ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.183 by root, Wed Dec 12 05:11:56 2007 UTC vs.
Revision 1.313 by root, Wed Aug 19 23:44:51 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
202#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
205#endif 356#endif
206 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
207#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 381# include <winsock.h>
209#endif 382#endif
210 383
211#if !EV_STAT_ENABLE 384#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
213#endif 389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
214 405
215#if EV_USE_INOTIFY 406#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 407# include <sys/signalfd.h>
217#endif 408#endif
218 409
219/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
220 417
221/* 418/*
222 * This is used to avoid floating point rounding problems. 419 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 420 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 421 * to ensure progress, time-wise, even when rounding
230 427
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 431
235#if __GNUC__ >= 3 432#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 434# define noinline __attribute__ ((noinline))
238#else 435#else
239# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
240# define noinline 437# define noinline
241# if __STDC_VERSION__ < 199901L 438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 439# define inline
243# endif 440# endif
244#endif 441#endif
245 442
246#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
251# define inline_speed static noinline 448# define inline_speed static noinline
252#else 449#else
253# define inline_speed static inline 450# define inline_speed static inline
254#endif 451#endif
255 452
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
258 460
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
261 463
262typedef ev_watcher *W; 464typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
265 467
468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
480
481#ifndef EV_FD_TO_WIN32_HANDLE
482# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
483#endif
484#ifndef EV_WIN32_HANDLE_TO_FD
485# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
486#endif
487#ifndef EV_WIN32_CLOSE_FD
488# define EV_WIN32_CLOSE_FD(fd) close (fd)
489#endif
267 490
268#ifdef _WIN32 491#ifdef _WIN32
269# include "ev_win32.c" 492# include "ev_win32.c"
270#endif 493#endif
271 494
278{ 501{
279 syserr_cb = cb; 502 syserr_cb = cb;
280} 503}
281 504
282static void noinline 505static void noinline
283syserr (const char *msg) 506ev_syserr (const char *msg)
284{ 507{
285 if (!msg) 508 if (!msg)
286 msg = "(libev) system error"; 509 msg = "(libev) system error";
287 510
288 if (syserr_cb) 511 if (syserr_cb)
292 perror (msg); 515 perror (msg);
293 abort (); 516 abort ();
294 } 517 }
295} 518}
296 519
520static void *
521ev_realloc_emul (void *ptr, long size)
522{
523 /* some systems, notably openbsd and darwin, fail to properly
524 * implement realloc (x, 0) (as required by both ansi c-98 and
525 * the single unix specification, so work around them here.
526 */
527
528 if (size)
529 return realloc (ptr, size);
530
531 free (ptr);
532 return 0;
533}
534
297static void *(*alloc)(void *ptr, long size); 535static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 536
299void 537void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 538ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 539{
302 alloc = cb; 540 alloc = cb;
303} 541}
304 542
305inline_speed void * 543inline_speed void *
306ev_realloc (void *ptr, long size) 544ev_realloc (void *ptr, long size)
307{ 545{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 546 ptr = alloc (ptr, size);
309 547
310 if (!ptr && size) 548 if (!ptr && size)
311 { 549 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 550 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 551 abort ();
319#define ev_malloc(size) ev_realloc (0, (size)) 557#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 558#define ev_free(ptr) ev_realloc ((ptr), 0)
321 559
322/*****************************************************************************/ 560/*****************************************************************************/
323 561
562/* set in reify when reification needed */
563#define EV_ANFD_REIFY 1
564
565/* file descriptor info structure */
324typedef struct 566typedef struct
325{ 567{
326 WL head; 568 WL head;
327 unsigned char events; 569 unsigned char events; /* the events watched for */
570 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
571 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 572 unsigned char unused;
573#if EV_USE_EPOLL
574 unsigned int egen; /* generation counter to counter epoll bugs */
575#endif
329#if EV_SELECT_IS_WINSOCKET 576#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 577 SOCKET handle;
331#endif 578#endif
332} ANFD; 579} ANFD;
333 580
581/* stores the pending event set for a given watcher */
334typedef struct 582typedef struct
335{ 583{
336 W w; 584 W w;
337 int events; 585 int events; /* the pending event set for the given watcher */
338} ANPENDING; 586} ANPENDING;
339 587
340#if EV_USE_INOTIFY 588#if EV_USE_INOTIFY
589/* hash table entry per inotify-id */
341typedef struct 590typedef struct
342{ 591{
343 WL head; 592 WL head;
344} ANFS; 593} ANFS;
594#endif
595
596/* Heap Entry */
597#if EV_HEAP_CACHE_AT
598 /* a heap element */
599 typedef struct {
600 ev_tstamp at;
601 WT w;
602 } ANHE;
603
604 #define ANHE_w(he) (he).w /* access watcher, read-write */
605 #define ANHE_at(he) (he).at /* access cached at, read-only */
606 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
607#else
608 /* a heap element */
609 typedef WT ANHE;
610
611 #define ANHE_w(he) (he)
612 #define ANHE_at(he) (he)->at
613 #define ANHE_at_cache(he)
345#endif 614#endif
346 615
347#if EV_MULTIPLICITY 616#if EV_MULTIPLICITY
348 617
349 struct ev_loop 618 struct ev_loop
368 637
369 static int ev_default_loop_ptr; 638 static int ev_default_loop_ptr;
370 639
371#endif 640#endif
372 641
642#if EV_MINIMAL < 2
643# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
644# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
645# define EV_INVOKE_PENDING invoke_cb (EV_A)
646#else
647# define EV_RELEASE_CB (void)0
648# define EV_ACQUIRE_CB (void)0
649# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
650#endif
651
652#define EVUNLOOP_RECURSE 0x80
653
373/*****************************************************************************/ 654/*****************************************************************************/
374 655
656#ifndef EV_HAVE_EV_TIME
375ev_tstamp 657ev_tstamp
376ev_time (void) 658ev_time (void)
377{ 659{
378#if EV_USE_REALTIME 660#if EV_USE_REALTIME
661 if (expect_true (have_realtime))
662 {
379 struct timespec ts; 663 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 664 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 665 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 666 }
667#endif
668
383 struct timeval tv; 669 struct timeval tv;
384 gettimeofday (&tv, 0); 670 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 671 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 672}
673#endif
388 674
389ev_tstamp inline_size 675inline_size ev_tstamp
390get_clock (void) 676get_clock (void)
391{ 677{
392#if EV_USE_MONOTONIC 678#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 679 if (expect_true (have_monotonic))
394 { 680 {
407{ 693{
408 return ev_rt_now; 694 return ev_rt_now;
409} 695}
410#endif 696#endif
411 697
412int inline_size 698void
699ev_sleep (ev_tstamp delay)
700{
701 if (delay > 0.)
702 {
703#if EV_USE_NANOSLEEP
704 struct timespec ts;
705
706 ts.tv_sec = (time_t)delay;
707 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
708
709 nanosleep (&ts, 0);
710#elif defined(_WIN32)
711 Sleep ((unsigned long)(delay * 1e3));
712#else
713 struct timeval tv;
714
715 tv.tv_sec = (time_t)delay;
716 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
717
718 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
719 /* something not guaranteed by newer posix versions, but guaranteed */
720 /* by older ones */
721 select (0, 0, 0, 0, &tv);
722#endif
723 }
724}
725
726/*****************************************************************************/
727
728#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
729
730/* find a suitable new size for the given array, */
731/* hopefully by rounding to a ncie-to-malloc size */
732inline_size int
413array_nextsize (int elem, int cur, int cnt) 733array_nextsize (int elem, int cur, int cnt)
414{ 734{
415 int ncur = cur + 1; 735 int ncur = cur + 1;
416 736
417 do 737 do
418 ncur <<= 1; 738 ncur <<= 1;
419 while (cnt > ncur); 739 while (cnt > ncur);
420 740
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 741 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 742 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 743 {
424 ncur *= elem; 744 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 745 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 746 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 747 ncur /= elem;
428 } 748 }
429 749
430 return ncur; 750 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 754array_realloc (int elem, void *base, int *cur, int cnt)
435{ 755{
436 *cur = array_nextsize (elem, *cur, cnt); 756 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 757 return ev_realloc (base, elem * *cur);
438} 758}
759
760#define array_init_zero(base,count) \
761 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 762
440#define array_needsize(type,base,cur,cnt,init) \ 763#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 764 if (expect_false ((cnt) > (cur))) \
442 { \ 765 { \
443 int ocur_ = (cur); \ 766 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 778 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 779 }
457#endif 780#endif
458 781
459#define array_free(stem, idx) \ 782#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 783 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 784
462/*****************************************************************************/ 785/*****************************************************************************/
786
787/* dummy callback for pending events */
788static void noinline
789pendingcb (EV_P_ ev_prepare *w, int revents)
790{
791}
463 792
464void noinline 793void noinline
465ev_feed_event (EV_P_ void *w, int revents) 794ev_feed_event (EV_P_ void *w, int revents)
466{ 795{
467 W w_ = (W)w; 796 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 805 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 806 pendings [pri][w_->pending - 1].events = revents;
478 } 807 }
479} 808}
480 809
481void inline_speed 810inline_speed void
811feed_reverse (EV_P_ W w)
812{
813 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
814 rfeeds [rfeedcnt++] = w;
815}
816
817inline_size void
818feed_reverse_done (EV_P_ int revents)
819{
820 do
821 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
822 while (rfeedcnt);
823}
824
825inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 826queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 827{
484 int i; 828 int i;
485 829
486 for (i = 0; i < eventcnt; ++i) 830 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 831 ev_feed_event (EV_A_ events [i], type);
488} 832}
489 833
490/*****************************************************************************/ 834/*****************************************************************************/
491 835
492void inline_size 836inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 837fd_event_nc (EV_P_ int fd, int revents)
507{ 838{
508 ANFD *anfd = anfds + fd; 839 ANFD *anfd = anfds + fd;
509 ev_io *w; 840 ev_io *w;
510 841
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 842 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 846 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 847 ev_feed_event (EV_A_ (W)w, ev);
517 } 848 }
518} 849}
519 850
851/* do not submit kernel events for fds that have reify set */
852/* because that means they changed while we were polling for new events */
853inline_speed void
854fd_event (EV_P_ int fd, int revents)
855{
856 ANFD *anfd = anfds + fd;
857
858 if (expect_true (!anfd->reify))
859 fd_event_nc (EV_A_ fd, revents);
860}
861
520void 862void
521ev_feed_fd_event (EV_P_ int fd, int revents) 863ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 864{
523 if (fd >= 0 && fd < anfdmax) 865 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 866 fd_event_nc (EV_A_ fd, revents);
525} 867}
526 868
527void inline_size 869/* make sure the external fd watch events are in-sync */
870/* with the kernel/libev internal state */
871inline_size void
528fd_reify (EV_P) 872fd_reify (EV_P)
529{ 873{
530 int i; 874 int i;
531 875
532 for (i = 0; i < fdchangecnt; ++i) 876 for (i = 0; i < fdchangecnt; ++i)
533 { 877 {
534 int fd = fdchanges [i]; 878 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 879 ANFD *anfd = anfds + fd;
536 ev_io *w; 880 ev_io *w;
537 881
538 int events = 0; 882 unsigned char events = 0;
539 883
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 884 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 885 events |= (unsigned char)w->events;
542 886
543#if EV_SELECT_IS_WINSOCKET 887#if EV_SELECT_IS_WINSOCKET
544 if (events) 888 if (events)
545 { 889 {
546 unsigned long argp; 890 unsigned long arg;
547 anfd->handle = _get_osfhandle (fd); 891 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 892 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 893 }
550#endif 894#endif
551 895
896 {
897 unsigned char o_events = anfd->events;
898 unsigned char o_reify = anfd->reify;
899
552 anfd->reify = 0; 900 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 901 anfd->events = events;
902
903 if (o_events != events || o_reify & EV__IOFDSET)
904 backend_modify (EV_A_ fd, o_events, events);
905 }
556 } 906 }
557 907
558 fdchangecnt = 0; 908 fdchangecnt = 0;
559} 909}
560 910
561void inline_size 911/* something about the given fd changed */
912inline_size void
562fd_change (EV_P_ int fd, int flags) 913fd_change (EV_P_ int fd, int flags)
563{ 914{
564 unsigned char reify = anfds [fd].reify; 915 unsigned char reify = anfds [fd].reify;
565 anfds [fd].reify |= flags | 1; 916 anfds [fd].reify |= flags;
566 917
567 if (expect_true (!reify)) 918 if (expect_true (!reify))
568 { 919 {
569 ++fdchangecnt; 920 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 921 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 922 fdchanges [fdchangecnt - 1] = fd;
572 } 923 }
573} 924}
574 925
575void inline_speed 926/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
927inline_speed void
576fd_kill (EV_P_ int fd) 928fd_kill (EV_P_ int fd)
577{ 929{
578 ev_io *w; 930 ev_io *w;
579 931
580 while ((w = (ev_io *)anfds [fd].head)) 932 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 934 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 935 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 936 }
585} 937}
586 938
587int inline_size 939/* check whether the given fd is atcually valid, for error recovery */
940inline_size int
588fd_valid (int fd) 941fd_valid (int fd)
589{ 942{
590#ifdef _WIN32 943#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 944 return _get_osfhandle (fd) != -1;
592#else 945#else
600{ 953{
601 int fd; 954 int fd;
602 955
603 for (fd = 0; fd < anfdmax; ++fd) 956 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 957 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 958 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 959 fd_kill (EV_A_ fd);
607} 960}
608 961
609/* called on ENOMEM in select/poll to kill some fds and retry */ 962/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 963static void noinline
614 967
615 for (fd = anfdmax; fd--; ) 968 for (fd = anfdmax; fd--; )
616 if (anfds [fd].events) 969 if (anfds [fd].events)
617 { 970 {
618 fd_kill (EV_A_ fd); 971 fd_kill (EV_A_ fd);
619 return; 972 break;
620 } 973 }
621} 974}
622 975
623/* usually called after fork if backend needs to re-arm all fds from scratch */ 976/* usually called after fork if backend needs to re-arm all fds from scratch */
624static void noinline 977static void noinline
628 981
629 for (fd = 0; fd < anfdmax; ++fd) 982 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 983 if (anfds [fd].events)
631 { 984 {
632 anfds [fd].events = 0; 985 anfds [fd].events = 0;
986 anfds [fd].emask = 0;
633 fd_change (EV_A_ fd, EV_IOFDSET); 987 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
634 } 988 }
635} 989}
636 990
637/*****************************************************************************/ 991/*****************************************************************************/
638 992
639void inline_speed 993/*
640upheap (WT *heap, int k) 994 * the heap functions want a real array index. array index 0 uis guaranteed to not
641{ 995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
642 WT w = heap [k]; 996 * the branching factor of the d-tree.
997 */
643 998
644 while (k) 999/*
645 { 1000 * at the moment we allow libev the luxury of two heaps,
646 int p = (k - 1) >> 1; 1001 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1002 * which is more cache-efficient.
1003 * the difference is about 5% with 50000+ watchers.
1004 */
1005#if EV_USE_4HEAP
647 1006
648 if (heap [p]->at <= w->at) 1007#define DHEAP 4
1008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1010#define UPHEAP_DONE(p,k) ((p) == (k))
1011
1012/* away from the root */
1013inline_speed void
1014downheap (ANHE *heap, int N, int k)
1015{
1016 ANHE he = heap [k];
1017 ANHE *E = heap + N + HEAP0;
1018
1019 for (;;)
1020 {
1021 ev_tstamp minat;
1022 ANHE *minpos;
1023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1024
1025 /* find minimum child */
1026 if (expect_true (pos + DHEAP - 1 < E))
1027 {
1028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1032 }
1033 else if (pos < E)
1034 {
1035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1037 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1038 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1039 }
1040 else
649 break; 1041 break;
650 1042
1043 if (ANHE_at (he) <= minat)
1044 break;
1045
1046 heap [k] = *minpos;
1047 ev_active (ANHE_w (*minpos)) = k;
1048
1049 k = minpos - heap;
1050 }
1051
1052 heap [k] = he;
1053 ev_active (ANHE_w (he)) = k;
1054}
1055
1056#else /* 4HEAP */
1057
1058#define HEAP0 1
1059#define HPARENT(k) ((k) >> 1)
1060#define UPHEAP_DONE(p,k) (!(p))
1061
1062/* away from the root */
1063inline_speed void
1064downheap (ANHE *heap, int N, int k)
1065{
1066 ANHE he = heap [k];
1067
1068 for (;;)
1069 {
1070 int c = k << 1;
1071
1072 if (c >= N + HEAP0)
1073 break;
1074
1075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1076 ? 1 : 0;
1077
1078 if (ANHE_at (he) <= ANHE_at (heap [c]))
1079 break;
1080
1081 heap [k] = heap [c];
1082 ev_active (ANHE_w (heap [k])) = k;
1083
1084 k = c;
1085 }
1086
1087 heap [k] = he;
1088 ev_active (ANHE_w (he)) = k;
1089}
1090#endif
1091
1092/* towards the root */
1093inline_speed void
1094upheap (ANHE *heap, int k)
1095{
1096 ANHE he = heap [k];
1097
1098 for (;;)
1099 {
1100 int p = HPARENT (k);
1101
1102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1103 break;
1104
651 heap [k] = heap [p]; 1105 heap [k] = heap [p];
652 ((W)heap [k])->active = k + 1; 1106 ev_active (ANHE_w (heap [k])) = k;
653 k = p; 1107 k = p;
654 } 1108 }
655 1109
656 heap [k] = w; 1110 heap [k] = he;
657 ((W)heap [k])->active = k + 1; 1111 ev_active (ANHE_w (he)) = k;
658} 1112}
659 1113
660void inline_speed 1114/* move an element suitably so it is in a correct place */
661downheap (WT *heap, int N, int k) 1115inline_size void
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686}
687
688void inline_size
689adjustheap (WT *heap, int N, int k) 1116adjustheap (ANHE *heap, int N, int k)
690{ 1117{
1118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
691 upheap (heap, k); 1119 upheap (heap, k);
1120 else
692 downheap (heap, N, k); 1121 downheap (heap, N, k);
1122}
1123
1124/* rebuild the heap: this function is used only once and executed rarely */
1125inline_size void
1126reheap (ANHE *heap, int N)
1127{
1128 int i;
1129
1130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1132 for (i = 0; i < N; ++i)
1133 upheap (heap, i + HEAP0);
693} 1134}
694 1135
695/*****************************************************************************/ 1136/*****************************************************************************/
696 1137
1138/* associate signal watchers to a signal signal */
697typedef struct 1139typedef struct
698{ 1140{
1141 EV_ATOMIC_T pending;
1142#if EV_MULTIPLICITY
1143 EV_P;
1144#endif
699 WL head; 1145 WL head;
700 sig_atomic_t volatile gotsig;
701} ANSIG; 1146} ANSIG;
702 1147
703static ANSIG *signals; 1148static ANSIG signals [EV_NSIG - 1];
704static int signalmax;
705 1149
706static int sigpipe [2]; 1150/*****************************************************************************/
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 1151
710void inline_size 1152/* used to prepare libev internal fd's */
711signals_init (ANSIG *base, int count) 1153/* this is not fork-safe */
712{ 1154inline_speed void
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717
718 ++base;
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772
773void inline_speed
774fd_intern (int fd) 1155fd_intern (int fd)
775{ 1156{
776#ifdef _WIN32 1157#ifdef _WIN32
777 int arg = 1; 1158 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1159 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
779#else 1160#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 1161 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 1162 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 1163#endif
783} 1164}
784 1165
785static void noinline 1166static void noinline
786siginit (EV_P) 1167evpipe_init (EV_P)
787{ 1168{
1169 if (!ev_is_active (&pipe_w))
1170 {
1171#if EV_USE_EVENTFD
1172 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1173 if (evfd < 0 && errno == EINVAL)
1174 evfd = eventfd (0, 0);
1175
1176 if (evfd >= 0)
1177 {
1178 evpipe [0] = -1;
1179 fd_intern (evfd); /* doing it twice doesn't hurt */
1180 ev_io_set (&pipe_w, evfd, EV_READ);
1181 }
1182 else
1183#endif
1184 {
1185 while (pipe (evpipe))
1186 ev_syserr ("(libev) error creating signal/async pipe");
1187
788 fd_intern (sigpipe [0]); 1188 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1189 fd_intern (evpipe [1]);
1190 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1191 }
790 1192
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1193 ev_io_start (EV_A_ &pipe_w);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1194 ev_unref (EV_A); /* watcher should not keep loop alive */
1195 }
1196}
1197
1198inline_size void
1199evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1200{
1201 if (!*flag)
1202 {
1203 int old_errno = errno; /* save errno because write might clobber it */
1204
1205 *flag = 1;
1206
1207#if EV_USE_EVENTFD
1208 if (evfd >= 0)
1209 {
1210 uint64_t counter = 1;
1211 write (evfd, &counter, sizeof (uint64_t));
1212 }
1213 else
1214#endif
1215 write (evpipe [1], &old_errno, 1);
1216
1217 errno = old_errno;
1218 }
1219}
1220
1221/* called whenever the libev signal pipe */
1222/* got some events (signal, async) */
1223static void
1224pipecb (EV_P_ ev_io *iow, int revents)
1225{
1226 int i;
1227
1228#if EV_USE_EVENTFD
1229 if (evfd >= 0)
1230 {
1231 uint64_t counter;
1232 read (evfd, &counter, sizeof (uint64_t));
1233 }
1234 else
1235#endif
1236 {
1237 char dummy;
1238 read (evpipe [0], &dummy, 1);
1239 }
1240
1241 if (sig_pending)
1242 {
1243 sig_pending = 0;
1244
1245 for (i = EV_NSIG - 1; i--; )
1246 if (expect_false (signals [i].pending))
1247 ev_feed_signal_event (EV_A_ i + 1);
1248 }
1249
1250#if EV_ASYNC_ENABLE
1251 if (async_pending)
1252 {
1253 async_pending = 0;
1254
1255 for (i = asynccnt; i--; )
1256 if (asyncs [i]->sent)
1257 {
1258 asyncs [i]->sent = 0;
1259 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1260 }
1261 }
1262#endif
794} 1263}
795 1264
796/*****************************************************************************/ 1265/*****************************************************************************/
797 1266
1267static void
1268ev_sighandler (int signum)
1269{
1270#if EV_MULTIPLICITY
1271 EV_P = signals [signum - 1].loop;
1272#endif
1273
1274#if _WIN32
1275 signal (signum, ev_sighandler);
1276#endif
1277
1278 signals [signum - 1].pending = 1;
1279 evpipe_write (EV_A_ &sig_pending);
1280}
1281
1282void noinline
1283ev_feed_signal_event (EV_P_ int signum)
1284{
1285 WL w;
1286
1287 if (expect_false (signum <= 0 || signum > EV_NSIG))
1288 return;
1289
1290 --signum;
1291
1292#if EV_MULTIPLICITY
1293 /* it is permissible to try to feed a signal to the wrong loop */
1294 /* or, likely more useful, feeding a signal nobody is waiting for */
1295
1296 if (expect_false (signals [signum].loop != EV_A))
1297 return;
1298#endif
1299
1300 signals [signum].pending = 0;
1301
1302 for (w = signals [signum].head; w; w = w->next)
1303 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1304}
1305
1306#if EV_USE_SIGNALFD
1307static void
1308sigfdcb (EV_P_ ev_io *iow, int revents)
1309{
1310 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1311
1312 for (;;)
1313 {
1314 ssize_t res = read (sigfd, si, sizeof (si));
1315
1316 /* not ISO-C, as res might be -1, but works with SuS */
1317 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1318 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1319
1320 if (res < (ssize_t)sizeof (si))
1321 break;
1322 }
1323}
1324#endif
1325
1326/*****************************************************************************/
1327
798static WL childs [EV_PID_HASHSIZE]; 1328static WL childs [EV_PID_HASHSIZE];
799 1329
800#ifndef _WIN32 1330#ifndef _WIN32
801 1331
802static ev_signal childev; 1332static ev_signal childev;
803 1333
804void inline_speed 1334#ifndef WIFCONTINUED
1335# define WIFCONTINUED(status) 0
1336#endif
1337
1338/* handle a single child status event */
1339inline_speed void
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1340child_reap (EV_P_ int chain, int pid, int status)
806{ 1341{
807 ev_child *w; 1342 ev_child *w;
1343 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1344
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1345 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1346 {
810 if (w->pid == pid || !w->pid) 1347 if ((w->pid == pid || !w->pid)
1348 && (!traced || (w->flags & 1)))
811 { 1349 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1350 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1351 w->rpid = pid;
814 w->rstatus = status; 1352 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1353 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1354 }
1355 }
817} 1356}
818 1357
819#ifndef WCONTINUED 1358#ifndef WCONTINUED
820# define WCONTINUED 0 1359# define WCONTINUED 0
821#endif 1360#endif
822 1361
1362/* called on sigchld etc., calls waitpid */
823static void 1363static void
824childcb (EV_P_ ev_signal *sw, int revents) 1364childcb (EV_P_ ev_signal *sw, int revents)
825{ 1365{
826 int pid, status; 1366 int pid, status;
827 1367
830 if (!WCONTINUED 1370 if (!WCONTINUED
831 || errno != EINVAL 1371 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1372 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1373 return;
834 1374
835 /* make sure we are called again until all childs have been reaped */ 1375 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1376 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1377 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1378
839 child_reap (EV_A_ sw, pid, pid, status); 1379 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1380 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1381 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1382}
843 1383
844#endif 1384#endif
845 1385
846/*****************************************************************************/ 1386/*****************************************************************************/
908 /* kqueue is borked on everything but netbsd apparently */ 1448 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */ 1449 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE; 1450 flags &= ~EVBACKEND_KQUEUE;
911#endif 1451#endif
912#ifdef __APPLE__ 1452#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation 1453 /* only select works correctly on that "unix-certified" platform */
914 flags &= ~EVBACKEND_POLL; 1454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
915#endif 1456#endif
916 1457
917 return flags; 1458 return flags;
918} 1459}
919 1460
920unsigned int 1461unsigned int
921ev_embeddable_backends (void) 1462ev_embeddable_backends (void)
922{ 1463{
923 return EVBACKEND_EPOLL 1464 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1465
925 | EVBACKEND_PORT; 1466 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1467 /* please fix it and tell me how to detect the fix */
1468 flags &= ~EVBACKEND_EPOLL;
1469
1470 return flags;
926} 1471}
927 1472
928unsigned int 1473unsigned int
929ev_backend (EV_P) 1474ev_backend (EV_P)
930{ 1475{
931 return backend; 1476 return backend;
932} 1477}
933 1478
1479#if EV_MINIMAL < 2
934unsigned int 1480unsigned int
935ev_loop_count (EV_P) 1481ev_loop_count (EV_P)
936{ 1482{
937 return loop_count; 1483 return loop_count;
938} 1484}
939 1485
1486unsigned int
1487ev_loop_depth (EV_P)
1488{
1489 return loop_depth;
1490}
1491
1492void
1493ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 io_blocktime = interval;
1496}
1497
1498void
1499ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1500{
1501 timeout_blocktime = interval;
1502}
1503
1504void
1505ev_set_userdata (EV_P_ void *data)
1506{
1507 userdata = data;
1508}
1509
1510void *
1511ev_userdata (EV_P)
1512{
1513 return userdata;
1514}
1515
1516void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1517{
1518 invoke_cb = invoke_pending_cb;
1519}
1520
1521void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1522{
1523 release_cb = release;
1524 acquire_cb = acquire;
1525}
1526#endif
1527
1528/* initialise a loop structure, must be zero-initialised */
940static void noinline 1529static void noinline
941loop_init (EV_P_ unsigned int flags) 1530loop_init (EV_P_ unsigned int flags)
942{ 1531{
943 if (!backend) 1532 if (!backend)
944 { 1533 {
1534#if EV_USE_REALTIME
1535 if (!have_realtime)
1536 {
1537 struct timespec ts;
1538
1539 if (!clock_gettime (CLOCK_REALTIME, &ts))
1540 have_realtime = 1;
1541 }
1542#endif
1543
945#if EV_USE_MONOTONIC 1544#if EV_USE_MONOTONIC
1545 if (!have_monotonic)
946 { 1546 {
947 struct timespec ts; 1547 struct timespec ts;
1548
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1549 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1550 have_monotonic = 1;
950 } 1551 }
951#endif 1552#endif
952
953 ev_rt_now = ev_time ();
954 mn_now = get_clock ();
955 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now;
957 1553
958 /* pid check not overridable via env */ 1554 /* pid check not overridable via env */
959#ifndef _WIN32 1555#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1556 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1557 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1560 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1561 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1562 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1563 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1564
1565 ev_rt_now = ev_time ();
1566 mn_now = get_clock ();
1567 now_floor = mn_now;
1568 rtmn_diff = ev_rt_now - mn_now;
1569#if EV_MINIMAL < 2
1570 invoke_cb = ev_invoke_pending;
1571#endif
1572
1573 io_blocktime = 0.;
1574 timeout_blocktime = 0.;
1575 backend = 0;
1576 backend_fd = -1;
1577 sig_pending = 0;
1578#if EV_ASYNC_ENABLE
1579 async_pending = 0;
1580#endif
1581#if EV_USE_INOTIFY
1582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1583#endif
1584#if EV_USE_SIGNALFD
1585 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1586#endif
1587
969 if (!(flags & 0x0000ffffUL)) 1588 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1589 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1590
978#if EV_USE_PORT 1591#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1592 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1593#endif
981#if EV_USE_KQUEUE 1594#if EV_USE_KQUEUE
989#endif 1602#endif
990#if EV_USE_SELECT 1603#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1604 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1605#endif
993 1606
1607 ev_prepare_init (&pending_w, pendingcb);
1608
994 ev_init (&sigev, sigcb); 1609 ev_init (&pipe_w, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1610 ev_set_priority (&pipe_w, EV_MAXPRI);
996 } 1611 }
997} 1612}
998 1613
1614/* free up a loop structure */
999static void noinline 1615static void noinline
1000loop_destroy (EV_P) 1616loop_destroy (EV_P)
1001{ 1617{
1002 int i; 1618 int i;
1619
1620 if (ev_is_active (&pipe_w))
1621 {
1622 /*ev_ref (EV_A);*/
1623 /*ev_io_stop (EV_A_ &pipe_w);*/
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 EV_WIN32_CLOSE_FD (evpipe [0]);
1633 EV_WIN32_CLOSE_FD (evpipe [1]);
1634 }
1635 }
1636
1637#if EV_USE_SIGNALFD
1638 if (ev_is_active (&sigfd_w))
1639 {
1640 /*ev_ref (EV_A);*/
1641 /*ev_io_stop (EV_A_ &sigfd_w);*/
1642
1643 close (sigfd);
1644 }
1645#endif
1003 1646
1004#if EV_USE_INOTIFY 1647#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1648 if (fs_fd >= 0)
1006 close (fs_fd); 1649 close (fs_fd);
1007#endif 1650#endif
1031#if EV_IDLE_ENABLE 1674#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1675 array_free (idle, [i]);
1033#endif 1676#endif
1034 } 1677 }
1035 1678
1679 ev_free (anfds); anfds = 0; anfdmax = 0;
1680
1036 /* have to use the microsoft-never-gets-it-right macro */ 1681 /* have to use the microsoft-never-gets-it-right macro */
1682 array_free (rfeed, EMPTY);
1037 array_free (fdchange, EMPTY); 1683 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1684 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1686 array_free (periodic, EMPTY);
1041#endif 1687#endif
1688#if EV_FORK_ENABLE
1689 array_free (fork, EMPTY);
1690#endif
1042 array_free (prepare, EMPTY); 1691 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1692 array_free (check, EMPTY);
1693#if EV_ASYNC_ENABLE
1694 array_free (async, EMPTY);
1695#endif
1044 1696
1045 backend = 0; 1697 backend = 0;
1046} 1698}
1047 1699
1700#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1701inline_size void infy_fork (EV_P);
1702#endif
1049 1703
1050void inline_size 1704inline_size void
1051loop_fork (EV_P) 1705loop_fork (EV_P)
1052{ 1706{
1053#if EV_USE_PORT 1707#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1708 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif 1709#endif
1061#endif 1715#endif
1062#if EV_USE_INOTIFY 1716#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1717 infy_fork (EV_A);
1064#endif 1718#endif
1065 1719
1066 if (ev_is_active (&sigev)) 1720 if (ev_is_active (&pipe_w))
1067 { 1721 {
1068 /* default loop */ 1722 /* this "locks" the handlers against writing to the pipe */
1723 /* while we modify the fd vars */
1724 sig_pending = 1;
1725#if EV_ASYNC_ENABLE
1726 async_pending = 1;
1727#endif
1069 1728
1070 ev_ref (EV_A); 1729 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1730 ev_io_stop (EV_A_ &pipe_w);
1072 close (sigpipe [0]);
1073 close (sigpipe [1]);
1074 1731
1075 while (pipe (sigpipe)) 1732#if EV_USE_EVENTFD
1076 syserr ("(libev) error creating pipe"); 1733 if (evfd >= 0)
1734 close (evfd);
1735#endif
1077 1736
1737 if (evpipe [0] >= 0)
1738 {
1739 EV_WIN32_CLOSE_FD (evpipe [0]);
1740 EV_WIN32_CLOSE_FD (evpipe [1]);
1741 }
1742
1078 siginit (EV_A); 1743 evpipe_init (EV_A);
1744 /* now iterate over everything, in case we missed something */
1745 pipecb (EV_A_ &pipe_w, EV_READ);
1079 } 1746 }
1080 1747
1081 postfork = 0; 1748 postfork = 0;
1082} 1749}
1083 1750
1084#if EV_MULTIPLICITY 1751#if EV_MULTIPLICITY
1752
1085struct ev_loop * 1753struct ev_loop *
1086ev_loop_new (unsigned int flags) 1754ev_loop_new (unsigned int flags)
1087{ 1755{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1756 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1757
1090 memset (loop, 0, sizeof (struct ev_loop)); 1758 memset (EV_A, 0, sizeof (struct ev_loop));
1091
1092 loop_init (EV_A_ flags); 1759 loop_init (EV_A_ flags);
1093 1760
1094 if (ev_backend (EV_A)) 1761 if (ev_backend (EV_A))
1095 return loop; 1762 return EV_A;
1096 1763
1097 return 0; 1764 return 0;
1098} 1765}
1099 1766
1100void 1767void
1105} 1772}
1106 1773
1107void 1774void
1108ev_loop_fork (EV_P) 1775ev_loop_fork (EV_P)
1109{ 1776{
1110 postfork = 1; 1777 postfork = 1; /* must be in line with ev_default_fork */
1111} 1778}
1779#endif /* multiplicity */
1112 1780
1781#if EV_VERIFY
1782static void noinline
1783verify_watcher (EV_P_ W w)
1784{
1785 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1786
1787 if (w->pending)
1788 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1789}
1790
1791static void noinline
1792verify_heap (EV_P_ ANHE *heap, int N)
1793{
1794 int i;
1795
1796 for (i = HEAP0; i < N + HEAP0; ++i)
1797 {
1798 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1799 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1800 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1801
1802 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1803 }
1804}
1805
1806static void noinline
1807array_verify (EV_P_ W *ws, int cnt)
1808{
1809 while (cnt--)
1810 {
1811 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1812 verify_watcher (EV_A_ ws [cnt]);
1813 }
1814}
1815#endif
1816
1817#if EV_MINIMAL < 2
1818void
1819ev_loop_verify (EV_P)
1820{
1821#if EV_VERIFY
1822 int i;
1823 WL w;
1824
1825 assert (activecnt >= -1);
1826
1827 assert (fdchangemax >= fdchangecnt);
1828 for (i = 0; i < fdchangecnt; ++i)
1829 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1830
1831 assert (anfdmax >= 0);
1832 for (i = 0; i < anfdmax; ++i)
1833 for (w = anfds [i].head; w; w = w->next)
1834 {
1835 verify_watcher (EV_A_ (W)w);
1836 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1837 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1838 }
1839
1840 assert (timermax >= timercnt);
1841 verify_heap (EV_A_ timers, timercnt);
1842
1843#if EV_PERIODIC_ENABLE
1844 assert (periodicmax >= periodiccnt);
1845 verify_heap (EV_A_ periodics, periodiccnt);
1846#endif
1847
1848 for (i = NUMPRI; i--; )
1849 {
1850 assert (pendingmax [i] >= pendingcnt [i]);
1851#if EV_IDLE_ENABLE
1852 assert (idleall >= 0);
1853 assert (idlemax [i] >= idlecnt [i]);
1854 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1855#endif
1856 }
1857
1858#if EV_FORK_ENABLE
1859 assert (forkmax >= forkcnt);
1860 array_verify (EV_A_ (W *)forks, forkcnt);
1861#endif
1862
1863#if EV_ASYNC_ENABLE
1864 assert (asyncmax >= asynccnt);
1865 array_verify (EV_A_ (W *)asyncs, asynccnt);
1866#endif
1867
1868 assert (preparemax >= preparecnt);
1869 array_verify (EV_A_ (W *)prepares, preparecnt);
1870
1871 assert (checkmax >= checkcnt);
1872 array_verify (EV_A_ (W *)checks, checkcnt);
1873
1874# if 0
1875 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1876 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1877# endif
1878#endif
1879}
1113#endif 1880#endif
1114 1881
1115#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1116struct ev_loop * 1883struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1884ev_default_loop_init (unsigned int flags)
1118#else 1885#else
1119int 1886int
1120ev_default_loop (unsigned int flags) 1887ev_default_loop (unsigned int flags)
1121#endif 1888#endif
1122{ 1889{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1890 if (!ev_default_loop_ptr)
1128 { 1891 {
1129#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1893 EV_P = ev_default_loop_ptr = &default_loop_struct;
1131#else 1894#else
1132 ev_default_loop_ptr = 1; 1895 ev_default_loop_ptr = 1;
1133#endif 1896#endif
1134 1897
1135 loop_init (EV_A_ flags); 1898 loop_init (EV_A_ flags);
1136 1899
1137 if (ev_backend (EV_A)) 1900 if (ev_backend (EV_A))
1138 { 1901 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1902#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1903 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1904 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1905 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1906 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154 1915
1155void 1916void
1156ev_default_destroy (void) 1917ev_default_destroy (void)
1157{ 1918{
1158#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1920 EV_P = ev_default_loop_ptr;
1160#endif 1921#endif
1922
1923 ev_default_loop_ptr = 0;
1161 1924
1162#ifndef _WIN32 1925#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1926 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1927 ev_signal_stop (EV_A_ &childev);
1165#endif 1928#endif
1166 1929
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1930 loop_destroy (EV_A);
1174} 1931}
1175 1932
1176void 1933void
1177ev_default_fork (void) 1934ev_default_fork (void)
1178{ 1935{
1179#if EV_MULTIPLICITY 1936#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1937 EV_P = ev_default_loop_ptr;
1181#endif 1938#endif
1182 1939
1183 if (backend) 1940 postfork = 1; /* must be in line with ev_loop_fork */
1184 postfork = 1;
1185} 1941}
1186 1942
1187/*****************************************************************************/ 1943/*****************************************************************************/
1188 1944
1189void 1945void
1190ev_invoke (EV_P_ void *w, int revents) 1946ev_invoke (EV_P_ void *w, int revents)
1191{ 1947{
1192 EV_CB_INVOKE ((W)w, revents); 1948 EV_CB_INVOKE ((W)w, revents);
1193} 1949}
1194 1950
1195void inline_speed 1951unsigned int
1196call_pending (EV_P) 1952ev_pending_count (EV_P)
1953{
1954 int pri;
1955 unsigned int count = 0;
1956
1957 for (pri = NUMPRI; pri--; )
1958 count += pendingcnt [pri];
1959
1960 return count;
1961}
1962
1963void noinline
1964ev_invoke_pending (EV_P)
1197{ 1965{
1198 int pri; 1966 int pri;
1199 1967
1200 for (pri = NUMPRI; pri--; ) 1968 for (pri = NUMPRI; pri--; )
1201 while (pendingcnt [pri]) 1969 while (pendingcnt [pri])
1202 { 1970 {
1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1204 1972
1205 if (expect_true (p->w))
1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1973 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1974 /* ^ this is no longer true, as pending_w could be here */
1208 1975
1209 p->w->pending = 0; 1976 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1977 EV_CB_INVOKE (p->w, p->events);
1211 } 1978 EV_FREQUENT_CHECK;
1212 } 1979 }
1213} 1980}
1214 1981
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = (ev_timer *)timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap (timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = (ev_periodic *)periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap (periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap (periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = (ev_periodic *)periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap (periodics, periodiccnt, i);
1292}
1293#endif
1294
1295#if EV_IDLE_ENABLE 1982#if EV_IDLE_ENABLE
1296void inline_size 1983/* make idle watchers pending. this handles the "call-idle */
1984/* only when higher priorities are idle" logic */
1985inline_size void
1297idle_reify (EV_P) 1986idle_reify (EV_P)
1298{ 1987{
1299 if (expect_false (idleall)) 1988 if (expect_false (idleall))
1300 { 1989 {
1301 int pri; 1990 int pri;
1313 } 2002 }
1314 } 2003 }
1315} 2004}
1316#endif 2005#endif
1317 2006
1318void inline_speed 2007/* make timers pending */
2008inline_size void
2009timers_reify (EV_P)
2010{
2011 EV_FREQUENT_CHECK;
2012
2013 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2014 {
2015 do
2016 {
2017 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2018
2019 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2020
2021 /* first reschedule or stop timer */
2022 if (w->repeat)
2023 {
2024 ev_at (w) += w->repeat;
2025 if (ev_at (w) < mn_now)
2026 ev_at (w) = mn_now;
2027
2028 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2029
2030 ANHE_at_cache (timers [HEAP0]);
2031 downheap (timers, timercnt, HEAP0);
2032 }
2033 else
2034 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2035
2036 EV_FREQUENT_CHECK;
2037 feed_reverse (EV_A_ (W)w);
2038 }
2039 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2040
2041 feed_reverse_done (EV_A_ EV_TIMEOUT);
2042 }
2043}
2044
2045#if EV_PERIODIC_ENABLE
2046/* make periodics pending */
2047inline_size void
2048periodics_reify (EV_P)
2049{
2050 EV_FREQUENT_CHECK;
2051
2052 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2053 {
2054 int feed_count = 0;
2055
2056 do
2057 {
2058 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2059
2060 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2061
2062 /* first reschedule or stop timer */
2063 if (w->reschedule_cb)
2064 {
2065 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2066
2067 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2068
2069 ANHE_at_cache (periodics [HEAP0]);
2070 downheap (periodics, periodiccnt, HEAP0);
2071 }
2072 else if (w->interval)
2073 {
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075 /* if next trigger time is not sufficiently in the future, put it there */
2076 /* this might happen because of floating point inexactness */
2077 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2078 {
2079 ev_at (w) += w->interval;
2080
2081 /* if interval is unreasonably low we might still have a time in the past */
2082 /* so correct this. this will make the periodic very inexact, but the user */
2083 /* has effectively asked to get triggered more often than possible */
2084 if (ev_at (w) < ev_rt_now)
2085 ev_at (w) = ev_rt_now;
2086 }
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else
2092 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2093
2094 EV_FREQUENT_CHECK;
2095 feed_reverse (EV_A_ (W)w);
2096 }
2097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2098
2099 feed_reverse_done (EV_A_ EV_PERIODIC);
2100 }
2101}
2102
2103/* simply recalculate all periodics */
2104/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2105static void noinline
2106periodics_reschedule (EV_P)
2107{
2108 int i;
2109
2110 /* adjust periodics after time jump */
2111 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2112 {
2113 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2114
2115 if (w->reschedule_cb)
2116 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2117 else if (w->interval)
2118 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2119
2120 ANHE_at_cache (periodics [i]);
2121 }
2122
2123 reheap (periodics, periodiccnt);
2124}
2125#endif
2126
2127/* adjust all timers by a given offset */
2128static void noinline
2129timers_reschedule (EV_P_ ev_tstamp adjust)
2130{
2131 int i;
2132
2133 for (i = 0; i < timercnt; ++i)
2134 {
2135 ANHE *he = timers + i + HEAP0;
2136 ANHE_w (*he)->at += adjust;
2137 ANHE_at_cache (*he);
2138 }
2139}
2140
2141/* fetch new monotonic and realtime times from the kernel */
2142/* also detetc if there was a timejump, and act accordingly */
2143inline_speed void
1319time_update (EV_P_ ev_tstamp max_block) 2144time_update (EV_P_ ev_tstamp max_block)
1320{ 2145{
1321 int i;
1322
1323#if EV_USE_MONOTONIC 2146#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic)) 2147 if (expect_true (have_monotonic))
1325 { 2148 {
2149 int i;
1326 ev_tstamp odiff = rtmn_diff; 2150 ev_tstamp odiff = rtmn_diff;
1327 2151
1328 mn_now = get_clock (); 2152 mn_now = get_clock ();
1329 2153
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2154 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1348 */ 2172 */
1349 for (i = 4; --i; ) 2173 for (i = 4; --i; )
1350 { 2174 {
1351 rtmn_diff = ev_rt_now - mn_now; 2175 rtmn_diff = ev_rt_now - mn_now;
1352 2176
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2177 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 2178 return; /* all is well */
1355 2179
1356 ev_rt_now = ev_time (); 2180 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 2181 mn_now = get_clock ();
1358 now_floor = mn_now; 2182 now_floor = mn_now;
1359 } 2183 }
1360 2184
2185 /* no timer adjustment, as the monotonic clock doesn't jump */
2186 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1361# if EV_PERIODIC_ENABLE 2187# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2188 periodics_reschedule (EV_A);
1363# endif 2189# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 } 2190 }
1367 else 2191 else
1368#endif 2192#endif
1369 { 2193 {
1370 ev_rt_now = ev_time (); 2194 ev_rt_now = ev_time ();
1371 2195
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2196 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 { 2197 {
2198 /* adjust timers. this is easy, as the offset is the same for all of them */
2199 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1374#if EV_PERIODIC_ENABLE 2200#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 2201 periodics_reschedule (EV_A);
1376#endif 2202#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2203 }
1381 2204
1382 mn_now = ev_rt_now; 2205 mn_now = ev_rt_now;
1383 } 2206 }
1384} 2207}
1385 2208
1386void 2209void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2210ev_loop (EV_P_ int flags)
1402{ 2211{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2212#if EV_MINIMAL < 2
1404 ? EVUNLOOP_ONE 2213 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2214#endif
1406 2215
2216 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2217
2218 loop_done = EVUNLOOP_CANCEL;
2219
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2220 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2221
1409 do 2222 do
1410 { 2223 {
2224#if EV_VERIFY >= 2
2225 ev_loop_verify (EV_A);
2226#endif
2227
1411#ifndef _WIN32 2228#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2229 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2230 if (expect_false (getpid () != curpid))
1414 { 2231 {
1415 curpid = getpid (); 2232 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2238 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2239 if (expect_false (postfork))
1423 if (forkcnt) 2240 if (forkcnt)
1424 { 2241 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2242 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2243 EV_INVOKE_PENDING;
1427 } 2244 }
1428#endif 2245#endif
1429 2246
1430 /* queue prepare watchers (and execute them) */ 2247 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2248 if (expect_false (preparecnt))
1432 { 2249 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2251 EV_INVOKE_PENDING;
1435 } 2252 }
1436 2253
1437 if (expect_false (!activecnt)) 2254 if (expect_false (loop_done))
1438 break; 2255 break;
1439 2256
1440 /* we might have forked, so reify kernel state if necessary */ 2257 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1442 loop_fork (EV_A); 2259 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2261 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2262 fd_reify (EV_A);
1446 2263
1447 /* calculate blocking time */ 2264 /* calculate blocking time */
1448 { 2265 {
1449 ev_tstamp block; 2266 ev_tstamp waittime = 0.;
2267 ev_tstamp sleeptime = 0.;
1450 2268
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2269 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2270 {
2271 /* remember old timestamp for io_blocktime calculation */
2272 ev_tstamp prev_mn_now = mn_now;
2273
1455 /* update time to cancel out callback processing overhead */ 2274 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 2275 time_update (EV_A_ 1e100);
1457 2276
1458 block = MAX_BLOCKTIME; 2277 waittime = MAX_BLOCKTIME;
1459 2278
1460 if (timercnt) 2279 if (timercnt)
1461 { 2280 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2281 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 2282 if (waittime > to) waittime = to;
1464 } 2283 }
1465 2284
1466#if EV_PERIODIC_ENABLE 2285#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 2286 if (periodiccnt)
1468 { 2287 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2288 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 2289 if (waittime > to) waittime = to;
1471 } 2290 }
1472#endif 2291#endif
1473 2292
2293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2294 if (expect_false (waittime < timeout_blocktime))
2295 waittime = timeout_blocktime;
2296
2297 /* extra check because io_blocktime is commonly 0 */
1474 if (expect_false (block < 0.)) block = 0.; 2298 if (expect_false (io_blocktime))
2299 {
2300 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2301
2302 if (sleeptime > waittime - backend_fudge)
2303 sleeptime = waittime - backend_fudge;
2304
2305 if (expect_true (sleeptime > 0.))
2306 {
2307 ev_sleep (sleeptime);
2308 waittime -= sleeptime;
2309 }
2310 }
1475 } 2311 }
1476 2312
2313#if EV_MINIMAL < 2
1477 ++loop_count; 2314 ++loop_count;
2315#endif
2316 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1478 backend_poll (EV_A_ block); 2317 backend_poll (EV_A_ waittime);
2318 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1479 2319
1480 /* update ev_rt_now, do magic */ 2320 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2321 time_update (EV_A_ waittime + sleeptime);
1482 } 2322 }
1483 2323
1484 /* queue pending timers and reschedule them */ 2324 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2325 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2326#if EV_PERIODIC_ENABLE
1494 2334
1495 /* queue check watchers, to be executed first */ 2335 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2336 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2337 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2338
1499 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1500
1501 } 2340 }
1502 while (expect_true (activecnt && !loop_done)); 2341 while (expect_true (
2342 activecnt
2343 && !loop_done
2344 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2345 ));
1503 2346
1504 if (loop_done == EVUNLOOP_ONE) 2347 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2348 loop_done = EVUNLOOP_CANCEL;
2349
2350#if EV_MINIMAL < 2
2351 --loop_depth;
2352#endif
1506} 2353}
1507 2354
1508void 2355void
1509ev_unloop (EV_P_ int how) 2356ev_unloop (EV_P_ int how)
1510{ 2357{
1511 loop_done = how; 2358 loop_done = how;
1512} 2359}
1513 2360
2361void
2362ev_ref (EV_P)
2363{
2364 ++activecnt;
2365}
2366
2367void
2368ev_unref (EV_P)
2369{
2370 --activecnt;
2371}
2372
2373void
2374ev_now_update (EV_P)
2375{
2376 time_update (EV_A_ 1e100);
2377}
2378
2379void
2380ev_suspend (EV_P)
2381{
2382 ev_now_update (EV_A);
2383}
2384
2385void
2386ev_resume (EV_P)
2387{
2388 ev_tstamp mn_prev = mn_now;
2389
2390 ev_now_update (EV_A);
2391 timers_reschedule (EV_A_ mn_now - mn_prev);
2392#if EV_PERIODIC_ENABLE
2393 /* TODO: really do this? */
2394 periodics_reschedule (EV_A);
2395#endif
2396}
2397
1514/*****************************************************************************/ 2398/*****************************************************************************/
2399/* singly-linked list management, used when the expected list length is short */
1515 2400
1516void inline_size 2401inline_size void
1517wlist_add (WL *head, WL elem) 2402wlist_add (WL *head, WL elem)
1518{ 2403{
1519 elem->next = *head; 2404 elem->next = *head;
1520 *head = elem; 2405 *head = elem;
1521} 2406}
1522 2407
1523void inline_size 2408inline_size void
1524wlist_del (WL *head, WL elem) 2409wlist_del (WL *head, WL elem)
1525{ 2410{
1526 while (*head) 2411 while (*head)
1527 { 2412 {
1528 if (*head == elem) 2413 if (expect_true (*head == elem))
1529 { 2414 {
1530 *head = elem->next; 2415 *head = elem->next;
1531 return; 2416 break;
1532 } 2417 }
1533 2418
1534 head = &(*head)->next; 2419 head = &(*head)->next;
1535 } 2420 }
1536} 2421}
1537 2422
1538void inline_speed 2423/* internal, faster, version of ev_clear_pending */
2424inline_speed void
1539clear_pending (EV_P_ W w) 2425clear_pending (EV_P_ W w)
1540{ 2426{
1541 if (w->pending) 2427 if (w->pending)
1542 { 2428 {
1543 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2429 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1544 w->pending = 0; 2430 w->pending = 0;
1545 } 2431 }
1546} 2432}
1547 2433
1548int 2434int
1552 int pending = w_->pending; 2438 int pending = w_->pending;
1553 2439
1554 if (expect_true (pending)) 2440 if (expect_true (pending))
1555 { 2441 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2442 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2443 p->w = (W)&pending_w;
1557 w_->pending = 0; 2444 w_->pending = 0;
1558 p->w = 0;
1559 return p->events; 2445 return p->events;
1560 } 2446 }
1561 else 2447 else
1562 return 0; 2448 return 0;
1563} 2449}
1564 2450
1565void inline_size 2451inline_size void
1566pri_adjust (EV_P_ W w) 2452pri_adjust (EV_P_ W w)
1567{ 2453{
1568 int pri = w->priority; 2454 int pri = ev_priority (w);
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2455 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2456 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri; 2457 ev_set_priority (w, pri);
1572} 2458}
1573 2459
1574void inline_speed 2460inline_speed void
1575ev_start (EV_P_ W w, int active) 2461ev_start (EV_P_ W w, int active)
1576{ 2462{
1577 pri_adjust (EV_A_ w); 2463 pri_adjust (EV_A_ w);
1578 w->active = active; 2464 w->active = active;
1579 ev_ref (EV_A); 2465 ev_ref (EV_A);
1580} 2466}
1581 2467
1582void inline_size 2468inline_size void
1583ev_stop (EV_P_ W w) 2469ev_stop (EV_P_ W w)
1584{ 2470{
1585 ev_unref (EV_A); 2471 ev_unref (EV_A);
1586 w->active = 0; 2472 w->active = 0;
1587} 2473}
1594 int fd = w->fd; 2480 int fd = w->fd;
1595 2481
1596 if (expect_false (ev_is_active (w))) 2482 if (expect_false (ev_is_active (w)))
1597 return; 2483 return;
1598 2484
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2485 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2486 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2487
2488 EV_FREQUENT_CHECK;
1600 2489
1601 ev_start (EV_A_ (W)w, 1); 2490 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2491 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add (&anfds[fd].head, (WL)w); 2492 wlist_add (&anfds[fd].head, (WL)w);
1604 2493
1605 fd_change (EV_A_ fd, w->events & EV_IOFDSET); 2494 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1606 w->events &= ~ EV_IOFDSET; 2495 w->events &= ~EV__IOFDSET;
2496
2497 EV_FREQUENT_CHECK;
1607} 2498}
1608 2499
1609void noinline 2500void noinline
1610ev_io_stop (EV_P_ ev_io *w) 2501ev_io_stop (EV_P_ ev_io *w)
1611{ 2502{
1612 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
1613 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
1614 return; 2505 return;
1615 2506
1616 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2507 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2508
2509 EV_FREQUENT_CHECK;
1617 2510
1618 wlist_del (&anfds[w->fd].head, (WL)w); 2511 wlist_del (&anfds[w->fd].head, (WL)w);
1619 ev_stop (EV_A_ (W)w); 2512 ev_stop (EV_A_ (W)w);
1620 2513
1621 fd_change (EV_A_ w->fd, 0); 2514 fd_change (EV_A_ w->fd, 1);
2515
2516 EV_FREQUENT_CHECK;
1622} 2517}
1623 2518
1624void noinline 2519void noinline
1625ev_timer_start (EV_P_ ev_timer *w) 2520ev_timer_start (EV_P_ ev_timer *w)
1626{ 2521{
1627 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
1628 return; 2523 return;
1629 2524
1630 ((WT)w)->at += mn_now; 2525 ev_at (w) += mn_now;
1631 2526
1632 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2527 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1633 2528
2529 EV_FREQUENT_CHECK;
2530
2531 ++timercnt;
1634 ev_start (EV_A_ (W)w, ++timercnt); 2532 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1635 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2533 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1636 timers [timercnt - 1] = (WT)w; 2534 ANHE_w (timers [ev_active (w)]) = (WT)w;
1637 upheap (timers, timercnt - 1); 2535 ANHE_at_cache (timers [ev_active (w)]);
2536 upheap (timers, ev_active (w));
1638 2537
2538 EV_FREQUENT_CHECK;
2539
1639 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2540 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1640} 2541}
1641 2542
1642void noinline 2543void noinline
1643ev_timer_stop (EV_P_ ev_timer *w) 2544ev_timer_stop (EV_P_ ev_timer *w)
1644{ 2545{
1645 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
1646 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
1647 return; 2548 return;
1648 2549
1649 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2550 EV_FREQUENT_CHECK;
1650 2551
1651 { 2552 {
1652 int active = ((W)w)->active; 2553 int active = ev_active (w);
1653 2554
2555 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2556
2557 --timercnt;
2558
1654 if (expect_true (--active < --timercnt)) 2559 if (expect_true (active < timercnt + HEAP0))
1655 { 2560 {
1656 timers [active] = timers [timercnt]; 2561 timers [active] = timers [timercnt + HEAP0];
1657 adjustheap (timers, timercnt, active); 2562 adjustheap (timers, timercnt, active);
1658 } 2563 }
1659 } 2564 }
1660 2565
1661 ((WT)w)->at -= mn_now; 2566 EV_FREQUENT_CHECK;
2567
2568 ev_at (w) -= mn_now;
1662 2569
1663 ev_stop (EV_A_ (W)w); 2570 ev_stop (EV_A_ (W)w);
1664} 2571}
1665 2572
1666void noinline 2573void noinline
1667ev_timer_again (EV_P_ ev_timer *w) 2574ev_timer_again (EV_P_ ev_timer *w)
1668{ 2575{
2576 EV_FREQUENT_CHECK;
2577
1669 if (ev_is_active (w)) 2578 if (ev_is_active (w))
1670 { 2579 {
1671 if (w->repeat) 2580 if (w->repeat)
1672 { 2581 {
1673 ((WT)w)->at = mn_now + w->repeat; 2582 ev_at (w) = mn_now + w->repeat;
2583 ANHE_at_cache (timers [ev_active (w)]);
1674 adjustheap (timers, timercnt, ((W)w)->active - 1); 2584 adjustheap (timers, timercnt, ev_active (w));
1675 } 2585 }
1676 else 2586 else
1677 ev_timer_stop (EV_A_ w); 2587 ev_timer_stop (EV_A_ w);
1678 } 2588 }
1679 else if (w->repeat) 2589 else if (w->repeat)
1680 { 2590 {
1681 w->at = w->repeat; 2591 ev_at (w) = w->repeat;
1682 ev_timer_start (EV_A_ w); 2592 ev_timer_start (EV_A_ w);
1683 } 2593 }
2594
2595 EV_FREQUENT_CHECK;
2596}
2597
2598ev_tstamp
2599ev_timer_remaining (EV_P_ ev_timer *w)
2600{
2601 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1684} 2602}
1685 2603
1686#if EV_PERIODIC_ENABLE 2604#if EV_PERIODIC_ENABLE
1687void noinline 2605void noinline
1688ev_periodic_start (EV_P_ ev_periodic *w) 2606ev_periodic_start (EV_P_ ev_periodic *w)
1689{ 2607{
1690 if (expect_false (ev_is_active (w))) 2608 if (expect_false (ev_is_active (w)))
1691 return; 2609 return;
1692 2610
1693 if (w->reschedule_cb) 2611 if (w->reschedule_cb)
1694 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2612 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1695 else if (w->interval) 2613 else if (w->interval)
1696 { 2614 {
1697 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2615 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1698 /* this formula differs from the one in periodic_reify because we do not always round up */ 2616 /* this formula differs from the one in periodic_reify because we do not always round up */
1699 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1700 } 2618 }
1701 else 2619 else
1702 ((WT)w)->at = w->offset; 2620 ev_at (w) = w->offset;
1703 2621
2622 EV_FREQUENT_CHECK;
2623
2624 ++periodiccnt;
1704 ev_start (EV_A_ (W)w, ++periodiccnt); 2625 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1705 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2626 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1706 periodics [periodiccnt - 1] = (WT)w; 2627 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1707 upheap (periodics, periodiccnt - 1); 2628 ANHE_at_cache (periodics [ev_active (w)]);
2629 upheap (periodics, ev_active (w));
1708 2630
2631 EV_FREQUENT_CHECK;
2632
1709 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2633 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1710} 2634}
1711 2635
1712void noinline 2636void noinline
1713ev_periodic_stop (EV_P_ ev_periodic *w) 2637ev_periodic_stop (EV_P_ ev_periodic *w)
1714{ 2638{
1715 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1716 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
1717 return; 2641 return;
1718 2642
1719 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2643 EV_FREQUENT_CHECK;
1720 2644
1721 { 2645 {
1722 int active = ((W)w)->active; 2646 int active = ev_active (w);
1723 2647
2648 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2649
2650 --periodiccnt;
2651
1724 if (expect_true (--active < --periodiccnt)) 2652 if (expect_true (active < periodiccnt + HEAP0))
1725 { 2653 {
1726 periodics [active] = periodics [periodiccnt]; 2654 periodics [active] = periodics [periodiccnt + HEAP0];
1727 adjustheap (periodics, periodiccnt, active); 2655 adjustheap (periodics, periodiccnt, active);
1728 } 2656 }
1729 } 2657 }
1730 2658
2659 EV_FREQUENT_CHECK;
2660
1731 ev_stop (EV_A_ (W)w); 2661 ev_stop (EV_A_ (W)w);
1732} 2662}
1733 2663
1734void noinline 2664void noinline
1735ev_periodic_again (EV_P_ ev_periodic *w) 2665ev_periodic_again (EV_P_ ev_periodic *w)
1745#endif 2675#endif
1746 2676
1747void noinline 2677void noinline
1748ev_signal_start (EV_P_ ev_signal *w) 2678ev_signal_start (EV_P_ ev_signal *w)
1749{ 2679{
1750#if EV_MULTIPLICITY
1751 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1752#endif
1753 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
1754 return; 2681 return;
1755 2682
1756 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2683 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1757 2684
2685#if EV_MULTIPLICITY
2686 assert (("libev: a signal must not be attached to two different loops",
2687 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2688
2689 signals [w->signum - 1].loop = EV_A;
2690#endif
2691
2692 EV_FREQUENT_CHECK;
2693
2694#if EV_USE_SIGNALFD
2695 if (sigfd == -2)
1758 { 2696 {
1759#ifndef _WIN32 2697 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1760 sigset_t full, prev; 2698 if (sigfd < 0 && errno == EINVAL)
1761 sigfillset (&full); 2699 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1762 sigprocmask (SIG_SETMASK, &full, &prev);
1763#endif
1764 2700
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2701 if (sigfd >= 0)
2702 {
2703 fd_intern (sigfd); /* doing it twice will not hurt */
1766 2704
1767#ifndef _WIN32 2705 sigemptyset (&sigfd_set);
1768 sigprocmask (SIG_SETMASK, &prev, 0); 2706
1769#endif 2707 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2708 ev_set_priority (&sigfd_w, EV_MAXPRI);
2709 ev_io_start (EV_A_ &sigfd_w);
2710 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2711 }
1770 } 2712 }
2713
2714 if (sigfd >= 0)
2715 {
2716 /* TODO: check .head */
2717 sigaddset (&sigfd_set, w->signum);
2718 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2719
2720 signalfd (sigfd, &sigfd_set, 0);
2721 }
2722#endif
1771 2723
1772 ev_start (EV_A_ (W)w, 1); 2724 ev_start (EV_A_ (W)w, 1);
1773 wlist_add (&signals [w->signum - 1].head, (WL)w); 2725 wlist_add (&signals [w->signum - 1].head, (WL)w);
1774 2726
1775 if (!((WL)w)->next) 2727 if (!((WL)w)->next)
2728# if EV_USE_SIGNALFD
2729 if (sigfd < 0) /*TODO*/
2730# endif
1776 { 2731 {
1777#if _WIN32 2732# if _WIN32
1778 signal (w->signum, sighandler); 2733 signal (w->signum, ev_sighandler);
1779#else 2734# else
1780 struct sigaction sa; 2735 struct sigaction sa;
2736
2737 evpipe_init (EV_A);
2738
1781 sa.sa_handler = sighandler; 2739 sa.sa_handler = ev_sighandler;
1782 sigfillset (&sa.sa_mask); 2740 sigfillset (&sa.sa_mask);
1783 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2741 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1784 sigaction (w->signum, &sa, 0); 2742 sigaction (w->signum, &sa, 0);
2743
2744 sigemptyset (&sa.sa_mask);
2745 sigaddset (&sa.sa_mask, w->signum);
2746 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1785#endif 2747#endif
1786 } 2748 }
2749
2750 EV_FREQUENT_CHECK;
1787} 2751}
1788 2752
1789void noinline 2753void noinline
1790ev_signal_stop (EV_P_ ev_signal *w) 2754ev_signal_stop (EV_P_ ev_signal *w)
1791{ 2755{
1792 clear_pending (EV_A_ (W)w); 2756 clear_pending (EV_A_ (W)w);
1793 if (expect_false (!ev_is_active (w))) 2757 if (expect_false (!ev_is_active (w)))
1794 return; 2758 return;
1795 2759
2760 EV_FREQUENT_CHECK;
2761
1796 wlist_del (&signals [w->signum - 1].head, (WL)w); 2762 wlist_del (&signals [w->signum - 1].head, (WL)w);
1797 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
1798 2764
1799 if (!signals [w->signum - 1].head) 2765 if (!signals [w->signum - 1].head)
2766 {
2767#if EV_MULTIPLICITY
2768 signals [w->signum - 1].loop = 0; /* unattach from signal */
2769#endif
2770#if EV_USE_SIGNALFD
2771 if (sigfd >= 0)
2772 {
2773 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2774 sigdelset (&sigfd_set, w->signum);
2775 signalfd (sigfd, &sigfd_set, 0);
2776 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2777 /*TODO: maybe unblock signal? */
2778 }
2779 else
2780#endif
1800 signal (w->signum, SIG_DFL); 2781 signal (w->signum, SIG_DFL);
2782 }
2783
2784 EV_FREQUENT_CHECK;
1801} 2785}
1802 2786
1803void 2787void
1804ev_child_start (EV_P_ ev_child *w) 2788ev_child_start (EV_P_ ev_child *w)
1805{ 2789{
1806#if EV_MULTIPLICITY 2790#if EV_MULTIPLICITY
1807 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2791 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1808#endif 2792#endif
1809 if (expect_false (ev_is_active (w))) 2793 if (expect_false (ev_is_active (w)))
1810 return; 2794 return;
1811 2795
2796 EV_FREQUENT_CHECK;
2797
1812 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
1813 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2799 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2800
2801 EV_FREQUENT_CHECK;
1814} 2802}
1815 2803
1816void 2804void
1817ev_child_stop (EV_P_ ev_child *w) 2805ev_child_stop (EV_P_ ev_child *w)
1818{ 2806{
1819 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
1820 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
1821 return; 2809 return;
1822 2810
2811 EV_FREQUENT_CHECK;
2812
1823 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2813 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1824 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
1825} 2817}
1826 2818
1827#if EV_STAT_ENABLE 2819#if EV_STAT_ENABLE
1828 2820
1829# ifdef _WIN32 2821# ifdef _WIN32
1830# undef lstat 2822# undef lstat
1831# define lstat(a,b) _stati64 (a,b) 2823# define lstat(a,b) _stati64 (a,b)
1832# endif 2824# endif
1833 2825
1834#define DEF_STAT_INTERVAL 5.0074891 2826#define DEF_STAT_INTERVAL 5.0074891
2827#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1835#define MIN_STAT_INTERVAL 0.1074891 2828#define MIN_STAT_INTERVAL 0.1074891
1836 2829
1837static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1838 2831
1839#if EV_USE_INOTIFY 2832#if EV_USE_INOTIFY
1840# define EV_INOTIFY_BUFSIZE 8192 2833# define EV_INOTIFY_BUFSIZE 8192
1844{ 2837{
1845 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1846 2839
1847 if (w->wd < 0) 2840 if (w->wd < 0)
1848 { 2841 {
2842 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1849 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2843 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1850 2844
1851 /* monitor some parent directory for speedup hints */ 2845 /* monitor some parent directory for speedup hints */
2846 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2847 /* but an efficiency issue only */
1852 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2848 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1853 { 2849 {
1854 char path [4096]; 2850 char path [4096];
1855 strcpy (path, w->path); 2851 strcpy (path, w->path);
1856 2852
1859 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2855 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1860 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2856 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1861 2857
1862 char *pend = strrchr (path, '/'); 2858 char *pend = strrchr (path, '/');
1863 2859
1864 if (!pend) 2860 if (!pend || pend == path)
1865 break; /* whoops, no '/', complain to your admin */ 2861 break;
1866 2862
1867 *pend = 0; 2863 *pend = 0;
1868 w->wd = inotify_add_watch (fs_fd, path, mask); 2864 w->wd = inotify_add_watch (fs_fd, path, mask);
1869 } 2865 }
1870 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2866 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1871 } 2867 }
1872 } 2868 }
1873 else
1874 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1875 2869
1876 if (w->wd >= 0) 2870 if (w->wd >= 0)
2871 {
2872 struct statfs sfs;
2873
1877 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2874 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2875
2876 /* now local changes will be tracked by inotify, but remote changes won't */
2877 /* unless the filesystem it known to be local, we therefore still poll */
2878 /* also do poll on <2.6.25, but with normal frequency */
2879
2880 if (fs_2625 && !statfs (w->path, &sfs))
2881 if (sfs.f_type == 0x1373 /* devfs */
2882 || sfs.f_type == 0xEF53 /* ext2/3 */
2883 || sfs.f_type == 0x3153464a /* jfs */
2884 || sfs.f_type == 0x52654973 /* reiser3 */
2885 || sfs.f_type == 0x01021994 /* tempfs */
2886 || sfs.f_type == 0x58465342 /* xfs */)
2887 return;
2888
2889 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2890 ev_timer_again (EV_A_ &w->timer);
2891 }
1878} 2892}
1879 2893
1880static void noinline 2894static void noinline
1881infy_del (EV_P_ ev_stat *w) 2895infy_del (EV_P_ ev_stat *w)
1882{ 2896{
1896 2910
1897static void noinline 2911static void noinline
1898infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2912infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1899{ 2913{
1900 if (slot < 0) 2914 if (slot < 0)
1901 /* overflow, need to check for all hahs slots */ 2915 /* overflow, need to check for all hash slots */
1902 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2916 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1903 infy_wd (EV_A_ slot, wd, ev); 2917 infy_wd (EV_A_ slot, wd, ev);
1904 else 2918 else
1905 { 2919 {
1906 WL w_; 2920 WL w_;
1912 2926
1913 if (w->wd == wd || wd == -1) 2927 if (w->wd == wd || wd == -1)
1914 { 2928 {
1915 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2929 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1916 { 2930 {
2931 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1917 w->wd = -1; 2932 w->wd = -1;
1918 infy_add (EV_A_ w); /* re-add, no matter what */ 2933 infy_add (EV_A_ w); /* re-add, no matter what */
1919 } 2934 }
1920 2935
1921 stat_timer_cb (EV_A_ &w->timer, 0); 2936 stat_timer_cb (EV_A_ &w->timer, 0);
1934 2949
1935 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2950 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1936 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2951 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1937} 2952}
1938 2953
1939void inline_size 2954inline_size void
2955check_2625 (EV_P)
2956{
2957 /* kernels < 2.6.25 are borked
2958 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2959 */
2960 struct utsname buf;
2961 int major, minor, micro;
2962
2963 if (uname (&buf))
2964 return;
2965
2966 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2967 return;
2968
2969 if (major < 2
2970 || (major == 2 && minor < 6)
2971 || (major == 2 && minor == 6 && micro < 25))
2972 return;
2973
2974 fs_2625 = 1;
2975}
2976
2977inline_size void
1940infy_init (EV_P) 2978infy_init (EV_P)
1941{ 2979{
1942 if (fs_fd != -2) 2980 if (fs_fd != -2)
1943 return; 2981 return;
2982
2983 fs_fd = -1;
2984
2985 check_2625 (EV_A);
1944 2986
1945 fs_fd = inotify_init (); 2987 fs_fd = inotify_init ();
1946 2988
1947 if (fs_fd >= 0) 2989 if (fs_fd >= 0)
1948 { 2990 {
1950 ev_set_priority (&fs_w, EV_MAXPRI); 2992 ev_set_priority (&fs_w, EV_MAXPRI);
1951 ev_io_start (EV_A_ &fs_w); 2993 ev_io_start (EV_A_ &fs_w);
1952 } 2994 }
1953} 2995}
1954 2996
1955void inline_size 2997inline_size void
1956infy_fork (EV_P) 2998infy_fork (EV_P)
1957{ 2999{
1958 int slot; 3000 int slot;
1959 3001
1960 if (fs_fd < 0) 3002 if (fs_fd < 0)
1976 w->wd = -1; 3018 w->wd = -1;
1977 3019
1978 if (fs_fd >= 0) 3020 if (fs_fd >= 0)
1979 infy_add (EV_A_ w); /* re-add, no matter what */ 3021 infy_add (EV_A_ w); /* re-add, no matter what */
1980 else 3022 else
1981 ev_timer_start (EV_A_ &w->timer); 3023 ev_timer_again (EV_A_ &w->timer);
1982 } 3024 }
1983
1984 } 3025 }
1985} 3026}
1986 3027
3028#endif
3029
3030#ifdef _WIN32
3031# define EV_LSTAT(p,b) _stati64 (p, b)
3032#else
3033# define EV_LSTAT(p,b) lstat (p, b)
1987#endif 3034#endif
1988 3035
1989void 3036void
1990ev_stat_stat (EV_P_ ev_stat *w) 3037ev_stat_stat (EV_P_ ev_stat *w)
1991{ 3038{
2018 || w->prev.st_atime != w->attr.st_atime 3065 || w->prev.st_atime != w->attr.st_atime
2019 || w->prev.st_mtime != w->attr.st_mtime 3066 || w->prev.st_mtime != w->attr.st_mtime
2020 || w->prev.st_ctime != w->attr.st_ctime 3067 || w->prev.st_ctime != w->attr.st_ctime
2021 ) { 3068 ) {
2022 #if EV_USE_INOTIFY 3069 #if EV_USE_INOTIFY
3070 if (fs_fd >= 0)
3071 {
2023 infy_del (EV_A_ w); 3072 infy_del (EV_A_ w);
2024 infy_add (EV_A_ w); 3073 infy_add (EV_A_ w);
2025 ev_stat_stat (EV_A_ w); /* avoid race... */ 3074 ev_stat_stat (EV_A_ w); /* avoid race... */
3075 }
2026 #endif 3076 #endif
2027 3077
2028 ev_feed_event (EV_A_ w, EV_STAT); 3078 ev_feed_event (EV_A_ w, EV_STAT);
2029 } 3079 }
2030} 3080}
2033ev_stat_start (EV_P_ ev_stat *w) 3083ev_stat_start (EV_P_ ev_stat *w)
2034{ 3084{
2035 if (expect_false (ev_is_active (w))) 3085 if (expect_false (ev_is_active (w)))
2036 return; 3086 return;
2037 3087
2038 /* since we use memcmp, we need to clear any padding data etc. */
2039 memset (&w->prev, 0, sizeof (ev_statdata));
2040 memset (&w->attr, 0, sizeof (ev_statdata));
2041
2042 ev_stat_stat (EV_A_ w); 3088 ev_stat_stat (EV_A_ w);
2043 3089
3090 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2044 if (w->interval < MIN_STAT_INTERVAL) 3091 w->interval = MIN_STAT_INTERVAL;
2045 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2046 3092
2047 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3093 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2048 ev_set_priority (&w->timer, ev_priority (w)); 3094 ev_set_priority (&w->timer, ev_priority (w));
2049 3095
2050#if EV_USE_INOTIFY 3096#if EV_USE_INOTIFY
2051 infy_init (EV_A); 3097 infy_init (EV_A);
2052 3098
2053 if (fs_fd >= 0) 3099 if (fs_fd >= 0)
2054 infy_add (EV_A_ w); 3100 infy_add (EV_A_ w);
2055 else 3101 else
2056#endif 3102#endif
2057 ev_timer_start (EV_A_ &w->timer); 3103 ev_timer_again (EV_A_ &w->timer);
2058 3104
2059 ev_start (EV_A_ (W)w, 1); 3105 ev_start (EV_A_ (W)w, 1);
3106
3107 EV_FREQUENT_CHECK;
2060} 3108}
2061 3109
2062void 3110void
2063ev_stat_stop (EV_P_ ev_stat *w) 3111ev_stat_stop (EV_P_ ev_stat *w)
2064{ 3112{
2065 clear_pending (EV_A_ (W)w); 3113 clear_pending (EV_A_ (W)w);
2066 if (expect_false (!ev_is_active (w))) 3114 if (expect_false (!ev_is_active (w)))
2067 return; 3115 return;
2068 3116
3117 EV_FREQUENT_CHECK;
3118
2069#if EV_USE_INOTIFY 3119#if EV_USE_INOTIFY
2070 infy_del (EV_A_ w); 3120 infy_del (EV_A_ w);
2071#endif 3121#endif
2072 ev_timer_stop (EV_A_ &w->timer); 3122 ev_timer_stop (EV_A_ &w->timer);
2073 3123
2074 ev_stop (EV_A_ (W)w); 3124 ev_stop (EV_A_ (W)w);
3125
3126 EV_FREQUENT_CHECK;
2075} 3127}
2076#endif 3128#endif
2077 3129
2078#if EV_IDLE_ENABLE 3130#if EV_IDLE_ENABLE
2079void 3131void
2081{ 3133{
2082 if (expect_false (ev_is_active (w))) 3134 if (expect_false (ev_is_active (w)))
2083 return; 3135 return;
2084 3136
2085 pri_adjust (EV_A_ (W)w); 3137 pri_adjust (EV_A_ (W)w);
3138
3139 EV_FREQUENT_CHECK;
2086 3140
2087 { 3141 {
2088 int active = ++idlecnt [ABSPRI (w)]; 3142 int active = ++idlecnt [ABSPRI (w)];
2089 3143
2090 ++idleall; 3144 ++idleall;
2091 ev_start (EV_A_ (W)w, active); 3145 ev_start (EV_A_ (W)w, active);
2092 3146
2093 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3147 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2094 idles [ABSPRI (w)][active - 1] = w; 3148 idles [ABSPRI (w)][active - 1] = w;
2095 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
2096} 3152}
2097 3153
2098void 3154void
2099ev_idle_stop (EV_P_ ev_idle *w) 3155ev_idle_stop (EV_P_ ev_idle *w)
2100{ 3156{
2101 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2102 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2103 return; 3159 return;
2104 3160
3161 EV_FREQUENT_CHECK;
3162
2105 { 3163 {
2106 int active = ((W)w)->active; 3164 int active = ev_active (w);
2107 3165
2108 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3166 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2109 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3167 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2110 3168
2111 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
2112 --idleall; 3170 --idleall;
2113 } 3171 }
3172
3173 EV_FREQUENT_CHECK;
2114} 3174}
2115#endif 3175#endif
2116 3176
2117void 3177void
2118ev_prepare_start (EV_P_ ev_prepare *w) 3178ev_prepare_start (EV_P_ ev_prepare *w)
2119{ 3179{
2120 if (expect_false (ev_is_active (w))) 3180 if (expect_false (ev_is_active (w)))
2121 return; 3181 return;
3182
3183 EV_FREQUENT_CHECK;
2122 3184
2123 ev_start (EV_A_ (W)w, ++preparecnt); 3185 ev_start (EV_A_ (W)w, ++preparecnt);
2124 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3186 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2125 prepares [preparecnt - 1] = w; 3187 prepares [preparecnt - 1] = w;
3188
3189 EV_FREQUENT_CHECK;
2126} 3190}
2127 3191
2128void 3192void
2129ev_prepare_stop (EV_P_ ev_prepare *w) 3193ev_prepare_stop (EV_P_ ev_prepare *w)
2130{ 3194{
2131 clear_pending (EV_A_ (W)w); 3195 clear_pending (EV_A_ (W)w);
2132 if (expect_false (!ev_is_active (w))) 3196 if (expect_false (!ev_is_active (w)))
2133 return; 3197 return;
2134 3198
3199 EV_FREQUENT_CHECK;
3200
2135 { 3201 {
2136 int active = ((W)w)->active; 3202 int active = ev_active (w);
3203
2137 prepares [active - 1] = prepares [--preparecnt]; 3204 prepares [active - 1] = prepares [--preparecnt];
2138 ((W)prepares [active - 1])->active = active; 3205 ev_active (prepares [active - 1]) = active;
2139 } 3206 }
2140 3207
2141 ev_stop (EV_A_ (W)w); 3208 ev_stop (EV_A_ (W)w);
3209
3210 EV_FREQUENT_CHECK;
2142} 3211}
2143 3212
2144void 3213void
2145ev_check_start (EV_P_ ev_check *w) 3214ev_check_start (EV_P_ ev_check *w)
2146{ 3215{
2147 if (expect_false (ev_is_active (w))) 3216 if (expect_false (ev_is_active (w)))
2148 return; 3217 return;
3218
3219 EV_FREQUENT_CHECK;
2149 3220
2150 ev_start (EV_A_ (W)w, ++checkcnt); 3221 ev_start (EV_A_ (W)w, ++checkcnt);
2151 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3222 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2152 checks [checkcnt - 1] = w; 3223 checks [checkcnt - 1] = w;
3224
3225 EV_FREQUENT_CHECK;
2153} 3226}
2154 3227
2155void 3228void
2156ev_check_stop (EV_P_ ev_check *w) 3229ev_check_stop (EV_P_ ev_check *w)
2157{ 3230{
2158 clear_pending (EV_A_ (W)w); 3231 clear_pending (EV_A_ (W)w);
2159 if (expect_false (!ev_is_active (w))) 3232 if (expect_false (!ev_is_active (w)))
2160 return; 3233 return;
2161 3234
3235 EV_FREQUENT_CHECK;
3236
2162 { 3237 {
2163 int active = ((W)w)->active; 3238 int active = ev_active (w);
3239
2164 checks [active - 1] = checks [--checkcnt]; 3240 checks [active - 1] = checks [--checkcnt];
2165 ((W)checks [active - 1])->active = active; 3241 ev_active (checks [active - 1]) = active;
2166 } 3242 }
2167 3243
2168 ev_stop (EV_A_ (W)w); 3244 ev_stop (EV_A_ (W)w);
3245
3246 EV_FREQUENT_CHECK;
2169} 3247}
2170 3248
2171#if EV_EMBED_ENABLE 3249#if EV_EMBED_ENABLE
2172void noinline 3250void noinline
2173ev_embed_sweep (EV_P_ ev_embed *w) 3251ev_embed_sweep (EV_P_ ev_embed *w)
2174{ 3252{
2175 ev_loop (w->loop, EVLOOP_NONBLOCK); 3253 ev_loop (w->other, EVLOOP_NONBLOCK);
2176} 3254}
2177 3255
2178static void 3256static void
2179embed_cb (EV_P_ ev_io *io, int revents) 3257embed_io_cb (EV_P_ ev_io *io, int revents)
2180{ 3258{
2181 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3259 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2182 3260
2183 if (ev_cb (w)) 3261 if (ev_cb (w))
2184 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3262 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2185 else 3263 else
2186 ev_embed_sweep (loop, w); 3264 ev_loop (w->other, EVLOOP_NONBLOCK);
2187} 3265}
3266
3267static void
3268embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3269{
3270 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3271
3272 {
3273 EV_P = w->other;
3274
3275 while (fdchangecnt)
3276 {
3277 fd_reify (EV_A);
3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3279 }
3280 }
3281}
3282
3283static void
3284embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3285{
3286 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3287
3288 ev_embed_stop (EV_A_ w);
3289
3290 {
3291 EV_P = w->other;
3292
3293 ev_loop_fork (EV_A);
3294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3295 }
3296
3297 ev_embed_start (EV_A_ w);
3298}
3299
3300#if 0
3301static void
3302embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3303{
3304 ev_idle_stop (EV_A_ idle);
3305}
3306#endif
2188 3307
2189void 3308void
2190ev_embed_start (EV_P_ ev_embed *w) 3309ev_embed_start (EV_P_ ev_embed *w)
2191{ 3310{
2192 if (expect_false (ev_is_active (w))) 3311 if (expect_false (ev_is_active (w)))
2193 return; 3312 return;
2194 3313
2195 { 3314 {
2196 struct ev_loop *loop = w->loop; 3315 EV_P = w->other;
2197 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3316 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2198 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3317 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2199 } 3318 }
3319
3320 EV_FREQUENT_CHECK;
2200 3321
2201 ev_set_priority (&w->io, ev_priority (w)); 3322 ev_set_priority (&w->io, ev_priority (w));
2202 ev_io_start (EV_A_ &w->io); 3323 ev_io_start (EV_A_ &w->io);
2203 3324
3325 ev_prepare_init (&w->prepare, embed_prepare_cb);
3326 ev_set_priority (&w->prepare, EV_MINPRI);
3327 ev_prepare_start (EV_A_ &w->prepare);
3328
3329 ev_fork_init (&w->fork, embed_fork_cb);
3330 ev_fork_start (EV_A_ &w->fork);
3331
3332 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3333
2204 ev_start (EV_A_ (W)w, 1); 3334 ev_start (EV_A_ (W)w, 1);
3335
3336 EV_FREQUENT_CHECK;
2205} 3337}
2206 3338
2207void 3339void
2208ev_embed_stop (EV_P_ ev_embed *w) 3340ev_embed_stop (EV_P_ ev_embed *w)
2209{ 3341{
2210 clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
2211 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
2212 return; 3344 return;
2213 3345
3346 EV_FREQUENT_CHECK;
3347
2214 ev_io_stop (EV_A_ &w->io); 3348 ev_io_stop (EV_A_ &w->io);
3349 ev_prepare_stop (EV_A_ &w->prepare);
3350 ev_fork_stop (EV_A_ &w->fork);
2215 3351
2216 ev_stop (EV_A_ (W)w); 3352 EV_FREQUENT_CHECK;
2217} 3353}
2218#endif 3354#endif
2219 3355
2220#if EV_FORK_ENABLE 3356#if EV_FORK_ENABLE
2221void 3357void
2222ev_fork_start (EV_P_ ev_fork *w) 3358ev_fork_start (EV_P_ ev_fork *w)
2223{ 3359{
2224 if (expect_false (ev_is_active (w))) 3360 if (expect_false (ev_is_active (w)))
2225 return; 3361 return;
3362
3363 EV_FREQUENT_CHECK;
2226 3364
2227 ev_start (EV_A_ (W)w, ++forkcnt); 3365 ev_start (EV_A_ (W)w, ++forkcnt);
2228 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3366 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2229 forks [forkcnt - 1] = w; 3367 forks [forkcnt - 1] = w;
3368
3369 EV_FREQUENT_CHECK;
2230} 3370}
2231 3371
2232void 3372void
2233ev_fork_stop (EV_P_ ev_fork *w) 3373ev_fork_stop (EV_P_ ev_fork *w)
2234{ 3374{
2235 clear_pending (EV_A_ (W)w); 3375 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w))) 3376 if (expect_false (!ev_is_active (w)))
2237 return; 3377 return;
2238 3378
3379 EV_FREQUENT_CHECK;
3380
2239 { 3381 {
2240 int active = ((W)w)->active; 3382 int active = ev_active (w);
3383
2241 forks [active - 1] = forks [--forkcnt]; 3384 forks [active - 1] = forks [--forkcnt];
2242 ((W)forks [active - 1])->active = active; 3385 ev_active (forks [active - 1]) = active;
2243 } 3386 }
2244 3387
2245 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
3391}
3392#endif
3393
3394#if EV_ASYNC_ENABLE
3395void
3396ev_async_start (EV_P_ ev_async *w)
3397{
3398 if (expect_false (ev_is_active (w)))
3399 return;
3400
3401 evpipe_init (EV_A);
3402
3403 EV_FREQUENT_CHECK;
3404
3405 ev_start (EV_A_ (W)w, ++asynccnt);
3406 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3407 asyncs [asynccnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
3410}
3411
3412void
3413ev_async_stop (EV_P_ ev_async *w)
3414{
3415 clear_pending (EV_A_ (W)w);
3416 if (expect_false (!ev_is_active (w)))
3417 return;
3418
3419 EV_FREQUENT_CHECK;
3420
3421 {
3422 int active = ev_active (w);
3423
3424 asyncs [active - 1] = asyncs [--asynccnt];
3425 ev_active (asyncs [active - 1]) = active;
3426 }
3427
3428 ev_stop (EV_A_ (W)w);
3429
3430 EV_FREQUENT_CHECK;
3431}
3432
3433void
3434ev_async_send (EV_P_ ev_async *w)
3435{
3436 w->sent = 1;
3437 evpipe_write (EV_A_ &async_pending);
2246} 3438}
2247#endif 3439#endif
2248 3440
2249/*****************************************************************************/ 3441/*****************************************************************************/
2250 3442
2260once_cb (EV_P_ struct ev_once *once, int revents) 3452once_cb (EV_P_ struct ev_once *once, int revents)
2261{ 3453{
2262 void (*cb)(int revents, void *arg) = once->cb; 3454 void (*cb)(int revents, void *arg) = once->cb;
2263 void *arg = once->arg; 3455 void *arg = once->arg;
2264 3456
2265 ev_io_stop (EV_A_ &once->io); 3457 ev_io_stop (EV_A_ &once->io);
2266 ev_timer_stop (EV_A_ &once->to); 3458 ev_timer_stop (EV_A_ &once->to);
2267 ev_free (once); 3459 ev_free (once);
2268 3460
2269 cb (revents, arg); 3461 cb (revents, arg);
2270} 3462}
2271 3463
2272static void 3464static void
2273once_cb_io (EV_P_ ev_io *w, int revents) 3465once_cb_io (EV_P_ ev_io *w, int revents)
2274{ 3466{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3467 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3468
3469 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2276} 3470}
2277 3471
2278static void 3472static void
2279once_cb_to (EV_P_ ev_timer *w, int revents) 3473once_cb_to (EV_P_ ev_timer *w, int revents)
2280{ 3474{
2281 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3476
3477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2282} 3478}
2283 3479
2284void 3480void
2285ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2286{ 3482{
2308 ev_timer_set (&once->to, timeout, 0.); 3504 ev_timer_set (&once->to, timeout, 0.);
2309 ev_timer_start (EV_A_ &once->to); 3505 ev_timer_start (EV_A_ &once->to);
2310 } 3506 }
2311} 3507}
2312 3508
3509/*****************************************************************************/
3510
3511#if EV_WALK_ENABLE
3512void
3513ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3514{
3515 int i, j;
3516 ev_watcher_list *wl, *wn;
3517
3518 if (types & (EV_IO | EV_EMBED))
3519 for (i = 0; i < anfdmax; ++i)
3520 for (wl = anfds [i].head; wl; )
3521 {
3522 wn = wl->next;
3523
3524#if EV_EMBED_ENABLE
3525 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3526 {
3527 if (types & EV_EMBED)
3528 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3529 }
3530 else
3531#endif
3532#if EV_USE_INOTIFY
3533 if (ev_cb ((ev_io *)wl) == infy_cb)
3534 ;
3535 else
3536#endif
3537 if ((ev_io *)wl != &pipe_w)
3538 if (types & EV_IO)
3539 cb (EV_A_ EV_IO, wl);
3540
3541 wl = wn;
3542 }
3543
3544 if (types & (EV_TIMER | EV_STAT))
3545 for (i = timercnt + HEAP0; i-- > HEAP0; )
3546#if EV_STAT_ENABLE
3547 /*TODO: timer is not always active*/
3548 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3549 {
3550 if (types & EV_STAT)
3551 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3552 }
3553 else
3554#endif
3555 if (types & EV_TIMER)
3556 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3557
3558#if EV_PERIODIC_ENABLE
3559 if (types & EV_PERIODIC)
3560 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3561 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3562#endif
3563
3564#if EV_IDLE_ENABLE
3565 if (types & EV_IDLE)
3566 for (j = NUMPRI; i--; )
3567 for (i = idlecnt [j]; i--; )
3568 cb (EV_A_ EV_IDLE, idles [j][i]);
3569#endif
3570
3571#if EV_FORK_ENABLE
3572 if (types & EV_FORK)
3573 for (i = forkcnt; i--; )
3574 if (ev_cb (forks [i]) != embed_fork_cb)
3575 cb (EV_A_ EV_FORK, forks [i]);
3576#endif
3577
3578#if EV_ASYNC_ENABLE
3579 if (types & EV_ASYNC)
3580 for (i = asynccnt; i--; )
3581 cb (EV_A_ EV_ASYNC, asyncs [i]);
3582#endif
3583
3584 if (types & EV_PREPARE)
3585 for (i = preparecnt; i--; )
3586#if EV_EMBED_ENABLE
3587 if (ev_cb (prepares [i]) != embed_prepare_cb)
3588#endif
3589 cb (EV_A_ EV_PREPARE, prepares [i]);
3590
3591 if (types & EV_CHECK)
3592 for (i = checkcnt; i--; )
3593 cb (EV_A_ EV_CHECK, checks [i]);
3594
3595 if (types & EV_SIGNAL)
3596 for (i = 0; i < EV_NSIG - 1; ++i)
3597 for (wl = signals [i].head; wl; )
3598 {
3599 wn = wl->next;
3600 cb (EV_A_ EV_SIGNAL, wl);
3601 wl = wn;
3602 }
3603
3604 if (types & EV_CHILD)
3605 for (i = EV_PID_HASHSIZE; i--; )
3606 for (wl = childs [i]; wl; )
3607 {
3608 wn = wl->next;
3609 cb (EV_A_ EV_CHILD, wl);
3610 wl = wn;
3611 }
3612/* EV_STAT 0x00001000 /* stat data changed */
3613/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3614}
3615#endif
3616
3617#if EV_MULTIPLICITY
3618 #include "ev_wrap.h"
3619#endif
3620
2313#ifdef __cplusplus 3621#ifdef __cplusplus
2314} 3622}
2315#endif 3623#endif
2316 3624

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines