endif 483#endif
225 484
232{ 491{
233 syserr_cb = cb; 492 syserr_cb = cb;
234} 493}
235 494
236static void noinline 495static void noinline
237syserr (const char *msg) 496ev_syserr (const char *msg)
238{ 497{
239 if (!msg) 498 if (!msg)
240 msg = "(libev) system error"; 499 msg = "(libev) system error";
241 500
242 if (syserr_cb) 501 if (syserr_cb)
246 perror (msg); 505 perror (msg);
247 abort (); 506 abort ();
248 } 507 }
249} 508}
250 509
510static void *
511ev_realloc_emul (void *ptr, long size)
512{
513 /* some systems, notably openbsd and darwin, fail to properly
514 * implement realloc (x, 0) (as required by both ansi c-98 and
515 * the single unix specification, so work around them here.
516 */
517
518 if (size)
519 return realloc (ptr, size);
520
521 free (ptr);
522 return 0;
523}
524
251static void *(*alloc)(void *ptr, long size); 525static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
252 526
253void 527void
254ev_set_allocator (void *(*cb)(void *ptr, long size)) 528ev_set_allocator (void *(*cb)(void *ptr, long size))
255{ 529{
256 alloc = cb; 530 alloc = cb;
257} 531}
258 532
259static void * 533inline_speed void *
260ev_realloc (void *ptr, long size) 534ev_realloc (void *ptr, long size)
261{ 535{
262 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 536 ptr = alloc (ptr, size);
263 537
264 if (!ptr && size) 538 if (!ptr && size)
265 { 539 {
266 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 540 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
267 abort (); 541 abort ();
273#define ev_malloc(size) ev_realloc (0, (size)) 547#define ev_malloc(size) ev_realloc (0, (size))
274#define ev_free(ptr) ev_realloc ((ptr), 0) 548#define ev_free(ptr) ev_realloc ((ptr), 0)
275 549
276/*****************************************************************************/ 550/*****************************************************************************/
277 551
552/* set in reify when reification needed */
553#define EV_ANFD_REIFY 1
554
555/* file descriptor info structure */
278typedef struct 556typedef struct
279{ 557{
280 WL head; 558 WL head;
281 unsigned char events; 559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
282 unsigned char reify; 562 unsigned char unused;
563#if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565#endif
283#if EV_SELECT_IS_WINSOCKET 566#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle; 567 SOCKET handle;
285#endif 568#endif
286} ANFD; 569} ANFD;
287 570
571/* stores the pending event set for a given watcher */
288typedef struct 572typedef struct
289{ 573{
290 W w; 574 W w;
291 int events; 575 int events; /* the pending event set for the given watcher */
292} ANPENDING; 576} ANPENDING;
577
578#if EV_USE_INOTIFY
579/* hash table entry per inotify-id */
580typedef struct
581{
582 WL head;
583} ANFS;
584#endif
585
586/* Heap Entry */
587#if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597#else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
604#endif
293 605
294#if EV_MULTIPLICITY 606#if EV_MULTIPLICITY
295 607
296 struct ev_loop 608 struct ev_loop
297 { 609 {
315 627
316 static int ev_default_loop_ptr; 628 static int ev_default_loop_ptr;
317 629
318#endif 630#endif
319 631
632#if EV_MINIMAL < 2
633# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635# define EV_INVOKE_PENDING invoke_cb (EV_A)
636#else
637# define EV_RELEASE_CB (void)0
638# define EV_ACQUIRE_CB (void)0
639# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640#endif
641
642#define EVUNLOOP_RECURSE 0x80
643
320/*****************************************************************************/ 644/*****************************************************************************/
321 645
646#ifndef EV_HAVE_EV_TIME
322ev_tstamp 647ev_tstamp
323ev_time (void) 648ev_time (void)
324{ 649{
325#if EV_USE_REALTIME 650#if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
326 struct timespec ts; 653 struct timespec ts;
327 clock_gettime (CLOCK_REALTIME, &ts); 654 clock_gettime (CLOCK_REALTIME, &ts);
328 return ts.tv_sec + ts.tv_nsec * 1e-9; 655 return ts.tv_sec + ts.tv_nsec * 1e-9;
329#else 656 }
657#endif
658
330 struct timeval tv; 659 struct timeval tv;
331 gettimeofday (&tv, 0); 660 gettimeofday (&tv, 0);
332 return tv.tv_sec + tv.tv_usec * 1e-6; 661 return tv.tv_sec + tv.tv_usec * 1e-6;
333#endif
334} 662}
663#endif
335 664
336ev_tstamp inline_size 665inline_size ev_tstamp
337get_clock (void) 666get_clock (void)
338{ 667{
339#if EV_USE_MONOTONIC 668#if EV_USE_MONOTONIC
340 if (expect_true (have_monotonic)) 669 if (expect_true (have_monotonic))
341 { 670 {
354{ 683{
355 return ev_rt_now; 684 return ev_rt_now;
356} 685}
357#endif 686#endif
358 687
359#define array_roundsize(type,n) (((n) | 4) & ~3) 688void
689ev_sleep (ev_tstamp delay)
690{
691 if (delay > 0.)
692 {
693#if EV_USE_NANOSLEEP
694 struct timespec ts;
695
696 ts.tv_sec = (time_t)delay;
697 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
698
699 nanosleep (&ts, 0);
700#elif defined(_WIN32)
701 Sleep ((unsigned long)(delay * 1e3));
702#else
703 struct timeval tv;
704
705 tv.tv_sec = (time_t)delay;
706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
711 select (0, 0, 0, 0, &tv);
712#endif
713 }
714}
715
716/*****************************************************************************/
717
718#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
719
720/* find a suitable new size for the given array, */
721/* hopefully by rounding to a ncie-to-malloc size */
722inline_size int
723array_nextsize (int elem, int cur, int cnt)
724{
725 int ncur = cur + 1;
726
727 do
728 ncur <<= 1;
729 while (cnt > ncur);
730
731 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
732 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
733 {
734 ncur *= elem;
735 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
736 ncur = ncur - sizeof (void *) * 4;
737 ncur /= elem;
738 }
739
740 return ncur;
741}
742
743static noinline void *
744array_realloc (int elem, void *base, int *cur, int cnt)
745{
746 *cur = array_nextsize (elem, *cur, cnt);
747 return ev_realloc (base, elem * *cur);
748}
749
750#define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
360 752
361#define array_needsize(type,base,cur,cnt,init) \ 753#define array_needsize(type,base,cur,cnt,init) \
362 if (expect_false ((cnt) > cur)) \ 754 if (expect_false ((cnt) > (cur))) \
363 { \ 755 { \
364 int newcnt = cur; \ 756 int ocur_ = (cur); \
365 do \ 757 (base) = (type *)array_realloc \
366 { \ 758 (sizeof (type), (base), &(cur), (cnt)); \
367 newcnt = array_roundsize (type, newcnt << 1); \ 759 init ((base) + (ocur_), (cur) - ocur_); \
368 } \
369 while ((cnt) > newcnt); \
370 \
371 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
372 init (base + cur, newcnt - cur); \
373 cur = newcnt; \
374 } 760 }
375 761
762#if 0
376#define array_slim(type,stem) \ 763#define array_slim(type,stem) \
377 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 764 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
378 { \ 765 { \
379 stem ## max = array_roundsize (stem ## cnt >> 1); \ 766 stem ## max = array_roundsize (stem ## cnt >> 1); \
380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 767 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
382 } 769 }
770#endif
383 771
384#define array_free(stem, idx) \ 772#define array_free(stem, idx) \
385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
386 774
387/*****************************************************************************/ 775/*****************************************************************************/
776
777/* dummy callback for pending events */
778static void noinline
779pendingcb (EV_P_ ev_prepare *w, int revents)
780{
781}
388 782
389void noinline 783void noinline
390ev_feed_event (EV_P_ void *w, int revents) 784ev_feed_event (EV_P_ void *w, int revents)
391{ 785{
392 W w_ = (W)w; 786 W w_ = (W)w;
787 int pri = ABSPRI (w_);
393 788
394 if (expect_false (w_->pending)) 789 if (expect_false (w_->pending))
790 pendings [pri][w_->pending - 1].events |= revents;
791 else
395 { 792 {
793 w_->pending = ++pendingcnt [pri];
794 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
795 pendings [pri][w_->pending - 1].w = w_;
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 796 pendings [pri][w_->pending - 1].events = revents;
397 return;
398 } 797 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404} 798}
405 799
406void inline_size 800inline_speed void
801feed_reverse (EV_P_ W w)
802{
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805}
806
807inline_size void
808feed_reverse_done (EV_P_ int revents)
809{
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813}
814
815inline_speed void
407queue_events (EV_P_ W *events, int eventcnt, int type) 816queue_events (EV_P_ W *events, int eventcnt, int type)
408{ 817{
409 int i; 818 int i;
410 819
411 for (i = 0; i < eventcnt; ++i) 820 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type); 821 ev_feed_event (EV_A_ events [i], type);
413} 822}
414 823
415/*****************************************************************************/ 824/*****************************************************************************/
416 825
417void inline_size 826inline_speed void
418anfds_init (ANFD *base, int count)
419{
420 while (count--)
421 {
422 base->head = 0;
423 base->events = EV_NONE;
424 base->reify = 0;
425
426 ++base;
427 }
428}
429
430void inline_speed
431fd_event (EV_P_ int fd, int revents) 827fd_event_nc (EV_P_ int fd, int revents)
432{ 828{
433 ANFD *anfd = anfds + fd; 829 ANFD *anfd = anfds + fd;
434 ev_io *w; 830 ev_io *w;
435 831
436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
440 if (ev) 836 if (ev)
441 ev_feed_event (EV_A_ (W)w, ev); 837 ev_feed_event (EV_A_ (W)w, ev);
442 } 838 }
443} 839}
444 840
841/* do not submit kernel events for fds that have reify set */
842/* because that means they changed while we were polling for new events */
843inline_speed void
844fd_event (EV_P_ int fd, int revents)
845{
846 ANFD *anfd = anfds + fd;
847
848 if (expect_true (!anfd->reify))
849 fd_event_nc (EV_A_ fd, revents);
850}
851
445void 852void
446ev_feed_fd_event (EV_P_ int fd, int revents) 853ev_feed_fd_event (EV_P_ int fd, int revents)
447{ 854{
855 if (fd >= 0 && fd < anfdmax)
448 fd_event (EV_A_ fd, revents); 856 fd_event_nc (EV_A_ fd, revents);
449} 857}
450 858
451void inline_size 859/* make sure the external fd watch events are in-sync */
860/* with the kernel/libev internal state */
861inline_size void
452fd_reify (EV_P) 862fd_reify (EV_P)
453{ 863{
454 int i; 864 int i;
455 865
456 for (i = 0; i < fdchangecnt; ++i) 866 for (i = 0; i < fdchangecnt; ++i)
457 { 867 {
458 int fd = fdchanges [i]; 868 int fd = fdchanges [i];
459 ANFD *anfd = anfds + fd; 869 ANFD *anfd = anfds + fd;
460 ev_io *w; 870 ev_io *w;
461 871
462 int events = 0; 872 unsigned char events = 0;
463 873
464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 874 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
465 events |= w->events; 875 events |= (unsigned char)w->events;
466 876
467#if EV_SELECT_IS_WINSOCKET 877#if EV_SELECT_IS_WINSOCKET
468 if (events) 878 if (events)
469 { 879 {
470 unsigned long argp; 880 unsigned long arg;
881 #ifdef EV_FD_TO_WIN32_HANDLE
882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
883 #else
471 anfd->handle = _get_osfhandle (fd); 884 anfd->handle = _get_osfhandle (fd);
885 #endif
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
473 } 887 }
474#endif 888#endif
475 889
890 {
891 unsigned char o_events = anfd->events;
892 unsigned char o_reify = anfd->reify;
893
476 anfd->reify = 0; 894 anfd->reify = 0;
477
478 backend_modify (EV_A_ fd, anfd->events, events);
479 anfd->events = events; 895 anfd->events = events;
896
897 if (o_events != events || o_reify & EV__IOFDSET)
898 backend_modify (EV_A_ fd, o_events, events);
899 }
480 } 900 }
481 901
482 fdchangecnt = 0; 902 fdchangecnt = 0;
483} 903}
484 904
485void inline_size 905/* something about the given fd changed */
906inline_size void
486fd_change (EV_P_ int fd) 907fd_change (EV_P_ int fd, int flags)
487{ 908{
488 if (expect_false (anfds [fd].reify)) 909 unsigned char reify = anfds [fd].reify;
489 return;
490
491 anfds [fd].reify = 1; 910 anfds [fd].reify |= flags;
492 911
912 if (expect_true (!reify))
913 {
493 ++fdchangecnt; 914 ++fdchangecnt;
494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
495 fdchanges [fdchangecnt - 1] = fd; 916 fdchanges [fdchangecnt - 1] = fd;
917 }
496} 918}
497 919
498void inline_speed 920/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921inline_speed void
499fd_kill (EV_P_ int fd) 922fd_kill (EV_P_ int fd)
500{ 923{
501 ev_io *w; 924 ev_io *w;
502 925
503 while ((w = (ev_io *)anfds [fd].head)) 926 while ((w = (ev_io *)anfds [fd].head))
505 ev_io_stop (EV_A_ w); 928 ev_io_stop (EV_A_ w);
506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
507 } 930 }
508} 931}
509 932
510int inline_size 933/* check whether the given fd is atcually valid, for error recovery */
934inline_size int
511fd_valid (int fd) 935fd_valid (int fd)
512{ 936{
513#ifdef _WIN32 937#ifdef _WIN32
514 return _get_osfhandle (fd) != -1; 938 return _get_osfhandle (fd) != -1;
515#else 939#else
523{ 947{
524 int fd; 948 int fd;
525 949
526 for (fd = 0; fd < anfdmax; ++fd) 950 for (fd = 0; fd < anfdmax; ++fd)
527 if (anfds [fd].events) 951 if (anfds [fd].events)
528 if (!fd_valid (fd) == -1 && errno == EBADF) 952 if (!fd_valid (fd) && errno == EBADF)
529 fd_kill (EV_A_ fd); 953 fd_kill (EV_A_ fd);
530} 954}
531 955
532/* called on ENOMEM in select/poll to kill some fds and retry */ 956/* called on ENOMEM in select/poll to kill some fds and retry */
533static void noinline 957static void noinline
537 961
538 for (fd = anfdmax; fd--; ) 962 for (fd = anfdmax; fd--; )
539 if (anfds [fd].events) 963 if (anfds [fd].events)
540 { 964 {
541 fd_kill (EV_A_ fd); 965 fd_kill (EV_A_ fd);
542 return; 966 break;
543 } 967 }
544} 968}
545 969
546/* usually called after fork if backend needs to re-arm all fds from scratch */ 970/* usually called after fork if backend needs to re-arm all fds from scratch */
547static void noinline 971static void noinline
548fd_rearm_all (EV_P) 972fd_rearm_all (EV_P)
549{ 973{
550 int fd; 974 int fd;
551 975
552 /* this should be highly optimised to not do anything but set a flag */
553 for (fd = 0; fd < anfdmax; ++fd) 976 for (fd = 0; fd < anfdmax; ++fd)
554 if (anfds [fd].events) 977 if (anfds [fd].events)
555 { 978 {
556 anfds [fd].events = 0; 979 anfds [fd].events = 0;
557 fd_change (EV_A_ fd); 980 anfds [fd].emask = 0;
981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
558 } 982 }
559} 983}
560 984
561/*****************************************************************************/ 985/*****************************************************************************/
562 986
563void inline_speed 987/*
564upheap (WT *heap, int k) 988 * the heap functions want a real array index. array index 0 uis guaranteed to not
565{ 989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
566 WT w = heap [k]; 990 * the branching factor of the d-tree.
991 */
567 992
568 while (k && heap [k >> 1]->at > w->at) 993/*
569 { 994 * at the moment we allow libev the luxury of two heaps,
570 heap [k] = heap [k >> 1]; 995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
571 ((W)heap [k])->active = k + 1; 996 * which is more cache-efficient.
572 k >>= 1; 997 * the difference is about 5% with 50000+ watchers.
573 } 998 */
999#if EV_USE_4HEAP
574 1000
575 heap [k] = w; 1001#define DHEAP 4
576 ((W)heap [k])->active = k + 1; 1002#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004#define UPHEAP_DONE(p,k) ((p) == (k))
577 1005
578} 1006/* away from the root */
579 1007inline_speed void
580void inline_speed
581downheap (WT *heap, int N, int k) 1008downheap (ANHE *heap, int N, int k)
582{ 1009{
583 WT w = heap [k]; 1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
584 1012
585 while (k < (N >> 1)) 1013 for (;;)
586 { 1014 {
587 int j = k << 1; 1015 ev_tstamp minat;
1016 ANHE *minpos;
1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
588 1018
589 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1019 /* find minimum child */
1020 if (expect_true (pos + DHEAP - 1 < E))
590 ++j; 1021 {
591 1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
592 if (w->at <= heap [j]->at) 1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1033 }
1034 else
593 break; 1035 break;
594 1036
1037 if (ANHE_at (he) <= minat)
1038 break;
1039
1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
1042
1043 k = minpos - heap;
1044 }
1045
1046 heap [k] = he;
1047 ev_active (ANHE_w (he)) = k;
1048}
1049
1050#else /* 4HEAP */
1051
1052#define HEAP0 1
1053#define HPARENT(k) ((k) >> 1)
1054#define UPHEAP_DONE(p,k) (!(p))
1055
1056/* away from the root */
1057inline_speed void
1058downheap (ANHE *heap, int N, int k)
1059{
1060 ANHE he = heap [k];
1061
1062 for (;;)
1063 {
1064 int c = k << 1;
1065
1066 if (c >= N + HEAP0)
1067 break;
1068
1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1070 ? 1 : 0;
1071
1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
1073 break;
1074
595 heap [k] = heap [j]; 1075 heap [k] = heap [c];
596 ((W)heap [k])->active = k + 1; 1076 ev_active (ANHE_w (heap [k])) = k;
1077
597 k = j; 1078 k = c;
598 } 1079 }
599 1080
600 heap [k] = w; 1081 heap [k] = he;
601 ((W)heap [k])->active = k + 1; 1082 ev_active (ANHE_w (he)) = k;
602} 1083}
1084#endif
603 1085
604void inline_size 1086/* towards the root */
1087inline_speed void
1088upheap (ANHE *heap, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
1099 heap [k] = heap [p];
1100 ev_active (ANHE_w (heap [k])) = k;
1101 k = p;
1102 }
1103
1104 heap [k] = he;
1105 ev_active (ANHE_w (he)) = k;
1106}
1107
1108/* move an element suitably so it is in a correct place */
1109inline_size void
605adjustheap (WT *heap, int N, int k) 1110adjustheap (ANHE *heap, int N, int k)
606{ 1111{
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
607 upheap (heap, k); 1113 upheap (heap, k);
1114 else
608 downheap (heap, N, k); 1115 downheap (heap, N, k);
1116}
1117
1118/* rebuild the heap: this function is used only once and executed rarely */
1119inline_size void
1120reheap (ANHE *heap, int N)
1121{
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
609} 1128}
610 1129
611/*****************************************************************************/ 1130/*****************************************************************************/
612 1131
1132/* associate signal watchers to a signal signal */
613typedef struct 1133typedef struct
614{ 1134{
1135 EV_ATOMIC_T pending;
1136#if EV_MULTIPLICITY
1137 EV_P;
1138#endif
615 WL head; 1139 WL head;
616 sig_atomic_t volatile gotsig;
617} ANSIG; 1140} ANSIG;
618 1141
619static ANSIG *signals; 1142static ANSIG signals [EV_NSIG - 1];
620static int signalmax;
621 1143
622static int sigpipe [2]; 1144/*****************************************************************************/
623static sig_atomic_t volatile gotsig;
624static ev_io sigev;
625 1145
626void inline_size 1146/* used to prepare libev internal fd's */
627signals_init (ANSIG *base, int count) 1147/* this is not fork-safe */
628{ 1148inline_speed void
629 while (count--)
630 {
631 base->head = 0;
632 base->gotsig = 0;
633
634 ++base;
635 }
636}
637
638static void
639sighandler (int signum)
640{
641#if _WIN32
642 signal (signum, sighandler);
643#endif
644
645 signals [signum - 1].gotsig = 1;
646
647 if (!gotsig)
648 {
649 int old_errno = errno;
650 gotsig = 1;
651 write (sigpipe [1], &signum, 1);
652 errno = old_errno;
653 }
654}
655
656void noinline
657ev_feed_signal_event (EV_P_ int signum)
658{
659 WL w;
660
661#if EV_MULTIPLICITY
662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
663#endif
664
665 --signum;
666
667 if (signum < 0 || signum >= signalmax)
668 return;
669
670 signals [signum].gotsig = 0;
671
672 for (w = signals [signum].head; w; w = w->next)
673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
674}
675
676static void
677sigcb (EV_P_ ev_io *iow, int revents)
678{
679 int signum;
680
681 read (sigpipe [0], &revents, 1);
682 gotsig = 0;
683
684 for (signum = signalmax; signum--; )
685 if (signals [signum].gotsig)
686 ev_feed_signal_event (EV_A_ signum + 1);
687}
688
689void inline_size
690fd_intern (int fd) 1149fd_intern (int fd)
691{ 1150{
692#ifdef _WIN32 1151#ifdef _WIN32
693 int arg = 1; 1152 unsigned long arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else 1154#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC); 1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK); 1156 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif 1157#endif
699} 1158}
700 1159
701static void noinline 1160static void noinline
702siginit (EV_P) 1161evpipe_init (EV_P)
703{ 1162{
1163 if (!ev_is_active (&pipe_w))
1164 {
1165#if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
1171 {
1172 evpipe [0] = -1;
1173 fd_intern (evfd); /* doing it twice doesn't hurt */
1174 ev_io_set (&pipe_w, evfd, EV_READ);
1175 }
1176 else
1177#endif
1178 {
1179 while (pipe (evpipe))
1180 ev_syserr ("(libev) error creating signal/async pipe");
1181
704 fd_intern (sigpipe [0]); 1182 fd_intern (evpipe [0]);
705 fd_intern (sigpipe [1]); 1183 fd_intern (evpipe [1]);
1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1185 }
706 1186
707 ev_io_set (&sigev, sigpipe [0], EV_READ);
708 ev_io_start (EV_A_ &sigev); 1187 ev_io_start (EV_A_ &pipe_w);
709 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1188 ev_unref (EV_A); /* watcher should not keep loop alive */
1189 }
1190}
1191
1192inline_size void
1193evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1194{
1195 if (!*flag)
1196 {
1197 int old_errno = errno; /* save errno because write might clobber it */
1198
1199 *flag = 1;
1200
1201#if EV_USE_EVENTFD
1202 if (evfd >= 0)
1203 {
1204 uint64_t counter = 1;
1205 write (evfd, &counter, sizeof (uint64_t));
1206 }
1207 else
1208#endif
1209 write (evpipe [1], &old_errno, 1);
1210
1211 errno = old_errno;
1212 }
1213}
1214
1215/* called whenever the libev signal pipe */
1216/* got some events (signal, async) */
1217static void
1218pipecb (EV_P_ ev_io *iow, int revents)
1219{
1220 int i;
1221
1222#if EV_USE_EVENTFD
1223 if (evfd >= 0)
1224 {
1225 uint64_t counter;
1226 read (evfd, &counter, sizeof (uint64_t));
1227 }
1228 else
1229#endif
1230 {
1231 char dummy;
1232 read (evpipe [0], &dummy, 1);
1233 }
1234
1235 if (sig_pending)
1236 {
1237 sig_pending = 0;
1238
1239 for (i = EV_NSIG - 1; i--; )
1240 if (expect_false (signals [i].pending))
1241 ev_feed_signal_event (EV_A_ i + 1);
1242 }
1243
1244#if EV_ASYNC_ENABLE
1245 if (async_pending)
1246 {
1247 async_pending = 0;
1248
1249 for (i = asynccnt; i--; )
1250 if (asyncs [i]->sent)
1251 {
1252 asyncs [i]->sent = 0;
1253 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1254 }
1255 }
1256#endif
710} 1257}
711 1258
712/*****************************************************************************/ 1259/*****************************************************************************/
713 1260
1261static void
1262ev_sighandler (int signum)
1263{
1264#if EV_MULTIPLICITY
1265 EV_P = signals [signum - 1].loop;
1266#endif
1267
1268#if _WIN32
1269 signal (signum, ev_sighandler);
1270#endif
1271
1272 signals [signum - 1].pending = 1;
1273 evpipe_write (EV_A_ &sig_pending);
1274}
1275
1276void noinline
1277ev_feed_signal_event (EV_P_ int signum)
1278{
1279 WL w;
1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
1286#if EV_MULTIPLICITY
1287 /* it is permissible to try to feed a signal to the wrong loop */
1288 /* or, likely more useful, feeding a signal nobody is waiting for */
1289
1290 if (expect_false (signals [signum].loop != EV_A))
1291 return;
1292#endif
1293
1294 signals [signum].pending = 0;
1295
1296 for (w = signals [signum].head; w; w = w->next)
1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1298}
1299
1300#if EV_USE_SIGNALFD
1301static void
1302sigfdcb (EV_P_ ev_io *iow, int revents)
1303{
1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1305
1306 for (;;)
1307 {
1308 ssize_t res = read (sigfd, si, sizeof (si));
1309
1310 /* not ISO-C, as res might be -1, but works with SuS */
1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1313
1314 if (res < (ssize_t)sizeof (si))
1315 break;
1316 }
1317}
1318#endif
1319
1320/*****************************************************************************/
1321
714static ev_child *childs [PID_HASHSIZE]; 1322static WL childs [EV_PID_HASHSIZE];
715 1323
716#ifndef _WIN32 1324#ifndef _WIN32
717 1325
718static ev_signal childev; 1326static ev_signal childev;
719 1327
720void inline_speed 1328#ifndef WIFCONTINUED
1329# define WIFCONTINUED(status) 0
1330#endif
1331
1332/* handle a single child status event */
1333inline_speed void
721child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1334child_reap (EV_P_ int chain, int pid, int status)
722{ 1335{
723 ev_child *w; 1336 ev_child *w;
1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
724 1338
725 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1339 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1340 {
726 if (w->pid == pid || !w->pid) 1341 if ((w->pid == pid || !w->pid)
1342 && (!traced || (w->flags & 1)))
727 { 1343 {
728 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1344 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
729 w->rpid = pid; 1345 w->rpid = pid;
730 w->rstatus = status; 1346 w->rstatus = status;
731 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1347 ev_feed_event (EV_A_ (W)w, EV_CHILD);
732 } 1348 }
1349 }
733} 1350}
734 1351
735#ifndef WCONTINUED 1352#ifndef WCONTINUED
736# define WCONTINUED 0 1353# define WCONTINUED 0
737#endif 1354#endif
738 1355
1356/* called on sigchld etc., calls waitpid */
739static void 1357static void
740childcb (EV_P_ ev_signal *sw, int revents) 1358childcb (EV_P_ ev_signal *sw, int revents)
741{ 1359{
742 int pid, status; 1360 int pid, status;
743 1361
746 if (!WCONTINUED 1364 if (!WCONTINUED
747 || errno != EINVAL 1365 || errno != EINVAL
748 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1366 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
749 return; 1367 return;
750 1368
751 /* make sure we are called again until all childs have been reaped */ 1369 /* make sure we are called again until all children have been reaped */
752 /* we need to do it this way so that the callback gets called before we continue */ 1370 /* we need to do it this way so that the callback gets called before we continue */
753 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1371 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
754 1372
755 child_reap (EV_A_ sw, pid, pid, status); 1373 child_reap (EV_A_ pid, pid, status);
1374 if (EV_PID_HASHSIZE > 1)
756 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1375 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
757} 1376}
758 1377
759#endif 1378#endif
760 1379
761/*****************************************************************************/ 1380/*****************************************************************************/
823 /* kqueue is borked on everything but netbsd apparently */ 1442 /* kqueue is borked on everything but netbsd apparently */
824 /* it usually doesn't work correctly on anything but sockets and pipes */ 1443 /* it usually doesn't work correctly on anything but sockets and pipes */
825 flags &= ~EVBACKEND_KQUEUE; 1444 flags &= ~EVBACKEND_KQUEUE;
826#endif 1445#endif
827#ifdef __APPLE__ 1446#ifdef __APPLE__
828 // flags &= ~EVBACKEND_KQUEUE; for documentation 1447 /* only select works correctly on that "unix-certified" platform */
829 flags &= ~EVBACKEND_POLL; 1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
830#endif 1450#endif
831 1451
832 return flags; 1452 return flags;
833} 1453}
834 1454
835unsigned int 1455unsigned int
836ev_embeddable_backends (void) 1456ev_embeddable_backends (void)
837{ 1457{
838 return EVBACKEND_EPOLL 1458 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
839 | EVBACKEND_KQUEUE 1459
840 | EVBACKEND_PORT; 1460 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1461 /* please fix it and tell me how to detect the fix */
1462 flags &= ~EVBACKEND_EPOLL;
1463
1464 return flags;
841} 1465}
842 1466
843unsigned int 1467unsigned int
844ev_backend (EV_P) 1468ev_backend (EV_P)
845{ 1469{
846 return backend; 1470 return backend;
847} 1471}
848 1472
849static void 1473#if EV_MINIMAL < 2
1474unsigned int
1475ev_loop_count (EV_P)
1476{
1477 return loop_count;
1478}
1479
1480unsigned int
1481ev_loop_depth (EV_P)
1482{
1483 return loop_depth;
1484}
1485
1486void
1487ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 io_blocktime = interval;
1490}
1491
1492void
1493ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 timeout_blocktime = interval;
1496}
1497
1498void
1499ev_set_userdata (EV_P_ void *data)
1500{
1501 userdata = data;
1502}
1503
1504void *
1505ev_userdata (EV_P)
1506{
1507 return userdata;
1508}
1509
1510void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511{
1512 invoke_cb = invoke_pending_cb;
1513}
1514
1515void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516{
1517 release_cb = release;
1518 acquire_cb = acquire;
1519}
1520#endif
1521
1522/* initialise a loop structure, must be zero-initialised */
1523static void noinline
850loop_init (EV_P_ unsigned int flags) 1524loop_init (EV_P_ unsigned int flags)
851{ 1525{
852 if (!backend) 1526 if (!backend)
853 { 1527 {
1528#if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536#endif
1537
854#if EV_USE_MONOTONIC 1538#if EV_USE_MONOTONIC
1539 if (!have_monotonic)
855 { 1540 {
856 struct timespec ts; 1541 struct timespec ts;
1542
857 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
858 have_monotonic = 1; 1544 have_monotonic = 1;
859 } 1545 }
860#endif 1546#endif
861 1547
862 ev_rt_now = ev_time (); 1548 /* pid check not overridable via env */
863 mn_now = get_clock (); 1549#ifndef _WIN32
864 now_floor = mn_now; 1550 if (flags & EVFLAG_FORKCHECK)
865 rtmn_diff = ev_rt_now - mn_now; 1551 curpid = getpid ();
1552#endif
866 1553
867 if (!(flags & EVFLAG_NOENV) 1554 if (!(flags & EVFLAG_NOENV)
868 && !enable_secure () 1555 && !enable_secure ()
869 && getenv ("LIBEV_FLAGS")) 1556 && getenv ("LIBEV_FLAGS"))
870 flags = atoi (getenv ("LIBEV_FLAGS")); 1557 flags = atoi (getenv ("LIBEV_FLAGS"));
871 1558
1559 ev_rt_now = ev_time ();
1560 mn_now = get_clock ();
1561 now_floor = mn_now;
1562 rtmn_diff = ev_rt_now - mn_now;
1563#if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565#endif
1566
1567 io_blocktime = 0.;
1568 timeout_blocktime = 0.;
1569 backend = 0;
1570 backend_fd = -1;
1571 sig_pending = 0;
1572#if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574#endif
1575#if EV_USE_INOTIFY
1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1577#endif
1578#if EV_USE_SIGNALFD
1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1580#endif
1581
872 if (!(flags & 0x0000ffffUL)) 1582 if (!(flags & 0x0000ffffU))
873 flags |= ev_recommended_backends (); 1583 flags |= ev_recommended_backends ();
874 1584
875 backend = 0;
876#if EV_USE_PORT 1585#if EV_USE_PORT
877 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1586 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
878#endif 1587#endif
879#if EV_USE_KQUEUE 1588#if EV_USE_KQUEUE
880 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1589 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
887#endif 1596#endif
888#if EV_USE_SELECT 1597#if EV_USE_SELECT
889 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
890#endif 1599#endif
891 1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
892 ev_init (&sigev, sigcb); 1603 ev_init (&pipe_w, pipecb);
893 ev_set_priority (&sigev, EV_MAXPRI); 1604 ev_set_priority (&pipe_w, EV_MAXPRI);
894 } 1605 }
895} 1606}
896 1607
897static void 1608/* free up a loop structure */
1609static void noinline
898loop_destroy (EV_P) 1610loop_destroy (EV_P)
899{ 1611{
900 int i; 1612 int i;
1613
1614 if (ev_is_active (&pipe_w))
1615 {
1616 /*ev_ref (EV_A);*/
1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1618
1619#if EV_USE_EVENTFD
1620 if (evfd >= 0)
1621 close (evfd);
1622#endif
1623
1624 if (evpipe [0] >= 0)
1625 {
1626 close (evpipe [0]);
1627 close (evpipe [1]);
1628 }
1629 }
1630
1631#if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639#endif
1640
1641#if EV_USE_INOTIFY
1642 if (fs_fd >= 0)
1643 close (fs_fd);
1644#endif
1645
1646 if (backend_fd >= 0)
1647 close (backend_fd);
901 1648
902#if EV_USE_PORT 1649#if EV_USE_PORT
903 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1650 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
904#endif 1651#endif
905#if EV_USE_KQUEUE 1652#if EV_USE_KQUEUE
914#if EV_USE_SELECT 1661#if EV_USE_SELECT
915 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1662 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
916#endif 1663#endif
917 1664
918 for (i = NUMPRI; i--; ) 1665 for (i = NUMPRI; i--; )
1666 {
919 array_free (pending, [i]); 1667 array_free (pending, [i]);
1668#if EV_IDLE_ENABLE
1669 array_free (idle, [i]);
1670#endif
1671 }
1672
1673 ev_free (anfds); anfds = 0; anfdmax = 0;
920 1674
921 /* have to use the microsoft-never-gets-it-right macro */ 1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
922 array_free (fdchange, EMPTY0); 1677 array_free (fdchange, EMPTY);
923 array_free (timer, EMPTY0); 1678 array_free (timer, EMPTY);
924#if EV_PERIODIC_ENABLE 1679#if EV_PERIODIC_ENABLE
925 array_free (periodic, EMPTY0); 1680 array_free (periodic, EMPTY);
926#endif 1681#endif
1682#if EV_FORK_ENABLE
927 array_free (idle, EMPTY0); 1683 array_free (fork, EMPTY);
1684#endif
928 array_free (prepare, EMPTY0); 1685 array_free (prepare, EMPTY);
929 array_free (check, EMPTY0); 1686 array_free (check, EMPTY);
1687#if EV_ASYNC_ENABLE
1688 array_free (async, EMPTY);
1689#endif
930 1690
931 backend = 0; 1691 backend = 0;
932} 1692}
933 1693
934static void 1694#if EV_USE_INOTIFY
1695inline_size void infy_fork (EV_P);
1696#endif
1697
1698inline_size void
935loop_fork (EV_P) 1699loop_fork (EV_P)
936{ 1700{
937#if EV_USE_PORT 1701#if EV_USE_PORT
938 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
939#endif 1703#endif
941 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1705 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
942#endif 1706#endif
943#if EV_USE_EPOLL 1707#if EV_USE_EPOLL
944 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1708 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
945#endif 1709#endif
1710#if EV_USE_INOTIFY
1711 infy_fork (EV_A);
1712#endif
946 1713
947 if (ev_is_active (&sigev)) 1714 if (ev_is_active (&pipe_w))
948 { 1715 {
949 /* default loop */ 1716 /* this "locks" the handlers against writing to the pipe */
1717 /* while we modify the fd vars */
1718 sig_pending = 1;
1719#if EV_ASYNC_ENABLE
1720 async_pending = 1;
1721#endif
950 1722
951 ev_ref (EV_A); 1723 ev_ref (EV_A);
952 ev_io_stop (EV_A_ &sigev); 1724 ev_io_stop (EV_A_ &pipe_w);
1725
1726#if EV_USE_EVENTFD
1727 if (evfd >= 0)
1728 close (evfd);
1729#endif
1730
1731 if (evpipe [0] >= 0)
1732 {
953 close (sigpipe [0]); 1733 close (evpipe [0]);
954 close (sigpipe [1]); 1734 close (evpipe [1]);
1735 }
955 1736
956 while (pipe (sigpipe))
957 syserr ("(libev) error creating pipe");
958
959 siginit (EV_A); 1737 evpipe_init (EV_A);
1738 /* now iterate over everything, in case we missed something */
1739 pipecb (EV_A_ &pipe_w, EV_READ);
960 } 1740 }
961 1741
962 postfork = 0; 1742 postfork = 0;
963} 1743}
964 1744
965#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
1746
966struct ev_loop * 1747struct ev_loop *
967ev_loop_new (unsigned int flags) 1748ev_loop_new (unsigned int flags)
968{ 1749{
969 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
970 1751
971 memset (loop, 0, sizeof (struct ev_loop)); 1752 memset (EV_A, 0, sizeof (struct ev_loop));
972
973 loop_init (EV_A_ flags); 1753 loop_init (EV_A_ flags);
974 1754
975 if (ev_backend (EV_A)) 1755 if (ev_backend (EV_A))
976 return loop; 1756 return EV_A;
977 1757
978 return 0; 1758 return 0;
979} 1759}
980 1760
981void 1761void
986} 1766}
987 1767
988void 1768void
989ev_loop_fork (EV_P) 1769ev_loop_fork (EV_P)
990{ 1770{
991 postfork = 1; 1771 postfork = 1; /* must be in line with ev_default_fork */
992} 1772}
1773#endif /* multiplicity */
993 1774
1775#if EV_VERIFY
1776static void noinline
1777verify_watcher (EV_P_ W w)
1778{
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783}
1784
1785static void noinline
1786verify_heap (EV_P_ ANHE *heap, int N)
1787{
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798}
1799
1800static void noinline
1801array_verify (EV_P_ W *ws, int cnt)
1802{
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808}
1809#endif
1810
1811#if EV_MINIMAL < 2
1812void
1813ev_loop_verify (EV_P)
1814{
1815#if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
1828 {
1829 verify_watcher (EV_A_ (W)w);
1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837#if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840#endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845#if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849#endif
1850 }
1851
1852#if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855#endif
1856
1857#if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860#endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868# if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1871# endif
1872#endif
1873}
994#endif 1874#endif
995 1875
996#if EV_MULTIPLICITY 1876#if EV_MULTIPLICITY
997struct ev_loop * 1877struct ev_loop *
998ev_default_loop_init (unsigned int flags) 1878ev_default_loop_init (unsigned int flags)
999#else 1879#else
1000int 1880int
1001ev_default_loop (unsigned int flags) 1881ev_default_loop (unsigned int flags)
1002#endif 1882#endif
1003{ 1883{
1004 if (sigpipe [0] == sigpipe [1])
1005 if (pipe (sigpipe))
1006 return 0;
1007
1008 if (!ev_default_loop_ptr) 1884 if (!ev_default_loop_ptr)
1009 { 1885 {
1010#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
1011 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
1012#else 1888#else
1013 ev_default_loop_ptr = 1; 1889 ev_default_loop_ptr = 1;
1014#endif 1890#endif
1015 1891
1016 loop_init (EV_A_ flags); 1892 loop_init (EV_A_ flags);
1017 1893
1018 if (ev_backend (EV_A)) 1894 if (ev_backend (EV_A))
1019 { 1895 {
1020 siginit (EV_A);
1021
1022#ifndef _WIN32 1896#ifndef _WIN32
1023 ev_signal_init (&childev, childcb, SIGCHLD); 1897 ev_signal_init (&childev, childcb, SIGCHLD);
1024 ev_set_priority (&childev, EV_MAXPRI); 1898 ev_set_priority (&childev, EV_MAXPRI);
1025 ev_signal_start (EV_A_ &childev); 1899 ev_signal_start (EV_A_ &childev);
1026 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1900 ev_unref (EV_A); /* child watcher should not keep loop alive */
1035 1909
1036void 1910void
1037ev_default_destroy (void) 1911ev_default_destroy (void)
1038{ 1912{
1039#if EV_MULTIPLICITY 1913#if EV_MULTIPLICITY
1040 struct ev_loop *loop = ev_default_loop_ptr; 1914 EV_P = ev_default_loop_ptr;
1041#endif 1915#endif
1916
1917 ev_default_loop_ptr = 0;
1042 1918
1043#ifndef _WIN32 1919#ifndef _WIN32
1044 ev_ref (EV_A); /* child watcher */ 1920 ev_ref (EV_A); /* child watcher */
1045 ev_signal_stop (EV_A_ &childev); 1921 ev_signal_stop (EV_A_ &childev);
1046#endif 1922#endif
1047 1923
1048 ev_ref (EV_A); /* signal watcher */
1049 ev_io_stop (EV_A_ &sigev);
1050
1051 close (sigpipe [0]); sigpipe [0] = 0;
1052 close (sigpipe [1]); sigpipe [1] = 0;
1053
1054 loop_destroy (EV_A); 1924 loop_destroy (EV_A);
1055} 1925}
1056 1926
1057void 1927void
1058ev_default_fork (void) 1928ev_default_fork (void)
1059{ 1929{
1060#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
1061 struct ev_loop *loop = ev_default_loop_ptr; 1931 EV_P = ev_default_loop_ptr;
1062#endif 1932#endif
1063 1933
1064 if (backend) 1934 postfork = 1; /* must be in line with ev_loop_fork */
1065 postfork = 1;
1066} 1935}
1067 1936
1068/*****************************************************************************/ 1937/*****************************************************************************/
1069 1938
1070int inline_size 1939void
1071any_pending (EV_P) 1940ev_invoke (EV_P_ void *w, int revents)
1941{
1942 EV_CB_INVOKE ((W)w, revents);
1943}
1944
1945unsigned int
1946ev_pending_count (EV_P)
1072{ 1947{
1073 int pri; 1948 int pri;
1949 unsigned int count = 0;
1074 1950
1075 for (pri = NUMPRI; pri--; ) 1951 for (pri = NUMPRI; pri--; )
1076 if (pendingcnt [pri]) 1952 count += pendingcnt [pri];
1077 return 1;
1078 1953
1079 return 0; 1954 return count;
1080} 1955}
1081 1956
1082void inline_speed 1957void noinline
1083call_pending (EV_P) 1958ev_invoke_pending (EV_P)
1084{ 1959{
1085 int pri; 1960 int pri;
1086 1961
1087 for (pri = NUMPRI; pri--; ) 1962 for (pri = NUMPRI; pri--; )
1088 while (pendingcnt [pri]) 1963 while (pendingcnt [pri])
1089 { 1964 {
1090 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1091 1966
1092 if (expect_true (p->w))
1093 {
1094 assert (("non-pending watcher on pending list", p->w->pending)); 1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1968 /* ^ this is no longer true, as pending_w could be here */
1095 1969
1096 p->w->pending = 0; 1970 p->w->pending = 0;
1097 EV_CB_INVOKE (p->w, p->events); 1971 EV_CB_INVOKE (p->w, p->events);
1098 } 1972 EV_FREQUENT_CHECK;
1099 } 1973 }
1100} 1974}
1101 1975
1102void inline_size 1976#if EV_IDLE_ENABLE
1977/* make idle watchers pending. this handles the "call-idle */
1978/* only when higher priorities are idle" logic */
1979inline_size void
1980idle_reify (EV_P)
1981{
1982 if (expect_false (idleall))
1983 {
1984 int pri;
1985
1986 for (pri = NUMPRI; pri--; )
1987 {
1988 if (pendingcnt [pri])
1989 break;
1990
1991 if (idlecnt [pri])
1992 {
1993 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1994 break;
1995 }
1996 }
1997 }
1998}
1999#endif
2000
2001/* make timers pending */
2002inline_size void
1103timers_reify (EV_P) 2003timers_reify (EV_P)
1104{ 2004{
2005 EV_FREQUENT_CHECK;
2006
1105 while (timercnt && ((WT)timers [0])->at <= mn_now) 2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1106 { 2008 {
1107 ev_timer *w = timers [0]; 2009 do
1108
1109 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1110
1111 /* first reschedule or stop timer */
1112 if (w->repeat)
1113 { 2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
1114 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1115 2023
1116 ((WT)w)->at += w->repeat; 2024 ANHE_at_cache (timers [HEAP0]);
1117 if (((WT)w)->at < mn_now)
1118 ((WT)w)->at = mn_now;
1119
1120 downheap ((WT *)timers, timercnt, 0); 2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
1121 } 2032 }
1122 else 2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1123 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 2034
1125 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
1126 } 2036 }
1127} 2037}
1128 2038
1129#if EV_PERIODIC_ENABLE 2039#if EV_PERIODIC_ENABLE
1130void inline_size 2040/* make periodics pending */
2041inline_size void
1131periodics_reify (EV_P) 2042periodics_reify (EV_P)
1132{ 2043{
2044 EV_FREQUENT_CHECK;
2045
1133 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1134 { 2047 {
1135 ev_periodic *w = periodics [0]; 2048 int feed_count = 0;
1136 2049
1137 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2050 do
1138
1139 /* first reschedule or stop timer */
1140 if (w->reschedule_cb)
1141 { 2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2055
2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
1142 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
1143 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
1144 downheap ((WT *)periodics, periodiccnt, 0); 2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
1145 } 2090 }
1146 else if (w->interval) 2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1147 {
1148 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1149 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1150 downheap ((WT *)periodics, periodiccnt, 0);
1151 }
1152 else
1153 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1154 2092
1155 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2093 feed_reverse_done (EV_A_ EV_PERIODIC);
1156 } 2094 }
1157} 2095}
1158 2096
2097/* simply recalculate all periodics */
2098/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1159static void noinline 2099static void noinline
1160periodics_reschedule (EV_P) 2100periodics_reschedule (EV_P)
1161{ 2101{
1162 int i; 2102 int i;
1163 2103
1164 /* adjust periodics after time jump */ 2104 /* adjust periodics after time jump */
1165 for (i = 0; i < periodiccnt; ++i) 2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1166 { 2106 {
1167 ev_periodic *w = periodics [i]; 2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1168 2108
1169 if (w->reschedule_cb) 2109 if (w->reschedule_cb)
1170 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1171 else if (w->interval) 2111 else if (w->interval)
1172 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118}
2119#endif
2120
2121/* adjust all timers by a given offset */
2122static void noinline
2123timers_reschedule (EV_P_ ev_tstamp adjust)
2124{
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
1173 } 2128 {
1174 2129 ANHE *he = timers + i + HEAP0;
1175 /* now rebuild the heap */ 2130 ANHE_w (*he)->at += adjust;
1176 for (i = periodiccnt >> 1; i--; ) 2131 ANHE_at_cache (*he);
1177 downheap ((WT *)periodics, periodiccnt, i); 2132 }
1178} 2133}
1179#endif
1180 2134
1181int inline_size 2135/* fetch new monotonic and realtime times from the kernel */
1182time_update_monotonic (EV_P) 2136/* also detetc if there was a timejump, and act accordingly */
2137inline_speed void
2138time_update (EV_P_ ev_tstamp max_block)
1183{ 2139{
2140#if EV_USE_MONOTONIC
2141 if (expect_true (have_monotonic))
2142 {
2143 int i;
2144 ev_tstamp odiff = rtmn_diff;
2145
1184 mn_now = get_clock (); 2146 mn_now = get_clock ();
1185 2147
2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2149 /* interpolate in the meantime */
1186 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2150 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1187 { 2151 {
1188 ev_rt_now = rtmn_diff + mn_now; 2152 ev_rt_now = rtmn_diff + mn_now;
1189 return 0; 2153 return;
1190 } 2154 }
1191 else 2155
1192 {
1193 now_floor = mn_now; 2156 now_floor = mn_now;
1194 ev_rt_now = ev_time (); 2157 ev_rt_now = ev_time ();
1195 return 1;
1196 }
1197}
1198 2158
1199void inline_size 2159 /* loop a few times, before making important decisions.
1200time_update (EV_P) 2160 * on the choice of "4": one iteration isn't enough,
1201{ 2161 * in case we get preempted during the calls to
1202 int i; 2162 * ev_time and get_clock. a second call is almost guaranteed
1203 2163 * to succeed in that case, though. and looping a few more times
1204#if EV_USE_MONOTONIC 2164 * doesn't hurt either as we only do this on time-jumps or
1205 if (expect_true (have_monotonic)) 2165 * in the unlikely event of having been preempted here.
1206 { 2166 */
1207 if (time_update_monotonic (EV_A)) 2167 for (i = 4; --i; )
1208 { 2168 {
1209 ev_tstamp odiff = rtmn_diff;
1210
1211 /* loop a few times, before making important decisions.
1212 * on the choice of "4": one iteration isn't enough,
1213 * in case we get preempted during the calls to
1214 * ev_time and get_clock. a second call is almost guarenteed
1215 * to succeed in that case, though. and looping a few more times
1216 * doesn't hurt either as we only do this on time-jumps or
1217 * in the unlikely event of getting preempted here.
1218 */
1219 for (i = 4; --i; )
1220 {
1221 rtmn_diff = ev_rt_now - mn_now; 2169 rtmn_diff = ev_rt_now - mn_now;
1222 2170
1223 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2171 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1224 return; /* all is well */ 2172 return; /* all is well */
1225 2173
1226 ev_rt_now = ev_time (); 2174 ev_rt_now = ev_time ();
1227 mn_now = get_clock (); 2175 mn_now = get_clock ();
1228 now_floor = mn_now; 2176 now_floor = mn_now;
1229 } 2177 }
1230 2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1231# if EV_PERIODIC_ENABLE 2181# if EV_PERIODIC_ENABLE
1232 periodics_reschedule (EV_A); 2182 periodics_reschedule (EV_A);
1233# endif 2183# endif
1234 /* no timer adjustment, as the monotonic clock doesn't jump */
1235 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1236 }
1237 } 2184 }
1238 else 2185 else
1239#endif 2186#endif
1240 { 2187 {
1241 ev_rt_now = ev_time (); 2188 ev_rt_now = ev_time ();
1242 2189
1243 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1244 { 2191 {
2192 /* adjust timers. this is easy, as the offset is the same for all of them */
2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1245#if EV_PERIODIC_ENABLE 2194#if EV_PERIODIC_ENABLE
1246 periodics_reschedule (EV_A); 2195 periodics_reschedule (EV_A);
1247#endif 2196#endif
1248
1249 /* adjust timers. this is easy, as the offset is the same for all */
1250 for (i = 0; i < timercnt; ++i)
1251 ((WT)timers [i])->at += ev_rt_now - mn_now;
1252 } 2197 }
1253 2198
1254 mn_now = ev_rt_now; 2199 mn_now = ev_rt_now;
1255 } 2200 }
1256} 2201}
1257 2202
1258void 2203void
1259ev_ref (EV_P)
1260{
1261 ++activecnt;
1262}
1263
1264void
1265ev_unref (EV_P)
1266{
1267 --activecnt;
1268}
1269
1270static int loop_done;
1271
1272void
1273ev_loop (EV_P_ int flags) 2204ev_loop (EV_P_ int flags)
1274{ 2205{
1275 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2206#if EV_MINIMAL < 2
1276 ? EVUNLOOP_ONE 2207 ++loop_depth;
1277 : EVUNLOOP_CANCEL; 2208#endif
1278 2209
1279 while (activecnt) 2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
2212 loop_done = EVUNLOOP_CANCEL;
2213
2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2215
2216 do
1280 { 2217 {
2218#if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220#endif
2221
2222#ifndef _WIN32
2223 if (expect_false (curpid)) /* penalise the forking check even more */
2224 if (expect_false (getpid () != curpid))
2225 {
2226 curpid = getpid ();
2227 postfork = 1;
2228 }
2229#endif
2230
2231#if EV_FORK_ENABLE
2232 /* we might have forked, so queue fork handlers */
2233 if (expect_false (postfork))
2234 if (forkcnt)
2235 {
2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2237 EV_INVOKE_PENDING;
2238 }
2239#endif
2240
1281 /* queue check watchers (and execute them) */ 2241 /* queue prepare watchers (and execute them) */
1282 if (expect_false (preparecnt)) 2242 if (expect_false (preparecnt))
1283 { 2243 {
1284 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1285 call_pending (EV_A); 2245 EV_INVOKE_PENDING;
1286 } 2246 }
2247
2248 if (expect_false (loop_done))
2249 break;
1287 2250
1288 /* we might have forked, so reify kernel state if necessary */ 2251 /* we might have forked, so reify kernel state if necessary */
1289 if (expect_false (postfork)) 2252 if (expect_false (postfork))
1290 loop_fork (EV_A); 2253 loop_fork (EV_A);
1291 2254
1292 /* update fd-related kernel structures */ 2255 /* update fd-related kernel structures */
1293 fd_reify (EV_A); 2256 fd_reify (EV_A);
1294 2257
1295 /* calculate blocking time */ 2258 /* calculate blocking time */
1296 { 2259 {
1297 double block; 2260 ev_tstamp waittime = 0.;
2261 ev_tstamp sleeptime = 0.;
1298 2262
1299 if (flags & EVLOOP_NONBLOCK || idlecnt) 2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1300 block = 0.; /* do not block at all */
1301 else
1302 { 2264 {
2265 /* remember old timestamp for io_blocktime calculation */
2266 ev_tstamp prev_mn_now = mn_now;
2267
1303 /* update time to cancel out callback processing overhead */ 2268 /* update time to cancel out callback processing overhead */
1304#if EV_USE_MONOTONIC
1305 if (expect_true (have_monotonic))
1306 time_update_monotonic (EV_A); 2269 time_update (EV_A_ 1e100);
1307 else
1308#endif
1309 {
1310 ev_rt_now = ev_time ();
1311 mn_now = ev_rt_now;
1312 }
1313 2270
1314 block = MAX_BLOCKTIME; 2271 waittime = MAX_BLOCKTIME;
1315 2272
1316 if (timercnt) 2273 if (timercnt)
1317 { 2274 {
1318 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1319 if (block > to) block = to; 2276 if (waittime > to) waittime = to;
1320 } 2277 }
1321 2278
1322#if EV_PERIODIC_ENABLE 2279#if EV_PERIODIC_ENABLE
1323 if (periodiccnt) 2280 if (periodiccnt)
1324 { 2281 {
1325 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1326 if (block > to) block = to; 2283 if (waittime > to) waittime = to;
1327 } 2284 }
1328#endif 2285#endif
1329 2286
2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
2288 if (expect_false (waittime < timeout_blocktime))
2289 waittime = timeout_blocktime;
2290
2291 /* extra check because io_blocktime is commonly 0 */
1330 if (expect_false (block < 0.)) block = 0.; 2292 if (expect_false (io_blocktime))
2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
2301 ev_sleep (sleeptime);
2302 waittime -= sleeptime;
2303 }
2304 }
1331 } 2305 }
1332 2306
2307#if EV_MINIMAL < 2
2308 ++loop_count;
2309#endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1333 backend_poll (EV_A_ block); 2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2313
2314 /* update ev_rt_now, do magic */
2315 time_update (EV_A_ waittime + sleeptime);
1334 } 2316 }
1335
1336 /* update ev_rt_now, do magic */
1337 time_update (EV_A);
1338 2317
1339 /* queue pending timers and reschedule them */ 2318 /* queue pending timers and reschedule them */
1340 timers_reify (EV_A); /* relative timers called last */ 2319 timers_reify (EV_A); /* relative timers called last */
1341#if EV_PERIODIC_ENABLE 2320#if EV_PERIODIC_ENABLE
1342 periodics_reify (EV_A); /* absolute timers called first */ 2321 periodics_reify (EV_A); /* absolute timers called first */
1343#endif 2322#endif
1344 2323
2324#if EV_IDLE_ENABLE
1345 /* queue idle watchers unless other events are pending */ 2325 /* queue idle watchers unless other events are pending */
1346 if (idlecnt && !any_pending (EV_A)) 2326 idle_reify (EV_A);
1347 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2327#endif
1348 2328
1349 /* queue check watchers, to be executed first */ 2329 /* queue check watchers, to be executed first */
1350 if (expect_false (checkcnt)) 2330 if (expect_false (checkcnt))
1351 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1352 2332
1353 call_pending (EV_A); 2333 EV_INVOKE_PENDING;
1354
1355 if (expect_false (loop_done))
1356 break;
1357 } 2334 }
2335 while (expect_true (
2336 activecnt
2337 && !loop_done
2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2339 ));
1358 2340
1359 if (loop_done == EVUNLOOP_ONE) 2341 if (loop_done == EVUNLOOP_ONE)
1360 loop_done = EVUNLOOP_CANCEL; 2342 loop_done = EVUNLOOP_CANCEL;
2343
2344#if EV_MINIMAL < 2
2345 --loop_depth;
2346#endif
1361} 2347}
1362 2348
1363void 2349void
1364ev_unloop (EV_P_ int how) 2350ev_unloop (EV_P_ int how)
1365{ 2351{
1366 loop_done = how; 2352 loop_done = how;
1367} 2353}
1368 2354
2355void
2356ev_ref (EV_P)
2357{
2358 ++activecnt;
2359}
2360
2361void
2362ev_unref (EV_P)
2363{
2364 --activecnt;
2365}
2366
2367void
2368ev_now_update (EV_P)
2369{
2370 time_update (EV_A_ 1e100);
2371}
2372
2373void
2374ev_suspend (EV_P)
2375{
2376 ev_now_update (EV_A);
2377}
2378
2379void
2380ev_resume (EV_P)
2381{
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386#if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389#endif
2390}
2391
1369/*****************************************************************************/ 2392/*****************************************************************************/
2393/* singly-linked list management, used when the expected list length is short */
1370 2394
1371void inline_size 2395inline_size void
1372wlist_add (WL *head, WL elem) 2396wlist_add (WL *head, WL elem)
1373{ 2397{
1374 elem->next = *head; 2398 elem->next = *head;
1375 *head = elem; 2399 *head = elem;
1376} 2400}
1377 2401
1378void inline_size 2402inline_size void
1379wlist_del (WL *head, WL elem) 2403wlist_del (WL *head, WL elem)
1380{ 2404{
1381 while (*head) 2405 while (*head)
1382 { 2406 {
1383 if (*head == elem) 2407 if (expect_true (*head == elem))
1384 { 2408 {
1385 *head = elem->next; 2409 *head = elem->next;
1386 return; 2410 break;
1387 } 2411 }
1388 2412
1389 head = &(*head)->next; 2413 head = &(*head)->next;
1390 } 2414 }
1391} 2415}
1392 2416
1393void inline_speed 2417/* internal, faster, version of ev_clear_pending */
2418inline_speed void
1394ev_clear_pending (EV_P_ W w) 2419clear_pending (EV_P_ W w)
1395{ 2420{
1396 if (w->pending) 2421 if (w->pending)
1397 { 2422 {
1398 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1399 w->pending = 0; 2424 w->pending = 0;
1400 } 2425 }
1401} 2426}
1402 2427
1403void inline_speed 2428int
2429ev_clear_pending (EV_P_ void *w)
2430{
2431 W w_ = (W)w;
2432 int pending = w_->pending;
2433
2434 if (expect_true (pending))
2435 {
2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
2438 w_->pending = 0;
2439 return p->events;
2440 }
2441 else
2442 return 0;
2443}
2444
2445inline_size void
2446pri_adjust (EV_P_ W w)
2447{
2448 int pri = ev_priority (w);
2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2451 ev_set_priority (w, pri);
2452}
2453
2454inline_speed void
1404ev_start (EV_P_ W w, int active) 2455ev_start (EV_P_ W w, int active)
1405{ 2456{
1406 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2457 pri_adjust (EV_A_ w);
1407 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1408
1409 w->active = active; 2458 w->active = active;
1410 ev_ref (EV_A); 2459 ev_ref (EV_A);
1411} 2460}
1412 2461
1413void inline_size 2462inline_size void
1414ev_stop (EV_P_ W w) 2463ev_stop (EV_P_ W w)
1415{ 2464{
1416 ev_unref (EV_A); 2465 ev_unref (EV_A);
1417 w->active = 0; 2466 w->active = 0;
1418} 2467}
1419 2468
1420/*****************************************************************************/ 2469/*****************************************************************************/
1421 2470
1422void 2471void noinline
1423ev_io_start (EV_P_ ev_io *w) 2472ev_io_start (EV_P_ ev_io *w)
1424{ 2473{
1425 int fd = w->fd; 2474 int fd = w->fd;
1426 2475
1427 if (expect_false (ev_is_active (w))) 2476 if (expect_false (ev_is_active (w)))
1428 return; 2477 return;
1429 2478
1430 assert (("ev_io_start called with negative fd", fd >= 0)); 2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
1431 2483
1432 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1433 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1434 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2486 wlist_add (&anfds[fd].head, (WL)w);
1435 2487
1436 fd_change (EV_A_ fd); 2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1437} 2489 w->events &= ~EV__IOFDSET;
1438 2490
1439void 2491 EV_FREQUENT_CHECK;
2492}
2493
2494void noinline
1440ev_io_stop (EV_P_ ev_io *w) 2495ev_io_stop (EV_P_ ev_io *w)
1441{ 2496{
1442 ev_clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
1443 if (expect_false (!ev_is_active (w))) 2498 if (expect_false (!ev_is_active (w)))
1444 return; 2499 return;
1445 2500
1446 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1447 2502
2503 EV_FREQUENT_CHECK;
2504
1448 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2505 wlist_del (&anfds[w->fd].head, (WL)w);
1449 ev_stop (EV_A_ (W)w); 2506 ev_stop (EV_A_ (W)w);
1450 2507
1451 fd_change (EV_A_ w->fd); 2508 fd_change (EV_A_ w->fd, 1);
1452}
1453 2509
1454void 2510 EV_FREQUENT_CHECK;
2511}
2512
2513void noinline
1455ev_timer_start (EV_P_ ev_timer *w) 2514ev_timer_start (EV_P_ ev_timer *w)
1456{ 2515{
1457 if (expect_false (ev_is_active (w))) 2516 if (expect_false (ev_is_active (w)))
1458 return; 2517 return;
1459 2518
1460 ((WT)w)->at += mn_now; 2519 ev_at (w) += mn_now;
1461 2520
1462 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1463 2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
1464 ev_start (EV_A_ (W)w, ++timercnt); 2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1465 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1466 timers [timercnt - 1] = w; 2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
1467 upheap ((WT *)timers, timercnt - 1); 2529 ANHE_at_cache (timers [ev_active (w)]);
2530 upheap (timers, ev_active (w));
1468 2531
2532 EV_FREQUENT_CHECK;
2533
1469 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1470} 2535}
1471 2536
1472void 2537void noinline
1473ev_timer_stop (EV_P_ ev_timer *w) 2538ev_timer_stop (EV_P_ ev_timer *w)
1474{ 2539{
1475 ev_clear_pending (EV_A_ (W)w); 2540 clear_pending (EV_A_ (W)w);
1476 if (expect_false (!ev_is_active (w))) 2541 if (expect_false (!ev_is_active (w)))
1477 return; 2542 return;
1478 2543
2544 EV_FREQUENT_CHECK;
2545
2546 {
2547 int active = ev_active (w);
2548
1479 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1480 2550
2551 --timercnt;
2552
1481 if (expect_true (((W)w)->active < timercnt--)) 2553 if (expect_true (active < timercnt + HEAP0))
1482 { 2554 {
1483 timers [((W)w)->active - 1] = timers [timercnt]; 2555 timers [active] = timers [timercnt + HEAP0];
1484 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2556 adjustheap (timers, timercnt, active);
1485 } 2557 }
2558 }
1486 2559
1487 ((WT)w)->at -= mn_now; 2560 EV_FREQUENT_CHECK;
2561
2562 ev_at (w) -= mn_now;
1488 2563
1489 ev_stop (EV_A_ (W)w); 2564 ev_stop (EV_A_ (W)w);
1490} 2565}
1491 2566
1492void 2567void noinline
1493ev_timer_again (EV_P_ ev_timer *w) 2568ev_timer_again (EV_P_ ev_timer *w)
1494{ 2569{
2570 EV_FREQUENT_CHECK;
2571
1495 if (ev_is_active (w)) 2572 if (ev_is_active (w))
1496 { 2573 {
1497 if (w->repeat) 2574 if (w->repeat)
1498 { 2575 {
1499 ((WT)w)->at = mn_now + w->repeat; 2576 ev_at (w) = mn_now + w->repeat;
2577 ANHE_at_cache (timers [ev_active (w)]);
1500 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2578 adjustheap (timers, timercnt, ev_active (w));
1501 } 2579 }
1502 else 2580 else
1503 ev_timer_stop (EV_A_ w); 2581 ev_timer_stop (EV_A_ w);
1504 } 2582 }
1505 else if (w->repeat) 2583 else if (w->repeat)
1506 { 2584 {
1507 w->at = w->repeat; 2585 ev_at (w) = w->repeat;
1508 ev_timer_start (EV_A_ w); 2586 ev_timer_start (EV_A_ w);
1509 } 2587 }
2588
2589 EV_FREQUENT_CHECK;
2590}
2591
2592ev_tstamp
2593ev_timer_remaining (EV_P_ ev_timer *w)
2594{
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1510} 2596}
1511 2597
1512#if EV_PERIODIC_ENABLE 2598#if EV_PERIODIC_ENABLE
1513void 2599void noinline
1514ev_periodic_start (EV_P_ ev_periodic *w) 2600ev_periodic_start (EV_P_ ev_periodic *w)
1515{ 2601{
1516 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1517 return; 2603 return;
1518 2604
1519 if (w->reschedule_cb) 2605 if (w->reschedule_cb)
1520 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1521 else if (w->interval) 2607 else if (w->interval)
1522 { 2608 {
1523 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1524 /* this formula differs from the one in periodic_reify because we do not always round up */ 2610 /* this formula differs from the one in periodic_reify because we do not always round up */
1525 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1526 } 2612 }
2613 else
2614 ev_at (w) = w->offset;
1527 2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
1528 ev_start (EV_A_ (W)w, ++periodiccnt); 2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1529 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1530 periodics [periodiccnt - 1] = w; 2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1531 upheap ((WT *)periodics, periodiccnt - 1); 2622 ANHE_at_cache (periodics [ev_active (w)]);
2623 upheap (periodics, ev_active (w));
1532 2624
2625 EV_FREQUENT_CHECK;
2626
1533 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1534} 2628}
1535 2629
1536void 2630void noinline
1537ev_periodic_stop (EV_P_ ev_periodic *w) 2631ev_periodic_stop (EV_P_ ev_periodic *w)
1538{ 2632{
1539 ev_clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 2634 if (expect_false (!ev_is_active (w)))
1541 return; 2635 return;
1542 2636
2637 EV_FREQUENT_CHECK;
2638
2639 {
2640 int active = ev_active (w);
2641
1543 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1544 2643
2644 --periodiccnt;
2645
1545 if (expect_true (((W)w)->active < periodiccnt--)) 2646 if (expect_true (active < periodiccnt + HEAP0))
1546 { 2647 {
1547 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2648 periodics [active] = periodics [periodiccnt + HEAP0];
1548 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2649 adjustheap (periodics, periodiccnt, active);
1549 } 2650 }
2651 }
2652
2653 EV_FREQUENT_CHECK;
1550 2654
1551 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
1552} 2656}
1553 2657
1554void 2658void noinline
1555ev_periodic_again (EV_P_ ev_periodic *w) 2659ev_periodic_again (EV_P_ ev_periodic *w)
1556{ 2660{
1557 /* TODO: use adjustheap and recalculation */ 2661 /* TODO: use adjustheap and recalculation */
1558 ev_periodic_stop (EV_A_ w); 2662 ev_periodic_stop (EV_A_ w);
1559 ev_periodic_start (EV_A_ w); 2663 ev_periodic_start (EV_A_ w);
1560} 2664}
1561#endif 2665#endif
1562 2666
1563void 2667#ifndef SA_RESTART
2668# define SA_RESTART 0
2669#endif
2670
2671void noinline
1564ev_idle_start (EV_P_ ev_idle *w) 2672ev_signal_start (EV_P_ ev_signal *w)
1565{ 2673{
1566 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
1567 return; 2675 return;
1568 2676
2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2678
2679#if EV_MULTIPLICITY
2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2682
2683 signals [w->signum - 1].loop = EV_A;
2684#endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688#if EV_USE_SIGNALFD
2689 if (sigfd == -2)
2690 {
2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2692 if (sigfd < 0 && errno == EINVAL)
2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2694
2695 if (sigfd >= 0)
2696 {
2697 fd_intern (sigfd); /* doing it twice will not hurt */
2698
2699 sigemptyset (&sigfd_set);
2700
2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716#endif
2717
1569 ev_start (EV_A_ (W)w, ++idlecnt); 2718 ev_start (EV_A_ (W)w, 1);
1570 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
1571 idles [idlecnt - 1] = w;
1572}
1573 2720
1574void 2721 if (!((WL)w)->next)
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
2724# endif
2725 {
2726# if _WIN32
2727 signal (w->signum, ev_sighandler);
2728# else
2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
2733 sa.sa_handler = ev_sighandler;
2734 sigfillset (&sa.sa_mask);
2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2741#endif
2742 }
2743
2744 EV_FREQUENT_CHECK;
2745}
2746
2747void noinline
1575ev_idle_stop (EV_P_ ev_idle *w) 2748ev_signal_stop (EV_P_ ev_signal *w)
1576{ 2749{
1577 ev_clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
1579 return; 2752 return;
1580 2753
1581 { 2754 EV_FREQUENT_CHECK;
1582 int active = ((W)w)->active;
1583 idles [active - 1] = idles [--idlecnt];
1584 ((W)idles [active - 1])->active = active;
1585 }
1586 2755
2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
1587 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
1588}
1589 2758
2759 if (!signals [w->signum - 1].head)
2760 {
2761#if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763#endif
2764#if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
2772 }
2773 else
2774#endif
2775 signal (w->signum, SIG_DFL);
2776 }
2777
2778 EV_FREQUENT_CHECK;
2779}
2780
1590void 2781void
1591ev_prepare_start (EV_P_ ev_prepare *w) 2782ev_child_start (EV_P_ ev_child *w)
1592{ 2783{
2784#if EV_MULTIPLICITY
2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2786#endif
1593 if (expect_false (ev_is_active (w))) 2787 if (expect_false (ev_is_active (w)))
1594 return; 2788 return;
1595 2789
2790 EV_FREQUENT_CHECK;
2791
1596 ev_start (EV_A_ (W)w, ++preparecnt); 2792 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1598 prepares [preparecnt - 1] = w;
1599}
1600 2794
2795 EV_FREQUENT_CHECK;
2796}
2797
1601void 2798void
1602ev_prepare_stop (EV_P_ ev_prepare *w) 2799ev_child_stop (EV_P_ ev_child *w)
1603{ 2800{
1604 ev_clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
1605 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
1606 return; 2803 return;
1607 2804
1608 { 2805 EV_FREQUENT_CHECK;
1609 int active = ((W)w)->active;
1610 prepares [active - 1] = prepares [--preparecnt];
1611 ((W)prepares [active - 1])->active = active;
1612 }
1613 2806
2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1614 ev_stop (EV_A_ (W)w); 2808 ev_stop (EV_A_ (W)w);
1615}
1616 2809
1617void 2810 EV_FREQUENT_CHECK;
1618ev_check_start (EV_P_ ev_check *w) 2811}
2812
2813#if EV_STAT_ENABLE
2814
2815# ifdef _WIN32
2816# undef lstat
2817# define lstat(a,b) _stati64 (a,b)
2818# endif
2819
2820#define DEF_STAT_INTERVAL 5.0074891
2821#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2822#define MIN_STAT_INTERVAL 0.1074891
2823
2824static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2825
2826#if EV_USE_INOTIFY
2827# define EV_INOTIFY_BUFSIZE 8192
2828
2829static void noinline
2830infy_add (EV_P_ ev_stat *w)
1619{ 2831{
1620 if (expect_false (ev_is_active (w))) 2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2833
2834 if (w->wd < 0)
2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2838
2839 /* monitor some parent directory for speedup hints */
2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2841 /* but an efficiency issue only */
2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2843 {
2844 char path [4096];
2845 strcpy (path, w->path);
2846
2847 do
2848 {
2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2851
2852 char *pend = strrchr (path, '/');
2853
2854 if (!pend || pend == path)
2855 break;
2856
2857 *pend = 0;
2858 w->wd = inotify_add_watch (fs_fd, path, mask);
2859 }
2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2861 }
2862 }
2863
2864 if (w->wd >= 0)
2865 {
2866 struct statfs sfs;
2867
2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873
2874 if (fs_2625 && !statfs (w->path, &sfs))
2875 if (sfs.f_type == 0x1373 /* devfs */
2876 || sfs.f_type == 0xEF53 /* ext2/3 */
2877 || sfs.f_type == 0x3153464a /* jfs */
2878 || sfs.f_type == 0x52654973 /* reiser3 */
2879 || sfs.f_type == 0x01021994 /* tempfs */
2880 || sfs.f_type == 0x58465342 /* xfs */)
2881 return;
2882
2883 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2884 ev_timer_again (EV_A_ &w->timer);
2885 }
2886}
2887
2888static void noinline
2889infy_del (EV_P_ ev_stat *w)
2890{
2891 int slot;
2892 int wd = w->wd;
2893
2894 if (wd < 0)
1621 return; 2895 return;
1622 2896
1623 ev_start (EV_A_ (W)w, ++checkcnt); 2897 w->wd = -2;
1624 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2898 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1625 checks [checkcnt - 1] = w; 2899 wlist_del (&fs_hash [slot].head, (WL)w);
1626}
1627 2900
1628void 2901 /* remove this watcher, if others are watching it, they will rearm */
1629ev_check_stop (EV_P_ ev_check *w) 2902 inotify_rm_watch (fs_fd, wd);
2903}
2904
2905static void noinline
2906infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1630{ 2907{
1631 ev_clear_pending (EV_A_ (W)w); 2908 if (slot < 0)
1632 if (expect_false (!ev_is_active (w))) 2909 /* overflow, need to check for all hash slots */
2910 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2911 infy_wd (EV_A_ slot, wd, ev);
2912 else
2913 {
2914 WL w_;
2915
2916 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2917 {
2918 ev_stat *w = (ev_stat *)w_;
2919 w_ = w_->next; /* lets us remove this watcher and all before it */
2920
2921 if (w->wd == wd || wd == -1)
2922 {
2923 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2924 {
2925 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2926 w->wd = -1;
2927 infy_add (EV_A_ w); /* re-add, no matter what */
2928 }
2929
2930 stat_timer_cb (EV_A_ &w->timer, 0);
2931 }
2932 }
2933 }
2934}
2935
2936static void
2937infy_cb (EV_P_ ev_io *w, int revents)
2938{
2939 char buf [EV_INOTIFY_BUFSIZE];
2940 struct inotify_event *ev = (struct inotify_event *)buf;
2941 int ofs;
2942 int len = read (fs_fd, buf, sizeof (buf));
2943
2944 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2945 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2946}
2947
2948inline_size void
2949check_2625 (EV_P)
2950{
2951 /* kernels < 2.6.25 are borked
2952 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2953 */
2954 struct utsname buf;
2955 int major, minor, micro;
2956
2957 if (uname (&buf))
1633 return; 2958 return;
1634 2959
1635 { 2960 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
1636 int active = ((W)w)->active;
1637 checks [active - 1] = checks [--checkcnt];
1638 ((W)checks [active - 1])->active = active;
1639 }
1640
1641 ev_stop (EV_A_ (W)w);
1642}
1643
1644#ifndef SA_RESTART
1645# define SA_RESTART 0
1646#endif
1647
1648void
1649ev_signal_start (EV_P_ ev_signal *w)
1650{
1651#if EV_MULTIPLICITY
1652 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1653#endif
1654 if (expect_false (ev_is_active (w)))
1655 return; 2961 return;
1656 2962
1657 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2963 if (major < 2
2964 || (major == 2 && minor < 6)
2965 || (major == 2 && minor == 6 && micro < 25))
2966 return;
1658 2967
1659 ev_start (EV_A_ (W)w, 1); 2968 fs_2625 = 1;
1660 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2969}
1661 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1662 2970
1663 if (!((WL)w)->next) 2971inline_size void
2972infy_init (EV_P)
2973{
2974 if (fs_fd != -2)
2975 return;
2976
2977 fs_fd = -1;
2978
2979 check_2625 (EV_A);
2980
2981 fs_fd = inotify_init ();
2982
2983 if (fs_fd >= 0)
2984 {
2985 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2986 ev_set_priority (&fs_w, EV_MAXPRI);
2987 ev_io_start (EV_A_ &fs_w);
1664 { 2988 }
2989}
2990
2991inline_size void
2992infy_fork (EV_P)
2993{
2994 int slot;
2995
2996 if (fs_fd < 0)
2997 return;
2998
2999 close (fs_fd);
3000 fs_fd = inotify_init ();
3001
3002 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3003 {
3004 WL w_ = fs_hash [slot].head;
3005 fs_hash [slot].head = 0;
3006
3007 while (w_)
3008 {
3009 ev_stat *w = (ev_stat *)w_;
3010 w_ = w_->next; /* lets us add this watcher */
3011
3012 w->wd = -1;
3013
3014 if (fs_fd >= 0)
3015 infy_add (EV_A_ w); /* re-add, no matter what */
3016 else
3017 ev_timer_again (EV_A_ &w->timer);
3018 }
3019 }
3020}
3021
3022#endif
3023
1665#if _WIN32 3024#ifdef _WIN32
1666 signal (w->signum, sighandler); 3025# define EV_LSTAT(p,b) _stati64 (p, b)
1667#else 3026#else
1668 struct sigaction sa; 3027# define EV_LSTAT(p,b) lstat (p, b)
1669 sa.sa_handler = sighandler;
1670 sigfillset (&sa.sa_mask);
1671 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1672 sigaction (w->signum, &sa, 0);
1673#endif
1674 }
1675}
1676
1677void
1678ev_signal_stop (EV_P_ ev_signal *w)
1679{
1680 ev_clear_pending (EV_A_ (W)w);
1681 if (expect_false (!ev_is_active (w)))
1682 return;
1683
1684 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1685 ev_stop (EV_A_ (W)w);
1686
1687 if (!signals [w->signum - 1].head)
1688 signal (w->signum, SIG_DFL);
1689}
1690
1691void
1692ev_child_start (EV_P_ ev_child *w)
1693{
1694#if EV_MULTIPLICITY
1695 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1696#endif
1697 if (expect_false (ev_is_active (w)))
1698 return;
1699
1700 ev_start (EV_A_ (W)w, 1);
1701 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1702}
1703
1704void
1705ev_child_stop (EV_P_ ev_child *w)
1706{
1707 ev_clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w)))
1709 return;
1710
1711 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1712 ev_stop (EV_A_ (W)w);
1713}
1714
1715#if EV_EMBED_ENABLE
1716void noinline
1717ev_embed_sweep (EV_P_ ev_embed *w)
1718{
1719 ev_loop (w->loop, EVLOOP_NONBLOCK);
1720}
1721
1722static void
1723embed_cb (EV_P_ ev_io *io, int revents)
1724{
1725 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1726
1727 if (ev_cb (w))
1728 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1729 else
1730 ev_embed_sweep (loop, w);
1731}
1732
1733void
1734ev_embed_start (EV_P_ ev_embed *w)
1735{
1736 if (expect_false (ev_is_active (w)))
1737 return;
1738
1739 {
1740 struct ev_loop *loop = w->loop;
1741 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1742 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1743 }
1744
1745 ev_set_priority (&w->io, ev_priority (w));
1746 ev_io_start (EV_A_ &w->io);
1747
1748 ev_start (EV_A_ (W)w, 1);
1749}
1750
1751void
1752ev_embed_stop (EV_P_ ev_embed *w)
1753{
1754 ev_clear_pending (EV_A_ (W)w);
1755 if (expect_false (!ev_is_active (w)))
1756 return;
1757
1758 ev_io_stop (EV_A_ &w->io);
1759
1760 ev_stop (EV_A_ (W)w);
1761}
1762#endif
1763
1764#if EV_STAT_ENABLE
1765
1766# ifdef _WIN32
1767# define lstat(a,b) stat(a,b)
1768# endif 3028#endif
1769 3029
1770void 3030void
1771ev_stat_stat (EV_P_ ev_stat *w) 3031ev_stat_stat (EV_P_ ev_stat *w)
1772{ 3032{
1773 if (lstat (w->path, &w->attr) < 0) 3033 if (lstat (w->path, &w->attr) < 0)
1774 w->attr.st_nlink = 0; 3034 w->attr.st_nlink = 0;
1775 else if (!w->attr.st_nlink) 3035 else if (!w->attr.st_nlink)
1776 w->attr.st_nlink = 1; 3036 w->attr.st_nlink = 1;
1777} 3037}
1778 3038
1779static void 3039static void noinline
1780stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3040stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1781{ 3041{
1782 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3042 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1783 3043
1784 /* we copy this here each the time so that */ 3044 /* we copy this here each the time so that */
1785 /* prev has the old value when the callback gets invoked */ 3045 /* prev has the old value when the callback gets invoked */
1786 w->prev = w->attr; 3046 w->prev = w->attr;
1787 ev_stat_stat (EV_A_ w); 3047 ev_stat_stat (EV_A_ w);
1788 3048
1789 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3049 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3050 if (
3051 w->prev.st_dev != w->attr.st_dev
3052 || w->prev.st_ino != w->attr.st_ino
3053 || w->prev.st_mode != w->attr.st_mode
3054 || w->prev.st_nlink != w->attr.st_nlink
3055 || w->prev.st_uid != w->attr.st_uid
3056 || w->prev.st_gid != w->attr.st_gid
3057 || w->prev.st_rdev != w->attr.st_rdev
3058 || w->prev.st_size != w->attr.st_size
3059 || w->prev.st_atime != w->attr.st_atime
3060 || w->prev.st_mtime != w->attr.st_mtime
3061 || w->prev.st_ctime != w->attr.st_ctime
3062 ) {
3063 #if EV_USE_INOTIFY
3064 if (fs_fd >= 0)
3065 {
3066 infy_del (EV_A_ w);
3067 infy_add (EV_A_ w);
3068 ev_stat_stat (EV_A_ w); /* avoid race... */
3069 }
3070 #endif
3071
1790 ev_feed_event (EV_A_ w, EV_STAT); 3072 ev_feed_event (EV_A_ w, EV_STAT);
3073 }
1791} 3074}
1792 3075
1793void 3076void
1794ev_stat_start (EV_P_ ev_stat *w) 3077ev_stat_start (EV_P_ ev_stat *w)
1795{ 3078{
1796 if (expect_false (ev_is_active (w))) 3079 if (expect_false (ev_is_active (w)))
1797 return; 3080 return;
1798 3081
1799 /* since we use memcmp, we need to clear any padding data etc. */
1800 memset (&w->prev, 0, sizeof (ev_statdata));
1801 memset (&w->attr, 0, sizeof (ev_statdata));
1802
1803 ev_stat_stat (EV_A_ w); 3082 ev_stat_stat (EV_A_ w);
1804 3083
3084 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3085 w->interval = MIN_STAT_INTERVAL;
3086
1805 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3087 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1806 ev_set_priority (&w->timer, ev_priority (w)); 3088 ev_set_priority (&w->timer, ev_priority (w));
3089
3090#if EV_USE_INOTIFY
3091 infy_init (EV_A);
3092
3093 if (fs_fd >= 0)
3094 infy_add (EV_A_ w);
3095 else
3096#endif
1807 ev_timer_start (EV_A_ &w->timer); 3097 ev_timer_again (EV_A_ &w->timer);
1808 3098
1809 ev_start (EV_A_ (W)w, 1); 3099 ev_start (EV_A_ (W)w, 1);
3100
3101 EV_FREQUENT_CHECK;
1810} 3102}
1811 3103
1812void 3104void
1813ev_stat_stop (EV_P_ ev_stat *w) 3105ev_stat_stop (EV_P_ ev_stat *w)
1814{ 3106{
1815 ev_clear_pending (EV_A_ (W)w); 3107 clear_pending (EV_A_ (W)w);
1816 if (expect_false (!ev_is_active (w))) 3108 if (expect_false (!ev_is_active (w)))
1817 return; 3109 return;
1818 3110
3111 EV_FREQUENT_CHECK;
3112
3113#if EV_USE_INOTIFY
3114 infy_del (EV_A_ w);
3115#endif
1819 ev_timer_stop (EV_A_ &w->timer); 3116 ev_timer_stop (EV_A_ &w->timer);
1820 3117
1821 ev_stop (EV_A_ (W)w); 3118 ev_stop (EV_A_ (W)w);
3119
3120 EV_FREQUENT_CHECK;
3121}
3122#endif
3123
3124#if EV_IDLE_ENABLE
3125void
3126ev_idle_start (EV_P_ ev_idle *w)
3127{
3128 if (expect_false (ev_is_active (w)))
3129 return;
3130
3131 pri_adjust (EV_A_ (W)w);
3132
3133 EV_FREQUENT_CHECK;
3134
3135 {
3136 int active = ++idlecnt [ABSPRI (w)];
3137
3138 ++idleall;
3139 ev_start (EV_A_ (W)w, active);
3140
3141 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3142 idles [ABSPRI (w)][active - 1] = w;
3143 }
3144
3145 EV_FREQUENT_CHECK;
3146}
3147
3148void
3149ev_idle_stop (EV_P_ ev_idle *w)
3150{
3151 clear_pending (EV_A_ (W)w);
3152 if (expect_false (!ev_is_active (w)))
3153 return;
3154
3155 EV_FREQUENT_CHECK;
3156
3157 {
3158 int active = ev_active (w);
3159
3160 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3161 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3162
3163 ev_stop (EV_A_ (W)w);
3164 --idleall;
3165 }
3166
3167 EV_FREQUENT_CHECK;
3168}
3169#endif
3170
3171void
3172ev_prepare_start (EV_P_ ev_prepare *w)
3173{
3174 if (expect_false (ev_is_active (w)))
3175 return;
3176
3177 EV_FREQUENT_CHECK;
3178
3179 ev_start (EV_A_ (W)w, ++preparecnt);
3180 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3181 prepares [preparecnt - 1] = w;
3182
3183 EV_FREQUENT_CHECK;
3184}
3185
3186void
3187ev_prepare_stop (EV_P_ ev_prepare *w)
3188{
3189 clear_pending (EV_A_ (W)w);
3190 if (expect_false (!ev_is_active (w)))
3191 return;
3192
3193 EV_FREQUENT_CHECK;
3194
3195 {
3196 int active = ev_active (w);
3197
3198 prepares [active - 1] = prepares [--preparecnt];
3199 ev_active (prepares [active - 1]) = active;
3200 }
3201
3202 ev_stop (EV_A_ (W)w);
3203
3204 EV_FREQUENT_CHECK;
3205}
3206
3207void
3208ev_check_start (EV_P_ ev_check *w)
3209{
3210 if (expect_false (ev_is_active (w)))
3211 return;
3212
3213 EV_FREQUENT_CHECK;
3214
3215 ev_start (EV_A_ (W)w, ++checkcnt);
3216 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3217 checks [checkcnt - 1] = w;
3218
3219 EV_FREQUENT_CHECK;
3220}
3221
3222void
3223ev_check_stop (EV_P_ ev_check *w)
3224{
3225 clear_pending (EV_A_ (W)w);
3226 if (expect_false (!ev_is_active (w)))
3227 return;
3228
3229 EV_FREQUENT_CHECK;
3230
3231 {
3232 int active = ev_active (w);
3233
3234 checks [active - 1] = checks [--checkcnt];
3235 ev_active (checks [active - 1]) = active;
3236 }
3237
3238 ev_stop (EV_A_ (W)w);
3239
3240 EV_FREQUENT_CHECK;
3241}
3242
3243#if EV_EMBED_ENABLE
3244void noinline
3245ev_embed_sweep (EV_P_ ev_embed *w)
3246{
3247 ev_loop (w->other, EVLOOP_NONBLOCK);
3248}
3249
3250static void
3251embed_io_cb (EV_P_ ev_io *io, int revents)
3252{
3253 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3254
3255 if (ev_cb (w))
3256 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3257 else
3258 ev_loop (w->other, EVLOOP_NONBLOCK);
3259}
3260
3261static void
3262embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3263{
3264 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3265
3266 {
3267 EV_P = w->other;
3268
3269 while (fdchangecnt)
3270 {
3271 fd_reify (EV_A);
3272 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3273 }
3274 }
3275}
3276
3277static void
3278embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3279{
3280 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3281
3282 ev_embed_stop (EV_A_ w);
3283
3284 {
3285 EV_P = w->other;
3286
3287 ev_loop_fork (EV_A);
3288 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3289 }
3290
3291 ev_embed_start (EV_A_ w);
3292}
3293
3294#if 0
3295static void
3296embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3297{
3298 ev_idle_stop (EV_A_ idle);
3299}
3300#endif
3301
3302void
3303ev_embed_start (EV_P_ ev_embed *w)
3304{
3305 if (expect_false (ev_is_active (w)))
3306 return;
3307
3308 {
3309 EV_P = w->other;
3310 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3312 }
3313
3314 EV_FREQUENT_CHECK;
3315
3316 ev_set_priority (&w->io, ev_priority (w));
3317 ev_io_start (EV_A_ &w->io);
3318
3319 ev_prepare_init (&w->prepare, embed_prepare_cb);
3320 ev_set_priority (&w->prepare, EV_MINPRI);
3321 ev_prepare_start (EV_A_ &w->prepare);
3322
3323 ev_fork_init (&w->fork, embed_fork_cb);
3324 ev_fork_start (EV_A_ &w->fork);
3325
3326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3327
3328 ev_start (EV_A_ (W)w, 1);
3329
3330 EV_FREQUENT_CHECK;
3331}
3332
3333void
3334ev_embed_stop (EV_P_ ev_embed *w)
3335{
3336 clear_pending (EV_A_ (W)w);
3337 if (expect_false (!ev_is_active (w)))
3338 return;
3339
3340 EV_FREQUENT_CHECK;
3341
3342 ev_io_stop (EV_A_ &w->io);
3343 ev_prepare_stop (EV_A_ &w->prepare);
3344 ev_fork_stop (EV_A_ &w->fork);
3345
3346 EV_FREQUENT_CHECK;
3347}
3348#endif
3349
3350#if EV_FORK_ENABLE
3351void
3352ev_fork_start (EV_P_ ev_fork *w)
3353{
3354 if (expect_false (ev_is_active (w)))
3355 return;
3356
3357 EV_FREQUENT_CHECK;
3358
3359 ev_start (EV_A_ (W)w, ++forkcnt);
3360 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3361 forks [forkcnt - 1] = w;
3362
3363 EV_FREQUENT_CHECK;
3364}
3365
3366void
3367ev_fork_stop (EV_P_ ev_fork *w)
3368{
3369 clear_pending (EV_A_ (W)w);
3370 if (expect_false (!ev_is_active (w)))
3371 return;
3372
3373 EV_FREQUENT_CHECK;
3374
3375 {
3376 int active = ev_active (w);
3377
3378 forks [active - 1] = forks [--forkcnt];
3379 ev_active (forks [active - 1]) = active;
3380 }
3381
3382 ev_stop (EV_A_ (W)w);
3383
3384 EV_FREQUENT_CHECK;
3385}
3386#endif
3387
3388#if EV_ASYNC_ENABLE
3389void
3390ev_async_start (EV_P_ ev_async *w)
3391{
3392 if (expect_false (ev_is_active (w)))
3393 return;
3394
3395 evpipe_init (EV_A);
3396
3397 EV_FREQUENT_CHECK;
3398
3399 ev_start (EV_A_ (W)w, ++asynccnt);
3400 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3401 asyncs [asynccnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
3404}
3405
3406void
3407ev_async_stop (EV_P_ ev_async *w)
3408{
3409 clear_pending (EV_A_ (W)w);
3410 if (expect_false (!ev_is_active (w)))
3411 return;
3412
3413 EV_FREQUENT_CHECK;
3414
3415 {
3416 int active = ev_active (w);
3417
3418 asyncs [active - 1] = asyncs [--asynccnt];
3419 ev_active (asyncs [active - 1]) = active;
3420 }
3421
3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
3425}
3426
3427void
3428ev_async_send (EV_P_ ev_async *w)
3429{
3430 w->sent = 1;
3431 evpipe_write (EV_A_ &async_pending);
1822} 3432}
1823#endif 3433#endif
1824 3434
1825/*****************************************************************************/ 3435/*****************************************************************************/
1826 3436
1836once_cb (EV_P_ struct ev_once *once, int revents) 3446once_cb (EV_P_ struct ev_once *once, int revents)
1837{ 3447{
1838 void (*cb)(int revents, void *arg) = once->cb; 3448 void (*cb)(int revents, void *arg) = once->cb;
1839 void *arg = once->arg; 3449 void *arg = once->arg;
1840 3450
1841 ev_io_stop (EV_A_ &once->io); 3451 ev_io_stop (EV_A_ &once->io);
1842 ev_timer_stop (EV_A_ &once->to); 3452 ev_timer_stop (EV_A_ &once->to);
1843 ev_free (once); 3453 ev_free (once);
1844 3454
1845 cb (revents, arg); 3455 cb (revents, arg);
1846} 3456}
1847 3457
1848static void 3458static void
1849once_cb_io (EV_P_ ev_io *w, int revents) 3459once_cb_io (EV_P_ ev_io *w, int revents)
1850{ 3460{
1851 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3461 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3462
3463 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1852} 3464}
1853 3465
1854static void 3466static void
1855once_cb_to (EV_P_ ev_timer *w, int revents) 3467once_cb_to (EV_P_ ev_timer *w, int revents)
1856{ 3468{
1857 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3469 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3470
3471 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1858} 3472}
1859 3473
1860void 3474void
1861ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3475ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1862{ 3476{
1884 ev_timer_set (&once->to, timeout, 0.); 3498 ev_timer_set (&once->to, timeout, 0.);
1885 ev_timer_start (EV_A_ &once->to); 3499 ev_timer_start (EV_A_ &once->to);
1886 } 3500 }
1887} 3501}
1888 3502
3503/*****************************************************************************/
3504
3505#if EV_WALK_ENABLE
3506void
3507ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3508{
3509 int i, j;
3510 ev_watcher_list *wl, *wn;
3511
3512 if (types & (EV_IO | EV_EMBED))
3513 for (i = 0; i < anfdmax; ++i)
3514 for (wl = anfds [i].head; wl; )
3515 {
3516 wn = wl->next;
3517
3518#if EV_EMBED_ENABLE
3519 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3520 {
3521 if (types & EV_EMBED)
3522 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3523 }
3524 else
3525#endif
3526#if EV_USE_INOTIFY
3527 if (ev_cb ((ev_io *)wl) == infy_cb)
3528 ;
3529 else
3530#endif
3531 if ((ev_io *)wl != &pipe_w)
3532 if (types & EV_IO)
3533 cb (EV_A_ EV_IO, wl);
3534
3535 wl = wn;
3536 }
3537
3538 if (types & (EV_TIMER | EV_STAT))
3539 for (i = timercnt + HEAP0; i-- > HEAP0; )
3540#if EV_STAT_ENABLE
3541 /*TODO: timer is not always active*/
3542 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3543 {
3544 if (types & EV_STAT)
3545 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3546 }
3547 else
3548#endif
3549 if (types & EV_TIMER)
3550 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3551
3552#if EV_PERIODIC_ENABLE
3553 if (types & EV_PERIODIC)
3554 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3555 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3556#endif
3557
3558#if EV_IDLE_ENABLE
3559 if (types & EV_IDLE)
3560 for (j = NUMPRI; i--; )
3561 for (i = idlecnt [j]; i--; )
3562 cb (EV_A_ EV_IDLE, idles [j][i]);
3563#endif
3564
3565#if EV_FORK_ENABLE
3566 if (types & EV_FORK)
3567 for (i = forkcnt; i--; )
3568 if (ev_cb (forks [i]) != embed_fork_cb)
3569 cb (EV_A_ EV_FORK, forks [i]);
3570#endif
3571
3572#if EV_ASYNC_ENABLE
3573 if (types & EV_ASYNC)
3574 for (i = asynccnt; i--; )
3575 cb (EV_A_ EV_ASYNC, asyncs [i]);
3576#endif
3577
3578 if (types & EV_PREPARE)
3579 for (i = preparecnt; i--; )
3580#if EV_EMBED_ENABLE
3581 if (ev_cb (prepares [i]) != embed_prepare_cb)
3582#endif
3583 cb (EV_A_ EV_PREPARE, prepares [i]);
3584
3585 if (types & EV_CHECK)
3586 for (i = checkcnt; i--; )
3587 cb (EV_A_ EV_CHECK, checks [i]);
3588
3589 if (types & EV_SIGNAL)
3590 for (i = 0; i < EV_NSIG - 1; ++i)
3591 for (wl = signals [i].head; wl; )
3592 {
3593 wn = wl->next;
3594 cb (EV_A_ EV_SIGNAL, wl);
3595 wl = wn;
3596 }
3597
3598 if (types & EV_CHILD)
3599 for (i = EV_PID_HASHSIZE; i--; )
3600 for (wl = childs [i]; wl; )
3601 {
3602 wn = wl->next;
3603 cb (EV_A_ EV_CHILD, wl);
3604 wl = wn;
3605 }
3606/* EV_STAT 0x00001000 /* stat data changed */
3607/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3608}
3609#endif
3610
3611#if EV_MULTIPLICITY
3612 #include "ev_wrap.h"
3613#endif
3614
1889#ifdef __cplusplus 3615#ifdef __cplusplus
1890} 3616}
1891#endif 3617#endif
1892 3618

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines