ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.190 by root, Fri Dec 21 01:26:04 2007 UTC vs.
Revision 1.312 by root, Wed Aug 12 18:48:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
207#if !EV_STAT_ENABLE 358#if !EV_STAT_ENABLE
208# undef EV_USE_INOTIFY 359# undef EV_USE_INOTIFY
209# define EV_USE_INOTIFY 0 360# define EV_USE_INOTIFY 0
210#endif 361#endif
211 362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
212#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
213# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
214#endif 378#endif
215 379
216#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
217# include <winsock.h> 381# include <winsock.h>
218#endif 382#endif
219 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
220/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
221 417
222/* 418/*
223 * This is used to avoid floating point rounding problems. 419 * This is used to avoid floating point rounding problems.
224 * It is added to ev_rt_now when scheduling periodics 420 * It is added to ev_rt_now when scheduling periodics
225 * to ensure progress, time-wise, even when rounding 421 * to ensure progress, time-wise, even when rounding
237# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 434# define noinline __attribute__ ((noinline))
239#else 435#else
240# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
241# define noinline 437# define noinline
242# if __STDC_VERSION__ < 199901L 438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 439# define inline
244# endif 440# endif
245#endif 441#endif
246 442
247#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
252# define inline_speed static noinline 448# define inline_speed static noinline
253#else 449#else
254# define inline_speed static inline 450# define inline_speed static inline
255#endif 451#endif
256 452
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
259 460
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
262 463
263typedef ev_watcher *W; 464typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
266 467
468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
268 480
269#ifdef _WIN32 481#ifdef _WIN32
270# include "ev_win32.c" 482# include "ev_win32.c"
271#endif 483#endif
272 484
279{ 491{
280 syserr_cb = cb; 492 syserr_cb = cb;
281} 493}
282 494
283static void noinline 495static void noinline
284syserr (const char *msg) 496ev_syserr (const char *msg)
285{ 497{
286 if (!msg) 498 if (!msg)
287 msg = "(libev) system error"; 499 msg = "(libev) system error";
288 500
289 if (syserr_cb) 501 if (syserr_cb)
293 perror (msg); 505 perror (msg);
294 abort (); 506 abort ();
295 } 507 }
296} 508}
297 509
510static void *
511ev_realloc_emul (void *ptr, long size)
512{
513 /* some systems, notably openbsd and darwin, fail to properly
514 * implement realloc (x, 0) (as required by both ansi c-98 and
515 * the single unix specification, so work around them here.
516 */
517
518 if (size)
519 return realloc (ptr, size);
520
521 free (ptr);
522 return 0;
523}
524
298static void *(*alloc)(void *ptr, long size); 525static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 526
300void 527void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 528ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 529{
303 alloc = cb; 530 alloc = cb;
304} 531}
305 532
306inline_speed void * 533inline_speed void *
307ev_realloc (void *ptr, long size) 534ev_realloc (void *ptr, long size)
308{ 535{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 536 ptr = alloc (ptr, size);
310 537
311 if (!ptr && size) 538 if (!ptr && size)
312 { 539 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 540 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 541 abort ();
320#define ev_malloc(size) ev_realloc (0, (size)) 547#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 548#define ev_free(ptr) ev_realloc ((ptr), 0)
322 549
323/*****************************************************************************/ 550/*****************************************************************************/
324 551
552/* set in reify when reification needed */
553#define EV_ANFD_REIFY 1
554
555/* file descriptor info structure */
325typedef struct 556typedef struct
326{ 557{
327 WL head; 558 WL head;
328 unsigned char events; 559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 562 unsigned char unused;
563#if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565#endif
330#if EV_SELECT_IS_WINSOCKET 566#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 567 SOCKET handle;
332#endif 568#endif
333} ANFD; 569} ANFD;
334 570
571/* stores the pending event set for a given watcher */
335typedef struct 572typedef struct
336{ 573{
337 W w; 574 W w;
338 int events; 575 int events; /* the pending event set for the given watcher */
339} ANPENDING; 576} ANPENDING;
340 577
341#if EV_USE_INOTIFY 578#if EV_USE_INOTIFY
579/* hash table entry per inotify-id */
342typedef struct 580typedef struct
343{ 581{
344 WL head; 582 WL head;
345} ANFS; 583} ANFS;
584#endif
585
586/* Heap Entry */
587#if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597#else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
346#endif 604#endif
347 605
348#if EV_MULTIPLICITY 606#if EV_MULTIPLICITY
349 607
350 struct ev_loop 608 struct ev_loop
369 627
370 static int ev_default_loop_ptr; 628 static int ev_default_loop_ptr;
371 629
372#endif 630#endif
373 631
632#if EV_MINIMAL < 2
633# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635# define EV_INVOKE_PENDING invoke_cb (EV_A)
636#else
637# define EV_RELEASE_CB (void)0
638# define EV_ACQUIRE_CB (void)0
639# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640#endif
641
642#define EVUNLOOP_RECURSE 0x80
643
374/*****************************************************************************/ 644/*****************************************************************************/
375 645
646#ifndef EV_HAVE_EV_TIME
376ev_tstamp 647ev_tstamp
377ev_time (void) 648ev_time (void)
378{ 649{
379#if EV_USE_REALTIME 650#if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
380 struct timespec ts; 653 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 654 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 655 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 656 }
657#endif
658
384 struct timeval tv; 659 struct timeval tv;
385 gettimeofday (&tv, 0); 660 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 661 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 662}
663#endif
389 664
390ev_tstamp inline_size 665inline_size ev_tstamp
391get_clock (void) 666get_clock (void)
392{ 667{
393#if EV_USE_MONOTONIC 668#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 669 if (expect_true (have_monotonic))
395 { 670 {
408{ 683{
409 return ev_rt_now; 684 return ev_rt_now;
410} 685}
411#endif 686#endif
412 687
413int inline_size 688void
689ev_sleep (ev_tstamp delay)
690{
691 if (delay > 0.)
692 {
693#if EV_USE_NANOSLEEP
694 struct timespec ts;
695
696 ts.tv_sec = (time_t)delay;
697 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
698
699 nanosleep (&ts, 0);
700#elif defined(_WIN32)
701 Sleep ((unsigned long)(delay * 1e3));
702#else
703 struct timeval tv;
704
705 tv.tv_sec = (time_t)delay;
706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
711 select (0, 0, 0, 0, &tv);
712#endif
713 }
714}
715
716/*****************************************************************************/
717
718#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
719
720/* find a suitable new size for the given array, */
721/* hopefully by rounding to a ncie-to-malloc size */
722inline_size int
414array_nextsize (int elem, int cur, int cnt) 723array_nextsize (int elem, int cur, int cnt)
415{ 724{
416 int ncur = cur + 1; 725 int ncur = cur + 1;
417 726
418 do 727 do
419 ncur <<= 1; 728 ncur <<= 1;
420 while (cnt > ncur); 729 while (cnt > ncur);
421 730
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 731 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 732 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 733 {
425 ncur *= elem; 734 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 735 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 736 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 737 ncur /= elem;
429 } 738 }
430 739
431 return ncur; 740 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 744array_realloc (int elem, void *base, int *cur, int cnt)
436{ 745{
437 *cur = array_nextsize (elem, *cur, cnt); 746 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 747 return ev_realloc (base, elem * *cur);
439} 748}
749
750#define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 752
441#define array_needsize(type,base,cur,cnt,init) \ 753#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 754 if (expect_false ((cnt) > (cur))) \
443 { \ 755 { \
444 int ocur_ = (cur); \ 756 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 769 }
458#endif 770#endif
459 771
460#define array_free(stem, idx) \ 772#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 774
463/*****************************************************************************/ 775/*****************************************************************************/
776
777/* dummy callback for pending events */
778static void noinline
779pendingcb (EV_P_ ev_prepare *w, int revents)
780{
781}
464 782
465void noinline 783void noinline
466ev_feed_event (EV_P_ void *w, int revents) 784ev_feed_event (EV_P_ void *w, int revents)
467{ 785{
468 W w_ = (W)w; 786 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 795 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 796 pendings [pri][w_->pending - 1].events = revents;
479 } 797 }
480} 798}
481 799
482void inline_speed 800inline_speed void
801feed_reverse (EV_P_ W w)
802{
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805}
806
807inline_size void
808feed_reverse_done (EV_P_ int revents)
809{
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813}
814
815inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 816queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 817{
485 int i; 818 int i;
486 819
487 for (i = 0; i < eventcnt; ++i) 820 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 821 ev_feed_event (EV_A_ events [i], type);
489} 822}
490 823
491/*****************************************************************************/ 824/*****************************************************************************/
492 825
493void inline_size 826inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 827fd_event_nc (EV_P_ int fd, int revents)
508{ 828{
509 ANFD *anfd = anfds + fd; 829 ANFD *anfd = anfds + fd;
510 ev_io *w; 830 ev_io *w;
511 831
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 836 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 837 ev_feed_event (EV_A_ (W)w, ev);
518 } 838 }
519} 839}
520 840
841/* do not submit kernel events for fds that have reify set */
842/* because that means they changed while we were polling for new events */
843inline_speed void
844fd_event (EV_P_ int fd, int revents)
845{
846 ANFD *anfd = anfds + fd;
847
848 if (expect_true (!anfd->reify))
849 fd_event_nc (EV_A_ fd, revents);
850}
851
521void 852void
522ev_feed_fd_event (EV_P_ int fd, int revents) 853ev_feed_fd_event (EV_P_ int fd, int revents)
523{ 854{
524 if (fd >= 0 && fd < anfdmax) 855 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 856 fd_event_nc (EV_A_ fd, revents);
526} 857}
527 858
528void inline_size 859/* make sure the external fd watch events are in-sync */
860/* with the kernel/libev internal state */
861inline_size void
529fd_reify (EV_P) 862fd_reify (EV_P)
530{ 863{
531 int i; 864 int i;
532 865
533 for (i = 0; i < fdchangecnt; ++i) 866 for (i = 0; i < fdchangecnt; ++i)
542 events |= (unsigned char)w->events; 875 events |= (unsigned char)w->events;
543 876
544#if EV_SELECT_IS_WINSOCKET 877#if EV_SELECT_IS_WINSOCKET
545 if (events) 878 if (events)
546 { 879 {
547 unsigned long argp; 880 unsigned long arg;
881 #ifdef EV_FD_TO_WIN32_HANDLE
882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
883 #else
548 anfd->handle = _get_osfhandle (fd); 884 anfd->handle = _get_osfhandle (fd);
885 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 887 }
551#endif 888#endif
552 889
553 { 890 {
554 unsigned char o_events = anfd->events; 891 unsigned char o_events = anfd->events;
555 unsigned char o_reify = anfd->reify; 892 unsigned char o_reify = anfd->reify;
556 893
557 anfd->reify = 0; 894 anfd->reify = 0;
558 anfd->events = events; 895 anfd->events = events;
559 896
560 if (o_events != events || o_reify & EV_IOFDSET) 897 if (o_events != events || o_reify & EV__IOFDSET)
561 backend_modify (EV_A_ fd, o_events, events); 898 backend_modify (EV_A_ fd, o_events, events);
562 } 899 }
563 } 900 }
564 901
565 fdchangecnt = 0; 902 fdchangecnt = 0;
566} 903}
567 904
568void inline_size 905/* something about the given fd changed */
906inline_size void
569fd_change (EV_P_ int fd, int flags) 907fd_change (EV_P_ int fd, int flags)
570{ 908{
571 unsigned char reify = anfds [fd].reify; 909 unsigned char reify = anfds [fd].reify;
572 anfds [fd].reify |= flags; 910 anfds [fd].reify |= flags;
573 911
577 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
578 fdchanges [fdchangecnt - 1] = fd; 916 fdchanges [fdchangecnt - 1] = fd;
579 } 917 }
580} 918}
581 919
582void inline_speed 920/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921inline_speed void
583fd_kill (EV_P_ int fd) 922fd_kill (EV_P_ int fd)
584{ 923{
585 ev_io *w; 924 ev_io *w;
586 925
587 while ((w = (ev_io *)anfds [fd].head)) 926 while ((w = (ev_io *)anfds [fd].head))
589 ev_io_stop (EV_A_ w); 928 ev_io_stop (EV_A_ w);
590 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
591 } 930 }
592} 931}
593 932
594int inline_size 933/* check whether the given fd is atcually valid, for error recovery */
934inline_size int
595fd_valid (int fd) 935fd_valid (int fd)
596{ 936{
597#ifdef _WIN32 937#ifdef _WIN32
598 return _get_osfhandle (fd) != -1; 938 return _get_osfhandle (fd) != -1;
599#else 939#else
607{ 947{
608 int fd; 948 int fd;
609 949
610 for (fd = 0; fd < anfdmax; ++fd) 950 for (fd = 0; fd < anfdmax; ++fd)
611 if (anfds [fd].events) 951 if (anfds [fd].events)
612 if (!fd_valid (fd) == -1 && errno == EBADF) 952 if (!fd_valid (fd) && errno == EBADF)
613 fd_kill (EV_A_ fd); 953 fd_kill (EV_A_ fd);
614} 954}
615 955
616/* called on ENOMEM in select/poll to kill some fds and retry */ 956/* called on ENOMEM in select/poll to kill some fds and retry */
617static void noinline 957static void noinline
621 961
622 for (fd = anfdmax; fd--; ) 962 for (fd = anfdmax; fd--; )
623 if (anfds [fd].events) 963 if (anfds [fd].events)
624 { 964 {
625 fd_kill (EV_A_ fd); 965 fd_kill (EV_A_ fd);
626 return; 966 break;
627 } 967 }
628} 968}
629 969
630/* usually called after fork if backend needs to re-arm all fds from scratch */ 970/* usually called after fork if backend needs to re-arm all fds from scratch */
631static void noinline 971static void noinline
635 975
636 for (fd = 0; fd < anfdmax; ++fd) 976 for (fd = 0; fd < anfdmax; ++fd)
637 if (anfds [fd].events) 977 if (anfds [fd].events)
638 { 978 {
639 anfds [fd].events = 0; 979 anfds [fd].events = 0;
980 anfds [fd].emask = 0;
640 fd_change (EV_A_ fd, EV_IOFDSET | 1); 981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
641 } 982 }
642} 983}
643 984
644/*****************************************************************************/ 985/*****************************************************************************/
645 986
646void inline_speed 987/*
647upheap (WT *heap, int k) 988 * the heap functions want a real array index. array index 0 uis guaranteed to not
648{ 989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
649 WT w = heap [k]; 990 * the branching factor of the d-tree.
991 */
650 992
651 while (k) 993/*
652 { 994 * at the moment we allow libev the luxury of two heaps,
653 int p = (k - 1) >> 1; 995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
996 * which is more cache-efficient.
997 * the difference is about 5% with 50000+ watchers.
998 */
999#if EV_USE_4HEAP
654 1000
655 if (heap [p]->at <= w->at) 1001#define DHEAP 4
1002#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004#define UPHEAP_DONE(p,k) ((p) == (k))
1005
1006/* away from the root */
1007inline_speed void
1008downheap (ANHE *heap, int N, int k)
1009{
1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
1012
1013 for (;;)
1014 {
1015 ev_tstamp minat;
1016 ANHE *minpos;
1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1018
1019 /* find minimum child */
1020 if (expect_true (pos + DHEAP - 1 < E))
1021 {
1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1033 }
1034 else
656 break; 1035 break;
657 1036
1037 if (ANHE_at (he) <= minat)
1038 break;
1039
1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
1042
1043 k = minpos - heap;
1044 }
1045
1046 heap [k] = he;
1047 ev_active (ANHE_w (he)) = k;
1048}
1049
1050#else /* 4HEAP */
1051
1052#define HEAP0 1
1053#define HPARENT(k) ((k) >> 1)
1054#define UPHEAP_DONE(p,k) (!(p))
1055
1056/* away from the root */
1057inline_speed void
1058downheap (ANHE *heap, int N, int k)
1059{
1060 ANHE he = heap [k];
1061
1062 for (;;)
1063 {
1064 int c = k << 1;
1065
1066 if (c >= N + HEAP0)
1067 break;
1068
1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1070 ? 1 : 0;
1071
1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
1073 break;
1074
1075 heap [k] = heap [c];
1076 ev_active (ANHE_w (heap [k])) = k;
1077
1078 k = c;
1079 }
1080
1081 heap [k] = he;
1082 ev_active (ANHE_w (he)) = k;
1083}
1084#endif
1085
1086/* towards the root */
1087inline_speed void
1088upheap (ANHE *heap, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
658 heap [k] = heap [p]; 1099 heap [k] = heap [p];
659 ((W)heap [k])->active = k + 1; 1100 ev_active (ANHE_w (heap [k])) = k;
660 k = p; 1101 k = p;
661 } 1102 }
662 1103
663 heap [k] = w; 1104 heap [k] = he;
664 ((W)heap [k])->active = k + 1; 1105 ev_active (ANHE_w (he)) = k;
665} 1106}
666 1107
667void inline_speed 1108/* move an element suitably so it is in a correct place */
668downheap (WT *heap, int N, int k) 1109inline_size void
669{
670 WT w = heap [k];
671
672 for (;;)
673 {
674 int c = (k << 1) + 1;
675
676 if (c >= N)
677 break;
678
679 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
680 ? 1 : 0;
681
682 if (w->at <= heap [c]->at)
683 break;
684
685 heap [k] = heap [c];
686 ((W)heap [k])->active = k + 1;
687
688 k = c;
689 }
690
691 heap [k] = w;
692 ((W)heap [k])->active = k + 1;
693}
694
695void inline_size
696adjustheap (WT *heap, int N, int k) 1110adjustheap (ANHE *heap, int N, int k)
697{ 1111{
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
698 upheap (heap, k); 1113 upheap (heap, k);
1114 else
699 downheap (heap, N, k); 1115 downheap (heap, N, k);
1116}
1117
1118/* rebuild the heap: this function is used only once and executed rarely */
1119inline_size void
1120reheap (ANHE *heap, int N)
1121{
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
700} 1128}
701 1129
702/*****************************************************************************/ 1130/*****************************************************************************/
703 1131
1132/* associate signal watchers to a signal signal */
704typedef struct 1133typedef struct
705{ 1134{
1135 EV_ATOMIC_T pending;
1136#if EV_MULTIPLICITY
1137 EV_P;
1138#endif
706 WL head; 1139 WL head;
707 sig_atomic_t volatile gotsig;
708} ANSIG; 1140} ANSIG;
709 1141
710static ANSIG *signals; 1142static ANSIG signals [EV_NSIG - 1];
711static int signalmax;
712 1143
713static int sigpipe [2]; 1144/*****************************************************************************/
714static sig_atomic_t volatile gotsig;
715static ev_io sigev;
716 1145
717void inline_size 1146/* used to prepare libev internal fd's */
718signals_init (ANSIG *base, int count) 1147/* this is not fork-safe */
719{ 1148inline_speed void
720 while (count--)
721 {
722 base->head = 0;
723 base->gotsig = 0;
724
725 ++base;
726 }
727}
728
729static void
730sighandler (int signum)
731{
732#if _WIN32
733 signal (signum, sighandler);
734#endif
735
736 signals [signum - 1].gotsig = 1;
737
738 if (!gotsig)
739 {
740 int old_errno = errno;
741 gotsig = 1;
742 write (sigpipe [1], &signum, 1);
743 errno = old_errno;
744 }
745}
746
747void noinline
748ev_feed_signal_event (EV_P_ int signum)
749{
750 WL w;
751
752#if EV_MULTIPLICITY
753 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
754#endif
755
756 --signum;
757
758 if (signum < 0 || signum >= signalmax)
759 return;
760
761 signals [signum].gotsig = 0;
762
763 for (w = signals [signum].head; w; w = w->next)
764 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
765}
766
767static void
768sigcb (EV_P_ ev_io *iow, int revents)
769{
770 int signum;
771
772 read (sigpipe [0], &revents, 1);
773 gotsig = 0;
774
775 for (signum = signalmax; signum--; )
776 if (signals [signum].gotsig)
777 ev_feed_signal_event (EV_A_ signum + 1);
778}
779
780void inline_speed
781fd_intern (int fd) 1149fd_intern (int fd)
782{ 1150{
783#ifdef _WIN32 1151#ifdef _WIN32
784 int arg = 1; 1152 unsigned long arg = 1;
785 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
786#else 1154#else
787 fcntl (fd, F_SETFD, FD_CLOEXEC); 1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
788 fcntl (fd, F_SETFL, O_NONBLOCK); 1156 fcntl (fd, F_SETFL, O_NONBLOCK);
789#endif 1157#endif
790} 1158}
791 1159
792static void noinline 1160static void noinline
793siginit (EV_P) 1161evpipe_init (EV_P)
794{ 1162{
1163 if (!ev_is_active (&pipe_w))
1164 {
1165#if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
1171 {
1172 evpipe [0] = -1;
1173 fd_intern (evfd); /* doing it twice doesn't hurt */
1174 ev_io_set (&pipe_w, evfd, EV_READ);
1175 }
1176 else
1177#endif
1178 {
1179 while (pipe (evpipe))
1180 ev_syserr ("(libev) error creating signal/async pipe");
1181
795 fd_intern (sigpipe [0]); 1182 fd_intern (evpipe [0]);
796 fd_intern (sigpipe [1]); 1183 fd_intern (evpipe [1]);
1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1185 }
797 1186
798 ev_io_set (&sigev, sigpipe [0], EV_READ);
799 ev_io_start (EV_A_ &sigev); 1187 ev_io_start (EV_A_ &pipe_w);
800 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1188 ev_unref (EV_A); /* watcher should not keep loop alive */
1189 }
1190}
1191
1192inline_size void
1193evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1194{
1195 if (!*flag)
1196 {
1197 int old_errno = errno; /* save errno because write might clobber it */
1198
1199 *flag = 1;
1200
1201#if EV_USE_EVENTFD
1202 if (evfd >= 0)
1203 {
1204 uint64_t counter = 1;
1205 write (evfd, &counter, sizeof (uint64_t));
1206 }
1207 else
1208#endif
1209 write (evpipe [1], &old_errno, 1);
1210
1211 errno = old_errno;
1212 }
1213}
1214
1215/* called whenever the libev signal pipe */
1216/* got some events (signal, async) */
1217static void
1218pipecb (EV_P_ ev_io *iow, int revents)
1219{
1220 int i;
1221
1222#if EV_USE_EVENTFD
1223 if (evfd >= 0)
1224 {
1225 uint64_t counter;
1226 read (evfd, &counter, sizeof (uint64_t));
1227 }
1228 else
1229#endif
1230 {
1231 char dummy;
1232 read (evpipe [0], &dummy, 1);
1233 }
1234
1235 if (sig_pending)
1236 {
1237 sig_pending = 0;
1238
1239 for (i = EV_NSIG - 1; i--; )
1240 if (expect_false (signals [i].pending))
1241 ev_feed_signal_event (EV_A_ i + 1);
1242 }
1243
1244#if EV_ASYNC_ENABLE
1245 if (async_pending)
1246 {
1247 async_pending = 0;
1248
1249 for (i = asynccnt; i--; )
1250 if (asyncs [i]->sent)
1251 {
1252 asyncs [i]->sent = 0;
1253 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1254 }
1255 }
1256#endif
801} 1257}
802 1258
803/*****************************************************************************/ 1259/*****************************************************************************/
804 1260
1261static void
1262ev_sighandler (int signum)
1263{
1264#if EV_MULTIPLICITY
1265 EV_P = signals [signum - 1].loop;
1266#endif
1267
1268#if _WIN32
1269 signal (signum, ev_sighandler);
1270#endif
1271
1272 signals [signum - 1].pending = 1;
1273 evpipe_write (EV_A_ &sig_pending);
1274}
1275
1276void noinline
1277ev_feed_signal_event (EV_P_ int signum)
1278{
1279 WL w;
1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
1286#if EV_MULTIPLICITY
1287 /* it is permissible to try to feed a signal to the wrong loop */
1288 /* or, likely more useful, feeding a signal nobody is waiting for */
1289
1290 if (expect_false (signals [signum].loop != EV_A))
1291 return;
1292#endif
1293
1294 signals [signum].pending = 0;
1295
1296 for (w = signals [signum].head; w; w = w->next)
1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1298}
1299
1300#if EV_USE_SIGNALFD
1301static void
1302sigfdcb (EV_P_ ev_io *iow, int revents)
1303{
1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1305
1306 for (;;)
1307 {
1308 ssize_t res = read (sigfd, si, sizeof (si));
1309
1310 /* not ISO-C, as res might be -1, but works with SuS */
1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1313
1314 if (res < (ssize_t)sizeof (si))
1315 break;
1316 }
1317}
1318#endif
1319
1320/*****************************************************************************/
1321
805static WL childs [EV_PID_HASHSIZE]; 1322static WL childs [EV_PID_HASHSIZE];
806 1323
807#ifndef _WIN32 1324#ifndef _WIN32
808 1325
809static ev_signal childev; 1326static ev_signal childev;
810 1327
811void inline_speed 1328#ifndef WIFCONTINUED
1329# define WIFCONTINUED(status) 0
1330#endif
1331
1332/* handle a single child status event */
1333inline_speed void
812child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1334child_reap (EV_P_ int chain, int pid, int status)
813{ 1335{
814 ev_child *w; 1336 ev_child *w;
1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
815 1338
816 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1339 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1340 {
817 if (w->pid == pid || !w->pid) 1341 if ((w->pid == pid || !w->pid)
1342 && (!traced || (w->flags & 1)))
818 { 1343 {
819 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1344 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
820 w->rpid = pid; 1345 w->rpid = pid;
821 w->rstatus = status; 1346 w->rstatus = status;
822 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1347 ev_feed_event (EV_A_ (W)w, EV_CHILD);
823 } 1348 }
1349 }
824} 1350}
825 1351
826#ifndef WCONTINUED 1352#ifndef WCONTINUED
827# define WCONTINUED 0 1353# define WCONTINUED 0
828#endif 1354#endif
829 1355
1356/* called on sigchld etc., calls waitpid */
830static void 1357static void
831childcb (EV_P_ ev_signal *sw, int revents) 1358childcb (EV_P_ ev_signal *sw, int revents)
832{ 1359{
833 int pid, status; 1360 int pid, status;
834 1361
837 if (!WCONTINUED 1364 if (!WCONTINUED
838 || errno != EINVAL 1365 || errno != EINVAL
839 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1366 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
840 return; 1367 return;
841 1368
842 /* make sure we are called again until all childs have been reaped */ 1369 /* make sure we are called again until all children have been reaped */
843 /* we need to do it this way so that the callback gets called before we continue */ 1370 /* we need to do it this way so that the callback gets called before we continue */
844 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1371 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
845 1372
846 child_reap (EV_A_ sw, pid, pid, status); 1373 child_reap (EV_A_ pid, pid, status);
847 if (EV_PID_HASHSIZE > 1) 1374 if (EV_PID_HASHSIZE > 1)
848 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1375 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
849} 1376}
850 1377
851#endif 1378#endif
852 1379
853/*****************************************************************************/ 1380/*****************************************************************************/
915 /* kqueue is borked on everything but netbsd apparently */ 1442 /* kqueue is borked on everything but netbsd apparently */
916 /* it usually doesn't work correctly on anything but sockets and pipes */ 1443 /* it usually doesn't work correctly on anything but sockets and pipes */
917 flags &= ~EVBACKEND_KQUEUE; 1444 flags &= ~EVBACKEND_KQUEUE;
918#endif 1445#endif
919#ifdef __APPLE__ 1446#ifdef __APPLE__
920 // flags &= ~EVBACKEND_KQUEUE; for documentation 1447 /* only select works correctly on that "unix-certified" platform */
921 flags &= ~EVBACKEND_POLL; 1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
922#endif 1450#endif
923 1451
924 return flags; 1452 return flags;
925} 1453}
926 1454
927unsigned int 1455unsigned int
928ev_embeddable_backends (void) 1456ev_embeddable_backends (void)
929{ 1457{
930 return EVBACKEND_EPOLL 1458 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
931 | EVBACKEND_KQUEUE 1459
932 | EVBACKEND_PORT; 1460 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1461 /* please fix it and tell me how to detect the fix */
1462 flags &= ~EVBACKEND_EPOLL;
1463
1464 return flags;
933} 1465}
934 1466
935unsigned int 1467unsigned int
936ev_backend (EV_P) 1468ev_backend (EV_P)
937{ 1469{
938 return backend; 1470 return backend;
939} 1471}
940 1472
1473#if EV_MINIMAL < 2
941unsigned int 1474unsigned int
942ev_loop_count (EV_P) 1475ev_loop_count (EV_P)
943{ 1476{
944 return loop_count; 1477 return loop_count;
945} 1478}
946 1479
1480unsigned int
1481ev_loop_depth (EV_P)
1482{
1483 return loop_depth;
1484}
1485
1486void
1487ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 io_blocktime = interval;
1490}
1491
1492void
1493ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 timeout_blocktime = interval;
1496}
1497
1498void
1499ev_set_userdata (EV_P_ void *data)
1500{
1501 userdata = data;
1502}
1503
1504void *
1505ev_userdata (EV_P)
1506{
1507 return userdata;
1508}
1509
1510void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511{
1512 invoke_cb = invoke_pending_cb;
1513}
1514
1515void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516{
1517 release_cb = release;
1518 acquire_cb = acquire;
1519}
1520#endif
1521
1522/* initialise a loop structure, must be zero-initialised */
947static void noinline 1523static void noinline
948loop_init (EV_P_ unsigned int flags) 1524loop_init (EV_P_ unsigned int flags)
949{ 1525{
950 if (!backend) 1526 if (!backend)
951 { 1527 {
1528#if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536#endif
1537
952#if EV_USE_MONOTONIC 1538#if EV_USE_MONOTONIC
1539 if (!have_monotonic)
953 { 1540 {
954 struct timespec ts; 1541 struct timespec ts;
1542
955 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
956 have_monotonic = 1; 1544 have_monotonic = 1;
957 } 1545 }
958#endif 1546#endif
959
960 ev_rt_now = ev_time ();
961 mn_now = get_clock ();
962 now_floor = mn_now;
963 rtmn_diff = ev_rt_now - mn_now;
964 1547
965 /* pid check not overridable via env */ 1548 /* pid check not overridable via env */
966#ifndef _WIN32 1549#ifndef _WIN32
967 if (flags & EVFLAG_FORKCHECK) 1550 if (flags & EVFLAG_FORKCHECK)
968 curpid = getpid (); 1551 curpid = getpid ();
971 if (!(flags & EVFLAG_NOENV) 1554 if (!(flags & EVFLAG_NOENV)
972 && !enable_secure () 1555 && !enable_secure ()
973 && getenv ("LIBEV_FLAGS")) 1556 && getenv ("LIBEV_FLAGS"))
974 flags = atoi (getenv ("LIBEV_FLAGS")); 1557 flags = atoi (getenv ("LIBEV_FLAGS"));
975 1558
1559 ev_rt_now = ev_time ();
1560 mn_now = get_clock ();
1561 now_floor = mn_now;
1562 rtmn_diff = ev_rt_now - mn_now;
1563#if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565#endif
1566
1567 io_blocktime = 0.;
1568 timeout_blocktime = 0.;
1569 backend = 0;
1570 backend_fd = -1;
1571 sig_pending = 0;
1572#if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574#endif
1575#if EV_USE_INOTIFY
1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1577#endif
1578#if EV_USE_SIGNALFD
1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1580#endif
1581
976 if (!(flags & 0x0000ffffUL)) 1582 if (!(flags & 0x0000ffffU))
977 flags |= ev_recommended_backends (); 1583 flags |= ev_recommended_backends ();
978
979 backend = 0;
980 backend_fd = -1;
981#if EV_USE_INOTIFY
982 fs_fd = -2;
983#endif
984 1584
985#if EV_USE_PORT 1585#if EV_USE_PORT
986 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1586 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
987#endif 1587#endif
988#if EV_USE_KQUEUE 1588#if EV_USE_KQUEUE
996#endif 1596#endif
997#if EV_USE_SELECT 1597#if EV_USE_SELECT
998 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
999#endif 1599#endif
1000 1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
1001 ev_init (&sigev, sigcb); 1603 ev_init (&pipe_w, pipecb);
1002 ev_set_priority (&sigev, EV_MAXPRI); 1604 ev_set_priority (&pipe_w, EV_MAXPRI);
1003 } 1605 }
1004} 1606}
1005 1607
1608/* free up a loop structure */
1006static void noinline 1609static void noinline
1007loop_destroy (EV_P) 1610loop_destroy (EV_P)
1008{ 1611{
1009 int i; 1612 int i;
1613
1614 if (ev_is_active (&pipe_w))
1615 {
1616 /*ev_ref (EV_A);*/
1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1618
1619#if EV_USE_EVENTFD
1620 if (evfd >= 0)
1621 close (evfd);
1622#endif
1623
1624 if (evpipe [0] >= 0)
1625 {
1626 close (evpipe [0]);
1627 close (evpipe [1]);
1628 }
1629 }
1630
1631#if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639#endif
1010 1640
1011#if EV_USE_INOTIFY 1641#if EV_USE_INOTIFY
1012 if (fs_fd >= 0) 1642 if (fs_fd >= 0)
1013 close (fs_fd); 1643 close (fs_fd);
1014#endif 1644#endif
1038#if EV_IDLE_ENABLE 1668#if EV_IDLE_ENABLE
1039 array_free (idle, [i]); 1669 array_free (idle, [i]);
1040#endif 1670#endif
1041 } 1671 }
1042 1672
1043 ev_free (anfds); anfdmax = 0; 1673 ev_free (anfds); anfds = 0; anfdmax = 0;
1044 1674
1045 /* have to use the microsoft-never-gets-it-right macro */ 1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
1046 array_free (fdchange, EMPTY); 1677 array_free (fdchange, EMPTY);
1047 array_free (timer, EMPTY); 1678 array_free (timer, EMPTY);
1048#if EV_PERIODIC_ENABLE 1679#if EV_PERIODIC_ENABLE
1049 array_free (periodic, EMPTY); 1680 array_free (periodic, EMPTY);
1050#endif 1681#endif
1051#if EV_FORK_ENABLE 1682#if EV_FORK_ENABLE
1052 array_free (fork, EMPTY); 1683 array_free (fork, EMPTY);
1053#endif 1684#endif
1054 array_free (prepare, EMPTY); 1685 array_free (prepare, EMPTY);
1055 array_free (check, EMPTY); 1686 array_free (check, EMPTY);
1687#if EV_ASYNC_ENABLE
1688 array_free (async, EMPTY);
1689#endif
1056 1690
1057 backend = 0; 1691 backend = 0;
1058} 1692}
1059 1693
1694#if EV_USE_INOTIFY
1060void inline_size infy_fork (EV_P); 1695inline_size void infy_fork (EV_P);
1696#endif
1061 1697
1062void inline_size 1698inline_size void
1063loop_fork (EV_P) 1699loop_fork (EV_P)
1064{ 1700{
1065#if EV_USE_PORT 1701#if EV_USE_PORT
1066 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1067#endif 1703#endif
1073#endif 1709#endif
1074#if EV_USE_INOTIFY 1710#if EV_USE_INOTIFY
1075 infy_fork (EV_A); 1711 infy_fork (EV_A);
1076#endif 1712#endif
1077 1713
1078 if (ev_is_active (&sigev)) 1714 if (ev_is_active (&pipe_w))
1079 { 1715 {
1080 /* default loop */ 1716 /* this "locks" the handlers against writing to the pipe */
1717 /* while we modify the fd vars */
1718 sig_pending = 1;
1719#if EV_ASYNC_ENABLE
1720 async_pending = 1;
1721#endif
1081 1722
1082 ev_ref (EV_A); 1723 ev_ref (EV_A);
1083 ev_io_stop (EV_A_ &sigev); 1724 ev_io_stop (EV_A_ &pipe_w);
1725
1726#if EV_USE_EVENTFD
1727 if (evfd >= 0)
1728 close (evfd);
1729#endif
1730
1731 if (evpipe [0] >= 0)
1732 {
1084 close (sigpipe [0]); 1733 close (evpipe [0]);
1085 close (sigpipe [1]); 1734 close (evpipe [1]);
1735 }
1086 1736
1087 while (pipe (sigpipe))
1088 syserr ("(libev) error creating pipe");
1089
1090 siginit (EV_A); 1737 evpipe_init (EV_A);
1738 /* now iterate over everything, in case we missed something */
1739 pipecb (EV_A_ &pipe_w, EV_READ);
1091 } 1740 }
1092 1741
1093 postfork = 0; 1742 postfork = 0;
1094} 1743}
1095 1744
1096#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
1746
1097struct ev_loop * 1747struct ev_loop *
1098ev_loop_new (unsigned int flags) 1748ev_loop_new (unsigned int flags)
1099{ 1749{
1100 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1101 1751
1102 memset (loop, 0, sizeof (struct ev_loop)); 1752 memset (EV_A, 0, sizeof (struct ev_loop));
1103
1104 loop_init (EV_A_ flags); 1753 loop_init (EV_A_ flags);
1105 1754
1106 if (ev_backend (EV_A)) 1755 if (ev_backend (EV_A))
1107 return loop; 1756 return EV_A;
1108 1757
1109 return 0; 1758 return 0;
1110} 1759}
1111 1760
1112void 1761void
1117} 1766}
1118 1767
1119void 1768void
1120ev_loop_fork (EV_P) 1769ev_loop_fork (EV_P)
1121{ 1770{
1122 postfork = 1; 1771 postfork = 1; /* must be in line with ev_default_fork */
1123} 1772}
1773#endif /* multiplicity */
1124 1774
1775#if EV_VERIFY
1776static void noinline
1777verify_watcher (EV_P_ W w)
1778{
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783}
1784
1785static void noinline
1786verify_heap (EV_P_ ANHE *heap, int N)
1787{
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798}
1799
1800static void noinline
1801array_verify (EV_P_ W *ws, int cnt)
1802{
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808}
1809#endif
1810
1811#if EV_MINIMAL < 2
1812void
1813ev_loop_verify (EV_P)
1814{
1815#if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
1828 {
1829 verify_watcher (EV_A_ (W)w);
1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837#if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840#endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845#if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849#endif
1850 }
1851
1852#if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855#endif
1856
1857#if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860#endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868# if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1871# endif
1872#endif
1873}
1125#endif 1874#endif
1126 1875
1127#if EV_MULTIPLICITY 1876#if EV_MULTIPLICITY
1128struct ev_loop * 1877struct ev_loop *
1129ev_default_loop_init (unsigned int flags) 1878ev_default_loop_init (unsigned int flags)
1130#else 1879#else
1131int 1880int
1132ev_default_loop (unsigned int flags) 1881ev_default_loop (unsigned int flags)
1133#endif 1882#endif
1134{ 1883{
1135 if (sigpipe [0] == sigpipe [1])
1136 if (pipe (sigpipe))
1137 return 0;
1138
1139 if (!ev_default_loop_ptr) 1884 if (!ev_default_loop_ptr)
1140 { 1885 {
1141#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
1142 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
1143#else 1888#else
1144 ev_default_loop_ptr = 1; 1889 ev_default_loop_ptr = 1;
1145#endif 1890#endif
1146 1891
1147 loop_init (EV_A_ flags); 1892 loop_init (EV_A_ flags);
1148 1893
1149 if (ev_backend (EV_A)) 1894 if (ev_backend (EV_A))
1150 { 1895 {
1151 siginit (EV_A);
1152
1153#ifndef _WIN32 1896#ifndef _WIN32
1154 ev_signal_init (&childev, childcb, SIGCHLD); 1897 ev_signal_init (&childev, childcb, SIGCHLD);
1155 ev_set_priority (&childev, EV_MAXPRI); 1898 ev_set_priority (&childev, EV_MAXPRI);
1156 ev_signal_start (EV_A_ &childev); 1899 ev_signal_start (EV_A_ &childev);
1157 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1900 ev_unref (EV_A); /* child watcher should not keep loop alive */
1166 1909
1167void 1910void
1168ev_default_destroy (void) 1911ev_default_destroy (void)
1169{ 1912{
1170#if EV_MULTIPLICITY 1913#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1914 EV_P = ev_default_loop_ptr;
1172#endif 1915#endif
1916
1917 ev_default_loop_ptr = 0;
1173 1918
1174#ifndef _WIN32 1919#ifndef _WIN32
1175 ev_ref (EV_A); /* child watcher */ 1920 ev_ref (EV_A); /* child watcher */
1176 ev_signal_stop (EV_A_ &childev); 1921 ev_signal_stop (EV_A_ &childev);
1177#endif 1922#endif
1178 1923
1179 ev_ref (EV_A); /* signal watcher */
1180 ev_io_stop (EV_A_ &sigev);
1181
1182 close (sigpipe [0]); sigpipe [0] = 0;
1183 close (sigpipe [1]); sigpipe [1] = 0;
1184
1185 loop_destroy (EV_A); 1924 loop_destroy (EV_A);
1186} 1925}
1187 1926
1188void 1927void
1189ev_default_fork (void) 1928ev_default_fork (void)
1190{ 1929{
1191#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
1192 struct ev_loop *loop = ev_default_loop_ptr; 1931 EV_P = ev_default_loop_ptr;
1193#endif 1932#endif
1194 1933
1195 if (backend) 1934 postfork = 1; /* must be in line with ev_loop_fork */
1196 postfork = 1;
1197} 1935}
1198 1936
1199/*****************************************************************************/ 1937/*****************************************************************************/
1200 1938
1201void 1939void
1202ev_invoke (EV_P_ void *w, int revents) 1940ev_invoke (EV_P_ void *w, int revents)
1203{ 1941{
1204 EV_CB_INVOKE ((W)w, revents); 1942 EV_CB_INVOKE ((W)w, revents);
1205} 1943}
1206 1944
1207void inline_speed 1945unsigned int
1208call_pending (EV_P) 1946ev_pending_count (EV_P)
1947{
1948 int pri;
1949 unsigned int count = 0;
1950
1951 for (pri = NUMPRI; pri--; )
1952 count += pendingcnt [pri];
1953
1954 return count;
1955}
1956
1957void noinline
1958ev_invoke_pending (EV_P)
1209{ 1959{
1210 int pri; 1960 int pri;
1211 1961
1212 for (pri = NUMPRI; pri--; ) 1962 for (pri = NUMPRI; pri--; )
1213 while (pendingcnt [pri]) 1963 while (pendingcnt [pri])
1214 { 1964 {
1215 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1216 1966
1217 if (expect_true (p->w))
1218 {
1219 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1968 /* ^ this is no longer true, as pending_w could be here */
1220 1969
1221 p->w->pending = 0; 1970 p->w->pending = 0;
1222 EV_CB_INVOKE (p->w, p->events); 1971 EV_CB_INVOKE (p->w, p->events);
1223 } 1972 EV_FREQUENT_CHECK;
1224 } 1973 }
1225} 1974}
1226 1975
1227void inline_size
1228timers_reify (EV_P)
1229{
1230 while (timercnt && ((WT)timers [0])->at <= mn_now)
1231 {
1232 ev_timer *w = (ev_timer *)timers [0];
1233
1234 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1235
1236 /* first reschedule or stop timer */
1237 if (w->repeat)
1238 {
1239 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1240
1241 ((WT)w)->at += w->repeat;
1242 if (((WT)w)->at < mn_now)
1243 ((WT)w)->at = mn_now;
1244
1245 downheap (timers, timercnt, 0);
1246 }
1247 else
1248 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1249
1250 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1251 }
1252}
1253
1254#if EV_PERIODIC_ENABLE
1255void inline_size
1256periodics_reify (EV_P)
1257{
1258 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1259 {
1260 ev_periodic *w = (ev_periodic *)periodics [0];
1261
1262 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1263
1264 /* first reschedule or stop timer */
1265 if (w->reschedule_cb)
1266 {
1267 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1268 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1269 downheap (periodics, periodiccnt, 0);
1270 }
1271 else if (w->interval)
1272 {
1273 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1274 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1275 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1276 downheap (periodics, periodiccnt, 0);
1277 }
1278 else
1279 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1280
1281 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1282 }
1283}
1284
1285static void noinline
1286periodics_reschedule (EV_P)
1287{
1288 int i;
1289
1290 /* adjust periodics after time jump */
1291 for (i = 0; i < periodiccnt; ++i)
1292 {
1293 ev_periodic *w = (ev_periodic *)periodics [i];
1294
1295 if (w->reschedule_cb)
1296 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1297 else if (w->interval)
1298 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1299 }
1300
1301 /* now rebuild the heap */
1302 for (i = periodiccnt >> 1; i--; )
1303 downheap (periodics, periodiccnt, i);
1304}
1305#endif
1306
1307#if EV_IDLE_ENABLE 1976#if EV_IDLE_ENABLE
1308void inline_size 1977/* make idle watchers pending. this handles the "call-idle */
1978/* only when higher priorities are idle" logic */
1979inline_size void
1309idle_reify (EV_P) 1980idle_reify (EV_P)
1310{ 1981{
1311 if (expect_false (idleall)) 1982 if (expect_false (idleall))
1312 { 1983 {
1313 int pri; 1984 int pri;
1325 } 1996 }
1326 } 1997 }
1327} 1998}
1328#endif 1999#endif
1329 2000
1330void inline_speed 2001/* make timers pending */
2002inline_size void
2003timers_reify (EV_P)
2004{
2005 EV_FREQUENT_CHECK;
2006
2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2008 {
2009 do
2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2023
2024 ANHE_at_cache (timers [HEAP0]);
2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
2032 }
2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2034
2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
2036 }
2037}
2038
2039#if EV_PERIODIC_ENABLE
2040/* make periodics pending */
2041inline_size void
2042periodics_reify (EV_P)
2043{
2044 EV_FREQUENT_CHECK;
2045
2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2047 {
2048 int feed_count = 0;
2049
2050 do
2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2055
2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
2090 }
2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2092
2093 feed_reverse_done (EV_A_ EV_PERIODIC);
2094 }
2095}
2096
2097/* simply recalculate all periodics */
2098/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2099static void noinline
2100periodics_reschedule (EV_P)
2101{
2102 int i;
2103
2104 /* adjust periodics after time jump */
2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2108
2109 if (w->reschedule_cb)
2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2111 else if (w->interval)
2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118}
2119#endif
2120
2121/* adjust all timers by a given offset */
2122static void noinline
2123timers_reschedule (EV_P_ ev_tstamp adjust)
2124{
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
2128 {
2129 ANHE *he = timers + i + HEAP0;
2130 ANHE_w (*he)->at += adjust;
2131 ANHE_at_cache (*he);
2132 }
2133}
2134
2135/* fetch new monotonic and realtime times from the kernel */
2136/* also detetc if there was a timejump, and act accordingly */
2137inline_speed void
1331time_update (EV_P_ ev_tstamp max_block) 2138time_update (EV_P_ ev_tstamp max_block)
1332{ 2139{
1333 int i;
1334
1335#if EV_USE_MONOTONIC 2140#if EV_USE_MONOTONIC
1336 if (expect_true (have_monotonic)) 2141 if (expect_true (have_monotonic))
1337 { 2142 {
2143 int i;
1338 ev_tstamp odiff = rtmn_diff; 2144 ev_tstamp odiff = rtmn_diff;
1339 2145
1340 mn_now = get_clock (); 2146 mn_now = get_clock ();
1341 2147
1342 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1360 */ 2166 */
1361 for (i = 4; --i; ) 2167 for (i = 4; --i; )
1362 { 2168 {
1363 rtmn_diff = ev_rt_now - mn_now; 2169 rtmn_diff = ev_rt_now - mn_now;
1364 2170
1365 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2171 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1366 return; /* all is well */ 2172 return; /* all is well */
1367 2173
1368 ev_rt_now = ev_time (); 2174 ev_rt_now = ev_time ();
1369 mn_now = get_clock (); 2175 mn_now = get_clock ();
1370 now_floor = mn_now; 2176 now_floor = mn_now;
1371 } 2177 }
1372 2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1373# if EV_PERIODIC_ENABLE 2181# if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2182 periodics_reschedule (EV_A);
1375# endif 2183# endif
1376 /* no timer adjustment, as the monotonic clock doesn't jump */
1377 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1378 } 2184 }
1379 else 2185 else
1380#endif 2186#endif
1381 { 2187 {
1382 ev_rt_now = ev_time (); 2188 ev_rt_now = ev_time ();
1383 2189
1384 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1385 { 2191 {
2192 /* adjust timers. this is easy, as the offset is the same for all of them */
2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1386#if EV_PERIODIC_ENABLE 2194#if EV_PERIODIC_ENABLE
1387 periodics_reschedule (EV_A); 2195 periodics_reschedule (EV_A);
1388#endif 2196#endif
1389 /* adjust timers. this is easy, as the offset is the same for all of them */
1390 for (i = 0; i < timercnt; ++i)
1391 ((WT)timers [i])->at += ev_rt_now - mn_now;
1392 } 2197 }
1393 2198
1394 mn_now = ev_rt_now; 2199 mn_now = ev_rt_now;
1395 } 2200 }
1396} 2201}
1397 2202
1398void 2203void
1399ev_ref (EV_P)
1400{
1401 ++activecnt;
1402}
1403
1404void
1405ev_unref (EV_P)
1406{
1407 --activecnt;
1408}
1409
1410static int loop_done;
1411
1412void
1413ev_loop (EV_P_ int flags) 2204ev_loop (EV_P_ int flags)
1414{ 2205{
1415 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2206#if EV_MINIMAL < 2
1416 ? EVUNLOOP_ONE 2207 ++loop_depth;
1417 : EVUNLOOP_CANCEL; 2208#endif
1418 2209
2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
2212 loop_done = EVUNLOOP_CANCEL;
2213
1419 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1420 2215
1421 do 2216 do
1422 { 2217 {
2218#if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220#endif
2221
1423#ifndef _WIN32 2222#ifndef _WIN32
1424 if (expect_false (curpid)) /* penalise the forking check even more */ 2223 if (expect_false (curpid)) /* penalise the forking check even more */
1425 if (expect_false (getpid () != curpid)) 2224 if (expect_false (getpid () != curpid))
1426 { 2225 {
1427 curpid = getpid (); 2226 curpid = getpid ();
1433 /* we might have forked, so queue fork handlers */ 2232 /* we might have forked, so queue fork handlers */
1434 if (expect_false (postfork)) 2233 if (expect_false (postfork))
1435 if (forkcnt) 2234 if (forkcnt)
1436 { 2235 {
1437 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1438 call_pending (EV_A); 2237 EV_INVOKE_PENDING;
1439 } 2238 }
1440#endif 2239#endif
1441 2240
1442 /* queue prepare watchers (and execute them) */ 2241 /* queue prepare watchers (and execute them) */
1443 if (expect_false (preparecnt)) 2242 if (expect_false (preparecnt))
1444 { 2243 {
1445 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1446 call_pending (EV_A); 2245 EV_INVOKE_PENDING;
1447 } 2246 }
1448 2247
1449 if (expect_false (!activecnt)) 2248 if (expect_false (loop_done))
1450 break; 2249 break;
1451 2250
1452 /* we might have forked, so reify kernel state if necessary */ 2251 /* we might have forked, so reify kernel state if necessary */
1453 if (expect_false (postfork)) 2252 if (expect_false (postfork))
1454 loop_fork (EV_A); 2253 loop_fork (EV_A);
1456 /* update fd-related kernel structures */ 2255 /* update fd-related kernel structures */
1457 fd_reify (EV_A); 2256 fd_reify (EV_A);
1458 2257
1459 /* calculate blocking time */ 2258 /* calculate blocking time */
1460 { 2259 {
1461 ev_tstamp block; 2260 ev_tstamp waittime = 0.;
2261 ev_tstamp sleeptime = 0.;
1462 2262
1463 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1464 block = 0.; /* do not block at all */
1465 else
1466 { 2264 {
2265 /* remember old timestamp for io_blocktime calculation */
2266 ev_tstamp prev_mn_now = mn_now;
2267
1467 /* update time to cancel out callback processing overhead */ 2268 /* update time to cancel out callback processing overhead */
1468 time_update (EV_A_ 1e100); 2269 time_update (EV_A_ 1e100);
1469 2270
1470 block = MAX_BLOCKTIME; 2271 waittime = MAX_BLOCKTIME;
1471 2272
1472 if (timercnt) 2273 if (timercnt)
1473 { 2274 {
1474 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1475 if (block > to) block = to; 2276 if (waittime > to) waittime = to;
1476 } 2277 }
1477 2278
1478#if EV_PERIODIC_ENABLE 2279#if EV_PERIODIC_ENABLE
1479 if (periodiccnt) 2280 if (periodiccnt)
1480 { 2281 {
1481 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1482 if (block > to) block = to; 2283 if (waittime > to) waittime = to;
1483 } 2284 }
1484#endif 2285#endif
1485 2286
2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
2288 if (expect_false (waittime < timeout_blocktime))
2289 waittime = timeout_blocktime;
2290
2291 /* extra check because io_blocktime is commonly 0 */
1486 if (expect_false (block < 0.)) block = 0.; 2292 if (expect_false (io_blocktime))
2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
2301 ev_sleep (sleeptime);
2302 waittime -= sleeptime;
2303 }
2304 }
1487 } 2305 }
1488 2306
2307#if EV_MINIMAL < 2
1489 ++loop_count; 2308 ++loop_count;
2309#endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1490 backend_poll (EV_A_ block); 2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1491 2313
1492 /* update ev_rt_now, do magic */ 2314 /* update ev_rt_now, do magic */
1493 time_update (EV_A_ block); 2315 time_update (EV_A_ waittime + sleeptime);
1494 } 2316 }
1495 2317
1496 /* queue pending timers and reschedule them */ 2318 /* queue pending timers and reschedule them */
1497 timers_reify (EV_A); /* relative timers called last */ 2319 timers_reify (EV_A); /* relative timers called last */
1498#if EV_PERIODIC_ENABLE 2320#if EV_PERIODIC_ENABLE
1506 2328
1507 /* queue check watchers, to be executed first */ 2329 /* queue check watchers, to be executed first */
1508 if (expect_false (checkcnt)) 2330 if (expect_false (checkcnt))
1509 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1510 2332
1511 call_pending (EV_A); 2333 EV_INVOKE_PENDING;
1512
1513 } 2334 }
1514 while (expect_true (activecnt && !loop_done)); 2335 while (expect_true (
2336 activecnt
2337 && !loop_done
2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2339 ));
1515 2340
1516 if (loop_done == EVUNLOOP_ONE) 2341 if (loop_done == EVUNLOOP_ONE)
1517 loop_done = EVUNLOOP_CANCEL; 2342 loop_done = EVUNLOOP_CANCEL;
2343
2344#if EV_MINIMAL < 2
2345 --loop_depth;
2346#endif
1518} 2347}
1519 2348
1520void 2349void
1521ev_unloop (EV_P_ int how) 2350ev_unloop (EV_P_ int how)
1522{ 2351{
1523 loop_done = how; 2352 loop_done = how;
1524} 2353}
1525 2354
2355void
2356ev_ref (EV_P)
2357{
2358 ++activecnt;
2359}
2360
2361void
2362ev_unref (EV_P)
2363{
2364 --activecnt;
2365}
2366
2367void
2368ev_now_update (EV_P)
2369{
2370 time_update (EV_A_ 1e100);
2371}
2372
2373void
2374ev_suspend (EV_P)
2375{
2376 ev_now_update (EV_A);
2377}
2378
2379void
2380ev_resume (EV_P)
2381{
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386#if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389#endif
2390}
2391
1526/*****************************************************************************/ 2392/*****************************************************************************/
2393/* singly-linked list management, used when the expected list length is short */
1527 2394
1528void inline_size 2395inline_size void
1529wlist_add (WL *head, WL elem) 2396wlist_add (WL *head, WL elem)
1530{ 2397{
1531 elem->next = *head; 2398 elem->next = *head;
1532 *head = elem; 2399 *head = elem;
1533} 2400}
1534 2401
1535void inline_size 2402inline_size void
1536wlist_del (WL *head, WL elem) 2403wlist_del (WL *head, WL elem)
1537{ 2404{
1538 while (*head) 2405 while (*head)
1539 { 2406 {
1540 if (*head == elem) 2407 if (expect_true (*head == elem))
1541 { 2408 {
1542 *head = elem->next; 2409 *head = elem->next;
1543 return; 2410 break;
1544 } 2411 }
1545 2412
1546 head = &(*head)->next; 2413 head = &(*head)->next;
1547 } 2414 }
1548} 2415}
1549 2416
1550void inline_speed 2417/* internal, faster, version of ev_clear_pending */
2418inline_speed void
1551clear_pending (EV_P_ W w) 2419clear_pending (EV_P_ W w)
1552{ 2420{
1553 if (w->pending) 2421 if (w->pending)
1554 { 2422 {
1555 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1556 w->pending = 0; 2424 w->pending = 0;
1557 } 2425 }
1558} 2426}
1559 2427
1560int 2428int
1564 int pending = w_->pending; 2432 int pending = w_->pending;
1565 2433
1566 if (expect_true (pending)) 2434 if (expect_true (pending))
1567 { 2435 {
1568 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
1569 w_->pending = 0; 2438 w_->pending = 0;
1570 p->w = 0;
1571 return p->events; 2439 return p->events;
1572 } 2440 }
1573 else 2441 else
1574 return 0; 2442 return 0;
1575} 2443}
1576 2444
1577void inline_size 2445inline_size void
1578pri_adjust (EV_P_ W w) 2446pri_adjust (EV_P_ W w)
1579{ 2447{
1580 int pri = w->priority; 2448 int pri = ev_priority (w);
1581 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1582 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1583 w->priority = pri; 2451 ev_set_priority (w, pri);
1584} 2452}
1585 2453
1586void inline_speed 2454inline_speed void
1587ev_start (EV_P_ W w, int active) 2455ev_start (EV_P_ W w, int active)
1588{ 2456{
1589 pri_adjust (EV_A_ w); 2457 pri_adjust (EV_A_ w);
1590 w->active = active; 2458 w->active = active;
1591 ev_ref (EV_A); 2459 ev_ref (EV_A);
1592} 2460}
1593 2461
1594void inline_size 2462inline_size void
1595ev_stop (EV_P_ W w) 2463ev_stop (EV_P_ W w)
1596{ 2464{
1597 ev_unref (EV_A); 2465 ev_unref (EV_A);
1598 w->active = 0; 2466 w->active = 0;
1599} 2467}
1606 int fd = w->fd; 2474 int fd = w->fd;
1607 2475
1608 if (expect_false (ev_is_active (w))) 2476 if (expect_false (ev_is_active (w)))
1609 return; 2477 return;
1610 2478
1611 assert (("ev_io_start called with negative fd", fd >= 0)); 2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
1612 2483
1613 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1614 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1615 wlist_add (&anfds[fd].head, (WL)w); 2486 wlist_add (&anfds[fd].head, (WL)w);
1616 2487
1617 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1618 w->events &= ~EV_IOFDSET; 2489 w->events &= ~EV__IOFDSET;
2490
2491 EV_FREQUENT_CHECK;
1619} 2492}
1620 2493
1621void noinline 2494void noinline
1622ev_io_stop (EV_P_ ev_io *w) 2495ev_io_stop (EV_P_ ev_io *w)
1623{ 2496{
1624 clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2498 if (expect_false (!ev_is_active (w)))
1626 return; 2499 return;
1627 2500
1628 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2502
2503 EV_FREQUENT_CHECK;
1629 2504
1630 wlist_del (&anfds[w->fd].head, (WL)w); 2505 wlist_del (&anfds[w->fd].head, (WL)w);
1631 ev_stop (EV_A_ (W)w); 2506 ev_stop (EV_A_ (W)w);
1632 2507
1633 fd_change (EV_A_ w->fd, 1); 2508 fd_change (EV_A_ w->fd, 1);
2509
2510 EV_FREQUENT_CHECK;
1634} 2511}
1635 2512
1636void noinline 2513void noinline
1637ev_timer_start (EV_P_ ev_timer *w) 2514ev_timer_start (EV_P_ ev_timer *w)
1638{ 2515{
1639 if (expect_false (ev_is_active (w))) 2516 if (expect_false (ev_is_active (w)))
1640 return; 2517 return;
1641 2518
1642 ((WT)w)->at += mn_now; 2519 ev_at (w) += mn_now;
1643 2520
1644 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1645 2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
1646 ev_start (EV_A_ (W)w, ++timercnt); 2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1647 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1648 timers [timercnt - 1] = (WT)w; 2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
1649 upheap (timers, timercnt - 1); 2529 ANHE_at_cache (timers [ev_active (w)]);
2530 upheap (timers, ev_active (w));
1650 2531
2532 EV_FREQUENT_CHECK;
2533
1651 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1652} 2535}
1653 2536
1654void noinline 2537void noinline
1655ev_timer_stop (EV_P_ ev_timer *w) 2538ev_timer_stop (EV_P_ ev_timer *w)
1656{ 2539{
1657 clear_pending (EV_A_ (W)w); 2540 clear_pending (EV_A_ (W)w);
1658 if (expect_false (!ev_is_active (w))) 2541 if (expect_false (!ev_is_active (w)))
1659 return; 2542 return;
1660 2543
1661 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2544 EV_FREQUENT_CHECK;
1662 2545
1663 { 2546 {
1664 int active = ((W)w)->active; 2547 int active = ev_active (w);
1665 2548
2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2550
2551 --timercnt;
2552
1666 if (expect_true (--active < --timercnt)) 2553 if (expect_true (active < timercnt + HEAP0))
1667 { 2554 {
1668 timers [active] = timers [timercnt]; 2555 timers [active] = timers [timercnt + HEAP0];
1669 adjustheap (timers, timercnt, active); 2556 adjustheap (timers, timercnt, active);
1670 } 2557 }
1671 } 2558 }
1672 2559
1673 ((WT)w)->at -= mn_now; 2560 EV_FREQUENT_CHECK;
2561
2562 ev_at (w) -= mn_now;
1674 2563
1675 ev_stop (EV_A_ (W)w); 2564 ev_stop (EV_A_ (W)w);
1676} 2565}
1677 2566
1678void noinline 2567void noinline
1679ev_timer_again (EV_P_ ev_timer *w) 2568ev_timer_again (EV_P_ ev_timer *w)
1680{ 2569{
2570 EV_FREQUENT_CHECK;
2571
1681 if (ev_is_active (w)) 2572 if (ev_is_active (w))
1682 { 2573 {
1683 if (w->repeat) 2574 if (w->repeat)
1684 { 2575 {
1685 ((WT)w)->at = mn_now + w->repeat; 2576 ev_at (w) = mn_now + w->repeat;
2577 ANHE_at_cache (timers [ev_active (w)]);
1686 adjustheap (timers, timercnt, ((W)w)->active - 1); 2578 adjustheap (timers, timercnt, ev_active (w));
1687 } 2579 }
1688 else 2580 else
1689 ev_timer_stop (EV_A_ w); 2581 ev_timer_stop (EV_A_ w);
1690 } 2582 }
1691 else if (w->repeat) 2583 else if (w->repeat)
1692 { 2584 {
1693 w->at = w->repeat; 2585 ev_at (w) = w->repeat;
1694 ev_timer_start (EV_A_ w); 2586 ev_timer_start (EV_A_ w);
1695 } 2587 }
2588
2589 EV_FREQUENT_CHECK;
2590}
2591
2592ev_tstamp
2593ev_timer_remaining (EV_P_ ev_timer *w)
2594{
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1696} 2596}
1697 2597
1698#if EV_PERIODIC_ENABLE 2598#if EV_PERIODIC_ENABLE
1699void noinline 2599void noinline
1700ev_periodic_start (EV_P_ ev_periodic *w) 2600ev_periodic_start (EV_P_ ev_periodic *w)
1701{ 2601{
1702 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1703 return; 2603 return;
1704 2604
1705 if (w->reschedule_cb) 2605 if (w->reschedule_cb)
1706 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1707 else if (w->interval) 2607 else if (w->interval)
1708 { 2608 {
1709 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1710 /* this formula differs from the one in periodic_reify because we do not always round up */ 2610 /* this formula differs from the one in periodic_reify because we do not always round up */
1711 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1712 } 2612 }
1713 else 2613 else
1714 ((WT)w)->at = w->offset; 2614 ev_at (w) = w->offset;
1715 2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
1716 ev_start (EV_A_ (W)w, ++periodiccnt); 2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1717 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1718 periodics [periodiccnt - 1] = (WT)w; 2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1719 upheap (periodics, periodiccnt - 1); 2622 ANHE_at_cache (periodics [ev_active (w)]);
2623 upheap (periodics, ev_active (w));
1720 2624
2625 EV_FREQUENT_CHECK;
2626
1721 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1722} 2628}
1723 2629
1724void noinline 2630void noinline
1725ev_periodic_stop (EV_P_ ev_periodic *w) 2631ev_periodic_stop (EV_P_ ev_periodic *w)
1726{ 2632{
1727 clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1728 if (expect_false (!ev_is_active (w))) 2634 if (expect_false (!ev_is_active (w)))
1729 return; 2635 return;
1730 2636
1731 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2637 EV_FREQUENT_CHECK;
1732 2638
1733 { 2639 {
1734 int active = ((W)w)->active; 2640 int active = ev_active (w);
1735 2641
2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2643
2644 --periodiccnt;
2645
1736 if (expect_true (--active < --periodiccnt)) 2646 if (expect_true (active < periodiccnt + HEAP0))
1737 { 2647 {
1738 periodics [active] = periodics [periodiccnt]; 2648 periodics [active] = periodics [periodiccnt + HEAP0];
1739 adjustheap (periodics, periodiccnt, active); 2649 adjustheap (periodics, periodiccnt, active);
1740 } 2650 }
1741 } 2651 }
1742 2652
2653 EV_FREQUENT_CHECK;
2654
1743 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
1744} 2656}
1745 2657
1746void noinline 2658void noinline
1747ev_periodic_again (EV_P_ ev_periodic *w) 2659ev_periodic_again (EV_P_ ev_periodic *w)
1757#endif 2669#endif
1758 2670
1759void noinline 2671void noinline
1760ev_signal_start (EV_P_ ev_signal *w) 2672ev_signal_start (EV_P_ ev_signal *w)
1761{ 2673{
1762#if EV_MULTIPLICITY
1763 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1764#endif
1765 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
1766 return; 2675 return;
1767 2676
1768 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1769 2678
2679#if EV_MULTIPLICITY
2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2682
2683 signals [w->signum - 1].loop = EV_A;
2684#endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688#if EV_USE_SIGNALFD
2689 if (sigfd == -2)
1770 { 2690 {
1771#ifndef _WIN32 2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1772 sigset_t full, prev; 2692 if (sigfd < 0 && errno == EINVAL)
1773 sigfillset (&full); 2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1774 sigprocmask (SIG_SETMASK, &full, &prev);
1775#endif
1776 2694
1777 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2695 if (sigfd >= 0)
2696 {
2697 fd_intern (sigfd); /* doing it twice will not hurt */
1778 2698
1779#ifndef _WIN32 2699 sigemptyset (&sigfd_set);
1780 sigprocmask (SIG_SETMASK, &prev, 0); 2700
1781#endif 2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
1782 } 2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716#endif
1783 2717
1784 ev_start (EV_A_ (W)w, 1); 2718 ev_start (EV_A_ (W)w, 1);
1785 wlist_add (&signals [w->signum - 1].head, (WL)w); 2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
1786 2720
1787 if (!((WL)w)->next) 2721 if (!((WL)w)->next)
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
2724# endif
1788 { 2725 {
1789#if _WIN32 2726# if _WIN32
1790 signal (w->signum, sighandler); 2727 signal (w->signum, ev_sighandler);
1791#else 2728# else
1792 struct sigaction sa; 2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
1793 sa.sa_handler = sighandler; 2733 sa.sa_handler = ev_sighandler;
1794 sigfillset (&sa.sa_mask); 2734 sigfillset (&sa.sa_mask);
1795 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1796 sigaction (w->signum, &sa, 0); 2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1797#endif 2741#endif
1798 } 2742 }
2743
2744 EV_FREQUENT_CHECK;
1799} 2745}
1800 2746
1801void noinline 2747void noinline
1802ev_signal_stop (EV_P_ ev_signal *w) 2748ev_signal_stop (EV_P_ ev_signal *w)
1803{ 2749{
1804 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
1805 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
1806 return; 2752 return;
1807 2753
2754 EV_FREQUENT_CHECK;
2755
1808 wlist_del (&signals [w->signum - 1].head, (WL)w); 2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
1809 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
1810 2758
1811 if (!signals [w->signum - 1].head) 2759 if (!signals [w->signum - 1].head)
2760 {
2761#if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763#endif
2764#if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
2772 }
2773 else
2774#endif
1812 signal (w->signum, SIG_DFL); 2775 signal (w->signum, SIG_DFL);
2776 }
2777
2778 EV_FREQUENT_CHECK;
1813} 2779}
1814 2780
1815void 2781void
1816ev_child_start (EV_P_ ev_child *w) 2782ev_child_start (EV_P_ ev_child *w)
1817{ 2783{
1818#if EV_MULTIPLICITY 2784#if EV_MULTIPLICITY
1819 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1820#endif 2786#endif
1821 if (expect_false (ev_is_active (w))) 2787 if (expect_false (ev_is_active (w)))
1822 return; 2788 return;
1823 2789
2790 EV_FREQUENT_CHECK;
2791
1824 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
1825 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2794
2795 EV_FREQUENT_CHECK;
1826} 2796}
1827 2797
1828void 2798void
1829ev_child_stop (EV_P_ ev_child *w) 2799ev_child_stop (EV_P_ ev_child *w)
1830{ 2800{
1831 clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
1832 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
1833 return; 2803 return;
1834 2804
2805 EV_FREQUENT_CHECK;
2806
1835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1836 ev_stop (EV_A_ (W)w); 2808 ev_stop (EV_A_ (W)w);
2809
2810 EV_FREQUENT_CHECK;
1837} 2811}
1838 2812
1839#if EV_STAT_ENABLE 2813#if EV_STAT_ENABLE
1840 2814
1841# ifdef _WIN32 2815# ifdef _WIN32
1842# undef lstat 2816# undef lstat
1843# define lstat(a,b) _stati64 (a,b) 2817# define lstat(a,b) _stati64 (a,b)
1844# endif 2818# endif
1845 2819
1846#define DEF_STAT_INTERVAL 5.0074891 2820#define DEF_STAT_INTERVAL 5.0074891
2821#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1847#define MIN_STAT_INTERVAL 0.1074891 2822#define MIN_STAT_INTERVAL 0.1074891
1848 2823
1849static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2824static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1850 2825
1851#if EV_USE_INOTIFY 2826#if EV_USE_INOTIFY
1852# define EV_INOTIFY_BUFSIZE 8192 2827# define EV_INOTIFY_BUFSIZE 8192
1856{ 2831{
1857 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1858 2833
1859 if (w->wd < 0) 2834 if (w->wd < 0)
1860 { 2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1861 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1862 2838
1863 /* monitor some parent directory for speedup hints */ 2839 /* monitor some parent directory for speedup hints */
2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2841 /* but an efficiency issue only */
1864 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1865 { 2843 {
1866 char path [4096]; 2844 char path [4096];
1867 strcpy (path, w->path); 2845 strcpy (path, w->path);
1868 2846
1871 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1872 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1873 2851
1874 char *pend = strrchr (path, '/'); 2852 char *pend = strrchr (path, '/');
1875 2853
1876 if (!pend) 2854 if (!pend || pend == path)
1877 break; /* whoops, no '/', complain to your admin */ 2855 break;
1878 2856
1879 *pend = 0; 2857 *pend = 0;
1880 w->wd = inotify_add_watch (fs_fd, path, mask); 2858 w->wd = inotify_add_watch (fs_fd, path, mask);
1881 } 2859 }
1882 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1883 } 2861 }
1884 } 2862 }
1885 else
1886 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1887 2863
1888 if (w->wd >= 0) 2864 if (w->wd >= 0)
2865 {
2866 struct statfs sfs;
2867
1889 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873
2874 if (fs_2625 && !statfs (w->path, &sfs))
2875 if (sfs.f_type == 0x1373 /* devfs */
2876 || sfs.f_type == 0xEF53 /* ext2/3 */
2877 || sfs.f_type == 0x3153464a /* jfs */
2878 || sfs.f_type == 0x52654973 /* reiser3 */
2879 || sfs.f_type == 0x01021994 /* tempfs */
2880 || sfs.f_type == 0x58465342 /* xfs */)
2881 return;
2882
2883 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2884 ev_timer_again (EV_A_ &w->timer);
2885 }
1890} 2886}
1891 2887
1892static void noinline 2888static void noinline
1893infy_del (EV_P_ ev_stat *w) 2889infy_del (EV_P_ ev_stat *w)
1894{ 2890{
1908 2904
1909static void noinline 2905static void noinline
1910infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2906infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1911{ 2907{
1912 if (slot < 0) 2908 if (slot < 0)
1913 /* overflow, need to check for all hahs slots */ 2909 /* overflow, need to check for all hash slots */
1914 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2910 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1915 infy_wd (EV_A_ slot, wd, ev); 2911 infy_wd (EV_A_ slot, wd, ev);
1916 else 2912 else
1917 { 2913 {
1918 WL w_; 2914 WL w_;
1924 2920
1925 if (w->wd == wd || wd == -1) 2921 if (w->wd == wd || wd == -1)
1926 { 2922 {
1927 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2923 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1928 { 2924 {
2925 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1929 w->wd = -1; 2926 w->wd = -1;
1930 infy_add (EV_A_ w); /* re-add, no matter what */ 2927 infy_add (EV_A_ w); /* re-add, no matter what */
1931 } 2928 }
1932 2929
1933 stat_timer_cb (EV_A_ &w->timer, 0); 2930 stat_timer_cb (EV_A_ &w->timer, 0);
1946 2943
1947 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2944 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1948 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2945 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1949} 2946}
1950 2947
1951void inline_size 2948inline_size void
2949check_2625 (EV_P)
2950{
2951 /* kernels < 2.6.25 are borked
2952 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2953 */
2954 struct utsname buf;
2955 int major, minor, micro;
2956
2957 if (uname (&buf))
2958 return;
2959
2960 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2961 return;
2962
2963 if (major < 2
2964 || (major == 2 && minor < 6)
2965 || (major == 2 && minor == 6 && micro < 25))
2966 return;
2967
2968 fs_2625 = 1;
2969}
2970
2971inline_size void
1952infy_init (EV_P) 2972infy_init (EV_P)
1953{ 2973{
1954 if (fs_fd != -2) 2974 if (fs_fd != -2)
1955 return; 2975 return;
2976
2977 fs_fd = -1;
2978
2979 check_2625 (EV_A);
1956 2980
1957 fs_fd = inotify_init (); 2981 fs_fd = inotify_init ();
1958 2982
1959 if (fs_fd >= 0) 2983 if (fs_fd >= 0)
1960 { 2984 {
1962 ev_set_priority (&fs_w, EV_MAXPRI); 2986 ev_set_priority (&fs_w, EV_MAXPRI);
1963 ev_io_start (EV_A_ &fs_w); 2987 ev_io_start (EV_A_ &fs_w);
1964 } 2988 }
1965} 2989}
1966 2990
1967void inline_size 2991inline_size void
1968infy_fork (EV_P) 2992infy_fork (EV_P)
1969{ 2993{
1970 int slot; 2994 int slot;
1971 2995
1972 if (fs_fd < 0) 2996 if (fs_fd < 0)
1988 w->wd = -1; 3012 w->wd = -1;
1989 3013
1990 if (fs_fd >= 0) 3014 if (fs_fd >= 0)
1991 infy_add (EV_A_ w); /* re-add, no matter what */ 3015 infy_add (EV_A_ w); /* re-add, no matter what */
1992 else 3016 else
1993 ev_timer_start (EV_A_ &w->timer); 3017 ev_timer_again (EV_A_ &w->timer);
1994 } 3018 }
1995
1996 } 3019 }
1997} 3020}
1998 3021
3022#endif
3023
3024#ifdef _WIN32
3025# define EV_LSTAT(p,b) _stati64 (p, b)
3026#else
3027# define EV_LSTAT(p,b) lstat (p, b)
1999#endif 3028#endif
2000 3029
2001void 3030void
2002ev_stat_stat (EV_P_ ev_stat *w) 3031ev_stat_stat (EV_P_ ev_stat *w)
2003{ 3032{
2030 || w->prev.st_atime != w->attr.st_atime 3059 || w->prev.st_atime != w->attr.st_atime
2031 || w->prev.st_mtime != w->attr.st_mtime 3060 || w->prev.st_mtime != w->attr.st_mtime
2032 || w->prev.st_ctime != w->attr.st_ctime 3061 || w->prev.st_ctime != w->attr.st_ctime
2033 ) { 3062 ) {
2034 #if EV_USE_INOTIFY 3063 #if EV_USE_INOTIFY
3064 if (fs_fd >= 0)
3065 {
2035 infy_del (EV_A_ w); 3066 infy_del (EV_A_ w);
2036 infy_add (EV_A_ w); 3067 infy_add (EV_A_ w);
2037 ev_stat_stat (EV_A_ w); /* avoid race... */ 3068 ev_stat_stat (EV_A_ w); /* avoid race... */
3069 }
2038 #endif 3070 #endif
2039 3071
2040 ev_feed_event (EV_A_ w, EV_STAT); 3072 ev_feed_event (EV_A_ w, EV_STAT);
2041 } 3073 }
2042} 3074}
2045ev_stat_start (EV_P_ ev_stat *w) 3077ev_stat_start (EV_P_ ev_stat *w)
2046{ 3078{
2047 if (expect_false (ev_is_active (w))) 3079 if (expect_false (ev_is_active (w)))
2048 return; 3080 return;
2049 3081
2050 /* since we use memcmp, we need to clear any padding data etc. */
2051 memset (&w->prev, 0, sizeof (ev_statdata));
2052 memset (&w->attr, 0, sizeof (ev_statdata));
2053
2054 ev_stat_stat (EV_A_ w); 3082 ev_stat_stat (EV_A_ w);
2055 3083
3084 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2056 if (w->interval < MIN_STAT_INTERVAL) 3085 w->interval = MIN_STAT_INTERVAL;
2057 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2058 3086
2059 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3087 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2060 ev_set_priority (&w->timer, ev_priority (w)); 3088 ev_set_priority (&w->timer, ev_priority (w));
2061 3089
2062#if EV_USE_INOTIFY 3090#if EV_USE_INOTIFY
2063 infy_init (EV_A); 3091 infy_init (EV_A);
2064 3092
2065 if (fs_fd >= 0) 3093 if (fs_fd >= 0)
2066 infy_add (EV_A_ w); 3094 infy_add (EV_A_ w);
2067 else 3095 else
2068#endif 3096#endif
2069 ev_timer_start (EV_A_ &w->timer); 3097 ev_timer_again (EV_A_ &w->timer);
2070 3098
2071 ev_start (EV_A_ (W)w, 1); 3099 ev_start (EV_A_ (W)w, 1);
3100
3101 EV_FREQUENT_CHECK;
2072} 3102}
2073 3103
2074void 3104void
2075ev_stat_stop (EV_P_ ev_stat *w) 3105ev_stat_stop (EV_P_ ev_stat *w)
2076{ 3106{
2077 clear_pending (EV_A_ (W)w); 3107 clear_pending (EV_A_ (W)w);
2078 if (expect_false (!ev_is_active (w))) 3108 if (expect_false (!ev_is_active (w)))
2079 return; 3109 return;
2080 3110
3111 EV_FREQUENT_CHECK;
3112
2081#if EV_USE_INOTIFY 3113#if EV_USE_INOTIFY
2082 infy_del (EV_A_ w); 3114 infy_del (EV_A_ w);
2083#endif 3115#endif
2084 ev_timer_stop (EV_A_ &w->timer); 3116 ev_timer_stop (EV_A_ &w->timer);
2085 3117
2086 ev_stop (EV_A_ (W)w); 3118 ev_stop (EV_A_ (W)w);
3119
3120 EV_FREQUENT_CHECK;
2087} 3121}
2088#endif 3122#endif
2089 3123
2090#if EV_IDLE_ENABLE 3124#if EV_IDLE_ENABLE
2091void 3125void
2093{ 3127{
2094 if (expect_false (ev_is_active (w))) 3128 if (expect_false (ev_is_active (w)))
2095 return; 3129 return;
2096 3130
2097 pri_adjust (EV_A_ (W)w); 3131 pri_adjust (EV_A_ (W)w);
3132
3133 EV_FREQUENT_CHECK;
2098 3134
2099 { 3135 {
2100 int active = ++idlecnt [ABSPRI (w)]; 3136 int active = ++idlecnt [ABSPRI (w)];
2101 3137
2102 ++idleall; 3138 ++idleall;
2103 ev_start (EV_A_ (W)w, active); 3139 ev_start (EV_A_ (W)w, active);
2104 3140
2105 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3141 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2106 idles [ABSPRI (w)][active - 1] = w; 3142 idles [ABSPRI (w)][active - 1] = w;
2107 } 3143 }
3144
3145 EV_FREQUENT_CHECK;
2108} 3146}
2109 3147
2110void 3148void
2111ev_idle_stop (EV_P_ ev_idle *w) 3149ev_idle_stop (EV_P_ ev_idle *w)
2112{ 3150{
2113 clear_pending (EV_A_ (W)w); 3151 clear_pending (EV_A_ (W)w);
2114 if (expect_false (!ev_is_active (w))) 3152 if (expect_false (!ev_is_active (w)))
2115 return; 3153 return;
2116 3154
3155 EV_FREQUENT_CHECK;
3156
2117 { 3157 {
2118 int active = ((W)w)->active; 3158 int active = ev_active (w);
2119 3159
2120 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3160 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2121 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3161 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2122 3162
2123 ev_stop (EV_A_ (W)w); 3163 ev_stop (EV_A_ (W)w);
2124 --idleall; 3164 --idleall;
2125 } 3165 }
3166
3167 EV_FREQUENT_CHECK;
2126} 3168}
2127#endif 3169#endif
2128 3170
2129void 3171void
2130ev_prepare_start (EV_P_ ev_prepare *w) 3172ev_prepare_start (EV_P_ ev_prepare *w)
2131{ 3173{
2132 if (expect_false (ev_is_active (w))) 3174 if (expect_false (ev_is_active (w)))
2133 return; 3175 return;
3176
3177 EV_FREQUENT_CHECK;
2134 3178
2135 ev_start (EV_A_ (W)w, ++preparecnt); 3179 ev_start (EV_A_ (W)w, ++preparecnt);
2136 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3180 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2137 prepares [preparecnt - 1] = w; 3181 prepares [preparecnt - 1] = w;
3182
3183 EV_FREQUENT_CHECK;
2138} 3184}
2139 3185
2140void 3186void
2141ev_prepare_stop (EV_P_ ev_prepare *w) 3187ev_prepare_stop (EV_P_ ev_prepare *w)
2142{ 3188{
2143 clear_pending (EV_A_ (W)w); 3189 clear_pending (EV_A_ (W)w);
2144 if (expect_false (!ev_is_active (w))) 3190 if (expect_false (!ev_is_active (w)))
2145 return; 3191 return;
2146 3192
3193 EV_FREQUENT_CHECK;
3194
2147 { 3195 {
2148 int active = ((W)w)->active; 3196 int active = ev_active (w);
3197
2149 prepares [active - 1] = prepares [--preparecnt]; 3198 prepares [active - 1] = prepares [--preparecnt];
2150 ((W)prepares [active - 1])->active = active; 3199 ev_active (prepares [active - 1]) = active;
2151 } 3200 }
2152 3201
2153 ev_stop (EV_A_ (W)w); 3202 ev_stop (EV_A_ (W)w);
3203
3204 EV_FREQUENT_CHECK;
2154} 3205}
2155 3206
2156void 3207void
2157ev_check_start (EV_P_ ev_check *w) 3208ev_check_start (EV_P_ ev_check *w)
2158{ 3209{
2159 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
2160 return; 3211 return;
3212
3213 EV_FREQUENT_CHECK;
2161 3214
2162 ev_start (EV_A_ (W)w, ++checkcnt); 3215 ev_start (EV_A_ (W)w, ++checkcnt);
2163 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3216 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2164 checks [checkcnt - 1] = w; 3217 checks [checkcnt - 1] = w;
3218
3219 EV_FREQUENT_CHECK;
2165} 3220}
2166 3221
2167void 3222void
2168ev_check_stop (EV_P_ ev_check *w) 3223ev_check_stop (EV_P_ ev_check *w)
2169{ 3224{
2170 clear_pending (EV_A_ (W)w); 3225 clear_pending (EV_A_ (W)w);
2171 if (expect_false (!ev_is_active (w))) 3226 if (expect_false (!ev_is_active (w)))
2172 return; 3227 return;
2173 3228
3229 EV_FREQUENT_CHECK;
3230
2174 { 3231 {
2175 int active = ((W)w)->active; 3232 int active = ev_active (w);
3233
2176 checks [active - 1] = checks [--checkcnt]; 3234 checks [active - 1] = checks [--checkcnt];
2177 ((W)checks [active - 1])->active = active; 3235 ev_active (checks [active - 1]) = active;
2178 } 3236 }
2179 3237
2180 ev_stop (EV_A_ (W)w); 3238 ev_stop (EV_A_ (W)w);
3239
3240 EV_FREQUENT_CHECK;
2181} 3241}
2182 3242
2183#if EV_EMBED_ENABLE 3243#if EV_EMBED_ENABLE
2184void noinline 3244void noinline
2185ev_embed_sweep (EV_P_ ev_embed *w) 3245ev_embed_sweep (EV_P_ ev_embed *w)
2193 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3253 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2194 3254
2195 if (ev_cb (w)) 3255 if (ev_cb (w))
2196 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3256 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2197 else 3257 else
2198 ev_embed_sweep (loop, w); 3258 ev_loop (w->other, EVLOOP_NONBLOCK);
2199} 3259}
2200 3260
2201static void 3261static void
2202embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3262embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2203{ 3263{
2204 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3264 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2205 3265
2206 fd_reify (w->other); 3266 {
3267 EV_P = w->other;
3268
3269 while (fdchangecnt)
3270 {
3271 fd_reify (EV_A);
3272 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3273 }
3274 }
2207} 3275}
3276
3277static void
3278embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3279{
3280 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3281
3282 ev_embed_stop (EV_A_ w);
3283
3284 {
3285 EV_P = w->other;
3286
3287 ev_loop_fork (EV_A);
3288 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3289 }
3290
3291 ev_embed_start (EV_A_ w);
3292}
3293
3294#if 0
3295static void
3296embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3297{
3298 ev_idle_stop (EV_A_ idle);
3299}
3300#endif
2208 3301
2209void 3302void
2210ev_embed_start (EV_P_ ev_embed *w) 3303ev_embed_start (EV_P_ ev_embed *w)
2211{ 3304{
2212 if (expect_false (ev_is_active (w))) 3305 if (expect_false (ev_is_active (w)))
2213 return; 3306 return;
2214 3307
2215 { 3308 {
2216 struct ev_loop *loop = w->other; 3309 EV_P = w->other;
2217 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3310 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2218 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_WRITE); 3311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2219 } 3312 }
3313
3314 EV_FREQUENT_CHECK;
2220 3315
2221 ev_set_priority (&w->io, ev_priority (w)); 3316 ev_set_priority (&w->io, ev_priority (w));
2222 ev_io_start (EV_A_ &w->io); 3317 ev_io_start (EV_A_ &w->io);
2223 3318
2224 ev_prepare_init (&w->prepare, embed_prepare_cb); 3319 ev_prepare_init (&w->prepare, embed_prepare_cb);
2225 ev_set_priority (&w->prepare, EV_MINPRI); 3320 ev_set_priority (&w->prepare, EV_MINPRI);
2226 ev_prepare_start (EV_A_ &w->prepare); 3321 ev_prepare_start (EV_A_ &w->prepare);
2227 3322
3323 ev_fork_init (&w->fork, embed_fork_cb);
3324 ev_fork_start (EV_A_ &w->fork);
3325
3326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3327
2228 ev_start (EV_A_ (W)w, 1); 3328 ev_start (EV_A_ (W)w, 1);
3329
3330 EV_FREQUENT_CHECK;
2229} 3331}
2230 3332
2231void 3333void
2232ev_embed_stop (EV_P_ ev_embed *w) 3334ev_embed_stop (EV_P_ ev_embed *w)
2233{ 3335{
2234 clear_pending (EV_A_ (W)w); 3336 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 3337 if (expect_false (!ev_is_active (w)))
2236 return; 3338 return;
2237 3339
3340 EV_FREQUENT_CHECK;
3341
2238 ev_io_stop (EV_A_ &w->io); 3342 ev_io_stop (EV_A_ &w->io);
2239 ev_prepare_stop (EV_A_ &w->prepare); 3343 ev_prepare_stop (EV_A_ &w->prepare);
3344 ev_fork_stop (EV_A_ &w->fork);
2240 3345
2241 ev_stop (EV_A_ (W)w); 3346 EV_FREQUENT_CHECK;
2242} 3347}
2243#endif 3348#endif
2244 3349
2245#if EV_FORK_ENABLE 3350#if EV_FORK_ENABLE
2246void 3351void
2247ev_fork_start (EV_P_ ev_fork *w) 3352ev_fork_start (EV_P_ ev_fork *w)
2248{ 3353{
2249 if (expect_false (ev_is_active (w))) 3354 if (expect_false (ev_is_active (w)))
2250 return; 3355 return;
3356
3357 EV_FREQUENT_CHECK;
2251 3358
2252 ev_start (EV_A_ (W)w, ++forkcnt); 3359 ev_start (EV_A_ (W)w, ++forkcnt);
2253 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3360 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2254 forks [forkcnt - 1] = w; 3361 forks [forkcnt - 1] = w;
3362
3363 EV_FREQUENT_CHECK;
2255} 3364}
2256 3365
2257void 3366void
2258ev_fork_stop (EV_P_ ev_fork *w) 3367ev_fork_stop (EV_P_ ev_fork *w)
2259{ 3368{
2260 clear_pending (EV_A_ (W)w); 3369 clear_pending (EV_A_ (W)w);
2261 if (expect_false (!ev_is_active (w))) 3370 if (expect_false (!ev_is_active (w)))
2262 return; 3371 return;
2263 3372
3373 EV_FREQUENT_CHECK;
3374
2264 { 3375 {
2265 int active = ((W)w)->active; 3376 int active = ev_active (w);
3377
2266 forks [active - 1] = forks [--forkcnt]; 3378 forks [active - 1] = forks [--forkcnt];
2267 ((W)forks [active - 1])->active = active; 3379 ev_active (forks [active - 1]) = active;
2268 } 3380 }
2269 3381
2270 ev_stop (EV_A_ (W)w); 3382 ev_stop (EV_A_ (W)w);
3383
3384 EV_FREQUENT_CHECK;
3385}
3386#endif
3387
3388#if EV_ASYNC_ENABLE
3389void
3390ev_async_start (EV_P_ ev_async *w)
3391{
3392 if (expect_false (ev_is_active (w)))
3393 return;
3394
3395 evpipe_init (EV_A);
3396
3397 EV_FREQUENT_CHECK;
3398
3399 ev_start (EV_A_ (W)w, ++asynccnt);
3400 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3401 asyncs [asynccnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
3404}
3405
3406void
3407ev_async_stop (EV_P_ ev_async *w)
3408{
3409 clear_pending (EV_A_ (W)w);
3410 if (expect_false (!ev_is_active (w)))
3411 return;
3412
3413 EV_FREQUENT_CHECK;
3414
3415 {
3416 int active = ev_active (w);
3417
3418 asyncs [active - 1] = asyncs [--asynccnt];
3419 ev_active (asyncs [active - 1]) = active;
3420 }
3421
3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
3425}
3426
3427void
3428ev_async_send (EV_P_ ev_async *w)
3429{
3430 w->sent = 1;
3431 evpipe_write (EV_A_ &async_pending);
2271} 3432}
2272#endif 3433#endif
2273 3434
2274/*****************************************************************************/ 3435/*****************************************************************************/
2275 3436
2285once_cb (EV_P_ struct ev_once *once, int revents) 3446once_cb (EV_P_ struct ev_once *once, int revents)
2286{ 3447{
2287 void (*cb)(int revents, void *arg) = once->cb; 3448 void (*cb)(int revents, void *arg) = once->cb;
2288 void *arg = once->arg; 3449 void *arg = once->arg;
2289 3450
2290 ev_io_stop (EV_A_ &once->io); 3451 ev_io_stop (EV_A_ &once->io);
2291 ev_timer_stop (EV_A_ &once->to); 3452 ev_timer_stop (EV_A_ &once->to);
2292 ev_free (once); 3453 ev_free (once);
2293 3454
2294 cb (revents, arg); 3455 cb (revents, arg);
2295} 3456}
2296 3457
2297static void 3458static void
2298once_cb_io (EV_P_ ev_io *w, int revents) 3459once_cb_io (EV_P_ ev_io *w, int revents)
2299{ 3460{
2300 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3461 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3462
3463 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2301} 3464}
2302 3465
2303static void 3466static void
2304once_cb_to (EV_P_ ev_timer *w, int revents) 3467once_cb_to (EV_P_ ev_timer *w, int revents)
2305{ 3468{
2306 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3469 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3470
3471 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2307} 3472}
2308 3473
2309void 3474void
2310ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3475ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2311{ 3476{
2333 ev_timer_set (&once->to, timeout, 0.); 3498 ev_timer_set (&once->to, timeout, 0.);
2334 ev_timer_start (EV_A_ &once->to); 3499 ev_timer_start (EV_A_ &once->to);
2335 } 3500 }
2336} 3501}
2337 3502
3503/*****************************************************************************/
3504
3505#if EV_WALK_ENABLE
3506void
3507ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3508{
3509 int i, j;
3510 ev_watcher_list *wl, *wn;
3511
3512 if (types & (EV_IO | EV_EMBED))
3513 for (i = 0; i < anfdmax; ++i)
3514 for (wl = anfds [i].head; wl; )
3515 {
3516 wn = wl->next;
3517
3518#if EV_EMBED_ENABLE
3519 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3520 {
3521 if (types & EV_EMBED)
3522 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3523 }
3524 else
3525#endif
3526#if EV_USE_INOTIFY
3527 if (ev_cb ((ev_io *)wl) == infy_cb)
3528 ;
3529 else
3530#endif
3531 if ((ev_io *)wl != &pipe_w)
3532 if (types & EV_IO)
3533 cb (EV_A_ EV_IO, wl);
3534
3535 wl = wn;
3536 }
3537
3538 if (types & (EV_TIMER | EV_STAT))
3539 for (i = timercnt + HEAP0; i-- > HEAP0; )
3540#if EV_STAT_ENABLE
3541 /*TODO: timer is not always active*/
3542 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3543 {
3544 if (types & EV_STAT)
3545 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3546 }
3547 else
3548#endif
3549 if (types & EV_TIMER)
3550 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3551
3552#if EV_PERIODIC_ENABLE
3553 if (types & EV_PERIODIC)
3554 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3555 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3556#endif
3557
3558#if EV_IDLE_ENABLE
3559 if (types & EV_IDLE)
3560 for (j = NUMPRI; i--; )
3561 for (i = idlecnt [j]; i--; )
3562 cb (EV_A_ EV_IDLE, idles [j][i]);
3563#endif
3564
3565#if EV_FORK_ENABLE
3566 if (types & EV_FORK)
3567 for (i = forkcnt; i--; )
3568 if (ev_cb (forks [i]) != embed_fork_cb)
3569 cb (EV_A_ EV_FORK, forks [i]);
3570#endif
3571
3572#if EV_ASYNC_ENABLE
3573 if (types & EV_ASYNC)
3574 for (i = asynccnt; i--; )
3575 cb (EV_A_ EV_ASYNC, asyncs [i]);
3576#endif
3577
3578 if (types & EV_PREPARE)
3579 for (i = preparecnt; i--; )
3580#if EV_EMBED_ENABLE
3581 if (ev_cb (prepares [i]) != embed_prepare_cb)
3582#endif
3583 cb (EV_A_ EV_PREPARE, prepares [i]);
3584
3585 if (types & EV_CHECK)
3586 for (i = checkcnt; i--; )
3587 cb (EV_A_ EV_CHECK, checks [i]);
3588
3589 if (types & EV_SIGNAL)
3590 for (i = 0; i < EV_NSIG - 1; ++i)
3591 for (wl = signals [i].head; wl; )
3592 {
3593 wn = wl->next;
3594 cb (EV_A_ EV_SIGNAL, wl);
3595 wl = wn;
3596 }
3597
3598 if (types & EV_CHILD)
3599 for (i = EV_PID_HASHSIZE; i--; )
3600 for (wl = childs [i]; wl; )
3601 {
3602 wn = wl->next;
3603 cb (EV_A_ EV_CHILD, wl);
3604 wl = wn;
3605 }
3606/* EV_STAT 0x00001000 /* stat data changed */
3607/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3608}
3609#endif
3610
2338#if EV_MULTIPLICITY 3611#if EV_MULTIPLICITY
2339 #include "ev_wrap.h" 3612 #include "ev_wrap.h"
2340#endif 3613#endif
2341 3614
2342#ifdef __cplusplus 3615#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines