ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.128 by root, Thu Nov 22 12:28:27 2007 UTC vs.
Revision 1.313 by root, Wed Aug 19 23:44:51 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
52# endif 87# endif
53# endif 88# endif
54 89
55# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 125# else
91# define EV_USE_PORT 0 126# define EV_USE_PORT 0
92# endif 127# endif
93# endif 128# endif
94 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
95#endif 154#endif
96 155
97#include <math.h> 156#include <math.h>
98#include <stdlib.h> 157#include <stdlib.h>
99#include <fcntl.h> 158#include <fcntl.h>
106#include <sys/types.h> 165#include <sys/types.h>
107#include <time.h> 166#include <time.h>
108 167
109#include <signal.h> 168#include <signal.h>
110 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
111#ifndef _WIN32 176#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 177# include <sys/time.h>
114# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
115#else 180#else
181# include <io.h>
116# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 183# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
120# endif 186# endif
121#endif 187#endif
122 188
123/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
124 225
125#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
126# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
127#endif 232#endif
128 233
129#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
131#endif 244#endif
132 245
133#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
135#endif 248#endif
141# define EV_USE_POLL 1 254# define EV_USE_POLL 1
142# endif 255# endif
143#endif 256#endif
144 257
145#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
146# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
147#endif 264#endif
148 265
149#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
151#endif 268#endif
152 269
153#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 271# define EV_USE_PORT 0
155#endif 272#endif
156 273
157/**/ 274#ifndef EV_USE_INOTIFY
158 275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 276# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 277# else
161# undef EV_USE_POLL 278# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 279# endif
280#endif
281
282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 347
165#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
168#endif 351#endif
170#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
173#endif 356#endif
174 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
175#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 381# include <winsock.h>
177#endif 382#endif
178 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
179/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
417
418/*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 427
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 431
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 432#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 434# define noinline __attribute__ ((noinline))
195#else 435#else
196# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
197# define inline static 437# define noinline
438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439# define inline
440# endif
198#endif 441#endif
199 442
200#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 444#define expect_true(expr) expect ((expr) != 0, 1)
445#define inline_size static inline
202 446
447#if EV_MINIMAL
448# define inline_speed static noinline
449#else
450# define inline_speed static inline
451#endif
452
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
205 460
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
208 463
209typedef struct ev_watcher *W; 464typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
212 467
468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
480
481#ifndef EV_FD_TO_WIN32_HANDLE
482# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
483#endif
484#ifndef EV_WIN32_HANDLE_TO_FD
485# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
486#endif
487#ifndef EV_WIN32_CLOSE_FD
488# define EV_WIN32_CLOSE_FD(fd) close (fd)
489#endif
214 490
215#ifdef _WIN32 491#ifdef _WIN32
216# include "ev_win32.c" 492# include "ev_win32.c"
217#endif 493#endif
218 494
219/*****************************************************************************/ 495/*****************************************************************************/
220 496
221static void (*syserr_cb)(const char *msg); 497static void (*syserr_cb)(const char *msg);
222 498
499void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 500ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 501{
225 syserr_cb = cb; 502 syserr_cb = cb;
226} 503}
227 504
228static void 505static void noinline
229syserr (const char *msg) 506ev_syserr (const char *msg)
230{ 507{
231 if (!msg) 508 if (!msg)
232 msg = "(libev) system error"; 509 msg = "(libev) system error";
233 510
234 if (syserr_cb) 511 if (syserr_cb)
238 perror (msg); 515 perror (msg);
239 abort (); 516 abort ();
240 } 517 }
241} 518}
242 519
520static void *
521ev_realloc_emul (void *ptr, long size)
522{
523 /* some systems, notably openbsd and darwin, fail to properly
524 * implement realloc (x, 0) (as required by both ansi c-98 and
525 * the single unix specification, so work around them here.
526 */
527
528 if (size)
529 return realloc (ptr, size);
530
531 free (ptr);
532 return 0;
533}
534
243static void *(*alloc)(void *ptr, long size); 535static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 536
537void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 538ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 539{
247 alloc = cb; 540 alloc = cb;
248} 541}
249 542
250static void * 543inline_speed void *
251ev_realloc (void *ptr, long size) 544ev_realloc (void *ptr, long size)
252{ 545{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 546 ptr = alloc (ptr, size);
254 547
255 if (!ptr && size) 548 if (!ptr && size)
256 { 549 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 550 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 551 abort ();
264#define ev_malloc(size) ev_realloc (0, (size)) 557#define ev_malloc(size) ev_realloc (0, (size))
265#define ev_free(ptr) ev_realloc ((ptr), 0) 558#define ev_free(ptr) ev_realloc ((ptr), 0)
266 559
267/*****************************************************************************/ 560/*****************************************************************************/
268 561
562/* set in reify when reification needed */
563#define EV_ANFD_REIFY 1
564
565/* file descriptor info structure */
269typedef struct 566typedef struct
270{ 567{
271 WL head; 568 WL head;
272 unsigned char events; 569 unsigned char events; /* the events watched for */
570 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
571 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
273 unsigned char reify; 572 unsigned char unused;
573#if EV_USE_EPOLL
574 unsigned int egen; /* generation counter to counter epoll bugs */
575#endif
274#if EV_SELECT_IS_WINSOCKET 576#if EV_SELECT_IS_WINSOCKET
275 SOCKET handle; 577 SOCKET handle;
276#endif 578#endif
277} ANFD; 579} ANFD;
278 580
581/* stores the pending event set for a given watcher */
279typedef struct 582typedef struct
280{ 583{
281 W w; 584 W w;
282 int events; 585 int events; /* the pending event set for the given watcher */
283} ANPENDING; 586} ANPENDING;
587
588#if EV_USE_INOTIFY
589/* hash table entry per inotify-id */
590typedef struct
591{
592 WL head;
593} ANFS;
594#endif
595
596/* Heap Entry */
597#if EV_HEAP_CACHE_AT
598 /* a heap element */
599 typedef struct {
600 ev_tstamp at;
601 WT w;
602 } ANHE;
603
604 #define ANHE_w(he) (he).w /* access watcher, read-write */
605 #define ANHE_at(he) (he).at /* access cached at, read-only */
606 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
607#else
608 /* a heap element */
609 typedef WT ANHE;
610
611 #define ANHE_w(he) (he)
612 #define ANHE_at(he) (he)->at
613 #define ANHE_at_cache(he)
614#endif
284 615
285#if EV_MULTIPLICITY 616#if EV_MULTIPLICITY
286 617
287 struct ev_loop 618 struct ev_loop
288 { 619 {
306 637
307 static int ev_default_loop_ptr; 638 static int ev_default_loop_ptr;
308 639
309#endif 640#endif
310 641
642#if EV_MINIMAL < 2
643# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
644# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
645# define EV_INVOKE_PENDING invoke_cb (EV_A)
646#else
647# define EV_RELEASE_CB (void)0
648# define EV_ACQUIRE_CB (void)0
649# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
650#endif
651
652#define EVUNLOOP_RECURSE 0x80
653
311/*****************************************************************************/ 654/*****************************************************************************/
312 655
656#ifndef EV_HAVE_EV_TIME
313ev_tstamp 657ev_tstamp
314ev_time (void) 658ev_time (void)
315{ 659{
316#if EV_USE_REALTIME 660#if EV_USE_REALTIME
661 if (expect_true (have_realtime))
662 {
317 struct timespec ts; 663 struct timespec ts;
318 clock_gettime (CLOCK_REALTIME, &ts); 664 clock_gettime (CLOCK_REALTIME, &ts);
319 return ts.tv_sec + ts.tv_nsec * 1e-9; 665 return ts.tv_sec + ts.tv_nsec * 1e-9;
320#else 666 }
667#endif
668
321 struct timeval tv; 669 struct timeval tv;
322 gettimeofday (&tv, 0); 670 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 671 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif
325} 672}
673#endif
326 674
327inline ev_tstamp 675inline_size ev_tstamp
328get_clock (void) 676get_clock (void)
329{ 677{
330#if EV_USE_MONOTONIC 678#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 679 if (expect_true (have_monotonic))
332 { 680 {
345{ 693{
346 return ev_rt_now; 694 return ev_rt_now;
347} 695}
348#endif 696#endif
349 697
350#define array_roundsize(type,n) (((n) | 4) & ~3) 698void
699ev_sleep (ev_tstamp delay)
700{
701 if (delay > 0.)
702 {
703#if EV_USE_NANOSLEEP
704 struct timespec ts;
705
706 ts.tv_sec = (time_t)delay;
707 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
708
709 nanosleep (&ts, 0);
710#elif defined(_WIN32)
711 Sleep ((unsigned long)(delay * 1e3));
712#else
713 struct timeval tv;
714
715 tv.tv_sec = (time_t)delay;
716 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
717
718 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
719 /* something not guaranteed by newer posix versions, but guaranteed */
720 /* by older ones */
721 select (0, 0, 0, 0, &tv);
722#endif
723 }
724}
725
726/*****************************************************************************/
727
728#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
729
730/* find a suitable new size for the given array, */
731/* hopefully by rounding to a ncie-to-malloc size */
732inline_size int
733array_nextsize (int elem, int cur, int cnt)
734{
735 int ncur = cur + 1;
736
737 do
738 ncur <<= 1;
739 while (cnt > ncur);
740
741 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
742 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
743 {
744 ncur *= elem;
745 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
746 ncur = ncur - sizeof (void *) * 4;
747 ncur /= elem;
748 }
749
750 return ncur;
751}
752
753static noinline void *
754array_realloc (int elem, void *base, int *cur, int cnt)
755{
756 *cur = array_nextsize (elem, *cur, cnt);
757 return ev_realloc (base, elem * *cur);
758}
759
760#define array_init_zero(base,count) \
761 memset ((void *)(base), 0, sizeof (*(base)) * (count))
351 762
352#define array_needsize(type,base,cur,cnt,init) \ 763#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 764 if (expect_false ((cnt) > (cur))) \
354 { \ 765 { \
355 int newcnt = cur; \ 766 int ocur_ = (cur); \
356 do \ 767 (base) = (type *)array_realloc \
357 { \ 768 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 769 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 770 }
366 771
772#if 0
367#define array_slim(type,stem) \ 773#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 774 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 775 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 776 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 777 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 778 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 779 }
780#endif
374 781
375#define array_free(stem, idx) \ 782#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 783 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
377 784
378/*****************************************************************************/ 785/*****************************************************************************/
379 786
380static void 787/* dummy callback for pending events */
381anfds_init (ANFD *base, int count) 788static void noinline
789pendingcb (EV_P_ ev_prepare *w, int revents)
382{ 790{
383 while (count--)
384 {
385 base->head = 0;
386 base->events = EV_NONE;
387 base->reify = 0;
388
389 ++base;
390 }
391} 791}
392 792
393void 793void noinline
394ev_feed_event (EV_P_ void *w, int revents) 794ev_feed_event (EV_P_ void *w, int revents)
395{ 795{
396 W w_ = (W)w; 796 W w_ = (W)w;
797 int pri = ABSPRI (w_);
397 798
398 if (expect_false (w_->pending)) 799 if (expect_false (w_->pending))
800 pendings [pri][w_->pending - 1].events |= revents;
801 else
399 { 802 {
803 w_->pending = ++pendingcnt [pri];
804 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
805 pendings [pri][w_->pending - 1].w = w_;
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 806 pendings [pri][w_->pending - 1].events = revents;
401 return;
402 } 807 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408} 808}
409 809
410static void 810inline_speed void
811feed_reverse (EV_P_ W w)
812{
813 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
814 rfeeds [rfeedcnt++] = w;
815}
816
817inline_size void
818feed_reverse_done (EV_P_ int revents)
819{
820 do
821 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
822 while (rfeedcnt);
823}
824
825inline_speed void
411queue_events (EV_P_ W *events, int eventcnt, int type) 826queue_events (EV_P_ W *events, int eventcnt, int type)
412{ 827{
413 int i; 828 int i;
414 829
415 for (i = 0; i < eventcnt; ++i) 830 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type); 831 ev_feed_event (EV_A_ events [i], type);
417} 832}
418 833
834/*****************************************************************************/
835
419inline void 836inline_speed void
420fd_event (EV_P_ int fd, int revents) 837fd_event_nc (EV_P_ int fd, int revents)
421{ 838{
422 ANFD *anfd = anfds + fd; 839 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 840 ev_io *w;
424 841
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 842 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 843 {
427 int ev = w->events & revents; 844 int ev = w->events & revents;
428 845
429 if (ev) 846 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 847 ev_feed_event (EV_A_ (W)w, ev);
431 } 848 }
432} 849}
433 850
851/* do not submit kernel events for fds that have reify set */
852/* because that means they changed while we were polling for new events */
853inline_speed void
854fd_event (EV_P_ int fd, int revents)
855{
856 ANFD *anfd = anfds + fd;
857
858 if (expect_true (!anfd->reify))
859 fd_event_nc (EV_A_ fd, revents);
860}
861
434void 862void
435ev_feed_fd_event (EV_P_ int fd, int revents) 863ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 864{
865 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 866 fd_event_nc (EV_A_ fd, revents);
438} 867}
439 868
440/*****************************************************************************/ 869/* make sure the external fd watch events are in-sync */
441 870/* with the kernel/libev internal state */
442inline void 871inline_size void
443fd_reify (EV_P) 872fd_reify (EV_P)
444{ 873{
445 int i; 874 int i;
446 875
447 for (i = 0; i < fdchangecnt; ++i) 876 for (i = 0; i < fdchangecnt; ++i)
448 { 877 {
449 int fd = fdchanges [i]; 878 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 879 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 880 ev_io *w;
452 881
453 int events = 0; 882 unsigned char events = 0;
454 883
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 884 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 885 events |= (unsigned char)w->events;
457 886
458#if EV_SELECT_IS_WINSOCKET 887#if EV_SELECT_IS_WINSOCKET
459 if (events) 888 if (events)
460 { 889 {
461 unsigned long argp; 890 unsigned long arg;
462 anfd->handle = _get_osfhandle (fd); 891 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 892 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
464 } 893 }
465#endif 894#endif
466 895
896 {
897 unsigned char o_events = anfd->events;
898 unsigned char o_reify = anfd->reify;
899
467 anfd->reify = 0; 900 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 901 anfd->events = events;
902
903 if (o_events != events || o_reify & EV__IOFDSET)
904 backend_modify (EV_A_ fd, o_events, events);
905 }
471 } 906 }
472 907
473 fdchangecnt = 0; 908 fdchangecnt = 0;
474} 909}
475 910
476static void 911/* something about the given fd changed */
912inline_size void
477fd_change (EV_P_ int fd) 913fd_change (EV_P_ int fd, int flags)
478{ 914{
479 if (expect_false (anfds [fd].reify)) 915 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 916 anfds [fd].reify |= flags;
483 917
918 if (expect_true (!reify))
919 {
484 ++fdchangecnt; 920 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 921 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 922 fdchanges [fdchangecnt - 1] = fd;
923 }
487} 924}
488 925
489static void 926/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
927inline_speed void
490fd_kill (EV_P_ int fd) 928fd_kill (EV_P_ int fd)
491{ 929{
492 struct ev_io *w; 930 ev_io *w;
493 931
494 while ((w = (struct ev_io *)anfds [fd].head)) 932 while ((w = (ev_io *)anfds [fd].head))
495 { 933 {
496 ev_io_stop (EV_A_ w); 934 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 935 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 936 }
499} 937}
500 938
939/* check whether the given fd is atcually valid, for error recovery */
501inline int 940inline_size int
502fd_valid (int fd) 941fd_valid (int fd)
503{ 942{
504#ifdef _WIN32 943#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 944 return _get_osfhandle (fd) != -1;
506#else 945#else
507 return fcntl (fd, F_GETFD) != -1; 946 return fcntl (fd, F_GETFD) != -1;
508#endif 947#endif
509} 948}
510 949
511/* called on EBADF to verify fds */ 950/* called on EBADF to verify fds */
512static void 951static void noinline
513fd_ebadf (EV_P) 952fd_ebadf (EV_P)
514{ 953{
515 int fd; 954 int fd;
516 955
517 for (fd = 0; fd < anfdmax; ++fd) 956 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 957 if (anfds [fd].events)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 958 if (!fd_valid (fd) && errno == EBADF)
520 fd_kill (EV_A_ fd); 959 fd_kill (EV_A_ fd);
521} 960}
522 961
523/* called on ENOMEM in select/poll to kill some fds and retry */ 962/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 963static void noinline
525fd_enomem (EV_P) 964fd_enomem (EV_P)
526{ 965{
527 int fd; 966 int fd;
528 967
529 for (fd = anfdmax; fd--; ) 968 for (fd = anfdmax; fd--; )
530 if (anfds [fd].events) 969 if (anfds [fd].events)
531 { 970 {
532 fd_kill (EV_A_ fd); 971 fd_kill (EV_A_ fd);
533 return; 972 break;
534 } 973 }
535} 974}
536 975
537/* usually called after fork if method needs to re-arm all fds from scratch */ 976/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 977static void noinline
539fd_rearm_all (EV_P) 978fd_rearm_all (EV_P)
540{ 979{
541 int fd; 980 int fd;
542 981
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 982 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 983 if (anfds [fd].events)
546 { 984 {
547 anfds [fd].events = 0; 985 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 986 anfds [fd].emask = 0;
987 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
549 } 988 }
550} 989}
551 990
552/*****************************************************************************/ 991/*****************************************************************************/
553 992
554static void 993/*
555upheap (WT *heap, int k) 994 * the heap functions want a real array index. array index 0 uis guaranteed to not
556{ 995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
557 WT w = heap [k]; 996 * the branching factor of the d-tree.
997 */
558 998
559 while (k && heap [k >> 1]->at > w->at) 999/*
560 { 1000 * at the moment we allow libev the luxury of two heaps,
561 heap [k] = heap [k >> 1]; 1001 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
562 ((W)heap [k])->active = k + 1; 1002 * which is more cache-efficient.
563 k >>= 1; 1003 * the difference is about 5% with 50000+ watchers.
564 } 1004 */
1005#if EV_USE_4HEAP
565 1006
566 heap [k] = w; 1007#define DHEAP 4
567 ((W)heap [k])->active = k + 1; 1008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1010#define UPHEAP_DONE(p,k) ((p) == (k))
568 1011
569} 1012/* away from the root */
570 1013inline_speed void
571static void
572downheap (WT *heap, int N, int k) 1014downheap (ANHE *heap, int N, int k)
573{ 1015{
574 WT w = heap [k]; 1016 ANHE he = heap [k];
1017 ANHE *E = heap + N + HEAP0;
575 1018
576 while (k < (N >> 1)) 1019 for (;;)
577 { 1020 {
578 int j = k << 1; 1021 ev_tstamp minat;
1022 ANHE *minpos;
1023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
579 1024
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1025 /* find minimum child */
1026 if (expect_true (pos + DHEAP - 1 < E))
581 ++j; 1027 {
582 1028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
583 if (w->at <= heap [j]->at) 1029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1032 }
1033 else if (pos < E)
1034 {
1035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1037 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1038 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1039 }
1040 else
584 break; 1041 break;
585 1042
1043 if (ANHE_at (he) <= minat)
1044 break;
1045
1046 heap [k] = *minpos;
1047 ev_active (ANHE_w (*minpos)) = k;
1048
1049 k = minpos - heap;
1050 }
1051
1052 heap [k] = he;
1053 ev_active (ANHE_w (he)) = k;
1054}
1055
1056#else /* 4HEAP */
1057
1058#define HEAP0 1
1059#define HPARENT(k) ((k) >> 1)
1060#define UPHEAP_DONE(p,k) (!(p))
1061
1062/* away from the root */
1063inline_speed void
1064downheap (ANHE *heap, int N, int k)
1065{
1066 ANHE he = heap [k];
1067
1068 for (;;)
1069 {
1070 int c = k << 1;
1071
1072 if (c >= N + HEAP0)
1073 break;
1074
1075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1076 ? 1 : 0;
1077
1078 if (ANHE_at (he) <= ANHE_at (heap [c]))
1079 break;
1080
586 heap [k] = heap [j]; 1081 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 1082 ev_active (ANHE_w (heap [k])) = k;
1083
588 k = j; 1084 k = c;
589 } 1085 }
590 1086
591 heap [k] = w; 1087 heap [k] = he;
592 ((W)heap [k])->active = k + 1; 1088 ev_active (ANHE_w (he)) = k;
593} 1089}
1090#endif
594 1091
1092/* towards the root */
1093inline_speed void
1094upheap (ANHE *heap, int k)
1095{
1096 ANHE he = heap [k];
1097
1098 for (;;)
1099 {
1100 int p = HPARENT (k);
1101
1102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1103 break;
1104
1105 heap [k] = heap [p];
1106 ev_active (ANHE_w (heap [k])) = k;
1107 k = p;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112}
1113
1114/* move an element suitably so it is in a correct place */
595inline void 1115inline_size void
596adjustheap (WT *heap, int N, int k) 1116adjustheap (ANHE *heap, int N, int k)
597{ 1117{
1118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
598 upheap (heap, k); 1119 upheap (heap, k);
1120 else
599 downheap (heap, N, k); 1121 downheap (heap, N, k);
1122}
1123
1124/* rebuild the heap: this function is used only once and executed rarely */
1125inline_size void
1126reheap (ANHE *heap, int N)
1127{
1128 int i;
1129
1130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1132 for (i = 0; i < N; ++i)
1133 upheap (heap, i + HEAP0);
600} 1134}
601 1135
602/*****************************************************************************/ 1136/*****************************************************************************/
603 1137
1138/* associate signal watchers to a signal signal */
604typedef struct 1139typedef struct
605{ 1140{
1141 EV_ATOMIC_T pending;
1142#if EV_MULTIPLICITY
1143 EV_P;
1144#endif
606 WL head; 1145 WL head;
607 sig_atomic_t volatile gotsig;
608} ANSIG; 1146} ANSIG;
609 1147
610static ANSIG *signals; 1148static ANSIG signals [EV_NSIG - 1];
611static int signalmax;
612 1149
613static int sigpipe [2]; 1150/*****************************************************************************/
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 1151
617static void 1152/* used to prepare libev internal fd's */
618signals_init (ANSIG *base, int count) 1153/* this is not fork-safe */
619{ 1154inline_speed void
620 while (count--)
621 {
622 base->head = 0;
623 base->gotsig = 0;
624
625 ++base;
626 }
627}
628
629static void
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635
636 signals [signum - 1].gotsig = 1;
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 1155fd_intern (int fd)
682{ 1156{
683#ifdef _WIN32 1157#ifdef _WIN32
684 int arg = 1; 1158 unsigned long arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1159 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
686#else 1160#else
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 1161 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 1162 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 1163#endif
690} 1164}
691 1165
1166static void noinline
1167evpipe_init (EV_P)
1168{
1169 if (!ev_is_active (&pipe_w))
1170 {
1171#if EV_USE_EVENTFD
1172 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1173 if (evfd < 0 && errno == EINVAL)
1174 evfd = eventfd (0, 0);
1175
1176 if (evfd >= 0)
1177 {
1178 evpipe [0] = -1;
1179 fd_intern (evfd); /* doing it twice doesn't hurt */
1180 ev_io_set (&pipe_w, evfd, EV_READ);
1181 }
1182 else
1183#endif
1184 {
1185 while (pipe (evpipe))
1186 ev_syserr ("(libev) error creating signal/async pipe");
1187
1188 fd_intern (evpipe [0]);
1189 fd_intern (evpipe [1]);
1190 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1191 }
1192
1193 ev_io_start (EV_A_ &pipe_w);
1194 ev_unref (EV_A); /* watcher should not keep loop alive */
1195 }
1196}
1197
1198inline_size void
1199evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1200{
1201 if (!*flag)
1202 {
1203 int old_errno = errno; /* save errno because write might clobber it */
1204
1205 *flag = 1;
1206
1207#if EV_USE_EVENTFD
1208 if (evfd >= 0)
1209 {
1210 uint64_t counter = 1;
1211 write (evfd, &counter, sizeof (uint64_t));
1212 }
1213 else
1214#endif
1215 write (evpipe [1], &old_errno, 1);
1216
1217 errno = old_errno;
1218 }
1219}
1220
1221/* called whenever the libev signal pipe */
1222/* got some events (signal, async) */
692static void 1223static void
693siginit (EV_P) 1224pipecb (EV_P_ ev_io *iow, int revents)
694{ 1225{
695 fd_intern (sigpipe [0]); 1226 int i;
696 fd_intern (sigpipe [1]);
697 1227
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 1228#if EV_USE_EVENTFD
699 ev_io_start (EV_A_ &sigev); 1229 if (evfd >= 0)
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1230 {
1231 uint64_t counter;
1232 read (evfd, &counter, sizeof (uint64_t));
1233 }
1234 else
1235#endif
1236 {
1237 char dummy;
1238 read (evpipe [0], &dummy, 1);
1239 }
1240
1241 if (sig_pending)
1242 {
1243 sig_pending = 0;
1244
1245 for (i = EV_NSIG - 1; i--; )
1246 if (expect_false (signals [i].pending))
1247 ev_feed_signal_event (EV_A_ i + 1);
1248 }
1249
1250#if EV_ASYNC_ENABLE
1251 if (async_pending)
1252 {
1253 async_pending = 0;
1254
1255 for (i = asynccnt; i--; )
1256 if (asyncs [i]->sent)
1257 {
1258 asyncs [i]->sent = 0;
1259 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1260 }
1261 }
1262#endif
701} 1263}
702 1264
703/*****************************************************************************/ 1265/*****************************************************************************/
704 1266
705static struct ev_child *childs [PID_HASHSIZE]; 1267static void
1268ev_sighandler (int signum)
1269{
1270#if EV_MULTIPLICITY
1271 EV_P = signals [signum - 1].loop;
1272#endif
1273
1274#if _WIN32
1275 signal (signum, ev_sighandler);
1276#endif
1277
1278 signals [signum - 1].pending = 1;
1279 evpipe_write (EV_A_ &sig_pending);
1280}
1281
1282void noinline
1283ev_feed_signal_event (EV_P_ int signum)
1284{
1285 WL w;
1286
1287 if (expect_false (signum <= 0 || signum > EV_NSIG))
1288 return;
1289
1290 --signum;
1291
1292#if EV_MULTIPLICITY
1293 /* it is permissible to try to feed a signal to the wrong loop */
1294 /* or, likely more useful, feeding a signal nobody is waiting for */
1295
1296 if (expect_false (signals [signum].loop != EV_A))
1297 return;
1298#endif
1299
1300 signals [signum].pending = 0;
1301
1302 for (w = signals [signum].head; w; w = w->next)
1303 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1304}
1305
1306#if EV_USE_SIGNALFD
1307static void
1308sigfdcb (EV_P_ ev_io *iow, int revents)
1309{
1310 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1311
1312 for (;;)
1313 {
1314 ssize_t res = read (sigfd, si, sizeof (si));
1315
1316 /* not ISO-C, as res might be -1, but works with SuS */
1317 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1318 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1319
1320 if (res < (ssize_t)sizeof (si))
1321 break;
1322 }
1323}
1324#endif
1325
1326/*****************************************************************************/
1327
1328static WL childs [EV_PID_HASHSIZE];
706 1329
707#ifndef _WIN32 1330#ifndef _WIN32
708 1331
709static struct ev_signal childev; 1332static ev_signal childev;
1333
1334#ifndef WIFCONTINUED
1335# define WIFCONTINUED(status) 0
1336#endif
1337
1338/* handle a single child status event */
1339inline_speed void
1340child_reap (EV_P_ int chain, int pid, int status)
1341{
1342 ev_child *w;
1343 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1344
1345 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1346 {
1347 if ((w->pid == pid || !w->pid)
1348 && (!traced || (w->flags & 1)))
1349 {
1350 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1351 w->rpid = pid;
1352 w->rstatus = status;
1353 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1354 }
1355 }
1356}
710 1357
711#ifndef WCONTINUED 1358#ifndef WCONTINUED
712# define WCONTINUED 0 1359# define WCONTINUED 0
713#endif 1360#endif
714 1361
1362/* called on sigchld etc., calls waitpid */
715static void 1363static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1364childcb (EV_P_ ev_signal *sw, int revents)
732{ 1365{
733 int pid, status; 1366 int pid, status;
734 1367
1368 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1369 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1370 if (!WCONTINUED
1371 || errno != EINVAL
1372 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1373 return;
1374
737 /* make sure we are called again until all childs have been reaped */ 1375 /* make sure we are called again until all children have been reaped */
1376 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1377 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1378
740 child_reap (EV_A_ sw, pid, pid, status); 1379 child_reap (EV_A_ pid, pid, status);
1380 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1381 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1382}
744 1383
745#endif 1384#endif
746 1385
747/*****************************************************************************/ 1386/*****************************************************************************/
773{ 1412{
774 return EV_VERSION_MINOR; 1413 return EV_VERSION_MINOR;
775} 1414}
776 1415
777/* return true if we are running with elevated privileges and should ignore env variables */ 1416/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1417int inline_size
779enable_secure (void) 1418enable_secure (void)
780{ 1419{
781#ifdef _WIN32 1420#ifdef _WIN32
782 return 0; 1421 return 0;
783#else 1422#else
785 || getgid () != getegid (); 1424 || getgid () != getegid ();
786#endif 1425#endif
787} 1426}
788 1427
789unsigned int 1428unsigned int
790ev_method (EV_P) 1429ev_supported_backends (void)
791{ 1430{
792 return method; 1431 unsigned int flags = 0;
793}
794 1432
795static void 1433 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1434 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1435 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1436 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1437 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1438
1439 return flags;
1440}
1441
1442unsigned int
1443ev_recommended_backends (void)
1444{
1445 unsigned int flags = ev_supported_backends ();
1446
1447#ifndef __NetBSD__
1448 /* kqueue is borked on everything but netbsd apparently */
1449 /* it usually doesn't work correctly on anything but sockets and pipes */
1450 flags &= ~EVBACKEND_KQUEUE;
1451#endif
1452#ifdef __APPLE__
1453 /* only select works correctly on that "unix-certified" platform */
1454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1456#endif
1457
1458 return flags;
1459}
1460
1461unsigned int
1462ev_embeddable_backends (void)
1463{
1464 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1465
1466 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1467 /* please fix it and tell me how to detect the fix */
1468 flags &= ~EVBACKEND_EPOLL;
1469
1470 return flags;
1471}
1472
1473unsigned int
1474ev_backend (EV_P)
1475{
1476 return backend;
1477}
1478
1479#if EV_MINIMAL < 2
1480unsigned int
1481ev_loop_count (EV_P)
1482{
1483 return loop_count;
1484}
1485
1486unsigned int
1487ev_loop_depth (EV_P)
1488{
1489 return loop_depth;
1490}
1491
1492void
1493ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 io_blocktime = interval;
1496}
1497
1498void
1499ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1500{
1501 timeout_blocktime = interval;
1502}
1503
1504void
1505ev_set_userdata (EV_P_ void *data)
1506{
1507 userdata = data;
1508}
1509
1510void *
1511ev_userdata (EV_P)
1512{
1513 return userdata;
1514}
1515
1516void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1517{
1518 invoke_cb = invoke_pending_cb;
1519}
1520
1521void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1522{
1523 release_cb = release;
1524 acquire_cb = acquire;
1525}
1526#endif
1527
1528/* initialise a loop structure, must be zero-initialised */
1529static void noinline
796loop_init (EV_P_ unsigned int flags) 1530loop_init (EV_P_ unsigned int flags)
797{ 1531{
798 if (!method) 1532 if (!backend)
799 { 1533 {
1534#if EV_USE_REALTIME
1535 if (!have_realtime)
1536 {
1537 struct timespec ts;
1538
1539 if (!clock_gettime (CLOCK_REALTIME, &ts))
1540 have_realtime = 1;
1541 }
1542#endif
1543
800#if EV_USE_MONOTONIC 1544#if EV_USE_MONOTONIC
1545 if (!have_monotonic)
801 { 1546 {
802 struct timespec ts; 1547 struct timespec ts;
1548
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1549 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1550 have_monotonic = 1;
805 } 1551 }
806#endif 1552#endif
807 1553
808 ev_rt_now = ev_time (); 1554 /* pid check not overridable via env */
809 mn_now = get_clock (); 1555#ifndef _WIN32
810 now_floor = mn_now; 1556 if (flags & EVFLAG_FORKCHECK)
811 rtmn_diff = ev_rt_now - mn_now; 1557 curpid = getpid ();
1558#endif
812 1559
813 if (!(flags & EVFLAG_NOENV) 1560 if (!(flags & EVFLAG_NOENV)
814 && !enable_secure () 1561 && !enable_secure ()
815 && getenv ("LIBEV_FLAGS")) 1562 && getenv ("LIBEV_FLAGS"))
816 flags = atoi (getenv ("LIBEV_FLAGS")); 1563 flags = atoi (getenv ("LIBEV_FLAGS"));
817 1564
818 if (!(flags & EVMETHOD_ALL)) 1565 ev_rt_now = ev_time ();
1566 mn_now = get_clock ();
1567 now_floor = mn_now;
1568 rtmn_diff = ev_rt_now - mn_now;
1569#if EV_MINIMAL < 2
1570 invoke_cb = ev_invoke_pending;
1571#endif
1572
1573 io_blocktime = 0.;
1574 timeout_blocktime = 0.;
1575 backend = 0;
1576 backend_fd = -1;
1577 sig_pending = 0;
1578#if EV_ASYNC_ENABLE
1579 async_pending = 0;
1580#endif
1581#if EV_USE_INOTIFY
1582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1583#endif
1584#if EV_USE_SIGNALFD
1585 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1586#endif
1587
1588 if (!(flags & 0x0000ffffU))
1589 flags |= ev_recommended_backends ();
1590
1591#if EV_USE_PORT
1592 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1593#endif
1594#if EV_USE_KQUEUE
1595 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1596#endif
1597#if EV_USE_EPOLL
1598 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1599#endif
1600#if EV_USE_POLL
1601 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1602#endif
1603#if EV_USE_SELECT
1604 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1605#endif
1606
1607 ev_prepare_init (&pending_w, pendingcb);
1608
1609 ev_init (&pipe_w, pipecb);
1610 ev_set_priority (&pipe_w, EV_MAXPRI);
1611 }
1612}
1613
1614/* free up a loop structure */
1615static void noinline
1616loop_destroy (EV_P)
1617{
1618 int i;
1619
1620 if (ev_is_active (&pipe_w))
1621 {
1622 /*ev_ref (EV_A);*/
1623 /*ev_io_stop (EV_A_ &pipe_w);*/
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
819 { 1631 {
820 flags |= EVMETHOD_ALL; 1632 EV_WIN32_CLOSE_FD (evpipe [0]);
821#if EV_USE_KQUEUE && !defined (__NetBSD__) 1633 EV_WIN32_CLOSE_FD (evpipe [1]);
822 /* kqueue is borked on everything but netbsd apparently */
823 /* it usually doesn't work correctly on anything but sockets and pipes */
824 flags &= ~EVMETHOD_KQUEUE;
825#endif
826 } 1634 }
1635 }
827 1636
828 method = 0; 1637#if EV_USE_SIGNALFD
1638 if (ev_is_active (&sigfd_w))
1639 {
1640 /*ev_ref (EV_A);*/
1641 /*ev_io_stop (EV_A_ &sigfd_w);*/
1642
1643 close (sigfd);
1644 }
1645#endif
1646
1647#if EV_USE_INOTIFY
1648 if (fs_fd >= 0)
1649 close (fs_fd);
1650#endif
1651
1652 if (backend_fd >= 0)
1653 close (backend_fd);
1654
829#if EV_USE_PORT 1655#if EV_USE_PORT
830 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1656 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
831#endif 1657#endif
832#if EV_USE_KQUEUE 1658#if EV_USE_KQUEUE
833 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1659 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
834#endif 1660#endif
835#if EV_USE_EPOLL 1661#if EV_USE_EPOLL
836 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1662 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
837#endif 1663#endif
838#if EV_USE_POLL 1664#if EV_USE_POLL
839 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1665 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
840#endif 1666#endif
841#if EV_USE_SELECT 1667#if EV_USE_SELECT
842 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1668 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
843#endif 1669#endif
844 1670
845 ev_init (&sigev, sigcb); 1671 for (i = NUMPRI; i--; )
846 ev_set_priority (&sigev, EV_MAXPRI);
847 } 1672 {
848} 1673 array_free (pending, [i]);
1674#if EV_IDLE_ENABLE
1675 array_free (idle, [i]);
1676#endif
1677 }
849 1678
850static void 1679 ev_free (anfds); anfds = 0; anfdmax = 0;
851loop_destroy (EV_P)
852{
853 int i;
854 1680
1681 /* have to use the microsoft-never-gets-it-right macro */
1682 array_free (rfeed, EMPTY);
1683 array_free (fdchange, EMPTY);
1684 array_free (timer, EMPTY);
1685#if EV_PERIODIC_ENABLE
1686 array_free (periodic, EMPTY);
1687#endif
1688#if EV_FORK_ENABLE
1689 array_free (fork, EMPTY);
1690#endif
1691 array_free (prepare, EMPTY);
1692 array_free (check, EMPTY);
1693#if EV_ASYNC_ENABLE
1694 array_free (async, EMPTY);
1695#endif
1696
1697 backend = 0;
1698}
1699
1700#if EV_USE_INOTIFY
1701inline_size void infy_fork (EV_P);
1702#endif
1703
1704inline_size void
1705loop_fork (EV_P)
1706{
855#if EV_USE_PORT 1707#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1708 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1709#endif
858#if EV_USE_KQUEUE 1710#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1711 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1712#endif
861#if EV_USE_EPOLL 1713#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
863#endif
864#if EV_USE_POLL
865 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
866#endif
867#if EV_USE_SELECT
868 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
869#endif
870
871 for (i = NUMPRI; i--; )
872 array_free (pending, [i]);
873
874 /* have to use the microsoft-never-gets-it-right macro */
875 array_free (fdchange, EMPTY0);
876 array_free (timer, EMPTY0);
877#if EV_PERIODICS
878 array_free (periodic, EMPTY0);
879#endif
880 array_free (idle, EMPTY0);
881 array_free (prepare, EMPTY0);
882 array_free (check, EMPTY0);
883
884 method = 0;
885}
886
887static void
888loop_fork (EV_P)
889{
890#if EV_USE_PORT
891 if (method == EVMETHOD_PORT ) port_fork (EV_A);
892#endif
893#if EV_USE_KQUEUE
894 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
895#endif
896#if EV_USE_EPOLL
897 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1714 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
898#endif 1715#endif
1716#if EV_USE_INOTIFY
1717 infy_fork (EV_A);
1718#endif
899 1719
900 if (ev_is_active (&sigev)) 1720 if (ev_is_active (&pipe_w))
901 { 1721 {
902 /* default loop */ 1722 /* this "locks" the handlers against writing to the pipe */
1723 /* while we modify the fd vars */
1724 sig_pending = 1;
1725#if EV_ASYNC_ENABLE
1726 async_pending = 1;
1727#endif
903 1728
904 ev_ref (EV_A); 1729 ev_ref (EV_A);
905 ev_io_stop (EV_A_ &sigev); 1730 ev_io_stop (EV_A_ &pipe_w);
906 close (sigpipe [0]);
907 close (sigpipe [1]);
908 1731
909 while (pipe (sigpipe)) 1732#if EV_USE_EVENTFD
910 syserr ("(libev) error creating pipe"); 1733 if (evfd >= 0)
1734 close (evfd);
1735#endif
911 1736
1737 if (evpipe [0] >= 0)
1738 {
1739 EV_WIN32_CLOSE_FD (evpipe [0]);
1740 EV_WIN32_CLOSE_FD (evpipe [1]);
1741 }
1742
912 siginit (EV_A); 1743 evpipe_init (EV_A);
1744 /* now iterate over everything, in case we missed something */
1745 pipecb (EV_A_ &pipe_w, EV_READ);
913 } 1746 }
914 1747
915 postfork = 0; 1748 postfork = 0;
916} 1749}
917 1750
918#if EV_MULTIPLICITY 1751#if EV_MULTIPLICITY
1752
919struct ev_loop * 1753struct ev_loop *
920ev_loop_new (unsigned int flags) 1754ev_loop_new (unsigned int flags)
921{ 1755{
922 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1756 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
923 1757
924 memset (loop, 0, sizeof (struct ev_loop)); 1758 memset (EV_A, 0, sizeof (struct ev_loop));
925
926 loop_init (EV_A_ flags); 1759 loop_init (EV_A_ flags);
927 1760
928 if (ev_method (EV_A)) 1761 if (ev_backend (EV_A))
929 return loop; 1762 return EV_A;
930 1763
931 return 0; 1764 return 0;
932} 1765}
933 1766
934void 1767void
939} 1772}
940 1773
941void 1774void
942ev_loop_fork (EV_P) 1775ev_loop_fork (EV_P)
943{ 1776{
944 postfork = 1; 1777 postfork = 1; /* must be in line with ev_default_fork */
945} 1778}
1779#endif /* multiplicity */
946 1780
1781#if EV_VERIFY
1782static void noinline
1783verify_watcher (EV_P_ W w)
1784{
1785 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1786
1787 if (w->pending)
1788 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1789}
1790
1791static void noinline
1792verify_heap (EV_P_ ANHE *heap, int N)
1793{
1794 int i;
1795
1796 for (i = HEAP0; i < N + HEAP0; ++i)
1797 {
1798 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1799 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1800 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1801
1802 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1803 }
1804}
1805
1806static void noinline
1807array_verify (EV_P_ W *ws, int cnt)
1808{
1809 while (cnt--)
1810 {
1811 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1812 verify_watcher (EV_A_ ws [cnt]);
1813 }
1814}
1815#endif
1816
1817#if EV_MINIMAL < 2
1818void
1819ev_loop_verify (EV_P)
1820{
1821#if EV_VERIFY
1822 int i;
1823 WL w;
1824
1825 assert (activecnt >= -1);
1826
1827 assert (fdchangemax >= fdchangecnt);
1828 for (i = 0; i < fdchangecnt; ++i)
1829 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1830
1831 assert (anfdmax >= 0);
1832 for (i = 0; i < anfdmax; ++i)
1833 for (w = anfds [i].head; w; w = w->next)
1834 {
1835 verify_watcher (EV_A_ (W)w);
1836 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1837 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1838 }
1839
1840 assert (timermax >= timercnt);
1841 verify_heap (EV_A_ timers, timercnt);
1842
1843#if EV_PERIODIC_ENABLE
1844 assert (periodicmax >= periodiccnt);
1845 verify_heap (EV_A_ periodics, periodiccnt);
1846#endif
1847
1848 for (i = NUMPRI; i--; )
1849 {
1850 assert (pendingmax [i] >= pendingcnt [i]);
1851#if EV_IDLE_ENABLE
1852 assert (idleall >= 0);
1853 assert (idlemax [i] >= idlecnt [i]);
1854 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1855#endif
1856 }
1857
1858#if EV_FORK_ENABLE
1859 assert (forkmax >= forkcnt);
1860 array_verify (EV_A_ (W *)forks, forkcnt);
1861#endif
1862
1863#if EV_ASYNC_ENABLE
1864 assert (asyncmax >= asynccnt);
1865 array_verify (EV_A_ (W *)asyncs, asynccnt);
1866#endif
1867
1868 assert (preparemax >= preparecnt);
1869 array_verify (EV_A_ (W *)prepares, preparecnt);
1870
1871 assert (checkmax >= checkcnt);
1872 array_verify (EV_A_ (W *)checks, checkcnt);
1873
1874# if 0
1875 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1876 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1877# endif
1878#endif
1879}
947#endif 1880#endif
948 1881
949#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
950struct ev_loop * 1883struct ev_loop *
951ev_default_loop_init (unsigned int flags) 1884ev_default_loop_init (unsigned int flags)
952#else 1885#else
953int 1886int
954ev_default_loop (unsigned int flags) 1887ev_default_loop (unsigned int flags)
955#endif 1888#endif
956{ 1889{
957 if (sigpipe [0] == sigpipe [1])
958 if (pipe (sigpipe))
959 return 0;
960
961 if (!ev_default_loop_ptr) 1890 if (!ev_default_loop_ptr)
962 { 1891 {
963#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
964 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1893 EV_P = ev_default_loop_ptr = &default_loop_struct;
965#else 1894#else
966 ev_default_loop_ptr = 1; 1895 ev_default_loop_ptr = 1;
967#endif 1896#endif
968 1897
969 loop_init (EV_A_ flags); 1898 loop_init (EV_A_ flags);
970 1899
971 if (ev_method (EV_A)) 1900 if (ev_backend (EV_A))
972 { 1901 {
973 siginit (EV_A);
974
975#ifndef _WIN32 1902#ifndef _WIN32
976 ev_signal_init (&childev, childcb, SIGCHLD); 1903 ev_signal_init (&childev, childcb, SIGCHLD);
977 ev_set_priority (&childev, EV_MAXPRI); 1904 ev_set_priority (&childev, EV_MAXPRI);
978 ev_signal_start (EV_A_ &childev); 1905 ev_signal_start (EV_A_ &childev);
979 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1906 ev_unref (EV_A); /* child watcher should not keep loop alive */
988 1915
989void 1916void
990ev_default_destroy (void) 1917ev_default_destroy (void)
991{ 1918{
992#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
993 struct ev_loop *loop = ev_default_loop_ptr; 1920 EV_P = ev_default_loop_ptr;
994#endif 1921#endif
1922
1923 ev_default_loop_ptr = 0;
995 1924
996#ifndef _WIN32 1925#ifndef _WIN32
997 ev_ref (EV_A); /* child watcher */ 1926 ev_ref (EV_A); /* child watcher */
998 ev_signal_stop (EV_A_ &childev); 1927 ev_signal_stop (EV_A_ &childev);
999#endif 1928#endif
1000 1929
1001 ev_ref (EV_A); /* signal watcher */
1002 ev_io_stop (EV_A_ &sigev);
1003
1004 close (sigpipe [0]); sigpipe [0] = 0;
1005 close (sigpipe [1]); sigpipe [1] = 0;
1006
1007 loop_destroy (EV_A); 1930 loop_destroy (EV_A);
1008} 1931}
1009 1932
1010void 1933void
1011ev_default_fork (void) 1934ev_default_fork (void)
1012{ 1935{
1013#if EV_MULTIPLICITY 1936#if EV_MULTIPLICITY
1014 struct ev_loop *loop = ev_default_loop_ptr; 1937 EV_P = ev_default_loop_ptr;
1015#endif 1938#endif
1016 1939
1017 if (method) 1940 postfork = 1; /* must be in line with ev_loop_fork */
1018 postfork = 1;
1019} 1941}
1020 1942
1021/*****************************************************************************/ 1943/*****************************************************************************/
1022 1944
1023static int 1945void
1024any_pending (EV_P) 1946ev_invoke (EV_P_ void *w, int revents)
1947{
1948 EV_CB_INVOKE ((W)w, revents);
1949}
1950
1951unsigned int
1952ev_pending_count (EV_P)
1025{ 1953{
1026 int pri; 1954 int pri;
1955 unsigned int count = 0;
1027 1956
1028 for (pri = NUMPRI; pri--; ) 1957 for (pri = NUMPRI; pri--; )
1029 if (pendingcnt [pri]) 1958 count += pendingcnt [pri];
1030 return 1;
1031 1959
1032 return 0; 1960 return count;
1033} 1961}
1034 1962
1035inline void 1963void noinline
1036call_pending (EV_P) 1964ev_invoke_pending (EV_P)
1037{ 1965{
1038 int pri; 1966 int pri;
1039 1967
1040 for (pri = NUMPRI; pri--; ) 1968 for (pri = NUMPRI; pri--; )
1041 while (pendingcnt [pri]) 1969 while (pendingcnt [pri])
1042 { 1970 {
1043 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1044 1972
1045 if (expect_true (p->w)) 1973 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1046 { 1974 /* ^ this is no longer true, as pending_w could be here */
1975
1047 p->w->pending = 0; 1976 p->w->pending = 0;
1048 EV_CB_INVOKE (p->w, p->events); 1977 EV_CB_INVOKE (p->w, p->events);
1049 } 1978 EV_FREQUENT_CHECK;
1050 } 1979 }
1051} 1980}
1052 1981
1982#if EV_IDLE_ENABLE
1983/* make idle watchers pending. this handles the "call-idle */
1984/* only when higher priorities are idle" logic */
1053inline void 1985inline_size void
1986idle_reify (EV_P)
1987{
1988 if (expect_false (idleall))
1989 {
1990 int pri;
1991
1992 for (pri = NUMPRI; pri--; )
1993 {
1994 if (pendingcnt [pri])
1995 break;
1996
1997 if (idlecnt [pri])
1998 {
1999 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2000 break;
2001 }
2002 }
2003 }
2004}
2005#endif
2006
2007/* make timers pending */
2008inline_size void
1054timers_reify (EV_P) 2009timers_reify (EV_P)
1055{ 2010{
2011 EV_FREQUENT_CHECK;
2012
1056 while (timercnt && ((WT)timers [0])->at <= mn_now) 2013 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1057 { 2014 {
1058 struct ev_timer *w = timers [0]; 2015 do
1059
1060 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1061
1062 /* first reschedule or stop timer */
1063 if (w->repeat)
1064 { 2016 {
2017 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2018
2019 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2020
2021 /* first reschedule or stop timer */
2022 if (w->repeat)
2023 {
2024 ev_at (w) += w->repeat;
2025 if (ev_at (w) < mn_now)
2026 ev_at (w) = mn_now;
2027
1065 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2028 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1066 2029
1067 ((WT)w)->at += w->repeat; 2030 ANHE_at_cache (timers [HEAP0]);
1068 if (((WT)w)->at < mn_now)
1069 ((WT)w)->at = mn_now;
1070
1071 downheap ((WT *)timers, timercnt, 0); 2031 downheap (timers, timercnt, HEAP0);
2032 }
2033 else
2034 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2035
2036 EV_FREQUENT_CHECK;
2037 feed_reverse (EV_A_ (W)w);
1072 } 2038 }
1073 else 2039 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1075 2040
1076 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2041 feed_reverse_done (EV_A_ EV_TIMEOUT);
1077 } 2042 }
1078} 2043}
1079 2044
1080#if EV_PERIODICS 2045#if EV_PERIODIC_ENABLE
2046/* make periodics pending */
1081inline void 2047inline_size void
1082periodics_reify (EV_P) 2048periodics_reify (EV_P)
1083{ 2049{
2050 EV_FREQUENT_CHECK;
2051
1084 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2052 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1085 { 2053 {
1086 struct ev_periodic *w = periodics [0]; 2054 int feed_count = 0;
1087 2055
2056 do
2057 {
2058 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2059
1088 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2060 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1089 2061
1090 /* first reschedule or stop timer */ 2062 /* first reschedule or stop timer */
2063 if (w->reschedule_cb)
2064 {
2065 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2066
2067 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2068
2069 ANHE_at_cache (periodics [HEAP0]);
2070 downheap (periodics, periodiccnt, HEAP0);
2071 }
2072 else if (w->interval)
2073 {
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075 /* if next trigger time is not sufficiently in the future, put it there */
2076 /* this might happen because of floating point inexactness */
2077 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2078 {
2079 ev_at (w) += w->interval;
2080
2081 /* if interval is unreasonably low we might still have a time in the past */
2082 /* so correct this. this will make the periodic very inexact, but the user */
2083 /* has effectively asked to get triggered more often than possible */
2084 if (ev_at (w) < ev_rt_now)
2085 ev_at (w) = ev_rt_now;
2086 }
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else
2092 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2093
2094 EV_FREQUENT_CHECK;
2095 feed_reverse (EV_A_ (W)w);
2096 }
2097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2098
2099 feed_reverse_done (EV_A_ EV_PERIODIC);
2100 }
2101}
2102
2103/* simply recalculate all periodics */
2104/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2105static void noinline
2106periodics_reschedule (EV_P)
2107{
2108 int i;
2109
2110 /* adjust periodics after time jump */
2111 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2112 {
2113 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2114
1091 if (w->reschedule_cb) 2115 if (w->reschedule_cb)
2116 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2117 else if (w->interval)
2118 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2119
2120 ANHE_at_cache (periodics [i]);
2121 }
2122
2123 reheap (periodics, periodiccnt);
2124}
2125#endif
2126
2127/* adjust all timers by a given offset */
2128static void noinline
2129timers_reschedule (EV_P_ ev_tstamp adjust)
2130{
2131 int i;
2132
2133 for (i = 0; i < timercnt; ++i)
2134 {
2135 ANHE *he = timers + i + HEAP0;
2136 ANHE_w (*he)->at += adjust;
2137 ANHE_at_cache (*he);
2138 }
2139}
2140
2141/* fetch new monotonic and realtime times from the kernel */
2142/* also detetc if there was a timejump, and act accordingly */
2143inline_speed void
2144time_update (EV_P_ ev_tstamp max_block)
2145{
2146#if EV_USE_MONOTONIC
2147 if (expect_true (have_monotonic))
2148 {
2149 int i;
2150 ev_tstamp odiff = rtmn_diff;
2151
2152 mn_now = get_clock ();
2153
2154 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2155 /* interpolate in the meantime */
2156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1092 { 2157 {
1093 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2158 ev_rt_now = rtmn_diff + mn_now;
1094 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2159 return;
1095 downheap ((WT *)periodics, periodiccnt, 0);
1096 } 2160 }
1097 else if (w->interval)
1098 {
1099 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1100 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1101 downheap ((WT *)periodics, periodiccnt, 0);
1102 }
1103 else
1104 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1105 2161
1106 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1107 }
1108}
1109
1110static void
1111periodics_reschedule (EV_P)
1112{
1113 int i;
1114
1115 /* adjust periodics after time jump */
1116 for (i = 0; i < periodiccnt; ++i)
1117 {
1118 struct ev_periodic *w = periodics [i];
1119
1120 if (w->reschedule_cb)
1121 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1122 else if (w->interval)
1123 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1124 }
1125
1126 /* now rebuild the heap */
1127 for (i = periodiccnt >> 1; i--; )
1128 downheap ((WT *)periodics, periodiccnt, i);
1129}
1130#endif
1131
1132inline int
1133time_update_monotonic (EV_P)
1134{
1135 mn_now = get_clock ();
1136
1137 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1138 {
1139 ev_rt_now = rtmn_diff + mn_now;
1140 return 0;
1141 }
1142 else
1143 {
1144 now_floor = mn_now; 2162 now_floor = mn_now;
1145 ev_rt_now = ev_time (); 2163 ev_rt_now = ev_time ();
1146 return 1;
1147 }
1148}
1149 2164
1150inline void 2165 /* loop a few times, before making important decisions.
1151time_update (EV_P) 2166 * on the choice of "4": one iteration isn't enough,
1152{ 2167 * in case we get preempted during the calls to
1153 int i; 2168 * ev_time and get_clock. a second call is almost guaranteed
1154 2169 * to succeed in that case, though. and looping a few more times
1155#if EV_USE_MONOTONIC 2170 * doesn't hurt either as we only do this on time-jumps or
1156 if (expect_true (have_monotonic)) 2171 * in the unlikely event of having been preempted here.
1157 { 2172 */
1158 if (time_update_monotonic (EV_A)) 2173 for (i = 4; --i; )
1159 { 2174 {
1160 ev_tstamp odiff = rtmn_diff;
1161
1162 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1163 {
1164 rtmn_diff = ev_rt_now - mn_now; 2175 rtmn_diff = ev_rt_now - mn_now;
1165 2176
1166 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2177 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1167 return; /* all is well */ 2178 return; /* all is well */
1168 2179
1169 ev_rt_now = ev_time (); 2180 ev_rt_now = ev_time ();
1170 mn_now = get_clock (); 2181 mn_now = get_clock ();
1171 now_floor = mn_now; 2182 now_floor = mn_now;
1172 } 2183 }
1173 2184
2185 /* no timer adjustment, as the monotonic clock doesn't jump */
2186 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1174# if EV_PERIODICS 2187# if EV_PERIODIC_ENABLE
2188 periodics_reschedule (EV_A);
2189# endif
2190 }
2191 else
2192#endif
2193 {
2194 ev_rt_now = ev_time ();
2195
2196 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2197 {
2198 /* adjust timers. this is easy, as the offset is the same for all of them */
2199 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2200#if EV_PERIODIC_ENABLE
1175 periodics_reschedule (EV_A); 2201 periodics_reschedule (EV_A);
1176# endif 2202#endif
1177 /* no timer adjustment, as the monotonic clock doesn't jump */
1178 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1179 } 2203 }
1180 }
1181 else
1182#endif
1183 {
1184 ev_rt_now = ev_time ();
1185
1186 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1187 {
1188#if EV_PERIODICS
1189 periodics_reschedule (EV_A);
1190#endif
1191
1192 /* adjust timers. this is easy, as the offset is the same for all */
1193 for (i = 0; i < timercnt; ++i)
1194 ((WT)timers [i])->at += ev_rt_now - mn_now;
1195 }
1196 2204
1197 mn_now = ev_rt_now; 2205 mn_now = ev_rt_now;
1198 } 2206 }
1199} 2207}
1200 2208
1201void 2209void
1202ev_ref (EV_P)
1203{
1204 ++activecnt;
1205}
1206
1207void
1208ev_unref (EV_P)
1209{
1210 --activecnt;
1211}
1212
1213static int loop_done;
1214
1215void
1216ev_loop (EV_P_ int flags) 2210ev_loop (EV_P_ int flags)
1217{ 2211{
1218 double block; 2212#if EV_MINIMAL < 2
1219 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2213 ++loop_depth;
2214#endif
1220 2215
1221 while (activecnt) 2216 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2217
2218 loop_done = EVUNLOOP_CANCEL;
2219
2220 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2221
2222 do
1222 { 2223 {
2224#if EV_VERIFY >= 2
2225 ev_loop_verify (EV_A);
2226#endif
2227
2228#ifndef _WIN32
2229 if (expect_false (curpid)) /* penalise the forking check even more */
2230 if (expect_false (getpid () != curpid))
2231 {
2232 curpid = getpid ();
2233 postfork = 1;
2234 }
2235#endif
2236
2237#if EV_FORK_ENABLE
2238 /* we might have forked, so queue fork handlers */
2239 if (expect_false (postfork))
2240 if (forkcnt)
2241 {
2242 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2243 EV_INVOKE_PENDING;
2244 }
2245#endif
2246
1223 /* queue check watchers (and execute them) */ 2247 /* queue prepare watchers (and execute them) */
1224 if (expect_false (preparecnt)) 2248 if (expect_false (preparecnt))
1225 { 2249 {
1226 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1227 call_pending (EV_A); 2251 EV_INVOKE_PENDING;
1228 } 2252 }
2253
2254 if (expect_false (loop_done))
2255 break;
1229 2256
1230 /* we might have forked, so reify kernel state if necessary */ 2257 /* we might have forked, so reify kernel state if necessary */
1231 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1232 loop_fork (EV_A); 2259 loop_fork (EV_A);
1233 2260
1234 /* update fd-related kernel structures */ 2261 /* update fd-related kernel structures */
1235 fd_reify (EV_A); 2262 fd_reify (EV_A);
1236 2263
1237 /* calculate blocking time */ 2264 /* calculate blocking time */
2265 {
2266 ev_tstamp waittime = 0.;
2267 ev_tstamp sleeptime = 0.;
1238 2268
1239 /* we only need this for !monotonic clock or timers, but as we basically 2269 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1240 always have timers, we just calculate it always */
1241#if EV_USE_MONOTONIC
1242 if (expect_true (have_monotonic))
1243 time_update_monotonic (EV_A);
1244 else
1245#endif
1246 { 2270 {
1247 ev_rt_now = ev_time (); 2271 /* remember old timestamp for io_blocktime calculation */
1248 mn_now = ev_rt_now; 2272 ev_tstamp prev_mn_now = mn_now;
1249 }
1250 2273
1251 if (flags & EVLOOP_NONBLOCK || idlecnt) 2274 /* update time to cancel out callback processing overhead */
1252 block = 0.; 2275 time_update (EV_A_ 1e100);
1253 else 2276
1254 {
1255 block = MAX_BLOCKTIME; 2277 waittime = MAX_BLOCKTIME;
1256 2278
1257 if (timercnt) 2279 if (timercnt)
1258 { 2280 {
1259 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2281 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1260 if (block > to) block = to; 2282 if (waittime > to) waittime = to;
1261 } 2283 }
1262 2284
1263#if EV_PERIODICS 2285#if EV_PERIODIC_ENABLE
1264 if (periodiccnt) 2286 if (periodiccnt)
1265 { 2287 {
1266 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2288 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1267 if (block > to) block = to; 2289 if (waittime > to) waittime = to;
1268 } 2290 }
1269#endif 2291#endif
1270 2292
1271 if (expect_false (block < 0.)) block = 0.; 2293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2294 if (expect_false (waittime < timeout_blocktime))
2295 waittime = timeout_blocktime;
2296
2297 /* extra check because io_blocktime is commonly 0 */
2298 if (expect_false (io_blocktime))
2299 {
2300 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2301
2302 if (sleeptime > waittime - backend_fudge)
2303 sleeptime = waittime - backend_fudge;
2304
2305 if (expect_true (sleeptime > 0.))
2306 {
2307 ev_sleep (sleeptime);
2308 waittime -= sleeptime;
2309 }
2310 }
1272 } 2311 }
1273 2312
1274 method_poll (EV_A_ block); 2313#if EV_MINIMAL < 2
2314 ++loop_count;
2315#endif
2316 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2317 backend_poll (EV_A_ waittime);
2318 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1275 2319
1276 /* update ev_rt_now, do magic */ 2320 /* update ev_rt_now, do magic */
1277 time_update (EV_A); 2321 time_update (EV_A_ waittime + sleeptime);
2322 }
1278 2323
1279 /* queue pending timers and reschedule them */ 2324 /* queue pending timers and reschedule them */
1280 timers_reify (EV_A); /* relative timers called last */ 2325 timers_reify (EV_A); /* relative timers called last */
1281#if EV_PERIODICS 2326#if EV_PERIODIC_ENABLE
1282 periodics_reify (EV_A); /* absolute timers called first */ 2327 periodics_reify (EV_A); /* absolute timers called first */
1283#endif 2328#endif
1284 2329
2330#if EV_IDLE_ENABLE
1285 /* queue idle watchers unless io or timers are pending */ 2331 /* queue idle watchers unless other events are pending */
1286 if (idlecnt && !any_pending (EV_A)) 2332 idle_reify (EV_A);
1287 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2333#endif
1288 2334
1289 /* queue check watchers, to be executed first */ 2335 /* queue check watchers, to be executed first */
1290 if (expect_false (checkcnt)) 2336 if (expect_false (checkcnt))
1291 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2337 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1292 2338
1293 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1294
1295 if (expect_false (loop_done))
1296 break;
1297 } 2340 }
2341 while (expect_true (
2342 activecnt
2343 && !loop_done
2344 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2345 ));
1298 2346
1299 if (loop_done != 2) 2347 if (loop_done == EVUNLOOP_ONE)
1300 loop_done = 0; 2348 loop_done = EVUNLOOP_CANCEL;
2349
2350#if EV_MINIMAL < 2
2351 --loop_depth;
2352#endif
1301} 2353}
1302 2354
1303void 2355void
1304ev_unloop (EV_P_ int how) 2356ev_unloop (EV_P_ int how)
1305{ 2357{
1306 loop_done = how; 2358 loop_done = how;
1307} 2359}
1308 2360
2361void
2362ev_ref (EV_P)
2363{
2364 ++activecnt;
2365}
2366
2367void
2368ev_unref (EV_P)
2369{
2370 --activecnt;
2371}
2372
2373void
2374ev_now_update (EV_P)
2375{
2376 time_update (EV_A_ 1e100);
2377}
2378
2379void
2380ev_suspend (EV_P)
2381{
2382 ev_now_update (EV_A);
2383}
2384
2385void
2386ev_resume (EV_P)
2387{
2388 ev_tstamp mn_prev = mn_now;
2389
2390 ev_now_update (EV_A);
2391 timers_reschedule (EV_A_ mn_now - mn_prev);
2392#if EV_PERIODIC_ENABLE
2393 /* TODO: really do this? */
2394 periodics_reschedule (EV_A);
2395#endif
2396}
2397
1309/*****************************************************************************/ 2398/*****************************************************************************/
2399/* singly-linked list management, used when the expected list length is short */
1310 2400
1311inline void 2401inline_size void
1312wlist_add (WL *head, WL elem) 2402wlist_add (WL *head, WL elem)
1313{ 2403{
1314 elem->next = *head; 2404 elem->next = *head;
1315 *head = elem; 2405 *head = elem;
1316} 2406}
1317 2407
1318inline void 2408inline_size void
1319wlist_del (WL *head, WL elem) 2409wlist_del (WL *head, WL elem)
1320{ 2410{
1321 while (*head) 2411 while (*head)
1322 { 2412 {
1323 if (*head == elem) 2413 if (expect_true (*head == elem))
1324 { 2414 {
1325 *head = elem->next; 2415 *head = elem->next;
1326 return; 2416 break;
1327 } 2417 }
1328 2418
1329 head = &(*head)->next; 2419 head = &(*head)->next;
1330 } 2420 }
1331} 2421}
1332 2422
2423/* internal, faster, version of ev_clear_pending */
1333inline void 2424inline_speed void
1334ev_clear_pending (EV_P_ W w) 2425clear_pending (EV_P_ W w)
1335{ 2426{
1336 if (w->pending) 2427 if (w->pending)
1337 { 2428 {
1338 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2429 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1339 w->pending = 0; 2430 w->pending = 0;
1340 } 2431 }
1341} 2432}
1342 2433
2434int
2435ev_clear_pending (EV_P_ void *w)
2436{
2437 W w_ = (W)w;
2438 int pending = w_->pending;
2439
2440 if (expect_true (pending))
2441 {
2442 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2443 p->w = (W)&pending_w;
2444 w_->pending = 0;
2445 return p->events;
2446 }
2447 else
2448 return 0;
2449}
2450
1343inline void 2451inline_size void
2452pri_adjust (EV_P_ W w)
2453{
2454 int pri = ev_priority (w);
2455 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2456 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2457 ev_set_priority (w, pri);
2458}
2459
2460inline_speed void
1344ev_start (EV_P_ W w, int active) 2461ev_start (EV_P_ W w, int active)
1345{ 2462{
1346 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2463 pri_adjust (EV_A_ w);
1347 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1348
1349 w->active = active; 2464 w->active = active;
1350 ev_ref (EV_A); 2465 ev_ref (EV_A);
1351} 2466}
1352 2467
1353inline void 2468inline_size void
1354ev_stop (EV_P_ W w) 2469ev_stop (EV_P_ W w)
1355{ 2470{
1356 ev_unref (EV_A); 2471 ev_unref (EV_A);
1357 w->active = 0; 2472 w->active = 0;
1358} 2473}
1359 2474
1360/*****************************************************************************/ 2475/*****************************************************************************/
1361 2476
1362void 2477void noinline
1363ev_io_start (EV_P_ struct ev_io *w) 2478ev_io_start (EV_P_ ev_io *w)
1364{ 2479{
1365 int fd = w->fd; 2480 int fd = w->fd;
1366 2481
1367 if (expect_false (ev_is_active (w))) 2482 if (expect_false (ev_is_active (w)))
1368 return; 2483 return;
1369 2484
1370 assert (("ev_io_start called with negative fd", fd >= 0)); 2485 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2486 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2487
2488 EV_FREQUENT_CHECK;
1371 2489
1372 ev_start (EV_A_ (W)w, 1); 2490 ev_start (EV_A_ (W)w, 1);
1373 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2491 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1374 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2492 wlist_add (&anfds[fd].head, (WL)w);
1375 2493
1376 fd_change (EV_A_ fd); 2494 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1377} 2495 w->events &= ~EV__IOFDSET;
1378 2496
1379void 2497 EV_FREQUENT_CHECK;
2498}
2499
2500void noinline
1380ev_io_stop (EV_P_ struct ev_io *w) 2501ev_io_stop (EV_P_ ev_io *w)
1381{ 2502{
1382 ev_clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1383 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1384 return; 2505 return;
1385 2506
1386 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2507 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1387 2508
2509 EV_FREQUENT_CHECK;
2510
1388 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2511 wlist_del (&anfds[w->fd].head, (WL)w);
1389 ev_stop (EV_A_ (W)w); 2512 ev_stop (EV_A_ (W)w);
1390 2513
1391 fd_change (EV_A_ w->fd); 2514 fd_change (EV_A_ w->fd, 1);
1392}
1393 2515
1394void 2516 EV_FREQUENT_CHECK;
2517}
2518
2519void noinline
1395ev_timer_start (EV_P_ struct ev_timer *w) 2520ev_timer_start (EV_P_ ev_timer *w)
1396{ 2521{
1397 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
1398 return; 2523 return;
1399 2524
1400 ((WT)w)->at += mn_now; 2525 ev_at (w) += mn_now;
1401 2526
1402 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2527 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1403 2528
2529 EV_FREQUENT_CHECK;
2530
2531 ++timercnt;
1404 ev_start (EV_A_ (W)w, ++timercnt); 2532 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1405 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2533 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1406 timers [timercnt - 1] = w; 2534 ANHE_w (timers [ev_active (w)]) = (WT)w;
1407 upheap ((WT *)timers, timercnt - 1); 2535 ANHE_at_cache (timers [ev_active (w)]);
2536 upheap (timers, ev_active (w));
1408 2537
2538 EV_FREQUENT_CHECK;
2539
1409 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2540 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1410} 2541}
1411 2542
1412void 2543void noinline
1413ev_timer_stop (EV_P_ struct ev_timer *w) 2544ev_timer_stop (EV_P_ ev_timer *w)
1414{ 2545{
1415 ev_clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
1416 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
1417 return; 2548 return;
1418 2549
2550 EV_FREQUENT_CHECK;
2551
2552 {
2553 int active = ev_active (w);
2554
1419 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2555 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1420 2556
2557 --timercnt;
2558
1421 if (expect_true (((W)w)->active < timercnt--)) 2559 if (expect_true (active < timercnt + HEAP0))
1422 { 2560 {
1423 timers [((W)w)->active - 1] = timers [timercnt]; 2561 timers [active] = timers [timercnt + HEAP0];
1424 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2562 adjustheap (timers, timercnt, active);
1425 } 2563 }
2564 }
1426 2565
1427 ((WT)w)->at -= mn_now; 2566 EV_FREQUENT_CHECK;
2567
2568 ev_at (w) -= mn_now;
1428 2569
1429 ev_stop (EV_A_ (W)w); 2570 ev_stop (EV_A_ (W)w);
1430} 2571}
1431 2572
1432void 2573void noinline
1433ev_timer_again (EV_P_ struct ev_timer *w) 2574ev_timer_again (EV_P_ ev_timer *w)
1434{ 2575{
2576 EV_FREQUENT_CHECK;
2577
1435 if (ev_is_active (w)) 2578 if (ev_is_active (w))
1436 { 2579 {
1437 if (w->repeat) 2580 if (w->repeat)
1438 { 2581 {
1439 ((WT)w)->at = mn_now + w->repeat; 2582 ev_at (w) = mn_now + w->repeat;
2583 ANHE_at_cache (timers [ev_active (w)]);
1440 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2584 adjustheap (timers, timercnt, ev_active (w));
1441 } 2585 }
1442 else 2586 else
1443 ev_timer_stop (EV_A_ w); 2587 ev_timer_stop (EV_A_ w);
1444 } 2588 }
1445 else if (w->repeat) 2589 else if (w->repeat)
1446 { 2590 {
1447 w->at = w->repeat; 2591 ev_at (w) = w->repeat;
1448 ev_timer_start (EV_A_ w); 2592 ev_timer_start (EV_A_ w);
1449 } 2593 }
1450}
1451 2594
2595 EV_FREQUENT_CHECK;
2596}
2597
2598ev_tstamp
2599ev_timer_remaining (EV_P_ ev_timer *w)
2600{
2601 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2602}
2603
1452#if EV_PERIODICS 2604#if EV_PERIODIC_ENABLE
1453void 2605void noinline
1454ev_periodic_start (EV_P_ struct ev_periodic *w) 2606ev_periodic_start (EV_P_ ev_periodic *w)
1455{ 2607{
1456 if (expect_false (ev_is_active (w))) 2608 if (expect_false (ev_is_active (w)))
1457 return; 2609 return;
1458 2610
1459 if (w->reschedule_cb) 2611 if (w->reschedule_cb)
1460 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2612 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1461 else if (w->interval) 2613 else if (w->interval)
1462 { 2614 {
1463 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2615 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1464 /* this formula differs from the one in periodic_reify because we do not always round up */ 2616 /* this formula differs from the one in periodic_reify because we do not always round up */
1465 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1466 } 2618 }
2619 else
2620 ev_at (w) = w->offset;
1467 2621
2622 EV_FREQUENT_CHECK;
2623
2624 ++periodiccnt;
1468 ev_start (EV_A_ (W)w, ++periodiccnt); 2625 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1469 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2626 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1470 periodics [periodiccnt - 1] = w; 2627 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1471 upheap ((WT *)periodics, periodiccnt - 1); 2628 ANHE_at_cache (periodics [ev_active (w)]);
2629 upheap (periodics, ev_active (w));
1472 2630
2631 EV_FREQUENT_CHECK;
2632
1473 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2633 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1474} 2634}
1475 2635
1476void 2636void noinline
1477ev_periodic_stop (EV_P_ struct ev_periodic *w) 2637ev_periodic_stop (EV_P_ ev_periodic *w)
1478{ 2638{
1479 ev_clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1480 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
1481 return; 2641 return;
1482 2642
2643 EV_FREQUENT_CHECK;
2644
2645 {
2646 int active = ev_active (w);
2647
1483 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2648 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1484 2649
2650 --periodiccnt;
2651
1485 if (expect_true (((W)w)->active < periodiccnt--)) 2652 if (expect_true (active < periodiccnt + HEAP0))
1486 { 2653 {
1487 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2654 periodics [active] = periodics [periodiccnt + HEAP0];
1488 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2655 adjustheap (periodics, periodiccnt, active);
1489 } 2656 }
2657 }
2658
2659 EV_FREQUENT_CHECK;
1490 2660
1491 ev_stop (EV_A_ (W)w); 2661 ev_stop (EV_A_ (W)w);
1492} 2662}
1493 2663
1494void 2664void noinline
1495ev_periodic_again (EV_P_ struct ev_periodic *w) 2665ev_periodic_again (EV_P_ ev_periodic *w)
1496{ 2666{
1497 /* TODO: use adjustheap and recalculation */ 2667 /* TODO: use adjustheap and recalculation */
1498 ev_periodic_stop (EV_A_ w); 2668 ev_periodic_stop (EV_A_ w);
1499 ev_periodic_start (EV_A_ w); 2669 ev_periodic_start (EV_A_ w);
1500} 2670}
1501#endif 2671#endif
1502 2672
1503void 2673#ifndef SA_RESTART
1504ev_idle_start (EV_P_ struct ev_idle *w) 2674# define SA_RESTART 0
2675#endif
2676
2677void noinline
2678ev_signal_start (EV_P_ ev_signal *w)
1505{ 2679{
1506 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
1507 return; 2681 return;
1508 2682
2683 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2684
2685#if EV_MULTIPLICITY
2686 assert (("libev: a signal must not be attached to two different loops",
2687 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2688
2689 signals [w->signum - 1].loop = EV_A;
2690#endif
2691
2692 EV_FREQUENT_CHECK;
2693
2694#if EV_USE_SIGNALFD
2695 if (sigfd == -2)
2696 {
2697 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2698 if (sigfd < 0 && errno == EINVAL)
2699 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2700
2701 if (sigfd >= 0)
2702 {
2703 fd_intern (sigfd); /* doing it twice will not hurt */
2704
2705 sigemptyset (&sigfd_set);
2706
2707 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2708 ev_set_priority (&sigfd_w, EV_MAXPRI);
2709 ev_io_start (EV_A_ &sigfd_w);
2710 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2711 }
2712 }
2713
2714 if (sigfd >= 0)
2715 {
2716 /* TODO: check .head */
2717 sigaddset (&sigfd_set, w->signum);
2718 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2719
2720 signalfd (sigfd, &sigfd_set, 0);
2721 }
2722#endif
2723
1509 ev_start (EV_A_ (W)w, ++idlecnt); 2724 ev_start (EV_A_ (W)w, 1);
1510 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2725 wlist_add (&signals [w->signum - 1].head, (WL)w);
1511 idles [idlecnt - 1] = w;
1512}
1513 2726
1514void 2727 if (!((WL)w)->next)
1515ev_idle_stop (EV_P_ struct ev_idle *w) 2728# if EV_USE_SIGNALFD
2729 if (sigfd < 0) /*TODO*/
2730# endif
2731 {
2732# if _WIN32
2733 signal (w->signum, ev_sighandler);
2734# else
2735 struct sigaction sa;
2736
2737 evpipe_init (EV_A);
2738
2739 sa.sa_handler = ev_sighandler;
2740 sigfillset (&sa.sa_mask);
2741 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2742 sigaction (w->signum, &sa, 0);
2743
2744 sigemptyset (&sa.sa_mask);
2745 sigaddset (&sa.sa_mask, w->signum);
2746 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2747#endif
2748 }
2749
2750 EV_FREQUENT_CHECK;
2751}
2752
2753void noinline
2754ev_signal_stop (EV_P_ ev_signal *w)
1516{ 2755{
1517 ev_clear_pending (EV_A_ (W)w); 2756 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 2757 if (expect_false (!ev_is_active (w)))
1519 return; 2758 return;
1520 2759
1521 idles [((W)w)->active - 1] = idles [--idlecnt]; 2760 EV_FREQUENT_CHECK;
2761
2762 wlist_del (&signals [w->signum - 1].head, (WL)w);
1522 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
1523}
1524 2764
2765 if (!signals [w->signum - 1].head)
2766 {
2767#if EV_MULTIPLICITY
2768 signals [w->signum - 1].loop = 0; /* unattach from signal */
2769#endif
2770#if EV_USE_SIGNALFD
2771 if (sigfd >= 0)
2772 {
2773 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2774 sigdelset (&sigfd_set, w->signum);
2775 signalfd (sigfd, &sigfd_set, 0);
2776 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2777 /*TODO: maybe unblock signal? */
2778 }
2779 else
2780#endif
2781 signal (w->signum, SIG_DFL);
2782 }
2783
2784 EV_FREQUENT_CHECK;
2785}
2786
1525void 2787void
1526ev_prepare_start (EV_P_ struct ev_prepare *w) 2788ev_child_start (EV_P_ ev_child *w)
1527{ 2789{
2790#if EV_MULTIPLICITY
2791 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2792#endif
1528 if (expect_false (ev_is_active (w))) 2793 if (expect_false (ev_is_active (w)))
1529 return; 2794 return;
1530 2795
2796 EV_FREQUENT_CHECK;
2797
1531 ev_start (EV_A_ (W)w, ++preparecnt); 2798 ev_start (EV_A_ (W)w, 1);
1532 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2799 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1533 prepares [preparecnt - 1] = w;
1534}
1535 2800
2801 EV_FREQUENT_CHECK;
2802}
2803
1536void 2804void
1537ev_prepare_stop (EV_P_ struct ev_prepare *w) 2805ev_child_stop (EV_P_ ev_child *w)
1538{ 2806{
1539 ev_clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
1541 return; 2809 return;
1542 2810
1543 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2811 EV_FREQUENT_CHECK;
2812
2813 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1544 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
1545}
1546 2815
2816 EV_FREQUENT_CHECK;
2817}
2818
2819#if EV_STAT_ENABLE
2820
2821# ifdef _WIN32
2822# undef lstat
2823# define lstat(a,b) _stati64 (a,b)
2824# endif
2825
2826#define DEF_STAT_INTERVAL 5.0074891
2827#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2828#define MIN_STAT_INTERVAL 0.1074891
2829
2830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2831
2832#if EV_USE_INOTIFY
2833# define EV_INOTIFY_BUFSIZE 8192
2834
2835static void noinline
2836infy_add (EV_P_ ev_stat *w)
2837{
2838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2839
2840 if (w->wd < 0)
2841 {
2842 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2843 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2844
2845 /* monitor some parent directory for speedup hints */
2846 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2847 /* but an efficiency issue only */
2848 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2849 {
2850 char path [4096];
2851 strcpy (path, w->path);
2852
2853 do
2854 {
2855 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2856 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2857
2858 char *pend = strrchr (path, '/');
2859
2860 if (!pend || pend == path)
2861 break;
2862
2863 *pend = 0;
2864 w->wd = inotify_add_watch (fs_fd, path, mask);
2865 }
2866 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2867 }
2868 }
2869
2870 if (w->wd >= 0)
2871 {
2872 struct statfs sfs;
2873
2874 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2875
2876 /* now local changes will be tracked by inotify, but remote changes won't */
2877 /* unless the filesystem it known to be local, we therefore still poll */
2878 /* also do poll on <2.6.25, but with normal frequency */
2879
2880 if (fs_2625 && !statfs (w->path, &sfs))
2881 if (sfs.f_type == 0x1373 /* devfs */
2882 || sfs.f_type == 0xEF53 /* ext2/3 */
2883 || sfs.f_type == 0x3153464a /* jfs */
2884 || sfs.f_type == 0x52654973 /* reiser3 */
2885 || sfs.f_type == 0x01021994 /* tempfs */
2886 || sfs.f_type == 0x58465342 /* xfs */)
2887 return;
2888
2889 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2890 ev_timer_again (EV_A_ &w->timer);
2891 }
2892}
2893
2894static void noinline
2895infy_del (EV_P_ ev_stat *w)
2896{
2897 int slot;
2898 int wd = w->wd;
2899
2900 if (wd < 0)
2901 return;
2902
2903 w->wd = -2;
2904 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2905 wlist_del (&fs_hash [slot].head, (WL)w);
2906
2907 /* remove this watcher, if others are watching it, they will rearm */
2908 inotify_rm_watch (fs_fd, wd);
2909}
2910
2911static void noinline
2912infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2913{
2914 if (slot < 0)
2915 /* overflow, need to check for all hash slots */
2916 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2917 infy_wd (EV_A_ slot, wd, ev);
2918 else
2919 {
2920 WL w_;
2921
2922 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2923 {
2924 ev_stat *w = (ev_stat *)w_;
2925 w_ = w_->next; /* lets us remove this watcher and all before it */
2926
2927 if (w->wd == wd || wd == -1)
2928 {
2929 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2930 {
2931 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2932 w->wd = -1;
2933 infy_add (EV_A_ w); /* re-add, no matter what */
2934 }
2935
2936 stat_timer_cb (EV_A_ &w->timer, 0);
2937 }
2938 }
2939 }
2940}
2941
2942static void
2943infy_cb (EV_P_ ev_io *w, int revents)
2944{
2945 char buf [EV_INOTIFY_BUFSIZE];
2946 struct inotify_event *ev = (struct inotify_event *)buf;
2947 int ofs;
2948 int len = read (fs_fd, buf, sizeof (buf));
2949
2950 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2951 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2952}
2953
2954inline_size void
2955check_2625 (EV_P)
2956{
2957 /* kernels < 2.6.25 are borked
2958 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2959 */
2960 struct utsname buf;
2961 int major, minor, micro;
2962
2963 if (uname (&buf))
2964 return;
2965
2966 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2967 return;
2968
2969 if (major < 2
2970 || (major == 2 && minor < 6)
2971 || (major == 2 && minor == 6 && micro < 25))
2972 return;
2973
2974 fs_2625 = 1;
2975}
2976
2977inline_size void
2978infy_init (EV_P)
2979{
2980 if (fs_fd != -2)
2981 return;
2982
2983 fs_fd = -1;
2984
2985 check_2625 (EV_A);
2986
2987 fs_fd = inotify_init ();
2988
2989 if (fs_fd >= 0)
2990 {
2991 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2992 ev_set_priority (&fs_w, EV_MAXPRI);
2993 ev_io_start (EV_A_ &fs_w);
2994 }
2995}
2996
2997inline_size void
2998infy_fork (EV_P)
2999{
3000 int slot;
3001
3002 if (fs_fd < 0)
3003 return;
3004
3005 close (fs_fd);
3006 fs_fd = inotify_init ();
3007
3008 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3009 {
3010 WL w_ = fs_hash [slot].head;
3011 fs_hash [slot].head = 0;
3012
3013 while (w_)
3014 {
3015 ev_stat *w = (ev_stat *)w_;
3016 w_ = w_->next; /* lets us add this watcher */
3017
3018 w->wd = -1;
3019
3020 if (fs_fd >= 0)
3021 infy_add (EV_A_ w); /* re-add, no matter what */
3022 else
3023 ev_timer_again (EV_A_ &w->timer);
3024 }
3025 }
3026}
3027
3028#endif
3029
3030#ifdef _WIN32
3031# define EV_LSTAT(p,b) _stati64 (p, b)
3032#else
3033# define EV_LSTAT(p,b) lstat (p, b)
3034#endif
3035
1547void 3036void
1548ev_check_start (EV_P_ struct ev_check *w) 3037ev_stat_stat (EV_P_ ev_stat *w)
3038{
3039 if (lstat (w->path, &w->attr) < 0)
3040 w->attr.st_nlink = 0;
3041 else if (!w->attr.st_nlink)
3042 w->attr.st_nlink = 1;
3043}
3044
3045static void noinline
3046stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3047{
3048 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3049
3050 /* we copy this here each the time so that */
3051 /* prev has the old value when the callback gets invoked */
3052 w->prev = w->attr;
3053 ev_stat_stat (EV_A_ w);
3054
3055 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3056 if (
3057 w->prev.st_dev != w->attr.st_dev
3058 || w->prev.st_ino != w->attr.st_ino
3059 || w->prev.st_mode != w->attr.st_mode
3060 || w->prev.st_nlink != w->attr.st_nlink
3061 || w->prev.st_uid != w->attr.st_uid
3062 || w->prev.st_gid != w->attr.st_gid
3063 || w->prev.st_rdev != w->attr.st_rdev
3064 || w->prev.st_size != w->attr.st_size
3065 || w->prev.st_atime != w->attr.st_atime
3066 || w->prev.st_mtime != w->attr.st_mtime
3067 || w->prev.st_ctime != w->attr.st_ctime
3068 ) {
3069 #if EV_USE_INOTIFY
3070 if (fs_fd >= 0)
3071 {
3072 infy_del (EV_A_ w);
3073 infy_add (EV_A_ w);
3074 ev_stat_stat (EV_A_ w); /* avoid race... */
3075 }
3076 #endif
3077
3078 ev_feed_event (EV_A_ w, EV_STAT);
3079 }
3080}
3081
3082void
3083ev_stat_start (EV_P_ ev_stat *w)
1549{ 3084{
1550 if (expect_false (ev_is_active (w))) 3085 if (expect_false (ev_is_active (w)))
1551 return; 3086 return;
1552 3087
3088 ev_stat_stat (EV_A_ w);
3089
3090 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3091 w->interval = MIN_STAT_INTERVAL;
3092
3093 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3094 ev_set_priority (&w->timer, ev_priority (w));
3095
3096#if EV_USE_INOTIFY
3097 infy_init (EV_A);
3098
3099 if (fs_fd >= 0)
3100 infy_add (EV_A_ w);
3101 else
3102#endif
3103 ev_timer_again (EV_A_ &w->timer);
3104
1553 ev_start (EV_A_ (W)w, ++checkcnt); 3105 ev_start (EV_A_ (W)w, 1);
1554 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1555 checks [checkcnt - 1] = w;
1556}
1557 3106
3107 EV_FREQUENT_CHECK;
3108}
3109
1558void 3110void
1559ev_check_stop (EV_P_ struct ev_check *w) 3111ev_stat_stop (EV_P_ ev_stat *w)
1560{ 3112{
1561 ev_clear_pending (EV_A_ (W)w); 3113 clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w))) 3114 if (expect_false (!ev_is_active (w)))
1563 return; 3115 return;
1564 3116
1565 checks [((W)w)->active - 1] = checks [--checkcnt]; 3117 EV_FREQUENT_CHECK;
3118
3119#if EV_USE_INOTIFY
3120 infy_del (EV_A_ w);
3121#endif
3122 ev_timer_stop (EV_A_ &w->timer);
3123
1566 ev_stop (EV_A_ (W)w); 3124 ev_stop (EV_A_ (W)w);
1567}
1568 3125
1569#ifndef SA_RESTART 3126 EV_FREQUENT_CHECK;
1570# define SA_RESTART 0 3127}
1571#endif 3128#endif
1572 3129
3130#if EV_IDLE_ENABLE
1573void 3131void
1574ev_signal_start (EV_P_ struct ev_signal *w) 3132ev_idle_start (EV_P_ ev_idle *w)
1575{ 3133{
1576#if EV_MULTIPLICITY
1577 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1578#endif
1579 if (expect_false (ev_is_active (w))) 3134 if (expect_false (ev_is_active (w)))
1580 return; 3135 return;
1581 3136
1582 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3137 pri_adjust (EV_A_ (W)w);
1583 3138
3139 EV_FREQUENT_CHECK;
3140
3141 {
3142 int active = ++idlecnt [ABSPRI (w)];
3143
3144 ++idleall;
1584 ev_start (EV_A_ (W)w, 1); 3145 ev_start (EV_A_ (W)w, active);
1585 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1586 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1587 3146
1588 if (!((WL)w)->next) 3147 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1589 { 3148 idles [ABSPRI (w)][active - 1] = w;
1590#if _WIN32
1591 signal (w->signum, sighandler);
1592#else
1593 struct sigaction sa;
1594 sa.sa_handler = sighandler;
1595 sigfillset (&sa.sa_mask);
1596 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1597 sigaction (w->signum, &sa, 0);
1598#endif
1599 } 3149 }
1600}
1601 3150
3151 EV_FREQUENT_CHECK;
3152}
3153
1602void 3154void
1603ev_signal_stop (EV_P_ struct ev_signal *w) 3155ev_idle_stop (EV_P_ ev_idle *w)
1604{ 3156{
1605 ev_clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
1606 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
1607 return; 3159 return;
1608 3160
1609 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3161 EV_FREQUENT_CHECK;
3162
3163 {
3164 int active = ev_active (w);
3165
3166 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3167 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3168
1610 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
3170 --idleall;
3171 }
1611 3172
1612 if (!signals [w->signum - 1].head) 3173 EV_FREQUENT_CHECK;
1613 signal (w->signum, SIG_DFL);
1614} 3174}
1615
1616void
1617ev_child_start (EV_P_ struct ev_child *w)
1618{
1619#if EV_MULTIPLICITY
1620 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1621#endif 3175#endif
3176
3177void
3178ev_prepare_start (EV_P_ ev_prepare *w)
3179{
1622 if (expect_false (ev_is_active (w))) 3180 if (expect_false (ev_is_active (w)))
1623 return; 3181 return;
1624 3182
3183 EV_FREQUENT_CHECK;
3184
1625 ev_start (EV_A_ (W)w, 1); 3185 ev_start (EV_A_ (W)w, ++preparecnt);
1626 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3186 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1627} 3187 prepares [preparecnt - 1] = w;
1628 3188
3189 EV_FREQUENT_CHECK;
3190}
3191
1629void 3192void
1630ev_child_stop (EV_P_ struct ev_child *w) 3193ev_prepare_stop (EV_P_ ev_prepare *w)
1631{ 3194{
1632 ev_clear_pending (EV_A_ (W)w); 3195 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 3196 if (expect_false (!ev_is_active (w)))
1634 return; 3197 return;
1635 3198
1636 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3199 EV_FREQUENT_CHECK;
3200
3201 {
3202 int active = ev_active (w);
3203
3204 prepares [active - 1] = prepares [--preparecnt];
3205 ev_active (prepares [active - 1]) = active;
3206 }
3207
1637 ev_stop (EV_A_ (W)w); 3208 ev_stop (EV_A_ (W)w);
3209
3210 EV_FREQUENT_CHECK;
1638} 3211}
3212
3213void
3214ev_check_start (EV_P_ ev_check *w)
3215{
3216 if (expect_false (ev_is_active (w)))
3217 return;
3218
3219 EV_FREQUENT_CHECK;
3220
3221 ev_start (EV_A_ (W)w, ++checkcnt);
3222 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3223 checks [checkcnt - 1] = w;
3224
3225 EV_FREQUENT_CHECK;
3226}
3227
3228void
3229ev_check_stop (EV_P_ ev_check *w)
3230{
3231 clear_pending (EV_A_ (W)w);
3232 if (expect_false (!ev_is_active (w)))
3233 return;
3234
3235 EV_FREQUENT_CHECK;
3236
3237 {
3238 int active = ev_active (w);
3239
3240 checks [active - 1] = checks [--checkcnt];
3241 ev_active (checks [active - 1]) = active;
3242 }
3243
3244 ev_stop (EV_A_ (W)w);
3245
3246 EV_FREQUENT_CHECK;
3247}
3248
3249#if EV_EMBED_ENABLE
3250void noinline
3251ev_embed_sweep (EV_P_ ev_embed *w)
3252{
3253 ev_loop (w->other, EVLOOP_NONBLOCK);
3254}
3255
3256static void
3257embed_io_cb (EV_P_ ev_io *io, int revents)
3258{
3259 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3260
3261 if (ev_cb (w))
3262 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3263 else
3264 ev_loop (w->other, EVLOOP_NONBLOCK);
3265}
3266
3267static void
3268embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3269{
3270 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3271
3272 {
3273 EV_P = w->other;
3274
3275 while (fdchangecnt)
3276 {
3277 fd_reify (EV_A);
3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3279 }
3280 }
3281}
3282
3283static void
3284embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3285{
3286 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3287
3288 ev_embed_stop (EV_A_ w);
3289
3290 {
3291 EV_P = w->other;
3292
3293 ev_loop_fork (EV_A);
3294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3295 }
3296
3297 ev_embed_start (EV_A_ w);
3298}
3299
3300#if 0
3301static void
3302embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3303{
3304 ev_idle_stop (EV_A_ idle);
3305}
3306#endif
3307
3308void
3309ev_embed_start (EV_P_ ev_embed *w)
3310{
3311 if (expect_false (ev_is_active (w)))
3312 return;
3313
3314 {
3315 EV_P = w->other;
3316 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3317 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3318 }
3319
3320 EV_FREQUENT_CHECK;
3321
3322 ev_set_priority (&w->io, ev_priority (w));
3323 ev_io_start (EV_A_ &w->io);
3324
3325 ev_prepare_init (&w->prepare, embed_prepare_cb);
3326 ev_set_priority (&w->prepare, EV_MINPRI);
3327 ev_prepare_start (EV_A_ &w->prepare);
3328
3329 ev_fork_init (&w->fork, embed_fork_cb);
3330 ev_fork_start (EV_A_ &w->fork);
3331
3332 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3333
3334 ev_start (EV_A_ (W)w, 1);
3335
3336 EV_FREQUENT_CHECK;
3337}
3338
3339void
3340ev_embed_stop (EV_P_ ev_embed *w)
3341{
3342 clear_pending (EV_A_ (W)w);
3343 if (expect_false (!ev_is_active (w)))
3344 return;
3345
3346 EV_FREQUENT_CHECK;
3347
3348 ev_io_stop (EV_A_ &w->io);
3349 ev_prepare_stop (EV_A_ &w->prepare);
3350 ev_fork_stop (EV_A_ &w->fork);
3351
3352 EV_FREQUENT_CHECK;
3353}
3354#endif
3355
3356#if EV_FORK_ENABLE
3357void
3358ev_fork_start (EV_P_ ev_fork *w)
3359{
3360 if (expect_false (ev_is_active (w)))
3361 return;
3362
3363 EV_FREQUENT_CHECK;
3364
3365 ev_start (EV_A_ (W)w, ++forkcnt);
3366 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3367 forks [forkcnt - 1] = w;
3368
3369 EV_FREQUENT_CHECK;
3370}
3371
3372void
3373ev_fork_stop (EV_P_ ev_fork *w)
3374{
3375 clear_pending (EV_A_ (W)w);
3376 if (expect_false (!ev_is_active (w)))
3377 return;
3378
3379 EV_FREQUENT_CHECK;
3380
3381 {
3382 int active = ev_active (w);
3383
3384 forks [active - 1] = forks [--forkcnt];
3385 ev_active (forks [active - 1]) = active;
3386 }
3387
3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
3391}
3392#endif
3393
3394#if EV_ASYNC_ENABLE
3395void
3396ev_async_start (EV_P_ ev_async *w)
3397{
3398 if (expect_false (ev_is_active (w)))
3399 return;
3400
3401 evpipe_init (EV_A);
3402
3403 EV_FREQUENT_CHECK;
3404
3405 ev_start (EV_A_ (W)w, ++asynccnt);
3406 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3407 asyncs [asynccnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
3410}
3411
3412void
3413ev_async_stop (EV_P_ ev_async *w)
3414{
3415 clear_pending (EV_A_ (W)w);
3416 if (expect_false (!ev_is_active (w)))
3417 return;
3418
3419 EV_FREQUENT_CHECK;
3420
3421 {
3422 int active = ev_active (w);
3423
3424 asyncs [active - 1] = asyncs [--asynccnt];
3425 ev_active (asyncs [active - 1]) = active;
3426 }
3427
3428 ev_stop (EV_A_ (W)w);
3429
3430 EV_FREQUENT_CHECK;
3431}
3432
3433void
3434ev_async_send (EV_P_ ev_async *w)
3435{
3436 w->sent = 1;
3437 evpipe_write (EV_A_ &async_pending);
3438}
3439#endif
1639 3440
1640/*****************************************************************************/ 3441/*****************************************************************************/
1641 3442
1642struct ev_once 3443struct ev_once
1643{ 3444{
1644 struct ev_io io; 3445 ev_io io;
1645 struct ev_timer to; 3446 ev_timer to;
1646 void (*cb)(int revents, void *arg); 3447 void (*cb)(int revents, void *arg);
1647 void *arg; 3448 void *arg;
1648}; 3449};
1649 3450
1650static void 3451static void
1651once_cb (EV_P_ struct ev_once *once, int revents) 3452once_cb (EV_P_ struct ev_once *once, int revents)
1652{ 3453{
1653 void (*cb)(int revents, void *arg) = once->cb; 3454 void (*cb)(int revents, void *arg) = once->cb;
1654 void *arg = once->arg; 3455 void *arg = once->arg;
1655 3456
1656 ev_io_stop (EV_A_ &once->io); 3457 ev_io_stop (EV_A_ &once->io);
1657 ev_timer_stop (EV_A_ &once->to); 3458 ev_timer_stop (EV_A_ &once->to);
1658 ev_free (once); 3459 ev_free (once);
1659 3460
1660 cb (revents, arg); 3461 cb (revents, arg);
1661} 3462}
1662 3463
1663static void 3464static void
1664once_cb_io (EV_P_ struct ev_io *w, int revents) 3465once_cb_io (EV_P_ ev_io *w, int revents)
1665{ 3466{
1666 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3467 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3468
3469 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1667} 3470}
1668 3471
1669static void 3472static void
1670once_cb_to (EV_P_ struct ev_timer *w, int revents) 3473once_cb_to (EV_P_ ev_timer *w, int revents)
1671{ 3474{
1672 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3476
3477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1673} 3478}
1674 3479
1675void 3480void
1676ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1677{ 3482{
1699 ev_timer_set (&once->to, timeout, 0.); 3504 ev_timer_set (&once->to, timeout, 0.);
1700 ev_timer_start (EV_A_ &once->to); 3505 ev_timer_start (EV_A_ &once->to);
1701 } 3506 }
1702} 3507}
1703 3508
3509/*****************************************************************************/
3510
3511#if EV_WALK_ENABLE
3512void
3513ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3514{
3515 int i, j;
3516 ev_watcher_list *wl, *wn;
3517
3518 if (types & (EV_IO | EV_EMBED))
3519 for (i = 0; i < anfdmax; ++i)
3520 for (wl = anfds [i].head; wl; )
3521 {
3522 wn = wl->next;
3523
3524#if EV_EMBED_ENABLE
3525 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3526 {
3527 if (types & EV_EMBED)
3528 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3529 }
3530 else
3531#endif
3532#if EV_USE_INOTIFY
3533 if (ev_cb ((ev_io *)wl) == infy_cb)
3534 ;
3535 else
3536#endif
3537 if ((ev_io *)wl != &pipe_w)
3538 if (types & EV_IO)
3539 cb (EV_A_ EV_IO, wl);
3540
3541 wl = wn;
3542 }
3543
3544 if (types & (EV_TIMER | EV_STAT))
3545 for (i = timercnt + HEAP0; i-- > HEAP0; )
3546#if EV_STAT_ENABLE
3547 /*TODO: timer is not always active*/
3548 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3549 {
3550 if (types & EV_STAT)
3551 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3552 }
3553 else
3554#endif
3555 if (types & EV_TIMER)
3556 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3557
3558#if EV_PERIODIC_ENABLE
3559 if (types & EV_PERIODIC)
3560 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3561 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3562#endif
3563
3564#if EV_IDLE_ENABLE
3565 if (types & EV_IDLE)
3566 for (j = NUMPRI; i--; )
3567 for (i = idlecnt [j]; i--; )
3568 cb (EV_A_ EV_IDLE, idles [j][i]);
3569#endif
3570
3571#if EV_FORK_ENABLE
3572 if (types & EV_FORK)
3573 for (i = forkcnt; i--; )
3574 if (ev_cb (forks [i]) != embed_fork_cb)
3575 cb (EV_A_ EV_FORK, forks [i]);
3576#endif
3577
3578#if EV_ASYNC_ENABLE
3579 if (types & EV_ASYNC)
3580 for (i = asynccnt; i--; )
3581 cb (EV_A_ EV_ASYNC, asyncs [i]);
3582#endif
3583
3584 if (types & EV_PREPARE)
3585 for (i = preparecnt; i--; )
3586#if EV_EMBED_ENABLE
3587 if (ev_cb (prepares [i]) != embed_prepare_cb)
3588#endif
3589 cb (EV_A_ EV_PREPARE, prepares [i]);
3590
3591 if (types & EV_CHECK)
3592 for (i = checkcnt; i--; )
3593 cb (EV_A_ EV_CHECK, checks [i]);
3594
3595 if (types & EV_SIGNAL)
3596 for (i = 0; i < EV_NSIG - 1; ++i)
3597 for (wl = signals [i].head; wl; )
3598 {
3599 wn = wl->next;
3600 cb (EV_A_ EV_SIGNAL, wl);
3601 wl = wn;
3602 }
3603
3604 if (types & EV_CHILD)
3605 for (i = EV_PID_HASHSIZE; i--; )
3606 for (wl = childs [i]; wl; )
3607 {
3608 wn = wl->next;
3609 cb (EV_A_ EV_CHILD, wl);
3610 wl = wn;
3611 }
3612/* EV_STAT 0x00001000 /* stat data changed */
3613/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3614}
3615#endif
3616
3617#if EV_MULTIPLICITY
3618 #include "ev_wrap.h"
3619#endif
3620
1704#ifdef __cplusplus 3621#ifdef __cplusplus
1705} 3622}
1706#endif 3623#endif
1707 3624

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines