ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.193 by root, Sat Dec 22 05:47:58 2007 UTC vs.
Revision 1.312 by root, Wed Aug 12 18:48:17 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
110# else 133# else
111# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
112# endif 135# endif
113# endif 136# endif
114 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
115#endif 154#endif
116 155
117#include <math.h> 156#include <math.h>
118#include <stdlib.h> 157#include <stdlib.h>
119#include <fcntl.h> 158#include <fcntl.h>
137#ifndef _WIN32 176#ifndef _WIN32
138# include <sys/time.h> 177# include <sys/time.h>
139# include <sys/wait.h> 178# include <sys/wait.h>
140# include <unistd.h> 179# include <unistd.h>
141#else 180#else
181# include <io.h>
142# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
143# include <windows.h> 183# include <windows.h>
144# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
145# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
146# endif 186# endif
147#endif 187#endif
148 188
149/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
150 225
151#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
152# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
153#endif 232#endif
154 233
155#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
156# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
157#endif 236#endif
158 237
159#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
160# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
161#endif 244#endif
162 245
163#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
164# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
165#endif 248#endif
171# define EV_USE_POLL 1 254# define EV_USE_POLL 1
172# endif 255# endif
173#endif 256#endif
174 257
175#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
176# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
177#endif 264#endif
178 265
179#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
180# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
181#endif 268#endif
183#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
184# define EV_USE_PORT 0 271# define EV_USE_PORT 0
185#endif 272#endif
186 273
187#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
188# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
189#endif 280#endif
190 281
191#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
192# if EV_MINIMAL 283# if EV_MINIMAL
193# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
202# else 293# else
203# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
204# endif 295# endif
205#endif 296#endif
206 297
207/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
208 347
209#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
210# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
211# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
212#endif 351#endif
226# include <sys/select.h> 365# include <sys/select.h>
227# endif 366# endif
228#endif 367#endif
229 368
230#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
231# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
232#endif 378#endif
233 379
234#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
235# include <winsock.h> 381# include <winsock.h>
236#endif 382#endif
237 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
238/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
239 417
240/* 418/*
241 * This is used to avoid floating point rounding problems. 419 * This is used to avoid floating point rounding problems.
242 * It is added to ev_rt_now when scheduling periodics 420 * It is added to ev_rt_now when scheduling periodics
243 * to ensure progress, time-wise, even when rounding 421 * to ensure progress, time-wise, even when rounding
255# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
256# define noinline __attribute__ ((noinline)) 434# define noinline __attribute__ ((noinline))
257#else 435#else
258# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
259# define noinline 437# define noinline
260# if __STDC_VERSION__ < 199901L 438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
261# define inline 439# define inline
262# endif 440# endif
263#endif 441#endif
264 442
265#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
270# define inline_speed static noinline 448# define inline_speed static noinline
271#else 449#else
272# define inline_speed static inline 450# define inline_speed static inline
273#endif 451#endif
274 452
275#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
276#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
277 460
278#define EMPTY /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
279#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
280 463
281typedef ev_watcher *W; 464typedef ev_watcher *W;
282typedef ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
283typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
284 467
468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
285static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
286 480
287#ifdef _WIN32 481#ifdef _WIN32
288# include "ev_win32.c" 482# include "ev_win32.c"
289#endif 483#endif
290 484
297{ 491{
298 syserr_cb = cb; 492 syserr_cb = cb;
299} 493}
300 494
301static void noinline 495static void noinline
302syserr (const char *msg) 496ev_syserr (const char *msg)
303{ 497{
304 if (!msg) 498 if (!msg)
305 msg = "(libev) system error"; 499 msg = "(libev) system error";
306 500
307 if (syserr_cb) 501 if (syserr_cb)
311 perror (msg); 505 perror (msg);
312 abort (); 506 abort ();
313 } 507 }
314} 508}
315 509
510static void *
511ev_realloc_emul (void *ptr, long size)
512{
513 /* some systems, notably openbsd and darwin, fail to properly
514 * implement realloc (x, 0) (as required by both ansi c-98 and
515 * the single unix specification, so work around them here.
516 */
517
518 if (size)
519 return realloc (ptr, size);
520
521 free (ptr);
522 return 0;
523}
524
316static void *(*alloc)(void *ptr, long size); 525static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
317 526
318void 527void
319ev_set_allocator (void *(*cb)(void *ptr, long size)) 528ev_set_allocator (void *(*cb)(void *ptr, long size))
320{ 529{
321 alloc = cb; 530 alloc = cb;
322} 531}
323 532
324inline_speed void * 533inline_speed void *
325ev_realloc (void *ptr, long size) 534ev_realloc (void *ptr, long size)
326{ 535{
327 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 536 ptr = alloc (ptr, size);
328 537
329 if (!ptr && size) 538 if (!ptr && size)
330 { 539 {
331 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 540 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
332 abort (); 541 abort ();
338#define ev_malloc(size) ev_realloc (0, (size)) 547#define ev_malloc(size) ev_realloc (0, (size))
339#define ev_free(ptr) ev_realloc ((ptr), 0) 548#define ev_free(ptr) ev_realloc ((ptr), 0)
340 549
341/*****************************************************************************/ 550/*****************************************************************************/
342 551
552/* set in reify when reification needed */
553#define EV_ANFD_REIFY 1
554
555/* file descriptor info structure */
343typedef struct 556typedef struct
344{ 557{
345 WL head; 558 WL head;
346 unsigned char events; 559 unsigned char events; /* the events watched for */
560 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
561 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
347 unsigned char reify; 562 unsigned char unused;
563#if EV_USE_EPOLL
564 unsigned int egen; /* generation counter to counter epoll bugs */
565#endif
348#if EV_SELECT_IS_WINSOCKET 566#if EV_SELECT_IS_WINSOCKET
349 SOCKET handle; 567 SOCKET handle;
350#endif 568#endif
351} ANFD; 569} ANFD;
352 570
571/* stores the pending event set for a given watcher */
353typedef struct 572typedef struct
354{ 573{
355 W w; 574 W w;
356 int events; 575 int events; /* the pending event set for the given watcher */
357} ANPENDING; 576} ANPENDING;
358 577
359#if EV_USE_INOTIFY 578#if EV_USE_INOTIFY
579/* hash table entry per inotify-id */
360typedef struct 580typedef struct
361{ 581{
362 WL head; 582 WL head;
363} ANFS; 583} ANFS;
584#endif
585
586/* Heap Entry */
587#if EV_HEAP_CACHE_AT
588 /* a heap element */
589 typedef struct {
590 ev_tstamp at;
591 WT w;
592 } ANHE;
593
594 #define ANHE_w(he) (he).w /* access watcher, read-write */
595 #define ANHE_at(he) (he).at /* access cached at, read-only */
596 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
597#else
598 /* a heap element */
599 typedef WT ANHE;
600
601 #define ANHE_w(he) (he)
602 #define ANHE_at(he) (he)->at
603 #define ANHE_at_cache(he)
364#endif 604#endif
365 605
366#if EV_MULTIPLICITY 606#if EV_MULTIPLICITY
367 607
368 struct ev_loop 608 struct ev_loop
387 627
388 static int ev_default_loop_ptr; 628 static int ev_default_loop_ptr;
389 629
390#endif 630#endif
391 631
632#if EV_MINIMAL < 2
633# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
634# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
635# define EV_INVOKE_PENDING invoke_cb (EV_A)
636#else
637# define EV_RELEASE_CB (void)0
638# define EV_ACQUIRE_CB (void)0
639# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
640#endif
641
642#define EVUNLOOP_RECURSE 0x80
643
392/*****************************************************************************/ 644/*****************************************************************************/
393 645
646#ifndef EV_HAVE_EV_TIME
394ev_tstamp 647ev_tstamp
395ev_time (void) 648ev_time (void)
396{ 649{
397#if EV_USE_REALTIME 650#if EV_USE_REALTIME
651 if (expect_true (have_realtime))
652 {
398 struct timespec ts; 653 struct timespec ts;
399 clock_gettime (CLOCK_REALTIME, &ts); 654 clock_gettime (CLOCK_REALTIME, &ts);
400 return ts.tv_sec + ts.tv_nsec * 1e-9; 655 return ts.tv_sec + ts.tv_nsec * 1e-9;
401#else 656 }
657#endif
658
402 struct timeval tv; 659 struct timeval tv;
403 gettimeofday (&tv, 0); 660 gettimeofday (&tv, 0);
404 return tv.tv_sec + tv.tv_usec * 1e-6; 661 return tv.tv_sec + tv.tv_usec * 1e-6;
405#endif
406} 662}
663#endif
407 664
408ev_tstamp inline_size 665inline_size ev_tstamp
409get_clock (void) 666get_clock (void)
410{ 667{
411#if EV_USE_MONOTONIC 668#if EV_USE_MONOTONIC
412 if (expect_true (have_monotonic)) 669 if (expect_true (have_monotonic))
413 { 670 {
439 ts.tv_sec = (time_t)delay; 696 ts.tv_sec = (time_t)delay;
440 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9); 697 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
441 698
442 nanosleep (&ts, 0); 699 nanosleep (&ts, 0);
443#elif defined(_WIN32) 700#elif defined(_WIN32)
444 Sleep (delay * 1e3); 701 Sleep ((unsigned long)(delay * 1e3));
445#else 702#else
446 struct timeval tv; 703 struct timeval tv;
447 704
448 tv.tv_sec = (time_t)delay; 705 tv.tv_sec = (time_t)delay;
449 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 706 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
450 707
708 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
709 /* something not guaranteed by newer posix versions, but guaranteed */
710 /* by older ones */
451 select (0, 0, 0, 0, &tv); 711 select (0, 0, 0, 0, &tv);
452#endif 712#endif
453 } 713 }
454} 714}
455 715
456/*****************************************************************************/ 716/*****************************************************************************/
457 717
458int inline_size 718#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
719
720/* find a suitable new size for the given array, */
721/* hopefully by rounding to a ncie-to-malloc size */
722inline_size int
459array_nextsize (int elem, int cur, int cnt) 723array_nextsize (int elem, int cur, int cnt)
460{ 724{
461 int ncur = cur + 1; 725 int ncur = cur + 1;
462 726
463 do 727 do
464 ncur <<= 1; 728 ncur <<= 1;
465 while (cnt > ncur); 729 while (cnt > ncur);
466 730
467 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 731 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
468 if (elem * ncur > 4096) 732 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
469 { 733 {
470 ncur *= elem; 734 ncur *= elem;
471 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 735 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
472 ncur = ncur - sizeof (void *) * 4; 736 ncur = ncur - sizeof (void *) * 4;
473 ncur /= elem; 737 ncur /= elem;
474 } 738 }
475 739
476 return ncur; 740 return ncur;
480array_realloc (int elem, void *base, int *cur, int cnt) 744array_realloc (int elem, void *base, int *cur, int cnt)
481{ 745{
482 *cur = array_nextsize (elem, *cur, cnt); 746 *cur = array_nextsize (elem, *cur, cnt);
483 return ev_realloc (base, elem * *cur); 747 return ev_realloc (base, elem * *cur);
484} 748}
749
750#define array_init_zero(base,count) \
751 memset ((void *)(base), 0, sizeof (*(base)) * (count))
485 752
486#define array_needsize(type,base,cur,cnt,init) \ 753#define array_needsize(type,base,cur,cnt,init) \
487 if (expect_false ((cnt) > (cur))) \ 754 if (expect_false ((cnt) > (cur))) \
488 { \ 755 { \
489 int ocur_ = (cur); \ 756 int ocur_ = (cur); \
501 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 768 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
502 } 769 }
503#endif 770#endif
504 771
505#define array_free(stem, idx) \ 772#define array_free(stem, idx) \
506 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 773 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
507 774
508/*****************************************************************************/ 775/*****************************************************************************/
776
777/* dummy callback for pending events */
778static void noinline
779pendingcb (EV_P_ ev_prepare *w, int revents)
780{
781}
509 782
510void noinline 783void noinline
511ev_feed_event (EV_P_ void *w, int revents) 784ev_feed_event (EV_P_ void *w, int revents)
512{ 785{
513 W w_ = (W)w; 786 W w_ = (W)w;
522 pendings [pri][w_->pending - 1].w = w_; 795 pendings [pri][w_->pending - 1].w = w_;
523 pendings [pri][w_->pending - 1].events = revents; 796 pendings [pri][w_->pending - 1].events = revents;
524 } 797 }
525} 798}
526 799
527void inline_speed 800inline_speed void
801feed_reverse (EV_P_ W w)
802{
803 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
804 rfeeds [rfeedcnt++] = w;
805}
806
807inline_size void
808feed_reverse_done (EV_P_ int revents)
809{
810 do
811 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
812 while (rfeedcnt);
813}
814
815inline_speed void
528queue_events (EV_P_ W *events, int eventcnt, int type) 816queue_events (EV_P_ W *events, int eventcnt, int type)
529{ 817{
530 int i; 818 int i;
531 819
532 for (i = 0; i < eventcnt; ++i) 820 for (i = 0; i < eventcnt; ++i)
533 ev_feed_event (EV_A_ events [i], type); 821 ev_feed_event (EV_A_ events [i], type);
534} 822}
535 823
536/*****************************************************************************/ 824/*****************************************************************************/
537 825
538void inline_size 826inline_speed void
539anfds_init (ANFD *base, int count)
540{
541 while (count--)
542 {
543 base->head = 0;
544 base->events = EV_NONE;
545 base->reify = 0;
546
547 ++base;
548 }
549}
550
551void inline_speed
552fd_event (EV_P_ int fd, int revents) 827fd_event_nc (EV_P_ int fd, int revents)
553{ 828{
554 ANFD *anfd = anfds + fd; 829 ANFD *anfd = anfds + fd;
555 ev_io *w; 830 ev_io *w;
556 831
557 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 832 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
561 if (ev) 836 if (ev)
562 ev_feed_event (EV_A_ (W)w, ev); 837 ev_feed_event (EV_A_ (W)w, ev);
563 } 838 }
564} 839}
565 840
841/* do not submit kernel events for fds that have reify set */
842/* because that means they changed while we were polling for new events */
843inline_speed void
844fd_event (EV_P_ int fd, int revents)
845{
846 ANFD *anfd = anfds + fd;
847
848 if (expect_true (!anfd->reify))
849 fd_event_nc (EV_A_ fd, revents);
850}
851
566void 852void
567ev_feed_fd_event (EV_P_ int fd, int revents) 853ev_feed_fd_event (EV_P_ int fd, int revents)
568{ 854{
569 if (fd >= 0 && fd < anfdmax) 855 if (fd >= 0 && fd < anfdmax)
570 fd_event (EV_A_ fd, revents); 856 fd_event_nc (EV_A_ fd, revents);
571} 857}
572 858
573void inline_size 859/* make sure the external fd watch events are in-sync */
860/* with the kernel/libev internal state */
861inline_size void
574fd_reify (EV_P) 862fd_reify (EV_P)
575{ 863{
576 int i; 864 int i;
577 865
578 for (i = 0; i < fdchangecnt; ++i) 866 for (i = 0; i < fdchangecnt; ++i)
587 events |= (unsigned char)w->events; 875 events |= (unsigned char)w->events;
588 876
589#if EV_SELECT_IS_WINSOCKET 877#if EV_SELECT_IS_WINSOCKET
590 if (events) 878 if (events)
591 { 879 {
592 unsigned long argp; 880 unsigned long arg;
881 #ifdef EV_FD_TO_WIN32_HANDLE
882 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
883 #else
593 anfd->handle = _get_osfhandle (fd); 884 anfd->handle = _get_osfhandle (fd);
885 #endif
594 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 886 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
595 } 887 }
596#endif 888#endif
597 889
598 { 890 {
599 unsigned char o_events = anfd->events; 891 unsigned char o_events = anfd->events;
600 unsigned char o_reify = anfd->reify; 892 unsigned char o_reify = anfd->reify;
601 893
602 anfd->reify = 0; 894 anfd->reify = 0;
603 anfd->events = events; 895 anfd->events = events;
604 896
605 if (o_events != events || o_reify & EV_IOFDSET) 897 if (o_events != events || o_reify & EV__IOFDSET)
606 backend_modify (EV_A_ fd, o_events, events); 898 backend_modify (EV_A_ fd, o_events, events);
607 } 899 }
608 } 900 }
609 901
610 fdchangecnt = 0; 902 fdchangecnt = 0;
611} 903}
612 904
613void inline_size 905/* something about the given fd changed */
906inline_size void
614fd_change (EV_P_ int fd, int flags) 907fd_change (EV_P_ int fd, int flags)
615{ 908{
616 unsigned char reify = anfds [fd].reify; 909 unsigned char reify = anfds [fd].reify;
617 anfds [fd].reify |= flags; 910 anfds [fd].reify |= flags;
618 911
622 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 915 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
623 fdchanges [fdchangecnt - 1] = fd; 916 fdchanges [fdchangecnt - 1] = fd;
624 } 917 }
625} 918}
626 919
627void inline_speed 920/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
921inline_speed void
628fd_kill (EV_P_ int fd) 922fd_kill (EV_P_ int fd)
629{ 923{
630 ev_io *w; 924 ev_io *w;
631 925
632 while ((w = (ev_io *)anfds [fd].head)) 926 while ((w = (ev_io *)anfds [fd].head))
634 ev_io_stop (EV_A_ w); 928 ev_io_stop (EV_A_ w);
635 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 929 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
636 } 930 }
637} 931}
638 932
639int inline_size 933/* check whether the given fd is atcually valid, for error recovery */
934inline_size int
640fd_valid (int fd) 935fd_valid (int fd)
641{ 936{
642#ifdef _WIN32 937#ifdef _WIN32
643 return _get_osfhandle (fd) != -1; 938 return _get_osfhandle (fd) != -1;
644#else 939#else
652{ 947{
653 int fd; 948 int fd;
654 949
655 for (fd = 0; fd < anfdmax; ++fd) 950 for (fd = 0; fd < anfdmax; ++fd)
656 if (anfds [fd].events) 951 if (anfds [fd].events)
657 if (!fd_valid (fd) == -1 && errno == EBADF) 952 if (!fd_valid (fd) && errno == EBADF)
658 fd_kill (EV_A_ fd); 953 fd_kill (EV_A_ fd);
659} 954}
660 955
661/* called on ENOMEM in select/poll to kill some fds and retry */ 956/* called on ENOMEM in select/poll to kill some fds and retry */
662static void noinline 957static void noinline
666 961
667 for (fd = anfdmax; fd--; ) 962 for (fd = anfdmax; fd--; )
668 if (anfds [fd].events) 963 if (anfds [fd].events)
669 { 964 {
670 fd_kill (EV_A_ fd); 965 fd_kill (EV_A_ fd);
671 return; 966 break;
672 } 967 }
673} 968}
674 969
675/* usually called after fork if backend needs to re-arm all fds from scratch */ 970/* usually called after fork if backend needs to re-arm all fds from scratch */
676static void noinline 971static void noinline
680 975
681 for (fd = 0; fd < anfdmax; ++fd) 976 for (fd = 0; fd < anfdmax; ++fd)
682 if (anfds [fd].events) 977 if (anfds [fd].events)
683 { 978 {
684 anfds [fd].events = 0; 979 anfds [fd].events = 0;
980 anfds [fd].emask = 0;
685 fd_change (EV_A_ fd, EV_IOFDSET | 1); 981 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
686 } 982 }
687} 983}
688 984
689/*****************************************************************************/ 985/*****************************************************************************/
690 986
691void inline_speed 987/*
692upheap (WT *heap, int k) 988 * the heap functions want a real array index. array index 0 uis guaranteed to not
693{ 989 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
694 WT w = heap [k]; 990 * the branching factor of the d-tree.
991 */
695 992
696 while (k) 993/*
697 { 994 * at the moment we allow libev the luxury of two heaps,
698 int p = (k - 1) >> 1; 995 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
996 * which is more cache-efficient.
997 * the difference is about 5% with 50000+ watchers.
998 */
999#if EV_USE_4HEAP
699 1000
700 if (heap [p]->at <= w->at) 1001#define DHEAP 4
1002#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1003#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1004#define UPHEAP_DONE(p,k) ((p) == (k))
1005
1006/* away from the root */
1007inline_speed void
1008downheap (ANHE *heap, int N, int k)
1009{
1010 ANHE he = heap [k];
1011 ANHE *E = heap + N + HEAP0;
1012
1013 for (;;)
1014 {
1015 ev_tstamp minat;
1016 ANHE *minpos;
1017 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1018
1019 /* find minimum child */
1020 if (expect_true (pos + DHEAP - 1 < E))
1021 {
1022 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1023 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1024 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1025 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1026 }
1027 else if (pos < E)
1028 {
1029 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1030 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1031 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1032 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1033 }
1034 else
701 break; 1035 break;
702 1036
1037 if (ANHE_at (he) <= minat)
1038 break;
1039
1040 heap [k] = *minpos;
1041 ev_active (ANHE_w (*minpos)) = k;
1042
1043 k = minpos - heap;
1044 }
1045
1046 heap [k] = he;
1047 ev_active (ANHE_w (he)) = k;
1048}
1049
1050#else /* 4HEAP */
1051
1052#define HEAP0 1
1053#define HPARENT(k) ((k) >> 1)
1054#define UPHEAP_DONE(p,k) (!(p))
1055
1056/* away from the root */
1057inline_speed void
1058downheap (ANHE *heap, int N, int k)
1059{
1060 ANHE he = heap [k];
1061
1062 for (;;)
1063 {
1064 int c = k << 1;
1065
1066 if (c >= N + HEAP0)
1067 break;
1068
1069 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1070 ? 1 : 0;
1071
1072 if (ANHE_at (he) <= ANHE_at (heap [c]))
1073 break;
1074
1075 heap [k] = heap [c];
1076 ev_active (ANHE_w (heap [k])) = k;
1077
1078 k = c;
1079 }
1080
1081 heap [k] = he;
1082 ev_active (ANHE_w (he)) = k;
1083}
1084#endif
1085
1086/* towards the root */
1087inline_speed void
1088upheap (ANHE *heap, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int p = HPARENT (k);
1095
1096 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1097 break;
1098
703 heap [k] = heap [p]; 1099 heap [k] = heap [p];
704 ((W)heap [k])->active = k + 1; 1100 ev_active (ANHE_w (heap [k])) = k;
705 k = p; 1101 k = p;
706 } 1102 }
707 1103
708 heap [k] = w; 1104 heap [k] = he;
709 ((W)heap [k])->active = k + 1; 1105 ev_active (ANHE_w (he)) = k;
710} 1106}
711 1107
712void inline_speed 1108/* move an element suitably so it is in a correct place */
713downheap (WT *heap, int N, int k) 1109inline_size void
714{
715 WT w = heap [k];
716
717 for (;;)
718 {
719 int c = (k << 1) + 1;
720
721 if (c >= N)
722 break;
723
724 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
725 ? 1 : 0;
726
727 if (w->at <= heap [c]->at)
728 break;
729
730 heap [k] = heap [c];
731 ((W)heap [k])->active = k + 1;
732
733 k = c;
734 }
735
736 heap [k] = w;
737 ((W)heap [k])->active = k + 1;
738}
739
740void inline_size
741adjustheap (WT *heap, int N, int k) 1110adjustheap (ANHE *heap, int N, int k)
742{ 1111{
1112 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
743 upheap (heap, k); 1113 upheap (heap, k);
1114 else
744 downheap (heap, N, k); 1115 downheap (heap, N, k);
1116}
1117
1118/* rebuild the heap: this function is used only once and executed rarely */
1119inline_size void
1120reheap (ANHE *heap, int N)
1121{
1122 int i;
1123
1124 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1125 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1126 for (i = 0; i < N; ++i)
1127 upheap (heap, i + HEAP0);
745} 1128}
746 1129
747/*****************************************************************************/ 1130/*****************************************************************************/
748 1131
1132/* associate signal watchers to a signal signal */
749typedef struct 1133typedef struct
750{ 1134{
1135 EV_ATOMIC_T pending;
1136#if EV_MULTIPLICITY
1137 EV_P;
1138#endif
751 WL head; 1139 WL head;
752 sig_atomic_t volatile gotsig;
753} ANSIG; 1140} ANSIG;
754 1141
755static ANSIG *signals; 1142static ANSIG signals [EV_NSIG - 1];
756static int signalmax;
757 1143
758static int sigpipe [2]; 1144/*****************************************************************************/
759static sig_atomic_t volatile gotsig;
760static ev_io sigev;
761 1145
762void inline_size 1146/* used to prepare libev internal fd's */
763signals_init (ANSIG *base, int count) 1147/* this is not fork-safe */
764{ 1148inline_speed void
765 while (count--)
766 {
767 base->head = 0;
768 base->gotsig = 0;
769
770 ++base;
771 }
772}
773
774static void
775sighandler (int signum)
776{
777#if _WIN32
778 signal (signum, sighandler);
779#endif
780
781 signals [signum - 1].gotsig = 1;
782
783 if (!gotsig)
784 {
785 int old_errno = errno;
786 gotsig = 1;
787 write (sigpipe [1], &signum, 1);
788 errno = old_errno;
789 }
790}
791
792void noinline
793ev_feed_signal_event (EV_P_ int signum)
794{
795 WL w;
796
797#if EV_MULTIPLICITY
798 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
799#endif
800
801 --signum;
802
803 if (signum < 0 || signum >= signalmax)
804 return;
805
806 signals [signum].gotsig = 0;
807
808 for (w = signals [signum].head; w; w = w->next)
809 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
810}
811
812static void
813sigcb (EV_P_ ev_io *iow, int revents)
814{
815 int signum;
816
817 read (sigpipe [0], &revents, 1);
818 gotsig = 0;
819
820 for (signum = signalmax; signum--; )
821 if (signals [signum].gotsig)
822 ev_feed_signal_event (EV_A_ signum + 1);
823}
824
825void inline_speed
826fd_intern (int fd) 1149fd_intern (int fd)
827{ 1150{
828#ifdef _WIN32 1151#ifdef _WIN32
829 int arg = 1; 1152 unsigned long arg = 1;
830 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1153 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
831#else 1154#else
832 fcntl (fd, F_SETFD, FD_CLOEXEC); 1155 fcntl (fd, F_SETFD, FD_CLOEXEC);
833 fcntl (fd, F_SETFL, O_NONBLOCK); 1156 fcntl (fd, F_SETFL, O_NONBLOCK);
834#endif 1157#endif
835} 1158}
836 1159
837static void noinline 1160static void noinline
838siginit (EV_P) 1161evpipe_init (EV_P)
839{ 1162{
1163 if (!ev_is_active (&pipe_w))
1164 {
1165#if EV_USE_EVENTFD
1166 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1167 if (evfd < 0 && errno == EINVAL)
1168 evfd = eventfd (0, 0);
1169
1170 if (evfd >= 0)
1171 {
1172 evpipe [0] = -1;
1173 fd_intern (evfd); /* doing it twice doesn't hurt */
1174 ev_io_set (&pipe_w, evfd, EV_READ);
1175 }
1176 else
1177#endif
1178 {
1179 while (pipe (evpipe))
1180 ev_syserr ("(libev) error creating signal/async pipe");
1181
840 fd_intern (sigpipe [0]); 1182 fd_intern (evpipe [0]);
841 fd_intern (sigpipe [1]); 1183 fd_intern (evpipe [1]);
1184 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1185 }
842 1186
843 ev_io_set (&sigev, sigpipe [0], EV_READ);
844 ev_io_start (EV_A_ &sigev); 1187 ev_io_start (EV_A_ &pipe_w);
845 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1188 ev_unref (EV_A); /* watcher should not keep loop alive */
1189 }
1190}
1191
1192inline_size void
1193evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1194{
1195 if (!*flag)
1196 {
1197 int old_errno = errno; /* save errno because write might clobber it */
1198
1199 *flag = 1;
1200
1201#if EV_USE_EVENTFD
1202 if (evfd >= 0)
1203 {
1204 uint64_t counter = 1;
1205 write (evfd, &counter, sizeof (uint64_t));
1206 }
1207 else
1208#endif
1209 write (evpipe [1], &old_errno, 1);
1210
1211 errno = old_errno;
1212 }
1213}
1214
1215/* called whenever the libev signal pipe */
1216/* got some events (signal, async) */
1217static void
1218pipecb (EV_P_ ev_io *iow, int revents)
1219{
1220 int i;
1221
1222#if EV_USE_EVENTFD
1223 if (evfd >= 0)
1224 {
1225 uint64_t counter;
1226 read (evfd, &counter, sizeof (uint64_t));
1227 }
1228 else
1229#endif
1230 {
1231 char dummy;
1232 read (evpipe [0], &dummy, 1);
1233 }
1234
1235 if (sig_pending)
1236 {
1237 sig_pending = 0;
1238
1239 for (i = EV_NSIG - 1; i--; )
1240 if (expect_false (signals [i].pending))
1241 ev_feed_signal_event (EV_A_ i + 1);
1242 }
1243
1244#if EV_ASYNC_ENABLE
1245 if (async_pending)
1246 {
1247 async_pending = 0;
1248
1249 for (i = asynccnt; i--; )
1250 if (asyncs [i]->sent)
1251 {
1252 asyncs [i]->sent = 0;
1253 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1254 }
1255 }
1256#endif
846} 1257}
847 1258
848/*****************************************************************************/ 1259/*****************************************************************************/
849 1260
1261static void
1262ev_sighandler (int signum)
1263{
1264#if EV_MULTIPLICITY
1265 EV_P = signals [signum - 1].loop;
1266#endif
1267
1268#if _WIN32
1269 signal (signum, ev_sighandler);
1270#endif
1271
1272 signals [signum - 1].pending = 1;
1273 evpipe_write (EV_A_ &sig_pending);
1274}
1275
1276void noinline
1277ev_feed_signal_event (EV_P_ int signum)
1278{
1279 WL w;
1280
1281 if (expect_false (signum <= 0 || signum > EV_NSIG))
1282 return;
1283
1284 --signum;
1285
1286#if EV_MULTIPLICITY
1287 /* it is permissible to try to feed a signal to the wrong loop */
1288 /* or, likely more useful, feeding a signal nobody is waiting for */
1289
1290 if (expect_false (signals [signum].loop != EV_A))
1291 return;
1292#endif
1293
1294 signals [signum].pending = 0;
1295
1296 for (w = signals [signum].head; w; w = w->next)
1297 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1298}
1299
1300#if EV_USE_SIGNALFD
1301static void
1302sigfdcb (EV_P_ ev_io *iow, int revents)
1303{
1304 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1305
1306 for (;;)
1307 {
1308 ssize_t res = read (sigfd, si, sizeof (si));
1309
1310 /* not ISO-C, as res might be -1, but works with SuS */
1311 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1312 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1313
1314 if (res < (ssize_t)sizeof (si))
1315 break;
1316 }
1317}
1318#endif
1319
1320/*****************************************************************************/
1321
850static WL childs [EV_PID_HASHSIZE]; 1322static WL childs [EV_PID_HASHSIZE];
851 1323
852#ifndef _WIN32 1324#ifndef _WIN32
853 1325
854static ev_signal childev; 1326static ev_signal childev;
855 1327
856void inline_speed 1328#ifndef WIFCONTINUED
1329# define WIFCONTINUED(status) 0
1330#endif
1331
1332/* handle a single child status event */
1333inline_speed void
857child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1334child_reap (EV_P_ int chain, int pid, int status)
858{ 1335{
859 ev_child *w; 1336 ev_child *w;
1337 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
860 1338
861 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1339 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1340 {
862 if (w->pid == pid || !w->pid) 1341 if ((w->pid == pid || !w->pid)
1342 && (!traced || (w->flags & 1)))
863 { 1343 {
864 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1344 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
865 w->rpid = pid; 1345 w->rpid = pid;
866 w->rstatus = status; 1346 w->rstatus = status;
867 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1347 ev_feed_event (EV_A_ (W)w, EV_CHILD);
868 } 1348 }
1349 }
869} 1350}
870 1351
871#ifndef WCONTINUED 1352#ifndef WCONTINUED
872# define WCONTINUED 0 1353# define WCONTINUED 0
873#endif 1354#endif
874 1355
1356/* called on sigchld etc., calls waitpid */
875static void 1357static void
876childcb (EV_P_ ev_signal *sw, int revents) 1358childcb (EV_P_ ev_signal *sw, int revents)
877{ 1359{
878 int pid, status; 1360 int pid, status;
879 1361
882 if (!WCONTINUED 1364 if (!WCONTINUED
883 || errno != EINVAL 1365 || errno != EINVAL
884 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1366 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
885 return; 1367 return;
886 1368
887 /* make sure we are called again until all childs have been reaped */ 1369 /* make sure we are called again until all children have been reaped */
888 /* we need to do it this way so that the callback gets called before we continue */ 1370 /* we need to do it this way so that the callback gets called before we continue */
889 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1371 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
890 1372
891 child_reap (EV_A_ sw, pid, pid, status); 1373 child_reap (EV_A_ pid, pid, status);
892 if (EV_PID_HASHSIZE > 1) 1374 if (EV_PID_HASHSIZE > 1)
893 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1375 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
894} 1376}
895 1377
896#endif 1378#endif
897 1379
898/*****************************************************************************/ 1380/*****************************************************************************/
960 /* kqueue is borked on everything but netbsd apparently */ 1442 /* kqueue is borked on everything but netbsd apparently */
961 /* it usually doesn't work correctly on anything but sockets and pipes */ 1443 /* it usually doesn't work correctly on anything but sockets and pipes */
962 flags &= ~EVBACKEND_KQUEUE; 1444 flags &= ~EVBACKEND_KQUEUE;
963#endif 1445#endif
964#ifdef __APPLE__ 1446#ifdef __APPLE__
965 // flags &= ~EVBACKEND_KQUEUE; for documentation 1447 /* only select works correctly on that "unix-certified" platform */
966 flags &= ~EVBACKEND_POLL; 1448 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1449 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
967#endif 1450#endif
968 1451
969 return flags; 1452 return flags;
970} 1453}
971 1454
972unsigned int 1455unsigned int
973ev_embeddable_backends (void) 1456ev_embeddable_backends (void)
974{ 1457{
1458 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1459
975 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 1460 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
976 return EVBACKEND_KQUEUE 1461 /* please fix it and tell me how to detect the fix */
977 | EVBACKEND_PORT; 1462 flags &= ~EVBACKEND_EPOLL;
1463
1464 return flags;
978} 1465}
979 1466
980unsigned int 1467unsigned int
981ev_backend (EV_P) 1468ev_backend (EV_P)
982{ 1469{
983 return backend; 1470 return backend;
984} 1471}
985 1472
1473#if EV_MINIMAL < 2
986unsigned int 1474unsigned int
987ev_loop_count (EV_P) 1475ev_loop_count (EV_P)
988{ 1476{
989 return loop_count; 1477 return loop_count;
990} 1478}
991 1479
1480unsigned int
1481ev_loop_depth (EV_P)
1482{
1483 return loop_depth;
1484}
1485
992void 1486void
993ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1487ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
994{ 1488{
995 io_blocktime = interval; 1489 io_blocktime = interval;
996} 1490}
999ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1493ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1000{ 1494{
1001 timeout_blocktime = interval; 1495 timeout_blocktime = interval;
1002} 1496}
1003 1497
1498void
1499ev_set_userdata (EV_P_ void *data)
1500{
1501 userdata = data;
1502}
1503
1504void *
1505ev_userdata (EV_P)
1506{
1507 return userdata;
1508}
1509
1510void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1511{
1512 invoke_cb = invoke_pending_cb;
1513}
1514
1515void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1516{
1517 release_cb = release;
1518 acquire_cb = acquire;
1519}
1520#endif
1521
1522/* initialise a loop structure, must be zero-initialised */
1004static void noinline 1523static void noinline
1005loop_init (EV_P_ unsigned int flags) 1524loop_init (EV_P_ unsigned int flags)
1006{ 1525{
1007 if (!backend) 1526 if (!backend)
1008 { 1527 {
1528#if EV_USE_REALTIME
1529 if (!have_realtime)
1530 {
1531 struct timespec ts;
1532
1533 if (!clock_gettime (CLOCK_REALTIME, &ts))
1534 have_realtime = 1;
1535 }
1536#endif
1537
1009#if EV_USE_MONOTONIC 1538#if EV_USE_MONOTONIC
1539 if (!have_monotonic)
1010 { 1540 {
1011 struct timespec ts; 1541 struct timespec ts;
1542
1012 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1543 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1013 have_monotonic = 1; 1544 have_monotonic = 1;
1014 } 1545 }
1015#endif 1546#endif
1016
1017 ev_rt_now = ev_time ();
1018 mn_now = get_clock ();
1019 now_floor = mn_now;
1020 rtmn_diff = ev_rt_now - mn_now;
1021
1022 io_blocktime = 0.;
1023 timeout_blocktime = 0.;
1024 1547
1025 /* pid check not overridable via env */ 1548 /* pid check not overridable via env */
1026#ifndef _WIN32 1549#ifndef _WIN32
1027 if (flags & EVFLAG_FORKCHECK) 1550 if (flags & EVFLAG_FORKCHECK)
1028 curpid = getpid (); 1551 curpid = getpid ();
1031 if (!(flags & EVFLAG_NOENV) 1554 if (!(flags & EVFLAG_NOENV)
1032 && !enable_secure () 1555 && !enable_secure ()
1033 && getenv ("LIBEV_FLAGS")) 1556 && getenv ("LIBEV_FLAGS"))
1034 flags = atoi (getenv ("LIBEV_FLAGS")); 1557 flags = atoi (getenv ("LIBEV_FLAGS"));
1035 1558
1559 ev_rt_now = ev_time ();
1560 mn_now = get_clock ();
1561 now_floor = mn_now;
1562 rtmn_diff = ev_rt_now - mn_now;
1563#if EV_MINIMAL < 2
1564 invoke_cb = ev_invoke_pending;
1565#endif
1566
1567 io_blocktime = 0.;
1568 timeout_blocktime = 0.;
1569 backend = 0;
1570 backend_fd = -1;
1571 sig_pending = 0;
1572#if EV_ASYNC_ENABLE
1573 async_pending = 0;
1574#endif
1575#if EV_USE_INOTIFY
1576 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1577#endif
1578#if EV_USE_SIGNALFD
1579 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1580#endif
1581
1036 if (!(flags & 0x0000ffffUL)) 1582 if (!(flags & 0x0000ffffU))
1037 flags |= ev_recommended_backends (); 1583 flags |= ev_recommended_backends ();
1038
1039 backend = 0;
1040 backend_fd = -1;
1041#if EV_USE_INOTIFY
1042 fs_fd = -2;
1043#endif
1044 1584
1045#if EV_USE_PORT 1585#if EV_USE_PORT
1046 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1586 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1047#endif 1587#endif
1048#if EV_USE_KQUEUE 1588#if EV_USE_KQUEUE
1056#endif 1596#endif
1057#if EV_USE_SELECT 1597#if EV_USE_SELECT
1058 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1598 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1059#endif 1599#endif
1060 1600
1601 ev_prepare_init (&pending_w, pendingcb);
1602
1061 ev_init (&sigev, sigcb); 1603 ev_init (&pipe_w, pipecb);
1062 ev_set_priority (&sigev, EV_MAXPRI); 1604 ev_set_priority (&pipe_w, EV_MAXPRI);
1063 } 1605 }
1064} 1606}
1065 1607
1608/* free up a loop structure */
1066static void noinline 1609static void noinline
1067loop_destroy (EV_P) 1610loop_destroy (EV_P)
1068{ 1611{
1069 int i; 1612 int i;
1613
1614 if (ev_is_active (&pipe_w))
1615 {
1616 /*ev_ref (EV_A);*/
1617 /*ev_io_stop (EV_A_ &pipe_w);*/
1618
1619#if EV_USE_EVENTFD
1620 if (evfd >= 0)
1621 close (evfd);
1622#endif
1623
1624 if (evpipe [0] >= 0)
1625 {
1626 close (evpipe [0]);
1627 close (evpipe [1]);
1628 }
1629 }
1630
1631#if EV_USE_SIGNALFD
1632 if (ev_is_active (&sigfd_w))
1633 {
1634 /*ev_ref (EV_A);*/
1635 /*ev_io_stop (EV_A_ &sigfd_w);*/
1636
1637 close (sigfd);
1638 }
1639#endif
1070 1640
1071#if EV_USE_INOTIFY 1641#if EV_USE_INOTIFY
1072 if (fs_fd >= 0) 1642 if (fs_fd >= 0)
1073 close (fs_fd); 1643 close (fs_fd);
1074#endif 1644#endif
1098#if EV_IDLE_ENABLE 1668#if EV_IDLE_ENABLE
1099 array_free (idle, [i]); 1669 array_free (idle, [i]);
1100#endif 1670#endif
1101 } 1671 }
1102 1672
1103 ev_free (anfds); anfdmax = 0; 1673 ev_free (anfds); anfds = 0; anfdmax = 0;
1104 1674
1105 /* have to use the microsoft-never-gets-it-right macro */ 1675 /* have to use the microsoft-never-gets-it-right macro */
1676 array_free (rfeed, EMPTY);
1106 array_free (fdchange, EMPTY); 1677 array_free (fdchange, EMPTY);
1107 array_free (timer, EMPTY); 1678 array_free (timer, EMPTY);
1108#if EV_PERIODIC_ENABLE 1679#if EV_PERIODIC_ENABLE
1109 array_free (periodic, EMPTY); 1680 array_free (periodic, EMPTY);
1110#endif 1681#endif
1111#if EV_FORK_ENABLE 1682#if EV_FORK_ENABLE
1112 array_free (fork, EMPTY); 1683 array_free (fork, EMPTY);
1113#endif 1684#endif
1114 array_free (prepare, EMPTY); 1685 array_free (prepare, EMPTY);
1115 array_free (check, EMPTY); 1686 array_free (check, EMPTY);
1687#if EV_ASYNC_ENABLE
1688 array_free (async, EMPTY);
1689#endif
1116 1690
1117 backend = 0; 1691 backend = 0;
1118} 1692}
1119 1693
1694#if EV_USE_INOTIFY
1120void inline_size infy_fork (EV_P); 1695inline_size void infy_fork (EV_P);
1696#endif
1121 1697
1122void inline_size 1698inline_size void
1123loop_fork (EV_P) 1699loop_fork (EV_P)
1124{ 1700{
1125#if EV_USE_PORT 1701#if EV_USE_PORT
1126 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1702 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1127#endif 1703#endif
1133#endif 1709#endif
1134#if EV_USE_INOTIFY 1710#if EV_USE_INOTIFY
1135 infy_fork (EV_A); 1711 infy_fork (EV_A);
1136#endif 1712#endif
1137 1713
1138 if (ev_is_active (&sigev)) 1714 if (ev_is_active (&pipe_w))
1139 { 1715 {
1140 /* default loop */ 1716 /* this "locks" the handlers against writing to the pipe */
1717 /* while we modify the fd vars */
1718 sig_pending = 1;
1719#if EV_ASYNC_ENABLE
1720 async_pending = 1;
1721#endif
1141 1722
1142 ev_ref (EV_A); 1723 ev_ref (EV_A);
1143 ev_io_stop (EV_A_ &sigev); 1724 ev_io_stop (EV_A_ &pipe_w);
1725
1726#if EV_USE_EVENTFD
1727 if (evfd >= 0)
1728 close (evfd);
1729#endif
1730
1731 if (evpipe [0] >= 0)
1732 {
1144 close (sigpipe [0]); 1733 close (evpipe [0]);
1145 close (sigpipe [1]); 1734 close (evpipe [1]);
1735 }
1146 1736
1147 while (pipe (sigpipe))
1148 syserr ("(libev) error creating pipe");
1149
1150 siginit (EV_A); 1737 evpipe_init (EV_A);
1738 /* now iterate over everything, in case we missed something */
1739 pipecb (EV_A_ &pipe_w, EV_READ);
1151 } 1740 }
1152 1741
1153 postfork = 0; 1742 postfork = 0;
1154} 1743}
1155 1744
1156#if EV_MULTIPLICITY 1745#if EV_MULTIPLICITY
1746
1157struct ev_loop * 1747struct ev_loop *
1158ev_loop_new (unsigned int flags) 1748ev_loop_new (unsigned int flags)
1159{ 1749{
1160 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1750 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1161 1751
1162 memset (loop, 0, sizeof (struct ev_loop)); 1752 memset (EV_A, 0, sizeof (struct ev_loop));
1163
1164 loop_init (EV_A_ flags); 1753 loop_init (EV_A_ flags);
1165 1754
1166 if (ev_backend (EV_A)) 1755 if (ev_backend (EV_A))
1167 return loop; 1756 return EV_A;
1168 1757
1169 return 0; 1758 return 0;
1170} 1759}
1171 1760
1172void 1761void
1177} 1766}
1178 1767
1179void 1768void
1180ev_loop_fork (EV_P) 1769ev_loop_fork (EV_P)
1181{ 1770{
1182 postfork = 1; 1771 postfork = 1; /* must be in line with ev_default_fork */
1183} 1772}
1773#endif /* multiplicity */
1184 1774
1775#if EV_VERIFY
1776static void noinline
1777verify_watcher (EV_P_ W w)
1778{
1779 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1780
1781 if (w->pending)
1782 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1783}
1784
1785static void noinline
1786verify_heap (EV_P_ ANHE *heap, int N)
1787{
1788 int i;
1789
1790 for (i = HEAP0; i < N + HEAP0; ++i)
1791 {
1792 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1793 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1794 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1795
1796 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1797 }
1798}
1799
1800static void noinline
1801array_verify (EV_P_ W *ws, int cnt)
1802{
1803 while (cnt--)
1804 {
1805 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1806 verify_watcher (EV_A_ ws [cnt]);
1807 }
1808}
1809#endif
1810
1811#if EV_MINIMAL < 2
1812void
1813ev_loop_verify (EV_P)
1814{
1815#if EV_VERIFY
1816 int i;
1817 WL w;
1818
1819 assert (activecnt >= -1);
1820
1821 assert (fdchangemax >= fdchangecnt);
1822 for (i = 0; i < fdchangecnt; ++i)
1823 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1824
1825 assert (anfdmax >= 0);
1826 for (i = 0; i < anfdmax; ++i)
1827 for (w = anfds [i].head; w; w = w->next)
1828 {
1829 verify_watcher (EV_A_ (W)w);
1830 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1831 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1832 }
1833
1834 assert (timermax >= timercnt);
1835 verify_heap (EV_A_ timers, timercnt);
1836
1837#if EV_PERIODIC_ENABLE
1838 assert (periodicmax >= periodiccnt);
1839 verify_heap (EV_A_ periodics, periodiccnt);
1840#endif
1841
1842 for (i = NUMPRI; i--; )
1843 {
1844 assert (pendingmax [i] >= pendingcnt [i]);
1845#if EV_IDLE_ENABLE
1846 assert (idleall >= 0);
1847 assert (idlemax [i] >= idlecnt [i]);
1848 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1849#endif
1850 }
1851
1852#if EV_FORK_ENABLE
1853 assert (forkmax >= forkcnt);
1854 array_verify (EV_A_ (W *)forks, forkcnt);
1855#endif
1856
1857#if EV_ASYNC_ENABLE
1858 assert (asyncmax >= asynccnt);
1859 array_verify (EV_A_ (W *)asyncs, asynccnt);
1860#endif
1861
1862 assert (preparemax >= preparecnt);
1863 array_verify (EV_A_ (W *)prepares, preparecnt);
1864
1865 assert (checkmax >= checkcnt);
1866 array_verify (EV_A_ (W *)checks, checkcnt);
1867
1868# if 0
1869 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1870 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1871# endif
1872#endif
1873}
1185#endif 1874#endif
1186 1875
1187#if EV_MULTIPLICITY 1876#if EV_MULTIPLICITY
1188struct ev_loop * 1877struct ev_loop *
1189ev_default_loop_init (unsigned int flags) 1878ev_default_loop_init (unsigned int flags)
1190#else 1879#else
1191int 1880int
1192ev_default_loop (unsigned int flags) 1881ev_default_loop (unsigned int flags)
1193#endif 1882#endif
1194{ 1883{
1195 if (sigpipe [0] == sigpipe [1])
1196 if (pipe (sigpipe))
1197 return 0;
1198
1199 if (!ev_default_loop_ptr) 1884 if (!ev_default_loop_ptr)
1200 { 1885 {
1201#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
1202 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1887 EV_P = ev_default_loop_ptr = &default_loop_struct;
1203#else 1888#else
1204 ev_default_loop_ptr = 1; 1889 ev_default_loop_ptr = 1;
1205#endif 1890#endif
1206 1891
1207 loop_init (EV_A_ flags); 1892 loop_init (EV_A_ flags);
1208 1893
1209 if (ev_backend (EV_A)) 1894 if (ev_backend (EV_A))
1210 { 1895 {
1211 siginit (EV_A);
1212
1213#ifndef _WIN32 1896#ifndef _WIN32
1214 ev_signal_init (&childev, childcb, SIGCHLD); 1897 ev_signal_init (&childev, childcb, SIGCHLD);
1215 ev_set_priority (&childev, EV_MAXPRI); 1898 ev_set_priority (&childev, EV_MAXPRI);
1216 ev_signal_start (EV_A_ &childev); 1899 ev_signal_start (EV_A_ &childev);
1217 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1900 ev_unref (EV_A); /* child watcher should not keep loop alive */
1226 1909
1227void 1910void
1228ev_default_destroy (void) 1911ev_default_destroy (void)
1229{ 1912{
1230#if EV_MULTIPLICITY 1913#if EV_MULTIPLICITY
1231 struct ev_loop *loop = ev_default_loop_ptr; 1914 EV_P = ev_default_loop_ptr;
1232#endif 1915#endif
1916
1917 ev_default_loop_ptr = 0;
1233 1918
1234#ifndef _WIN32 1919#ifndef _WIN32
1235 ev_ref (EV_A); /* child watcher */ 1920 ev_ref (EV_A); /* child watcher */
1236 ev_signal_stop (EV_A_ &childev); 1921 ev_signal_stop (EV_A_ &childev);
1237#endif 1922#endif
1238 1923
1239 ev_ref (EV_A); /* signal watcher */
1240 ev_io_stop (EV_A_ &sigev);
1241
1242 close (sigpipe [0]); sigpipe [0] = 0;
1243 close (sigpipe [1]); sigpipe [1] = 0;
1244
1245 loop_destroy (EV_A); 1924 loop_destroy (EV_A);
1246} 1925}
1247 1926
1248void 1927void
1249ev_default_fork (void) 1928ev_default_fork (void)
1250{ 1929{
1251#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
1252 struct ev_loop *loop = ev_default_loop_ptr; 1931 EV_P = ev_default_loop_ptr;
1253#endif 1932#endif
1254 1933
1255 if (backend) 1934 postfork = 1; /* must be in line with ev_loop_fork */
1256 postfork = 1;
1257} 1935}
1258 1936
1259/*****************************************************************************/ 1937/*****************************************************************************/
1260 1938
1261void 1939void
1262ev_invoke (EV_P_ void *w, int revents) 1940ev_invoke (EV_P_ void *w, int revents)
1263{ 1941{
1264 EV_CB_INVOKE ((W)w, revents); 1942 EV_CB_INVOKE ((W)w, revents);
1265} 1943}
1266 1944
1267void inline_speed 1945unsigned int
1268call_pending (EV_P) 1946ev_pending_count (EV_P)
1947{
1948 int pri;
1949 unsigned int count = 0;
1950
1951 for (pri = NUMPRI; pri--; )
1952 count += pendingcnt [pri];
1953
1954 return count;
1955}
1956
1957void noinline
1958ev_invoke_pending (EV_P)
1269{ 1959{
1270 int pri; 1960 int pri;
1271 1961
1272 for (pri = NUMPRI; pri--; ) 1962 for (pri = NUMPRI; pri--; )
1273 while (pendingcnt [pri]) 1963 while (pendingcnt [pri])
1274 { 1964 {
1275 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1965 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1276 1966
1277 if (expect_true (p->w))
1278 {
1279 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1967 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1968 /* ^ this is no longer true, as pending_w could be here */
1280 1969
1281 p->w->pending = 0; 1970 p->w->pending = 0;
1282 EV_CB_INVOKE (p->w, p->events); 1971 EV_CB_INVOKE (p->w, p->events);
1283 } 1972 EV_FREQUENT_CHECK;
1284 } 1973 }
1285} 1974}
1286 1975
1287void inline_size
1288timers_reify (EV_P)
1289{
1290 while (timercnt && ((WT)timers [0])->at <= mn_now)
1291 {
1292 ev_timer *w = (ev_timer *)timers [0];
1293
1294 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1295
1296 /* first reschedule or stop timer */
1297 if (w->repeat)
1298 {
1299 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1300
1301 ((WT)w)->at += w->repeat;
1302 if (((WT)w)->at < mn_now)
1303 ((WT)w)->at = mn_now;
1304
1305 downheap (timers, timercnt, 0);
1306 }
1307 else
1308 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1309
1310 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1311 }
1312}
1313
1314#if EV_PERIODIC_ENABLE
1315void inline_size
1316periodics_reify (EV_P)
1317{
1318 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1319 {
1320 ev_periodic *w = (ev_periodic *)periodics [0];
1321
1322 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1323
1324 /* first reschedule or stop timer */
1325 if (w->reschedule_cb)
1326 {
1327 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1328 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1329 downheap (periodics, periodiccnt, 0);
1330 }
1331 else if (w->interval)
1332 {
1333 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1334 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1335 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1336 downheap (periodics, periodiccnt, 0);
1337 }
1338 else
1339 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1340
1341 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1342 }
1343}
1344
1345static void noinline
1346periodics_reschedule (EV_P)
1347{
1348 int i;
1349
1350 /* adjust periodics after time jump */
1351 for (i = 0; i < periodiccnt; ++i)
1352 {
1353 ev_periodic *w = (ev_periodic *)periodics [i];
1354
1355 if (w->reschedule_cb)
1356 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1357 else if (w->interval)
1358 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 }
1360
1361 /* now rebuild the heap */
1362 for (i = periodiccnt >> 1; i--; )
1363 downheap (periodics, periodiccnt, i);
1364}
1365#endif
1366
1367#if EV_IDLE_ENABLE 1976#if EV_IDLE_ENABLE
1368void inline_size 1977/* make idle watchers pending. this handles the "call-idle */
1978/* only when higher priorities are idle" logic */
1979inline_size void
1369idle_reify (EV_P) 1980idle_reify (EV_P)
1370{ 1981{
1371 if (expect_false (idleall)) 1982 if (expect_false (idleall))
1372 { 1983 {
1373 int pri; 1984 int pri;
1385 } 1996 }
1386 } 1997 }
1387} 1998}
1388#endif 1999#endif
1389 2000
1390void inline_speed 2001/* make timers pending */
2002inline_size void
2003timers_reify (EV_P)
2004{
2005 EV_FREQUENT_CHECK;
2006
2007 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2008 {
2009 do
2010 {
2011 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2012
2013 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2014
2015 /* first reschedule or stop timer */
2016 if (w->repeat)
2017 {
2018 ev_at (w) += w->repeat;
2019 if (ev_at (w) < mn_now)
2020 ev_at (w) = mn_now;
2021
2022 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2023
2024 ANHE_at_cache (timers [HEAP0]);
2025 downheap (timers, timercnt, HEAP0);
2026 }
2027 else
2028 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2029
2030 EV_FREQUENT_CHECK;
2031 feed_reverse (EV_A_ (W)w);
2032 }
2033 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2034
2035 feed_reverse_done (EV_A_ EV_TIMEOUT);
2036 }
2037}
2038
2039#if EV_PERIODIC_ENABLE
2040/* make periodics pending */
2041inline_size void
2042periodics_reify (EV_P)
2043{
2044 EV_FREQUENT_CHECK;
2045
2046 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2047 {
2048 int feed_count = 0;
2049
2050 do
2051 {
2052 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2053
2054 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2055
2056 /* first reschedule or stop timer */
2057 if (w->reschedule_cb)
2058 {
2059 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2060
2061 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2062
2063 ANHE_at_cache (periodics [HEAP0]);
2064 downheap (periodics, periodiccnt, HEAP0);
2065 }
2066 else if (w->interval)
2067 {
2068 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2069 /* if next trigger time is not sufficiently in the future, put it there */
2070 /* this might happen because of floating point inexactness */
2071 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2072 {
2073 ev_at (w) += w->interval;
2074
2075 /* if interval is unreasonably low we might still have a time in the past */
2076 /* so correct this. this will make the periodic very inexact, but the user */
2077 /* has effectively asked to get triggered more often than possible */
2078 if (ev_at (w) < ev_rt_now)
2079 ev_at (w) = ev_rt_now;
2080 }
2081
2082 ANHE_at_cache (periodics [HEAP0]);
2083 downheap (periodics, periodiccnt, HEAP0);
2084 }
2085 else
2086 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2087
2088 EV_FREQUENT_CHECK;
2089 feed_reverse (EV_A_ (W)w);
2090 }
2091 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2092
2093 feed_reverse_done (EV_A_ EV_PERIODIC);
2094 }
2095}
2096
2097/* simply recalculate all periodics */
2098/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2099static void noinline
2100periodics_reschedule (EV_P)
2101{
2102 int i;
2103
2104 /* adjust periodics after time jump */
2105 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2106 {
2107 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2108
2109 if (w->reschedule_cb)
2110 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2111 else if (w->interval)
2112 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2113
2114 ANHE_at_cache (periodics [i]);
2115 }
2116
2117 reheap (periodics, periodiccnt);
2118}
2119#endif
2120
2121/* adjust all timers by a given offset */
2122static void noinline
2123timers_reschedule (EV_P_ ev_tstamp adjust)
2124{
2125 int i;
2126
2127 for (i = 0; i < timercnt; ++i)
2128 {
2129 ANHE *he = timers + i + HEAP0;
2130 ANHE_w (*he)->at += adjust;
2131 ANHE_at_cache (*he);
2132 }
2133}
2134
2135/* fetch new monotonic and realtime times from the kernel */
2136/* also detetc if there was a timejump, and act accordingly */
2137inline_speed void
1391time_update (EV_P_ ev_tstamp max_block) 2138time_update (EV_P_ ev_tstamp max_block)
1392{ 2139{
1393 int i;
1394
1395#if EV_USE_MONOTONIC 2140#if EV_USE_MONOTONIC
1396 if (expect_true (have_monotonic)) 2141 if (expect_true (have_monotonic))
1397 { 2142 {
2143 int i;
1398 ev_tstamp odiff = rtmn_diff; 2144 ev_tstamp odiff = rtmn_diff;
1399 2145
1400 mn_now = get_clock (); 2146 mn_now = get_clock ();
1401 2147
1402 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2148 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1420 */ 2166 */
1421 for (i = 4; --i; ) 2167 for (i = 4; --i; )
1422 { 2168 {
1423 rtmn_diff = ev_rt_now - mn_now; 2169 rtmn_diff = ev_rt_now - mn_now;
1424 2170
1425 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2171 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1426 return; /* all is well */ 2172 return; /* all is well */
1427 2173
1428 ev_rt_now = ev_time (); 2174 ev_rt_now = ev_time ();
1429 mn_now = get_clock (); 2175 mn_now = get_clock ();
1430 now_floor = mn_now; 2176 now_floor = mn_now;
1431 } 2177 }
1432 2178
2179 /* no timer adjustment, as the monotonic clock doesn't jump */
2180 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1433# if EV_PERIODIC_ENABLE 2181# if EV_PERIODIC_ENABLE
1434 periodics_reschedule (EV_A); 2182 periodics_reschedule (EV_A);
1435# endif 2183# endif
1436 /* no timer adjustment, as the monotonic clock doesn't jump */
1437 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1438 } 2184 }
1439 else 2185 else
1440#endif 2186#endif
1441 { 2187 {
1442 ev_rt_now = ev_time (); 2188 ev_rt_now = ev_time ();
1443 2189
1444 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2190 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1445 { 2191 {
2192 /* adjust timers. this is easy, as the offset is the same for all of them */
2193 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1446#if EV_PERIODIC_ENABLE 2194#if EV_PERIODIC_ENABLE
1447 periodics_reschedule (EV_A); 2195 periodics_reschedule (EV_A);
1448#endif 2196#endif
1449 /* adjust timers. this is easy, as the offset is the same for all of them */
1450 for (i = 0; i < timercnt; ++i)
1451 ((WT)timers [i])->at += ev_rt_now - mn_now;
1452 } 2197 }
1453 2198
1454 mn_now = ev_rt_now; 2199 mn_now = ev_rt_now;
1455 } 2200 }
1456} 2201}
1457 2202
1458void 2203void
1459ev_ref (EV_P)
1460{
1461 ++activecnt;
1462}
1463
1464void
1465ev_unref (EV_P)
1466{
1467 --activecnt;
1468}
1469
1470static int loop_done;
1471
1472void
1473ev_loop (EV_P_ int flags) 2204ev_loop (EV_P_ int flags)
1474{ 2205{
1475 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2206#if EV_MINIMAL < 2
1476 ? EVUNLOOP_ONE 2207 ++loop_depth;
1477 : EVUNLOOP_CANCEL; 2208#endif
1478 2209
2210 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2211
2212 loop_done = EVUNLOOP_CANCEL;
2213
1479 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2214 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1480 2215
1481 do 2216 do
1482 { 2217 {
2218#if EV_VERIFY >= 2
2219 ev_loop_verify (EV_A);
2220#endif
2221
1483#ifndef _WIN32 2222#ifndef _WIN32
1484 if (expect_false (curpid)) /* penalise the forking check even more */ 2223 if (expect_false (curpid)) /* penalise the forking check even more */
1485 if (expect_false (getpid () != curpid)) 2224 if (expect_false (getpid () != curpid))
1486 { 2225 {
1487 curpid = getpid (); 2226 curpid = getpid ();
1493 /* we might have forked, so queue fork handlers */ 2232 /* we might have forked, so queue fork handlers */
1494 if (expect_false (postfork)) 2233 if (expect_false (postfork))
1495 if (forkcnt) 2234 if (forkcnt)
1496 { 2235 {
1497 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2236 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1498 call_pending (EV_A); 2237 EV_INVOKE_PENDING;
1499 } 2238 }
1500#endif 2239#endif
1501 2240
1502 /* queue prepare watchers (and execute them) */ 2241 /* queue prepare watchers (and execute them) */
1503 if (expect_false (preparecnt)) 2242 if (expect_false (preparecnt))
1504 { 2243 {
1505 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1506 call_pending (EV_A); 2245 EV_INVOKE_PENDING;
1507 } 2246 }
1508 2247
1509 if (expect_false (!activecnt)) 2248 if (expect_false (loop_done))
1510 break; 2249 break;
1511 2250
1512 /* we might have forked, so reify kernel state if necessary */ 2251 /* we might have forked, so reify kernel state if necessary */
1513 if (expect_false (postfork)) 2252 if (expect_false (postfork))
1514 loop_fork (EV_A); 2253 loop_fork (EV_A);
1521 ev_tstamp waittime = 0.; 2260 ev_tstamp waittime = 0.;
1522 ev_tstamp sleeptime = 0.; 2261 ev_tstamp sleeptime = 0.;
1523 2262
1524 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2263 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1525 { 2264 {
2265 /* remember old timestamp for io_blocktime calculation */
2266 ev_tstamp prev_mn_now = mn_now;
2267
1526 /* update time to cancel out callback processing overhead */ 2268 /* update time to cancel out callback processing overhead */
1527 time_update (EV_A_ 1e100); 2269 time_update (EV_A_ 1e100);
1528 2270
1529 waittime = MAX_BLOCKTIME; 2271 waittime = MAX_BLOCKTIME;
1530 2272
1531 if (timercnt) 2273 if (timercnt)
1532 { 2274 {
1533 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2275 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1534 if (waittime > to) waittime = to; 2276 if (waittime > to) waittime = to;
1535 } 2277 }
1536 2278
1537#if EV_PERIODIC_ENABLE 2279#if EV_PERIODIC_ENABLE
1538 if (periodiccnt) 2280 if (periodiccnt)
1539 { 2281 {
1540 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2282 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1541 if (waittime > to) waittime = to; 2283 if (waittime > to) waittime = to;
1542 } 2284 }
1543#endif 2285#endif
1544 2286
2287 /* don't let timeouts decrease the waittime below timeout_blocktime */
1545 if (expect_false (waittime < timeout_blocktime)) 2288 if (expect_false (waittime < timeout_blocktime))
1546 waittime = timeout_blocktime; 2289 waittime = timeout_blocktime;
1547 2290
1548 sleeptime = waittime - backend_fudge; 2291 /* extra check because io_blocktime is commonly 0 */
1549
1550 if (expect_true (sleeptime > io_blocktime)) 2292 if (expect_false (io_blocktime))
1551 sleeptime = io_blocktime;
1552
1553 if (sleeptime)
1554 { 2293 {
2294 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2295
2296 if (sleeptime > waittime - backend_fudge)
2297 sleeptime = waittime - backend_fudge;
2298
2299 if (expect_true (sleeptime > 0.))
2300 {
1555 ev_sleep (sleeptime); 2301 ev_sleep (sleeptime);
1556 waittime -= sleeptime; 2302 waittime -= sleeptime;
2303 }
1557 } 2304 }
1558 } 2305 }
1559 2306
2307#if EV_MINIMAL < 2
1560 ++loop_count; 2308 ++loop_count;
2309#endif
2310 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1561 backend_poll (EV_A_ waittime); 2311 backend_poll (EV_A_ waittime);
2312 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1562 2313
1563 /* update ev_rt_now, do magic */ 2314 /* update ev_rt_now, do magic */
1564 time_update (EV_A_ waittime + sleeptime); 2315 time_update (EV_A_ waittime + sleeptime);
1565 } 2316 }
1566 2317
1577 2328
1578 /* queue check watchers, to be executed first */ 2329 /* queue check watchers, to be executed first */
1579 if (expect_false (checkcnt)) 2330 if (expect_false (checkcnt))
1580 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2331 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1581 2332
1582 call_pending (EV_A); 2333 EV_INVOKE_PENDING;
1583
1584 } 2334 }
1585 while (expect_true (activecnt && !loop_done)); 2335 while (expect_true (
2336 activecnt
2337 && !loop_done
2338 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2339 ));
1586 2340
1587 if (loop_done == EVUNLOOP_ONE) 2341 if (loop_done == EVUNLOOP_ONE)
1588 loop_done = EVUNLOOP_CANCEL; 2342 loop_done = EVUNLOOP_CANCEL;
2343
2344#if EV_MINIMAL < 2
2345 --loop_depth;
2346#endif
1589} 2347}
1590 2348
1591void 2349void
1592ev_unloop (EV_P_ int how) 2350ev_unloop (EV_P_ int how)
1593{ 2351{
1594 loop_done = how; 2352 loop_done = how;
1595} 2353}
1596 2354
2355void
2356ev_ref (EV_P)
2357{
2358 ++activecnt;
2359}
2360
2361void
2362ev_unref (EV_P)
2363{
2364 --activecnt;
2365}
2366
2367void
2368ev_now_update (EV_P)
2369{
2370 time_update (EV_A_ 1e100);
2371}
2372
2373void
2374ev_suspend (EV_P)
2375{
2376 ev_now_update (EV_A);
2377}
2378
2379void
2380ev_resume (EV_P)
2381{
2382 ev_tstamp mn_prev = mn_now;
2383
2384 ev_now_update (EV_A);
2385 timers_reschedule (EV_A_ mn_now - mn_prev);
2386#if EV_PERIODIC_ENABLE
2387 /* TODO: really do this? */
2388 periodics_reschedule (EV_A);
2389#endif
2390}
2391
1597/*****************************************************************************/ 2392/*****************************************************************************/
2393/* singly-linked list management, used when the expected list length is short */
1598 2394
1599void inline_size 2395inline_size void
1600wlist_add (WL *head, WL elem) 2396wlist_add (WL *head, WL elem)
1601{ 2397{
1602 elem->next = *head; 2398 elem->next = *head;
1603 *head = elem; 2399 *head = elem;
1604} 2400}
1605 2401
1606void inline_size 2402inline_size void
1607wlist_del (WL *head, WL elem) 2403wlist_del (WL *head, WL elem)
1608{ 2404{
1609 while (*head) 2405 while (*head)
1610 { 2406 {
1611 if (*head == elem) 2407 if (expect_true (*head == elem))
1612 { 2408 {
1613 *head = elem->next; 2409 *head = elem->next;
1614 return; 2410 break;
1615 } 2411 }
1616 2412
1617 head = &(*head)->next; 2413 head = &(*head)->next;
1618 } 2414 }
1619} 2415}
1620 2416
1621void inline_speed 2417/* internal, faster, version of ev_clear_pending */
2418inline_speed void
1622clear_pending (EV_P_ W w) 2419clear_pending (EV_P_ W w)
1623{ 2420{
1624 if (w->pending) 2421 if (w->pending)
1625 { 2422 {
1626 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2423 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1627 w->pending = 0; 2424 w->pending = 0;
1628 } 2425 }
1629} 2426}
1630 2427
1631int 2428int
1635 int pending = w_->pending; 2432 int pending = w_->pending;
1636 2433
1637 if (expect_true (pending)) 2434 if (expect_true (pending))
1638 { 2435 {
1639 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2436 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2437 p->w = (W)&pending_w;
1640 w_->pending = 0; 2438 w_->pending = 0;
1641 p->w = 0;
1642 return p->events; 2439 return p->events;
1643 } 2440 }
1644 else 2441 else
1645 return 0; 2442 return 0;
1646} 2443}
1647 2444
1648void inline_size 2445inline_size void
1649pri_adjust (EV_P_ W w) 2446pri_adjust (EV_P_ W w)
1650{ 2447{
1651 int pri = w->priority; 2448 int pri = ev_priority (w);
1652 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2449 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1653 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2450 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1654 w->priority = pri; 2451 ev_set_priority (w, pri);
1655} 2452}
1656 2453
1657void inline_speed 2454inline_speed void
1658ev_start (EV_P_ W w, int active) 2455ev_start (EV_P_ W w, int active)
1659{ 2456{
1660 pri_adjust (EV_A_ w); 2457 pri_adjust (EV_A_ w);
1661 w->active = active; 2458 w->active = active;
1662 ev_ref (EV_A); 2459 ev_ref (EV_A);
1663} 2460}
1664 2461
1665void inline_size 2462inline_size void
1666ev_stop (EV_P_ W w) 2463ev_stop (EV_P_ W w)
1667{ 2464{
1668 ev_unref (EV_A); 2465 ev_unref (EV_A);
1669 w->active = 0; 2466 w->active = 0;
1670} 2467}
1677 int fd = w->fd; 2474 int fd = w->fd;
1678 2475
1679 if (expect_false (ev_is_active (w))) 2476 if (expect_false (ev_is_active (w)))
1680 return; 2477 return;
1681 2478
1682 assert (("ev_io_start called with negative fd", fd >= 0)); 2479 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2480 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2481
2482 EV_FREQUENT_CHECK;
1683 2483
1684 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1685 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2485 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1686 wlist_add (&anfds[fd].head, (WL)w); 2486 wlist_add (&anfds[fd].head, (WL)w);
1687 2487
1688 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2488 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1689 w->events &= ~EV_IOFDSET; 2489 w->events &= ~EV__IOFDSET;
2490
2491 EV_FREQUENT_CHECK;
1690} 2492}
1691 2493
1692void noinline 2494void noinline
1693ev_io_stop (EV_P_ ev_io *w) 2495ev_io_stop (EV_P_ ev_io *w)
1694{ 2496{
1695 clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
1696 if (expect_false (!ev_is_active (w))) 2498 if (expect_false (!ev_is_active (w)))
1697 return; 2499 return;
1698 2500
1699 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2501 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2502
2503 EV_FREQUENT_CHECK;
1700 2504
1701 wlist_del (&anfds[w->fd].head, (WL)w); 2505 wlist_del (&anfds[w->fd].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 2506 ev_stop (EV_A_ (W)w);
1703 2507
1704 fd_change (EV_A_ w->fd, 1); 2508 fd_change (EV_A_ w->fd, 1);
2509
2510 EV_FREQUENT_CHECK;
1705} 2511}
1706 2512
1707void noinline 2513void noinline
1708ev_timer_start (EV_P_ ev_timer *w) 2514ev_timer_start (EV_P_ ev_timer *w)
1709{ 2515{
1710 if (expect_false (ev_is_active (w))) 2516 if (expect_false (ev_is_active (w)))
1711 return; 2517 return;
1712 2518
1713 ((WT)w)->at += mn_now; 2519 ev_at (w) += mn_now;
1714 2520
1715 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2521 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1716 2522
2523 EV_FREQUENT_CHECK;
2524
2525 ++timercnt;
1717 ev_start (EV_A_ (W)w, ++timercnt); 2526 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1718 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2527 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1719 timers [timercnt - 1] = (WT)w; 2528 ANHE_w (timers [ev_active (w)]) = (WT)w;
1720 upheap (timers, timercnt - 1); 2529 ANHE_at_cache (timers [ev_active (w)]);
2530 upheap (timers, ev_active (w));
1721 2531
2532 EV_FREQUENT_CHECK;
2533
1722 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2534 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1723} 2535}
1724 2536
1725void noinline 2537void noinline
1726ev_timer_stop (EV_P_ ev_timer *w) 2538ev_timer_stop (EV_P_ ev_timer *w)
1727{ 2539{
1728 clear_pending (EV_A_ (W)w); 2540 clear_pending (EV_A_ (W)w);
1729 if (expect_false (!ev_is_active (w))) 2541 if (expect_false (!ev_is_active (w)))
1730 return; 2542 return;
1731 2543
1732 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2544 EV_FREQUENT_CHECK;
1733 2545
1734 { 2546 {
1735 int active = ((W)w)->active; 2547 int active = ev_active (w);
1736 2548
2549 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2550
2551 --timercnt;
2552
1737 if (expect_true (--active < --timercnt)) 2553 if (expect_true (active < timercnt + HEAP0))
1738 { 2554 {
1739 timers [active] = timers [timercnt]; 2555 timers [active] = timers [timercnt + HEAP0];
1740 adjustheap (timers, timercnt, active); 2556 adjustheap (timers, timercnt, active);
1741 } 2557 }
1742 } 2558 }
1743 2559
1744 ((WT)w)->at -= mn_now; 2560 EV_FREQUENT_CHECK;
2561
2562 ev_at (w) -= mn_now;
1745 2563
1746 ev_stop (EV_A_ (W)w); 2564 ev_stop (EV_A_ (W)w);
1747} 2565}
1748 2566
1749void noinline 2567void noinline
1750ev_timer_again (EV_P_ ev_timer *w) 2568ev_timer_again (EV_P_ ev_timer *w)
1751{ 2569{
2570 EV_FREQUENT_CHECK;
2571
1752 if (ev_is_active (w)) 2572 if (ev_is_active (w))
1753 { 2573 {
1754 if (w->repeat) 2574 if (w->repeat)
1755 { 2575 {
1756 ((WT)w)->at = mn_now + w->repeat; 2576 ev_at (w) = mn_now + w->repeat;
2577 ANHE_at_cache (timers [ev_active (w)]);
1757 adjustheap (timers, timercnt, ((W)w)->active - 1); 2578 adjustheap (timers, timercnt, ev_active (w));
1758 } 2579 }
1759 else 2580 else
1760 ev_timer_stop (EV_A_ w); 2581 ev_timer_stop (EV_A_ w);
1761 } 2582 }
1762 else if (w->repeat) 2583 else if (w->repeat)
1763 { 2584 {
1764 w->at = w->repeat; 2585 ev_at (w) = w->repeat;
1765 ev_timer_start (EV_A_ w); 2586 ev_timer_start (EV_A_ w);
1766 } 2587 }
2588
2589 EV_FREQUENT_CHECK;
2590}
2591
2592ev_tstamp
2593ev_timer_remaining (EV_P_ ev_timer *w)
2594{
2595 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1767} 2596}
1768 2597
1769#if EV_PERIODIC_ENABLE 2598#if EV_PERIODIC_ENABLE
1770void noinline 2599void noinline
1771ev_periodic_start (EV_P_ ev_periodic *w) 2600ev_periodic_start (EV_P_ ev_periodic *w)
1772{ 2601{
1773 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
1774 return; 2603 return;
1775 2604
1776 if (w->reschedule_cb) 2605 if (w->reschedule_cb)
1777 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2606 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1778 else if (w->interval) 2607 else if (w->interval)
1779 { 2608 {
1780 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2609 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1781 /* this formula differs from the one in periodic_reify because we do not always round up */ 2610 /* this formula differs from the one in periodic_reify because we do not always round up */
1782 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2611 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1783 } 2612 }
1784 else 2613 else
1785 ((WT)w)->at = w->offset; 2614 ev_at (w) = w->offset;
1786 2615
2616 EV_FREQUENT_CHECK;
2617
2618 ++periodiccnt;
1787 ev_start (EV_A_ (W)w, ++periodiccnt); 2619 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1788 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2620 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1789 periodics [periodiccnt - 1] = (WT)w; 2621 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1790 upheap (periodics, periodiccnt - 1); 2622 ANHE_at_cache (periodics [ev_active (w)]);
2623 upheap (periodics, ev_active (w));
1791 2624
2625 EV_FREQUENT_CHECK;
2626
1792 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2627 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1793} 2628}
1794 2629
1795void noinline 2630void noinline
1796ev_periodic_stop (EV_P_ ev_periodic *w) 2631ev_periodic_stop (EV_P_ ev_periodic *w)
1797{ 2632{
1798 clear_pending (EV_A_ (W)w); 2633 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2634 if (expect_false (!ev_is_active (w)))
1800 return; 2635 return;
1801 2636
1802 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2637 EV_FREQUENT_CHECK;
1803 2638
1804 { 2639 {
1805 int active = ((W)w)->active; 2640 int active = ev_active (w);
1806 2641
2642 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2643
2644 --periodiccnt;
2645
1807 if (expect_true (--active < --periodiccnt)) 2646 if (expect_true (active < periodiccnt + HEAP0))
1808 { 2647 {
1809 periodics [active] = periodics [periodiccnt]; 2648 periodics [active] = periodics [periodiccnt + HEAP0];
1810 adjustheap (periodics, periodiccnt, active); 2649 adjustheap (periodics, periodiccnt, active);
1811 } 2650 }
1812 } 2651 }
1813 2652
2653 EV_FREQUENT_CHECK;
2654
1814 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
1815} 2656}
1816 2657
1817void noinline 2658void noinline
1818ev_periodic_again (EV_P_ ev_periodic *w) 2659ev_periodic_again (EV_P_ ev_periodic *w)
1828#endif 2669#endif
1829 2670
1830void noinline 2671void noinline
1831ev_signal_start (EV_P_ ev_signal *w) 2672ev_signal_start (EV_P_ ev_signal *w)
1832{ 2673{
1833#if EV_MULTIPLICITY
1834 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1835#endif
1836 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
1837 return; 2675 return;
1838 2676
1839 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2677 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1840 2678
2679#if EV_MULTIPLICITY
2680 assert (("libev: a signal must not be attached to two different loops",
2681 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2682
2683 signals [w->signum - 1].loop = EV_A;
2684#endif
2685
2686 EV_FREQUENT_CHECK;
2687
2688#if EV_USE_SIGNALFD
2689 if (sigfd == -2)
1841 { 2690 {
1842#ifndef _WIN32 2691 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1843 sigset_t full, prev; 2692 if (sigfd < 0 && errno == EINVAL)
1844 sigfillset (&full); 2693 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1845 sigprocmask (SIG_SETMASK, &full, &prev);
1846#endif
1847 2694
1848 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2695 if (sigfd >= 0)
2696 {
2697 fd_intern (sigfd); /* doing it twice will not hurt */
1849 2698
1850#ifndef _WIN32 2699 sigemptyset (&sigfd_set);
1851 sigprocmask (SIG_SETMASK, &prev, 0); 2700
1852#endif 2701 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2702 ev_set_priority (&sigfd_w, EV_MAXPRI);
2703 ev_io_start (EV_A_ &sigfd_w);
2704 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2705 }
1853 } 2706 }
2707
2708 if (sigfd >= 0)
2709 {
2710 /* TODO: check .head */
2711 sigaddset (&sigfd_set, w->signum);
2712 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2713
2714 signalfd (sigfd, &sigfd_set, 0);
2715 }
2716#endif
1854 2717
1855 ev_start (EV_A_ (W)w, 1); 2718 ev_start (EV_A_ (W)w, 1);
1856 wlist_add (&signals [w->signum - 1].head, (WL)w); 2719 wlist_add (&signals [w->signum - 1].head, (WL)w);
1857 2720
1858 if (!((WL)w)->next) 2721 if (!((WL)w)->next)
2722# if EV_USE_SIGNALFD
2723 if (sigfd < 0) /*TODO*/
2724# endif
1859 { 2725 {
1860#if _WIN32 2726# if _WIN32
1861 signal (w->signum, sighandler); 2727 signal (w->signum, ev_sighandler);
1862#else 2728# else
1863 struct sigaction sa; 2729 struct sigaction sa;
2730
2731 evpipe_init (EV_A);
2732
1864 sa.sa_handler = sighandler; 2733 sa.sa_handler = ev_sighandler;
1865 sigfillset (&sa.sa_mask); 2734 sigfillset (&sa.sa_mask);
1866 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2735 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1867 sigaction (w->signum, &sa, 0); 2736 sigaction (w->signum, &sa, 0);
2737
2738 sigemptyset (&sa.sa_mask);
2739 sigaddset (&sa.sa_mask, w->signum);
2740 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1868#endif 2741#endif
1869 } 2742 }
2743
2744 EV_FREQUENT_CHECK;
1870} 2745}
1871 2746
1872void noinline 2747void noinline
1873ev_signal_stop (EV_P_ ev_signal *w) 2748ev_signal_stop (EV_P_ ev_signal *w)
1874{ 2749{
1875 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
1877 return; 2752 return;
1878 2753
2754 EV_FREQUENT_CHECK;
2755
1879 wlist_del (&signals [w->signum - 1].head, (WL)w); 2756 wlist_del (&signals [w->signum - 1].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
1881 2758
1882 if (!signals [w->signum - 1].head) 2759 if (!signals [w->signum - 1].head)
2760 {
2761#if EV_MULTIPLICITY
2762 signals [w->signum - 1].loop = 0; /* unattach from signal */
2763#endif
2764#if EV_USE_SIGNALFD
2765 if (sigfd >= 0)
2766 {
2767 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2768 sigdelset (&sigfd_set, w->signum);
2769 signalfd (sigfd, &sigfd_set, 0);
2770 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2771 /*TODO: maybe unblock signal? */
2772 }
2773 else
2774#endif
1883 signal (w->signum, SIG_DFL); 2775 signal (w->signum, SIG_DFL);
2776 }
2777
2778 EV_FREQUENT_CHECK;
1884} 2779}
1885 2780
1886void 2781void
1887ev_child_start (EV_P_ ev_child *w) 2782ev_child_start (EV_P_ ev_child *w)
1888{ 2783{
1889#if EV_MULTIPLICITY 2784#if EV_MULTIPLICITY
1890 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2785 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1891#endif 2786#endif
1892 if (expect_false (ev_is_active (w))) 2787 if (expect_false (ev_is_active (w)))
1893 return; 2788 return;
1894 2789
2790 EV_FREQUENT_CHECK;
2791
1895 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
1896 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2793 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2794
2795 EV_FREQUENT_CHECK;
1897} 2796}
1898 2797
1899void 2798void
1900ev_child_stop (EV_P_ ev_child *w) 2799ev_child_stop (EV_P_ ev_child *w)
1901{ 2800{
1902 clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
1904 return; 2803 return;
1905 2804
2805 EV_FREQUENT_CHECK;
2806
1906 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2807 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1907 ev_stop (EV_A_ (W)w); 2808 ev_stop (EV_A_ (W)w);
2809
2810 EV_FREQUENT_CHECK;
1908} 2811}
1909 2812
1910#if EV_STAT_ENABLE 2813#if EV_STAT_ENABLE
1911 2814
1912# ifdef _WIN32 2815# ifdef _WIN32
1913# undef lstat 2816# undef lstat
1914# define lstat(a,b) _stati64 (a,b) 2817# define lstat(a,b) _stati64 (a,b)
1915# endif 2818# endif
1916 2819
1917#define DEF_STAT_INTERVAL 5.0074891 2820#define DEF_STAT_INTERVAL 5.0074891
2821#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1918#define MIN_STAT_INTERVAL 0.1074891 2822#define MIN_STAT_INTERVAL 0.1074891
1919 2823
1920static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2824static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1921 2825
1922#if EV_USE_INOTIFY 2826#if EV_USE_INOTIFY
1923# define EV_INOTIFY_BUFSIZE 8192 2827# define EV_INOTIFY_BUFSIZE 8192
1927{ 2831{
1928 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2832 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1929 2833
1930 if (w->wd < 0) 2834 if (w->wd < 0)
1931 { 2835 {
2836 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1932 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2837 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1933 2838
1934 /* monitor some parent directory for speedup hints */ 2839 /* monitor some parent directory for speedup hints */
2840 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2841 /* but an efficiency issue only */
1935 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2842 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1936 { 2843 {
1937 char path [4096]; 2844 char path [4096];
1938 strcpy (path, w->path); 2845 strcpy (path, w->path);
1939 2846
1942 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2849 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1943 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2850 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1944 2851
1945 char *pend = strrchr (path, '/'); 2852 char *pend = strrchr (path, '/');
1946 2853
1947 if (!pend) 2854 if (!pend || pend == path)
1948 break; /* whoops, no '/', complain to your admin */ 2855 break;
1949 2856
1950 *pend = 0; 2857 *pend = 0;
1951 w->wd = inotify_add_watch (fs_fd, path, mask); 2858 w->wd = inotify_add_watch (fs_fd, path, mask);
1952 } 2859 }
1953 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2860 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1954 } 2861 }
1955 } 2862 }
1956 else
1957 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1958 2863
1959 if (w->wd >= 0) 2864 if (w->wd >= 0)
2865 {
2866 struct statfs sfs;
2867
1960 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2868 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2869
2870 /* now local changes will be tracked by inotify, but remote changes won't */
2871 /* unless the filesystem it known to be local, we therefore still poll */
2872 /* also do poll on <2.6.25, but with normal frequency */
2873
2874 if (fs_2625 && !statfs (w->path, &sfs))
2875 if (sfs.f_type == 0x1373 /* devfs */
2876 || sfs.f_type == 0xEF53 /* ext2/3 */
2877 || sfs.f_type == 0x3153464a /* jfs */
2878 || sfs.f_type == 0x52654973 /* reiser3 */
2879 || sfs.f_type == 0x01021994 /* tempfs */
2880 || sfs.f_type == 0x58465342 /* xfs */)
2881 return;
2882
2883 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2884 ev_timer_again (EV_A_ &w->timer);
2885 }
1961} 2886}
1962 2887
1963static void noinline 2888static void noinline
1964infy_del (EV_P_ ev_stat *w) 2889infy_del (EV_P_ ev_stat *w)
1965{ 2890{
1979 2904
1980static void noinline 2905static void noinline
1981infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2906infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1982{ 2907{
1983 if (slot < 0) 2908 if (slot < 0)
1984 /* overflow, need to check for all hahs slots */ 2909 /* overflow, need to check for all hash slots */
1985 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2910 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1986 infy_wd (EV_A_ slot, wd, ev); 2911 infy_wd (EV_A_ slot, wd, ev);
1987 else 2912 else
1988 { 2913 {
1989 WL w_; 2914 WL w_;
1995 2920
1996 if (w->wd == wd || wd == -1) 2921 if (w->wd == wd || wd == -1)
1997 { 2922 {
1998 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2923 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1999 { 2924 {
2925 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2000 w->wd = -1; 2926 w->wd = -1;
2001 infy_add (EV_A_ w); /* re-add, no matter what */ 2927 infy_add (EV_A_ w); /* re-add, no matter what */
2002 } 2928 }
2003 2929
2004 stat_timer_cb (EV_A_ &w->timer, 0); 2930 stat_timer_cb (EV_A_ &w->timer, 0);
2017 2943
2018 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2944 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2019 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2945 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2020} 2946}
2021 2947
2022void inline_size 2948inline_size void
2949check_2625 (EV_P)
2950{
2951 /* kernels < 2.6.25 are borked
2952 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2953 */
2954 struct utsname buf;
2955 int major, minor, micro;
2956
2957 if (uname (&buf))
2958 return;
2959
2960 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2961 return;
2962
2963 if (major < 2
2964 || (major == 2 && minor < 6)
2965 || (major == 2 && minor == 6 && micro < 25))
2966 return;
2967
2968 fs_2625 = 1;
2969}
2970
2971inline_size void
2023infy_init (EV_P) 2972infy_init (EV_P)
2024{ 2973{
2025 if (fs_fd != -2) 2974 if (fs_fd != -2)
2026 return; 2975 return;
2976
2977 fs_fd = -1;
2978
2979 check_2625 (EV_A);
2027 2980
2028 fs_fd = inotify_init (); 2981 fs_fd = inotify_init ();
2029 2982
2030 if (fs_fd >= 0) 2983 if (fs_fd >= 0)
2031 { 2984 {
2033 ev_set_priority (&fs_w, EV_MAXPRI); 2986 ev_set_priority (&fs_w, EV_MAXPRI);
2034 ev_io_start (EV_A_ &fs_w); 2987 ev_io_start (EV_A_ &fs_w);
2035 } 2988 }
2036} 2989}
2037 2990
2038void inline_size 2991inline_size void
2039infy_fork (EV_P) 2992infy_fork (EV_P)
2040{ 2993{
2041 int slot; 2994 int slot;
2042 2995
2043 if (fs_fd < 0) 2996 if (fs_fd < 0)
2059 w->wd = -1; 3012 w->wd = -1;
2060 3013
2061 if (fs_fd >= 0) 3014 if (fs_fd >= 0)
2062 infy_add (EV_A_ w); /* re-add, no matter what */ 3015 infy_add (EV_A_ w); /* re-add, no matter what */
2063 else 3016 else
2064 ev_timer_start (EV_A_ &w->timer); 3017 ev_timer_again (EV_A_ &w->timer);
2065 } 3018 }
2066
2067 } 3019 }
2068} 3020}
2069 3021
3022#endif
3023
3024#ifdef _WIN32
3025# define EV_LSTAT(p,b) _stati64 (p, b)
3026#else
3027# define EV_LSTAT(p,b) lstat (p, b)
2070#endif 3028#endif
2071 3029
2072void 3030void
2073ev_stat_stat (EV_P_ ev_stat *w) 3031ev_stat_stat (EV_P_ ev_stat *w)
2074{ 3032{
2101 || w->prev.st_atime != w->attr.st_atime 3059 || w->prev.st_atime != w->attr.st_atime
2102 || w->prev.st_mtime != w->attr.st_mtime 3060 || w->prev.st_mtime != w->attr.st_mtime
2103 || w->prev.st_ctime != w->attr.st_ctime 3061 || w->prev.st_ctime != w->attr.st_ctime
2104 ) { 3062 ) {
2105 #if EV_USE_INOTIFY 3063 #if EV_USE_INOTIFY
3064 if (fs_fd >= 0)
3065 {
2106 infy_del (EV_A_ w); 3066 infy_del (EV_A_ w);
2107 infy_add (EV_A_ w); 3067 infy_add (EV_A_ w);
2108 ev_stat_stat (EV_A_ w); /* avoid race... */ 3068 ev_stat_stat (EV_A_ w); /* avoid race... */
3069 }
2109 #endif 3070 #endif
2110 3071
2111 ev_feed_event (EV_A_ w, EV_STAT); 3072 ev_feed_event (EV_A_ w, EV_STAT);
2112 } 3073 }
2113} 3074}
2116ev_stat_start (EV_P_ ev_stat *w) 3077ev_stat_start (EV_P_ ev_stat *w)
2117{ 3078{
2118 if (expect_false (ev_is_active (w))) 3079 if (expect_false (ev_is_active (w)))
2119 return; 3080 return;
2120 3081
2121 /* since we use memcmp, we need to clear any padding data etc. */
2122 memset (&w->prev, 0, sizeof (ev_statdata));
2123 memset (&w->attr, 0, sizeof (ev_statdata));
2124
2125 ev_stat_stat (EV_A_ w); 3082 ev_stat_stat (EV_A_ w);
2126 3083
3084 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2127 if (w->interval < MIN_STAT_INTERVAL) 3085 w->interval = MIN_STAT_INTERVAL;
2128 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2129 3086
2130 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3087 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2131 ev_set_priority (&w->timer, ev_priority (w)); 3088 ev_set_priority (&w->timer, ev_priority (w));
2132 3089
2133#if EV_USE_INOTIFY 3090#if EV_USE_INOTIFY
2134 infy_init (EV_A); 3091 infy_init (EV_A);
2135 3092
2136 if (fs_fd >= 0) 3093 if (fs_fd >= 0)
2137 infy_add (EV_A_ w); 3094 infy_add (EV_A_ w);
2138 else 3095 else
2139#endif 3096#endif
2140 ev_timer_start (EV_A_ &w->timer); 3097 ev_timer_again (EV_A_ &w->timer);
2141 3098
2142 ev_start (EV_A_ (W)w, 1); 3099 ev_start (EV_A_ (W)w, 1);
3100
3101 EV_FREQUENT_CHECK;
2143} 3102}
2144 3103
2145void 3104void
2146ev_stat_stop (EV_P_ ev_stat *w) 3105ev_stat_stop (EV_P_ ev_stat *w)
2147{ 3106{
2148 clear_pending (EV_A_ (W)w); 3107 clear_pending (EV_A_ (W)w);
2149 if (expect_false (!ev_is_active (w))) 3108 if (expect_false (!ev_is_active (w)))
2150 return; 3109 return;
2151 3110
3111 EV_FREQUENT_CHECK;
3112
2152#if EV_USE_INOTIFY 3113#if EV_USE_INOTIFY
2153 infy_del (EV_A_ w); 3114 infy_del (EV_A_ w);
2154#endif 3115#endif
2155 ev_timer_stop (EV_A_ &w->timer); 3116 ev_timer_stop (EV_A_ &w->timer);
2156 3117
2157 ev_stop (EV_A_ (W)w); 3118 ev_stop (EV_A_ (W)w);
3119
3120 EV_FREQUENT_CHECK;
2158} 3121}
2159#endif 3122#endif
2160 3123
2161#if EV_IDLE_ENABLE 3124#if EV_IDLE_ENABLE
2162void 3125void
2164{ 3127{
2165 if (expect_false (ev_is_active (w))) 3128 if (expect_false (ev_is_active (w)))
2166 return; 3129 return;
2167 3130
2168 pri_adjust (EV_A_ (W)w); 3131 pri_adjust (EV_A_ (W)w);
3132
3133 EV_FREQUENT_CHECK;
2169 3134
2170 { 3135 {
2171 int active = ++idlecnt [ABSPRI (w)]; 3136 int active = ++idlecnt [ABSPRI (w)];
2172 3137
2173 ++idleall; 3138 ++idleall;
2174 ev_start (EV_A_ (W)w, active); 3139 ev_start (EV_A_ (W)w, active);
2175 3140
2176 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3141 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2177 idles [ABSPRI (w)][active - 1] = w; 3142 idles [ABSPRI (w)][active - 1] = w;
2178 } 3143 }
3144
3145 EV_FREQUENT_CHECK;
2179} 3146}
2180 3147
2181void 3148void
2182ev_idle_stop (EV_P_ ev_idle *w) 3149ev_idle_stop (EV_P_ ev_idle *w)
2183{ 3150{
2184 clear_pending (EV_A_ (W)w); 3151 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 3152 if (expect_false (!ev_is_active (w)))
2186 return; 3153 return;
2187 3154
3155 EV_FREQUENT_CHECK;
3156
2188 { 3157 {
2189 int active = ((W)w)->active; 3158 int active = ev_active (w);
2190 3159
2191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3160 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2192 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3161 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2193 3162
2194 ev_stop (EV_A_ (W)w); 3163 ev_stop (EV_A_ (W)w);
2195 --idleall; 3164 --idleall;
2196 } 3165 }
3166
3167 EV_FREQUENT_CHECK;
2197} 3168}
2198#endif 3169#endif
2199 3170
2200void 3171void
2201ev_prepare_start (EV_P_ ev_prepare *w) 3172ev_prepare_start (EV_P_ ev_prepare *w)
2202{ 3173{
2203 if (expect_false (ev_is_active (w))) 3174 if (expect_false (ev_is_active (w)))
2204 return; 3175 return;
3176
3177 EV_FREQUENT_CHECK;
2205 3178
2206 ev_start (EV_A_ (W)w, ++preparecnt); 3179 ev_start (EV_A_ (W)w, ++preparecnt);
2207 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3180 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2208 prepares [preparecnt - 1] = w; 3181 prepares [preparecnt - 1] = w;
3182
3183 EV_FREQUENT_CHECK;
2209} 3184}
2210 3185
2211void 3186void
2212ev_prepare_stop (EV_P_ ev_prepare *w) 3187ev_prepare_stop (EV_P_ ev_prepare *w)
2213{ 3188{
2214 clear_pending (EV_A_ (W)w); 3189 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3190 if (expect_false (!ev_is_active (w)))
2216 return; 3191 return;
2217 3192
3193 EV_FREQUENT_CHECK;
3194
2218 { 3195 {
2219 int active = ((W)w)->active; 3196 int active = ev_active (w);
3197
2220 prepares [active - 1] = prepares [--preparecnt]; 3198 prepares [active - 1] = prepares [--preparecnt];
2221 ((W)prepares [active - 1])->active = active; 3199 ev_active (prepares [active - 1]) = active;
2222 } 3200 }
2223 3201
2224 ev_stop (EV_A_ (W)w); 3202 ev_stop (EV_A_ (W)w);
3203
3204 EV_FREQUENT_CHECK;
2225} 3205}
2226 3206
2227void 3207void
2228ev_check_start (EV_P_ ev_check *w) 3208ev_check_start (EV_P_ ev_check *w)
2229{ 3209{
2230 if (expect_false (ev_is_active (w))) 3210 if (expect_false (ev_is_active (w)))
2231 return; 3211 return;
3212
3213 EV_FREQUENT_CHECK;
2232 3214
2233 ev_start (EV_A_ (W)w, ++checkcnt); 3215 ev_start (EV_A_ (W)w, ++checkcnt);
2234 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3216 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2235 checks [checkcnt - 1] = w; 3217 checks [checkcnt - 1] = w;
3218
3219 EV_FREQUENT_CHECK;
2236} 3220}
2237 3221
2238void 3222void
2239ev_check_stop (EV_P_ ev_check *w) 3223ev_check_stop (EV_P_ ev_check *w)
2240{ 3224{
2241 clear_pending (EV_A_ (W)w); 3225 clear_pending (EV_A_ (W)w);
2242 if (expect_false (!ev_is_active (w))) 3226 if (expect_false (!ev_is_active (w)))
2243 return; 3227 return;
2244 3228
3229 EV_FREQUENT_CHECK;
3230
2245 { 3231 {
2246 int active = ((W)w)->active; 3232 int active = ev_active (w);
3233
2247 checks [active - 1] = checks [--checkcnt]; 3234 checks [active - 1] = checks [--checkcnt];
2248 ((W)checks [active - 1])->active = active; 3235 ev_active (checks [active - 1]) = active;
2249 } 3236 }
2250 3237
2251 ev_stop (EV_A_ (W)w); 3238 ev_stop (EV_A_ (W)w);
3239
3240 EV_FREQUENT_CHECK;
2252} 3241}
2253 3242
2254#if EV_EMBED_ENABLE 3243#if EV_EMBED_ENABLE
2255void noinline 3244void noinline
2256ev_embed_sweep (EV_P_ ev_embed *w) 3245ev_embed_sweep (EV_P_ ev_embed *w)
2264 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3253 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2265 3254
2266 if (ev_cb (w)) 3255 if (ev_cb (w))
2267 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3256 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2268 else 3257 else
2269 ev_embed_sweep (loop, w); 3258 ev_loop (w->other, EVLOOP_NONBLOCK);
2270} 3259}
2271 3260
2272static void 3261static void
2273embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3262embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2274{ 3263{
2275 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3264 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2276 3265
2277 fd_reify (w->other); 3266 {
3267 EV_P = w->other;
3268
3269 while (fdchangecnt)
3270 {
3271 fd_reify (EV_A);
3272 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3273 }
3274 }
2278} 3275}
3276
3277static void
3278embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3279{
3280 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3281
3282 ev_embed_stop (EV_A_ w);
3283
3284 {
3285 EV_P = w->other;
3286
3287 ev_loop_fork (EV_A);
3288 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3289 }
3290
3291 ev_embed_start (EV_A_ w);
3292}
3293
3294#if 0
3295static void
3296embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3297{
3298 ev_idle_stop (EV_A_ idle);
3299}
3300#endif
2279 3301
2280void 3302void
2281ev_embed_start (EV_P_ ev_embed *w) 3303ev_embed_start (EV_P_ ev_embed *w)
2282{ 3304{
2283 if (expect_false (ev_is_active (w))) 3305 if (expect_false (ev_is_active (w)))
2284 return; 3306 return;
2285 3307
2286 { 3308 {
2287 struct ev_loop *loop = w->other; 3309 EV_P = w->other;
2288 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3310 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2289 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3311 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2290 } 3312 }
3313
3314 EV_FREQUENT_CHECK;
2291 3315
2292 ev_set_priority (&w->io, ev_priority (w)); 3316 ev_set_priority (&w->io, ev_priority (w));
2293 ev_io_start (EV_A_ &w->io); 3317 ev_io_start (EV_A_ &w->io);
2294 3318
2295 ev_prepare_init (&w->prepare, embed_prepare_cb); 3319 ev_prepare_init (&w->prepare, embed_prepare_cb);
2296 ev_set_priority (&w->prepare, EV_MINPRI); 3320 ev_set_priority (&w->prepare, EV_MINPRI);
2297 ev_prepare_start (EV_A_ &w->prepare); 3321 ev_prepare_start (EV_A_ &w->prepare);
2298 3322
3323 ev_fork_init (&w->fork, embed_fork_cb);
3324 ev_fork_start (EV_A_ &w->fork);
3325
3326 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3327
2299 ev_start (EV_A_ (W)w, 1); 3328 ev_start (EV_A_ (W)w, 1);
3329
3330 EV_FREQUENT_CHECK;
2300} 3331}
2301 3332
2302void 3333void
2303ev_embed_stop (EV_P_ ev_embed *w) 3334ev_embed_stop (EV_P_ ev_embed *w)
2304{ 3335{
2305 clear_pending (EV_A_ (W)w); 3336 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 3337 if (expect_false (!ev_is_active (w)))
2307 return; 3338 return;
2308 3339
3340 EV_FREQUENT_CHECK;
3341
2309 ev_io_stop (EV_A_ &w->io); 3342 ev_io_stop (EV_A_ &w->io);
2310 ev_prepare_stop (EV_A_ &w->prepare); 3343 ev_prepare_stop (EV_A_ &w->prepare);
3344 ev_fork_stop (EV_A_ &w->fork);
2311 3345
2312 ev_stop (EV_A_ (W)w); 3346 EV_FREQUENT_CHECK;
2313} 3347}
2314#endif 3348#endif
2315 3349
2316#if EV_FORK_ENABLE 3350#if EV_FORK_ENABLE
2317void 3351void
2318ev_fork_start (EV_P_ ev_fork *w) 3352ev_fork_start (EV_P_ ev_fork *w)
2319{ 3353{
2320 if (expect_false (ev_is_active (w))) 3354 if (expect_false (ev_is_active (w)))
2321 return; 3355 return;
3356
3357 EV_FREQUENT_CHECK;
2322 3358
2323 ev_start (EV_A_ (W)w, ++forkcnt); 3359 ev_start (EV_A_ (W)w, ++forkcnt);
2324 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3360 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2325 forks [forkcnt - 1] = w; 3361 forks [forkcnt - 1] = w;
3362
3363 EV_FREQUENT_CHECK;
2326} 3364}
2327 3365
2328void 3366void
2329ev_fork_stop (EV_P_ ev_fork *w) 3367ev_fork_stop (EV_P_ ev_fork *w)
2330{ 3368{
2331 clear_pending (EV_A_ (W)w); 3369 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3370 if (expect_false (!ev_is_active (w)))
2333 return; 3371 return;
2334 3372
3373 EV_FREQUENT_CHECK;
3374
2335 { 3375 {
2336 int active = ((W)w)->active; 3376 int active = ev_active (w);
3377
2337 forks [active - 1] = forks [--forkcnt]; 3378 forks [active - 1] = forks [--forkcnt];
2338 ((W)forks [active - 1])->active = active; 3379 ev_active (forks [active - 1]) = active;
2339 } 3380 }
2340 3381
2341 ev_stop (EV_A_ (W)w); 3382 ev_stop (EV_A_ (W)w);
3383
3384 EV_FREQUENT_CHECK;
3385}
3386#endif
3387
3388#if EV_ASYNC_ENABLE
3389void
3390ev_async_start (EV_P_ ev_async *w)
3391{
3392 if (expect_false (ev_is_active (w)))
3393 return;
3394
3395 evpipe_init (EV_A);
3396
3397 EV_FREQUENT_CHECK;
3398
3399 ev_start (EV_A_ (W)w, ++asynccnt);
3400 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3401 asyncs [asynccnt - 1] = w;
3402
3403 EV_FREQUENT_CHECK;
3404}
3405
3406void
3407ev_async_stop (EV_P_ ev_async *w)
3408{
3409 clear_pending (EV_A_ (W)w);
3410 if (expect_false (!ev_is_active (w)))
3411 return;
3412
3413 EV_FREQUENT_CHECK;
3414
3415 {
3416 int active = ev_active (w);
3417
3418 asyncs [active - 1] = asyncs [--asynccnt];
3419 ev_active (asyncs [active - 1]) = active;
3420 }
3421
3422 ev_stop (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
3425}
3426
3427void
3428ev_async_send (EV_P_ ev_async *w)
3429{
3430 w->sent = 1;
3431 evpipe_write (EV_A_ &async_pending);
2342} 3432}
2343#endif 3433#endif
2344 3434
2345/*****************************************************************************/ 3435/*****************************************************************************/
2346 3436
2356once_cb (EV_P_ struct ev_once *once, int revents) 3446once_cb (EV_P_ struct ev_once *once, int revents)
2357{ 3447{
2358 void (*cb)(int revents, void *arg) = once->cb; 3448 void (*cb)(int revents, void *arg) = once->cb;
2359 void *arg = once->arg; 3449 void *arg = once->arg;
2360 3450
2361 ev_io_stop (EV_A_ &once->io); 3451 ev_io_stop (EV_A_ &once->io);
2362 ev_timer_stop (EV_A_ &once->to); 3452 ev_timer_stop (EV_A_ &once->to);
2363 ev_free (once); 3453 ev_free (once);
2364 3454
2365 cb (revents, arg); 3455 cb (revents, arg);
2366} 3456}
2367 3457
2368static void 3458static void
2369once_cb_io (EV_P_ ev_io *w, int revents) 3459once_cb_io (EV_P_ ev_io *w, int revents)
2370{ 3460{
2371 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3461 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3462
3463 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2372} 3464}
2373 3465
2374static void 3466static void
2375once_cb_to (EV_P_ ev_timer *w, int revents) 3467once_cb_to (EV_P_ ev_timer *w, int revents)
2376{ 3468{
2377 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3469 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3470
3471 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2378} 3472}
2379 3473
2380void 3474void
2381ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3475ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2382{ 3476{
2404 ev_timer_set (&once->to, timeout, 0.); 3498 ev_timer_set (&once->to, timeout, 0.);
2405 ev_timer_start (EV_A_ &once->to); 3499 ev_timer_start (EV_A_ &once->to);
2406 } 3500 }
2407} 3501}
2408 3502
3503/*****************************************************************************/
3504
3505#if EV_WALK_ENABLE
3506void
3507ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3508{
3509 int i, j;
3510 ev_watcher_list *wl, *wn;
3511
3512 if (types & (EV_IO | EV_EMBED))
3513 for (i = 0; i < anfdmax; ++i)
3514 for (wl = anfds [i].head; wl; )
3515 {
3516 wn = wl->next;
3517
3518#if EV_EMBED_ENABLE
3519 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3520 {
3521 if (types & EV_EMBED)
3522 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3523 }
3524 else
3525#endif
3526#if EV_USE_INOTIFY
3527 if (ev_cb ((ev_io *)wl) == infy_cb)
3528 ;
3529 else
3530#endif
3531 if ((ev_io *)wl != &pipe_w)
3532 if (types & EV_IO)
3533 cb (EV_A_ EV_IO, wl);
3534
3535 wl = wn;
3536 }
3537
3538 if (types & (EV_TIMER | EV_STAT))
3539 for (i = timercnt + HEAP0; i-- > HEAP0; )
3540#if EV_STAT_ENABLE
3541 /*TODO: timer is not always active*/
3542 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3543 {
3544 if (types & EV_STAT)
3545 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3546 }
3547 else
3548#endif
3549 if (types & EV_TIMER)
3550 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3551
3552#if EV_PERIODIC_ENABLE
3553 if (types & EV_PERIODIC)
3554 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3555 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3556#endif
3557
3558#if EV_IDLE_ENABLE
3559 if (types & EV_IDLE)
3560 for (j = NUMPRI; i--; )
3561 for (i = idlecnt [j]; i--; )
3562 cb (EV_A_ EV_IDLE, idles [j][i]);
3563#endif
3564
3565#if EV_FORK_ENABLE
3566 if (types & EV_FORK)
3567 for (i = forkcnt; i--; )
3568 if (ev_cb (forks [i]) != embed_fork_cb)
3569 cb (EV_A_ EV_FORK, forks [i]);
3570#endif
3571
3572#if EV_ASYNC_ENABLE
3573 if (types & EV_ASYNC)
3574 for (i = asynccnt; i--; )
3575 cb (EV_A_ EV_ASYNC, asyncs [i]);
3576#endif
3577
3578 if (types & EV_PREPARE)
3579 for (i = preparecnt; i--; )
3580#if EV_EMBED_ENABLE
3581 if (ev_cb (prepares [i]) != embed_prepare_cb)
3582#endif
3583 cb (EV_A_ EV_PREPARE, prepares [i]);
3584
3585 if (types & EV_CHECK)
3586 for (i = checkcnt; i--; )
3587 cb (EV_A_ EV_CHECK, checks [i]);
3588
3589 if (types & EV_SIGNAL)
3590 for (i = 0; i < EV_NSIG - 1; ++i)
3591 for (wl = signals [i].head; wl; )
3592 {
3593 wn = wl->next;
3594 cb (EV_A_ EV_SIGNAL, wl);
3595 wl = wn;
3596 }
3597
3598 if (types & EV_CHILD)
3599 for (i = EV_PID_HASHSIZE; i--; )
3600 for (wl = childs [i]; wl; )
3601 {
3602 wn = wl->next;
3603 cb (EV_A_ EV_CHILD, wl);
3604 wl = wn;
3605 }
3606/* EV_STAT 0x00001000 /* stat data changed */
3607/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3608}
3609#endif
3610
2409#if EV_MULTIPLICITY 3611#if EV_MULTIPLICITY
2410 #include "ev_wrap.h" 3612 #include "ev_wrap.h"
2411#endif 3613#endif
2412 3614
2413#ifdef __cplusplus 3615#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines