ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.244 by root, Tue May 20 23:49:41 2008 UTC vs.
Revision 1.313 by root, Wed Aug 19 23:44:51 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
168#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
169# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
170#endif 232#endif
171 233
172#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 236#endif
175 237
176#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
177# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
178#endif 244#endif
179 245
180#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
182#endif 248#endif
235# else 301# else
236# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
237# endif 303# endif
238#endif 304#endif
239 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
240#ifndef EV_USE_4HEAP 324#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 325# define EV_USE_4HEAP !EV_MINIMAL
242#endif 326#endif
243 327
244#ifndef EV_HEAP_CACHE_AT 328#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
246#endif 344#endif
247 345
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 347
250#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 365# include <sys/select.h>
268# endif 366# endif
269#endif 367#endif
270 368
271#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
272# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
273#endif 378#endif
274 379
275#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 381# include <winsock.h>
277#endif 382#endif
278 383
279#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
282# ifdef __cplusplus 397# ifdef __cplusplus
283extern "C" { 398extern "C" {
284# endif 399# endif
285int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus 401# ifdef __cplusplus
287} 402}
288# endif 403# endif
289#endif 404#endif
290 405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
291/**/ 410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
292 417
293/* 418/*
294 * This is used to avoid floating point rounding problems. 419 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 420 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 421 * to ensure progress, time-wise, even when rounding
323# define inline_speed static noinline 448# define inline_speed static noinline
324#else 449#else
325# define inline_speed static inline 450# define inline_speed static inline
326#endif 451#endif
327 452
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
330 460
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 461#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 462#define EMPTY2(a,b) /* used to suppress some warnings */
333 463
334typedef ev_watcher *W; 464typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
337 467
338#define ev_active(w) ((W)(w))->active 468#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 469#define ev_at(w) ((WT)(w))->at
340 470
341#if EV_USE_MONOTONIC 471#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
480
481#ifndef EV_FD_TO_WIN32_HANDLE
482# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
483#endif
484#ifndef EV_WIN32_HANDLE_TO_FD
485# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
486#endif
487#ifndef EV_WIN32_CLOSE_FD
488# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 489#endif
346 490
347#ifdef _WIN32 491#ifdef _WIN32
348# include "ev_win32.c" 492# include "ev_win32.c"
349#endif 493#endif
357{ 501{
358 syserr_cb = cb; 502 syserr_cb = cb;
359} 503}
360 504
361static void noinline 505static void noinline
362syserr (const char *msg) 506ev_syserr (const char *msg)
363{ 507{
364 if (!msg) 508 if (!msg)
365 msg = "(libev) system error"; 509 msg = "(libev) system error";
366 510
367 if (syserr_cb) 511 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 557#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 558#define ev_free(ptr) ev_realloc ((ptr), 0)
415 559
416/*****************************************************************************/ 560/*****************************************************************************/
417 561
562/* set in reify when reification needed */
563#define EV_ANFD_REIFY 1
564
565/* file descriptor info structure */
418typedef struct 566typedef struct
419{ 567{
420 WL head; 568 WL head;
421 unsigned char events; 569 unsigned char events; /* the events watched for */
570 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
571 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 572 unsigned char unused;
573#if EV_USE_EPOLL
574 unsigned int egen; /* generation counter to counter epoll bugs */
575#endif
423#if EV_SELECT_IS_WINSOCKET 576#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 577 SOCKET handle;
425#endif 578#endif
426} ANFD; 579} ANFD;
427 580
581/* stores the pending event set for a given watcher */
428typedef struct 582typedef struct
429{ 583{
430 W w; 584 W w;
431 int events; 585 int events; /* the pending event set for the given watcher */
432} ANPENDING; 586} ANPENDING;
433 587
434#if EV_USE_INOTIFY 588#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 589/* hash table entry per inotify-id */
436typedef struct 590typedef struct
439} ANFS; 593} ANFS;
440#endif 594#endif
441 595
442/* Heap Entry */ 596/* Heap Entry */
443#if EV_HEAP_CACHE_AT 597#if EV_HEAP_CACHE_AT
598 /* a heap element */
444 typedef struct { 599 typedef struct {
445 ev_tstamp at; 600 ev_tstamp at;
446 WT w; 601 WT w;
447 } ANHE; 602 } ANHE;
448 603
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 604 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 605 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 606 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 607#else
608 /* a heap element */
453 typedef WT ANHE; 609 typedef WT ANHE;
454 610
455 #define ANHE_w(he) (he) 611 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 612 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 613 #define ANHE_at_cache(he)
458#endif 614#endif
459 615
460#if EV_MULTIPLICITY 616#if EV_MULTIPLICITY
461 617
462 struct ev_loop 618 struct ev_loop
481 637
482 static int ev_default_loop_ptr; 638 static int ev_default_loop_ptr;
483 639
484#endif 640#endif
485 641
642#if EV_MINIMAL < 2
643# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
644# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
645# define EV_INVOKE_PENDING invoke_cb (EV_A)
646#else
647# define EV_RELEASE_CB (void)0
648# define EV_ACQUIRE_CB (void)0
649# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
650#endif
651
652#define EVUNLOOP_RECURSE 0x80
653
486/*****************************************************************************/ 654/*****************************************************************************/
487 655
656#ifndef EV_HAVE_EV_TIME
488ev_tstamp 657ev_tstamp
489ev_time (void) 658ev_time (void)
490{ 659{
491#if EV_USE_REALTIME 660#if EV_USE_REALTIME
661 if (expect_true (have_realtime))
662 {
492 struct timespec ts; 663 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 664 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 665 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 666 }
667#endif
668
496 struct timeval tv; 669 struct timeval tv;
497 gettimeofday (&tv, 0); 670 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 671 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 672}
673#endif
501 674
502ev_tstamp inline_size 675inline_size ev_tstamp
503get_clock (void) 676get_clock (void)
504{ 677{
505#if EV_USE_MONOTONIC 678#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 679 if (expect_true (have_monotonic))
507 { 680 {
540 struct timeval tv; 713 struct timeval tv;
541 714
542 tv.tv_sec = (time_t)delay; 715 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 716 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 717
718 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
719 /* something not guaranteed by newer posix versions, but guaranteed */
720 /* by older ones */
545 select (0, 0, 0, 0, &tv); 721 select (0, 0, 0, 0, &tv);
546#endif 722#endif
547 } 723 }
548} 724}
549 725
550/*****************************************************************************/ 726/*****************************************************************************/
551 727
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 728#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 729
554int inline_size 730/* find a suitable new size for the given array, */
731/* hopefully by rounding to a ncie-to-malloc size */
732inline_size int
555array_nextsize (int elem, int cur, int cnt) 733array_nextsize (int elem, int cur, int cnt)
556{ 734{
557 int ncur = cur + 1; 735 int ncur = cur + 1;
558 736
559 do 737 do
576array_realloc (int elem, void *base, int *cur, int cnt) 754array_realloc (int elem, void *base, int *cur, int cnt)
577{ 755{
578 *cur = array_nextsize (elem, *cur, cnt); 756 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 757 return ev_realloc (base, elem * *cur);
580} 758}
759
760#define array_init_zero(base,count) \
761 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 762
582#define array_needsize(type,base,cur,cnt,init) \ 763#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 764 if (expect_false ((cnt) > (cur))) \
584 { \ 765 { \
585 int ocur_ = (cur); \ 766 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 778 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 779 }
599#endif 780#endif
600 781
601#define array_free(stem, idx) \ 782#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 783 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 784
604/*****************************************************************************/ 785/*****************************************************************************/
786
787/* dummy callback for pending events */
788static void noinline
789pendingcb (EV_P_ ev_prepare *w, int revents)
790{
791}
605 792
606void noinline 793void noinline
607ev_feed_event (EV_P_ void *w, int revents) 794ev_feed_event (EV_P_ void *w, int revents)
608{ 795{
609 W w_ = (W)w; 796 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 805 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 806 pendings [pri][w_->pending - 1].events = revents;
620 } 807 }
621} 808}
622 809
623void inline_speed 810inline_speed void
811feed_reverse (EV_P_ W w)
812{
813 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
814 rfeeds [rfeedcnt++] = w;
815}
816
817inline_size void
818feed_reverse_done (EV_P_ int revents)
819{
820 do
821 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
822 while (rfeedcnt);
823}
824
825inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 826queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 827{
626 int i; 828 int i;
627 829
628 for (i = 0; i < eventcnt; ++i) 830 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 831 ev_feed_event (EV_A_ events [i], type);
630} 832}
631 833
632/*****************************************************************************/ 834/*****************************************************************************/
633 835
634void inline_size 836inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 837fd_event_nc (EV_P_ int fd, int revents)
649{ 838{
650 ANFD *anfd = anfds + fd; 839 ANFD *anfd = anfds + fd;
651 ev_io *w; 840 ev_io *w;
652 841
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 842 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 846 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 847 ev_feed_event (EV_A_ (W)w, ev);
659 } 848 }
660} 849}
661 850
851/* do not submit kernel events for fds that have reify set */
852/* because that means they changed while we were polling for new events */
853inline_speed void
854fd_event (EV_P_ int fd, int revents)
855{
856 ANFD *anfd = anfds + fd;
857
858 if (expect_true (!anfd->reify))
859 fd_event_nc (EV_A_ fd, revents);
860}
861
662void 862void
663ev_feed_fd_event (EV_P_ int fd, int revents) 863ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 864{
665 if (fd >= 0 && fd < anfdmax) 865 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 866 fd_event_nc (EV_A_ fd, revents);
667} 867}
668 868
669void inline_size 869/* make sure the external fd watch events are in-sync */
870/* with the kernel/libev internal state */
871inline_size void
670fd_reify (EV_P) 872fd_reify (EV_P)
671{ 873{
672 int i; 874 int i;
673 875
674 for (i = 0; i < fdchangecnt; ++i) 876 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 885 events |= (unsigned char)w->events;
684 886
685#if EV_SELECT_IS_WINSOCKET 887#if EV_SELECT_IS_WINSOCKET
686 if (events) 888 if (events)
687 { 889 {
688 unsigned long argp; 890 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 891 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 892 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 893 }
696#endif 894#endif
697 895
698 { 896 {
699 unsigned char o_events = anfd->events; 897 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 898 unsigned char o_reify = anfd->reify;
701 899
702 anfd->reify = 0; 900 anfd->reify = 0;
703 anfd->events = events; 901 anfd->events = events;
704 902
705 if (o_events != events || o_reify & EV_IOFDSET) 903 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 904 backend_modify (EV_A_ fd, o_events, events);
707 } 905 }
708 } 906 }
709 907
710 fdchangecnt = 0; 908 fdchangecnt = 0;
711} 909}
712 910
713void inline_size 911/* something about the given fd changed */
912inline_size void
714fd_change (EV_P_ int fd, int flags) 913fd_change (EV_P_ int fd, int flags)
715{ 914{
716 unsigned char reify = anfds [fd].reify; 915 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 916 anfds [fd].reify |= flags;
718 917
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 921 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 922 fdchanges [fdchangecnt - 1] = fd;
724 } 923 }
725} 924}
726 925
727void inline_speed 926/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
927inline_speed void
728fd_kill (EV_P_ int fd) 928fd_kill (EV_P_ int fd)
729{ 929{
730 ev_io *w; 930 ev_io *w;
731 931
732 while ((w = (ev_io *)anfds [fd].head)) 932 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 934 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 935 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 936 }
737} 937}
738 938
739int inline_size 939/* check whether the given fd is atcually valid, for error recovery */
940inline_size int
740fd_valid (int fd) 941fd_valid (int fd)
741{ 942{
742#ifdef _WIN32 943#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 944 return _get_osfhandle (fd) != -1;
744#else 945#else
752{ 953{
753 int fd; 954 int fd;
754 955
755 for (fd = 0; fd < anfdmax; ++fd) 956 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 957 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 958 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 959 fd_kill (EV_A_ fd);
759} 960}
760 961
761/* called on ENOMEM in select/poll to kill some fds and retry */ 962/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 963static void noinline
766 967
767 for (fd = anfdmax; fd--; ) 968 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 969 if (anfds [fd].events)
769 { 970 {
770 fd_kill (EV_A_ fd); 971 fd_kill (EV_A_ fd);
771 return; 972 break;
772 } 973 }
773} 974}
774 975
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 976/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 977static void noinline
780 981
781 for (fd = 0; fd < anfdmax; ++fd) 982 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 983 if (anfds [fd].events)
783 { 984 {
784 anfds [fd].events = 0; 985 anfds [fd].events = 0;
986 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 987 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 988 }
787} 989}
788 990
789/*****************************************************************************/ 991/*****************************************************************************/
790 992
802 */ 1004 */
803#if EV_USE_4HEAP 1005#if EV_USE_4HEAP
804 1006
805#define DHEAP 4 1007#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1010#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1011
830/* away from the root */ 1012/* away from the root */
831void inline_speed 1013inline_speed void
832downheap (ANHE *heap, int N, int k) 1014downheap (ANHE *heap, int N, int k)
833{ 1015{
834 ANHE he = heap [k]; 1016 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1017 ANHE *E = heap + N + HEAP0;
836 1018
837 for (;;) 1019 for (;;)
838 { 1020 {
839 ev_tstamp minat; 1021 ev_tstamp minat;
840 ANHE *minpos; 1022 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1024
843 // find minimum child 1025 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1026 if (expect_true (pos + DHEAP - 1 < E))
845 { 1027 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos)); 1031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 } 1032 }
851 else if (pos < E) 1033 else if (pos < E)
852 { 1034 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 break; 1041 break;
860 1042
861 if (ANHE_at (he) <= minat) 1043 if (ANHE_at (he) <= minat)
862 break; 1044 break;
863 1045
1046 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1047 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1048
867 k = minpos - heap; 1049 k = minpos - heap;
868 } 1050 }
869 1051
1052 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1053 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1054}
873 1055
874#else // 4HEAP 1056#else /* 4HEAP */
875 1057
876#define HEAP0 1 1058#define HEAP0 1
1059#define HPARENT(k) ((k) >> 1)
1060#define UPHEAP_DONE(p,k) (!(p))
877 1061
878/* towards the root */ 1062/* away from the root */
879void inline_speed 1063inline_speed void
880upheap (ANHE *heap, int k) 1064downheap (ANHE *heap, int N, int k)
881{ 1065{
882 ANHE he = heap [k]; 1066 ANHE he = heap [k];
883 1067
884 for (;;) 1068 for (;;)
885 { 1069 {
886 int p = k >> 1; 1070 int c = k << 1;
887 1071
888 /* maybe we could use a dummy element at heap [0]? */ 1072 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1073 break;
891 1074
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1076 ? 1 : 0;
916 1077
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1078 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1079 break;
919 1080
926 heap [k] = he; 1087 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1088 ev_active (ANHE_w (he)) = k;
928} 1089}
929#endif 1090#endif
930 1091
931void inline_size 1092/* towards the root */
1093inline_speed void
1094upheap (ANHE *heap, int k)
1095{
1096 ANHE he = heap [k];
1097
1098 for (;;)
1099 {
1100 int p = HPARENT (k);
1101
1102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1103 break;
1104
1105 heap [k] = heap [p];
1106 ev_active (ANHE_w (heap [k])) = k;
1107 k = p;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112}
1113
1114/* move an element suitably so it is in a correct place */
1115inline_size void
932adjustheap (ANHE *heap, int N, int k) 1116adjustheap (ANHE *heap, int N, int k)
933{ 1117{
1118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 1119 upheap (heap, k);
1120 else
935 downheap (heap, N, k); 1121 downheap (heap, N, k);
1122}
1123
1124/* rebuild the heap: this function is used only once and executed rarely */
1125inline_size void
1126reheap (ANHE *heap, int N)
1127{
1128 int i;
1129
1130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1132 for (i = 0; i < N; ++i)
1133 upheap (heap, i + HEAP0);
936} 1134}
937 1135
938/*****************************************************************************/ 1136/*****************************************************************************/
939 1137
1138/* associate signal watchers to a signal signal */
940typedef struct 1139typedef struct
941{ 1140{
1141 EV_ATOMIC_T pending;
1142#if EV_MULTIPLICITY
1143 EV_P;
1144#endif
942 WL head; 1145 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 1146} ANSIG;
945 1147
946static ANSIG *signals; 1148static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 1149
963/*****************************************************************************/ 1150/*****************************************************************************/
964 1151
965void inline_speed 1152/* used to prepare libev internal fd's */
1153/* this is not fork-safe */
1154inline_speed void
966fd_intern (int fd) 1155fd_intern (int fd)
967{ 1156{
968#ifdef _WIN32 1157#ifdef _WIN32
969 int arg = 1; 1158 unsigned long arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1159 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else 1160#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC); 1161 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK); 1162 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif 1163#endif
975} 1164}
976 1165
977static void noinline 1166static void noinline
978evpipe_init (EV_P) 1167evpipe_init (EV_P)
979{ 1168{
980 if (!ev_is_active (&pipeev)) 1169 if (!ev_is_active (&pipe_w))
981 { 1170 {
982#if EV_USE_EVENTFD 1171#if EV_USE_EVENTFD
1172 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1173 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1174 evfd = eventfd (0, 0);
1175
1176 if (evfd >= 0)
984 { 1177 {
985 evpipe [0] = -1; 1178 evpipe [0] = -1;
986 fd_intern (evfd); 1179 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1180 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1181 }
989 else 1182 else
990#endif 1183#endif
991 { 1184 {
992 while (pipe (evpipe)) 1185 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1186 ev_syserr ("(libev) error creating signal/async pipe");
994 1187
995 fd_intern (evpipe [0]); 1188 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1189 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1190 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1191 }
999 1192
1000 ev_io_start (EV_A_ &pipeev); 1193 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1194 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1195 }
1003} 1196}
1004 1197
1005void inline_size 1198inline_size void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1199evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1200{
1008 if (!*flag) 1201 if (!*flag)
1009 { 1202 {
1010 int old_errno = errno; /* save errno because write might clobber it */ 1203 int old_errno = errno; /* save errno because write might clobber it */
1023 1216
1024 errno = old_errno; 1217 errno = old_errno;
1025 } 1218 }
1026} 1219}
1027 1220
1221/* called whenever the libev signal pipe */
1222/* got some events (signal, async) */
1028static void 1223static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1224pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1225{
1226 int i;
1227
1031#if EV_USE_EVENTFD 1228#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1229 if (evfd >= 0)
1033 { 1230 {
1034 uint64_t counter; 1231 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t)); 1232 read (evfd, &counter, sizeof (uint64_t));
1039 { 1236 {
1040 char dummy; 1237 char dummy;
1041 read (evpipe [0], &dummy, 1); 1238 read (evpipe [0], &dummy, 1);
1042 } 1239 }
1043 1240
1044 if (gotsig && ev_is_default_loop (EV_A)) 1241 if (sig_pending)
1045 { 1242 {
1046 int signum; 1243 sig_pending = 0;
1047 gotsig = 0;
1048 1244
1049 for (signum = signalmax; signum--; ) 1245 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 1246 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 1247 ev_feed_signal_event (EV_A_ i + 1);
1052 } 1248 }
1053 1249
1054#if EV_ASYNC_ENABLE 1250#if EV_ASYNC_ENABLE
1055 if (gotasync) 1251 if (async_pending)
1056 { 1252 {
1057 int i; 1253 async_pending = 0;
1058 gotasync = 0;
1059 1254
1060 for (i = asynccnt; i--; ) 1255 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 1256 if (asyncs [i]->sent)
1062 { 1257 {
1063 asyncs [i]->sent = 0; 1258 asyncs [i]->sent = 0;
1071 1266
1072static void 1267static void
1073ev_sighandler (int signum) 1268ev_sighandler (int signum)
1074{ 1269{
1075#if EV_MULTIPLICITY 1270#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 1271 EV_P = signals [signum - 1].loop;
1077#endif 1272#endif
1078 1273
1079#if _WIN32 1274#if _WIN32
1080 signal (signum, ev_sighandler); 1275 signal (signum, ev_sighandler);
1081#endif 1276#endif
1082 1277
1083 signals [signum - 1].gotsig = 1; 1278 signals [signum - 1].pending = 1;
1084 evpipe_write (EV_A_ &gotsig); 1279 evpipe_write (EV_A_ &sig_pending);
1085} 1280}
1086 1281
1087void noinline 1282void noinline
1088ev_feed_signal_event (EV_P_ int signum) 1283ev_feed_signal_event (EV_P_ int signum)
1089{ 1284{
1090 WL w; 1285 WL w;
1091 1286
1287 if (expect_false (signum <= 0 || signum > EV_NSIG))
1288 return;
1289
1290 --signum;
1291
1092#if EV_MULTIPLICITY 1292#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1293 /* it is permissible to try to feed a signal to the wrong loop */
1094#endif 1294 /* or, likely more useful, feeding a signal nobody is waiting for */
1095 1295
1096 --signum; 1296 if (expect_false (signals [signum].loop != EV_A))
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 1297 return;
1298#endif
1100 1299
1101 signals [signum].gotsig = 0; 1300 signals [signum].pending = 0;
1102 1301
1103 for (w = signals [signum].head; w; w = w->next) 1302 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1303 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1304}
1106 1305
1306#if EV_USE_SIGNALFD
1307static void
1308sigfdcb (EV_P_ ev_io *iow, int revents)
1309{
1310 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1311
1312 for (;;)
1313 {
1314 ssize_t res = read (sigfd, si, sizeof (si));
1315
1316 /* not ISO-C, as res might be -1, but works with SuS */
1317 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1318 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1319
1320 if (res < (ssize_t)sizeof (si))
1321 break;
1322 }
1323}
1324#endif
1325
1107/*****************************************************************************/ 1326/*****************************************************************************/
1108 1327
1109static WL childs [EV_PID_HASHSIZE]; 1328static WL childs [EV_PID_HASHSIZE];
1110 1329
1111#ifndef _WIN32 1330#ifndef _WIN32
1114 1333
1115#ifndef WIFCONTINUED 1334#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1335# define WIFCONTINUED(status) 0
1117#endif 1336#endif
1118 1337
1119void inline_speed 1338/* handle a single child status event */
1339inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1340child_reap (EV_P_ int chain, int pid, int status)
1121{ 1341{
1122 ev_child *w; 1342 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1343 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1344
1137 1357
1138#ifndef WCONTINUED 1358#ifndef WCONTINUED
1139# define WCONTINUED 0 1359# define WCONTINUED 0
1140#endif 1360#endif
1141 1361
1362/* called on sigchld etc., calls waitpid */
1142static void 1363static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1364childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1365{
1145 int pid, status; 1366 int pid, status;
1146 1367
1227 /* kqueue is borked on everything but netbsd apparently */ 1448 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1449 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1450 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1451#endif
1231#ifdef __APPLE__ 1452#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1453 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1234#endif 1456#endif
1235 1457
1236 return flags; 1458 return flags;
1237} 1459}
1238 1460
1252ev_backend (EV_P) 1474ev_backend (EV_P)
1253{ 1475{
1254 return backend; 1476 return backend;
1255} 1477}
1256 1478
1479#if EV_MINIMAL < 2
1257unsigned int 1480unsigned int
1258ev_loop_count (EV_P) 1481ev_loop_count (EV_P)
1259{ 1482{
1260 return loop_count; 1483 return loop_count;
1261} 1484}
1262 1485
1486unsigned int
1487ev_loop_depth (EV_P)
1488{
1489 return loop_depth;
1490}
1491
1263void 1492void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1493ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1494{
1266 io_blocktime = interval; 1495 io_blocktime = interval;
1267} 1496}
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1499ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1500{
1272 timeout_blocktime = interval; 1501 timeout_blocktime = interval;
1273} 1502}
1274 1503
1504void
1505ev_set_userdata (EV_P_ void *data)
1506{
1507 userdata = data;
1508}
1509
1510void *
1511ev_userdata (EV_P)
1512{
1513 return userdata;
1514}
1515
1516void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1517{
1518 invoke_cb = invoke_pending_cb;
1519}
1520
1521void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1522{
1523 release_cb = release;
1524 acquire_cb = acquire;
1525}
1526#endif
1527
1528/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1529static void noinline
1276loop_init (EV_P_ unsigned int flags) 1530loop_init (EV_P_ unsigned int flags)
1277{ 1531{
1278 if (!backend) 1532 if (!backend)
1279 { 1533 {
1534#if EV_USE_REALTIME
1535 if (!have_realtime)
1536 {
1537 struct timespec ts;
1538
1539 if (!clock_gettime (CLOCK_REALTIME, &ts))
1540 have_realtime = 1;
1541 }
1542#endif
1543
1280#if EV_USE_MONOTONIC 1544#if EV_USE_MONOTONIC
1545 if (!have_monotonic)
1281 { 1546 {
1282 struct timespec ts; 1547 struct timespec ts;
1548
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1549 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1550 have_monotonic = 1;
1285 } 1551 }
1286#endif 1552#endif
1553
1554 /* pid check not overridable via env */
1555#ifndef _WIN32
1556 if (flags & EVFLAG_FORKCHECK)
1557 curpid = getpid ();
1558#endif
1559
1560 if (!(flags & EVFLAG_NOENV)
1561 && !enable_secure ()
1562 && getenv ("LIBEV_FLAGS"))
1563 flags = atoi (getenv ("LIBEV_FLAGS"));
1287 1564
1288 ev_rt_now = ev_time (); 1565 ev_rt_now = ev_time ();
1289 mn_now = get_clock (); 1566 mn_now = get_clock ();
1290 now_floor = mn_now; 1567 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now; 1568 rtmn_diff = ev_rt_now - mn_now;
1569#if EV_MINIMAL < 2
1570 invoke_cb = ev_invoke_pending;
1571#endif
1292 1572
1293 io_blocktime = 0.; 1573 io_blocktime = 0.;
1294 timeout_blocktime = 0.; 1574 timeout_blocktime = 0.;
1295 backend = 0; 1575 backend = 0;
1296 backend_fd = -1; 1576 backend_fd = -1;
1297 gotasync = 0; 1577 sig_pending = 0;
1578#if EV_ASYNC_ENABLE
1579 async_pending = 0;
1580#endif
1298#if EV_USE_INOTIFY 1581#if EV_USE_INOTIFY
1299 fs_fd = -2; 1582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1300#endif 1583#endif
1301 1584#if EV_USE_SIGNALFD
1302 /* pid check not overridable via env */ 1585 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif 1586#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 1587
1313 if (!(flags & 0x0000ffffU)) 1588 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends (); 1589 flags |= ev_recommended_backends ();
1315 1590
1316#if EV_USE_PORT 1591#if EV_USE_PORT
1327#endif 1602#endif
1328#if EV_USE_SELECT 1603#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1604 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1605#endif
1331 1606
1607 ev_prepare_init (&pending_w, pendingcb);
1608
1332 ev_init (&pipeev, pipecb); 1609 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1610 ev_set_priority (&pipe_w, EV_MAXPRI);
1334 } 1611 }
1335} 1612}
1336 1613
1614/* free up a loop structure */
1337static void noinline 1615static void noinline
1338loop_destroy (EV_P) 1616loop_destroy (EV_P)
1339{ 1617{
1340 int i; 1618 int i;
1341 1619
1342 if (ev_is_active (&pipeev)) 1620 if (ev_is_active (&pipe_w))
1343 { 1621 {
1344 ev_ref (EV_A); /* signal watcher */ 1622 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 1623 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 1624
1347#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1626 if (evfd >= 0)
1349 close (evfd); 1627 close (evfd);
1350#endif 1628#endif
1351 1629
1352 if (evpipe [0] >= 0) 1630 if (evpipe [0] >= 0)
1353 { 1631 {
1354 close (evpipe [0]); 1632 EV_WIN32_CLOSE_FD (evpipe [0]);
1355 close (evpipe [1]); 1633 EV_WIN32_CLOSE_FD (evpipe [1]);
1356 } 1634 }
1357 } 1635 }
1636
1637#if EV_USE_SIGNALFD
1638 if (ev_is_active (&sigfd_w))
1639 {
1640 /*ev_ref (EV_A);*/
1641 /*ev_io_stop (EV_A_ &sigfd_w);*/
1642
1643 close (sigfd);
1644 }
1645#endif
1358 1646
1359#if EV_USE_INOTIFY 1647#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 1648 if (fs_fd >= 0)
1361 close (fs_fd); 1649 close (fs_fd);
1362#endif 1650#endif
1386#if EV_IDLE_ENABLE 1674#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 1675 array_free (idle, [i]);
1388#endif 1676#endif
1389 } 1677 }
1390 1678
1391 ev_free (anfds); anfdmax = 0; 1679 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 1680
1393 /* have to use the microsoft-never-gets-it-right macro */ 1681 /* have to use the microsoft-never-gets-it-right macro */
1682 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 1683 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 1684 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 1686 array_free (periodic, EMPTY);
1398#endif 1687#endif
1407 1696
1408 backend = 0; 1697 backend = 0;
1409} 1698}
1410 1699
1411#if EV_USE_INOTIFY 1700#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 1701inline_size void infy_fork (EV_P);
1413#endif 1702#endif
1414 1703
1415void inline_size 1704inline_size void
1416loop_fork (EV_P) 1705loop_fork (EV_P)
1417{ 1706{
1418#if EV_USE_PORT 1707#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1708 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 1709#endif
1426#endif 1715#endif
1427#if EV_USE_INOTIFY 1716#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 1717 infy_fork (EV_A);
1429#endif 1718#endif
1430 1719
1431 if (ev_is_active (&pipeev)) 1720 if (ev_is_active (&pipe_w))
1432 { 1721 {
1433 /* this "locks" the handlers against writing to the pipe */ 1722 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */ 1723 /* while we modify the fd vars */
1435 gotsig = 1; 1724 sig_pending = 1;
1436#if EV_ASYNC_ENABLE 1725#if EV_ASYNC_ENABLE
1437 gotasync = 1; 1726 async_pending = 1;
1438#endif 1727#endif
1439 1728
1440 ev_ref (EV_A); 1729 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 1730 ev_io_stop (EV_A_ &pipe_w);
1442 1731
1443#if EV_USE_EVENTFD 1732#if EV_USE_EVENTFD
1444 if (evfd >= 0) 1733 if (evfd >= 0)
1445 close (evfd); 1734 close (evfd);
1446#endif 1735#endif
1447 1736
1448 if (evpipe [0] >= 0) 1737 if (evpipe [0] >= 0)
1449 { 1738 {
1450 close (evpipe [0]); 1739 EV_WIN32_CLOSE_FD (evpipe [0]);
1451 close (evpipe [1]); 1740 EV_WIN32_CLOSE_FD (evpipe [1]);
1452 } 1741 }
1453 1742
1454 evpipe_init (EV_A); 1743 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 1744 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 1745 pipecb (EV_A_ &pipe_w, EV_READ);
1457 } 1746 }
1458 1747
1459 postfork = 0; 1748 postfork = 0;
1460} 1749}
1461 1750
1462#if EV_MULTIPLICITY 1751#if EV_MULTIPLICITY
1752
1463struct ev_loop * 1753struct ev_loop *
1464ev_loop_new (unsigned int flags) 1754ev_loop_new (unsigned int flags)
1465{ 1755{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1756 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 1757
1468 memset (loop, 0, sizeof (struct ev_loop)); 1758 memset (EV_A, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags); 1759 loop_init (EV_A_ flags);
1471 1760
1472 if (ev_backend (EV_A)) 1761 if (ev_backend (EV_A))
1473 return loop; 1762 return EV_A;
1474 1763
1475 return 0; 1764 return 0;
1476} 1765}
1477 1766
1478void 1767void
1484 1773
1485void 1774void
1486ev_loop_fork (EV_P) 1775ev_loop_fork (EV_P)
1487{ 1776{
1488 postfork = 1; /* must be in line with ev_default_fork */ 1777 postfork = 1; /* must be in line with ev_default_fork */
1778}
1779#endif /* multiplicity */
1780
1781#if EV_VERIFY
1782static void noinline
1783verify_watcher (EV_P_ W w)
1784{
1785 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1786
1787 if (w->pending)
1788 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1789}
1790
1791static void noinline
1792verify_heap (EV_P_ ANHE *heap, int N)
1793{
1794 int i;
1795
1796 for (i = HEAP0; i < N + HEAP0; ++i)
1797 {
1798 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1799 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1800 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1801
1802 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1803 }
1804}
1805
1806static void noinline
1807array_verify (EV_P_ W *ws, int cnt)
1808{
1809 while (cnt--)
1810 {
1811 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1812 verify_watcher (EV_A_ ws [cnt]);
1813 }
1814}
1815#endif
1816
1817#if EV_MINIMAL < 2
1818void
1819ev_loop_verify (EV_P)
1820{
1821#if EV_VERIFY
1822 int i;
1823 WL w;
1824
1825 assert (activecnt >= -1);
1826
1827 assert (fdchangemax >= fdchangecnt);
1828 for (i = 0; i < fdchangecnt; ++i)
1829 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1830
1831 assert (anfdmax >= 0);
1832 for (i = 0; i < anfdmax; ++i)
1833 for (w = anfds [i].head; w; w = w->next)
1834 {
1835 verify_watcher (EV_A_ (W)w);
1836 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1837 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1838 }
1839
1840 assert (timermax >= timercnt);
1841 verify_heap (EV_A_ timers, timercnt);
1842
1843#if EV_PERIODIC_ENABLE
1844 assert (periodicmax >= periodiccnt);
1845 verify_heap (EV_A_ periodics, periodiccnt);
1846#endif
1847
1848 for (i = NUMPRI; i--; )
1849 {
1850 assert (pendingmax [i] >= pendingcnt [i]);
1851#if EV_IDLE_ENABLE
1852 assert (idleall >= 0);
1853 assert (idlemax [i] >= idlecnt [i]);
1854 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1855#endif
1856 }
1857
1858#if EV_FORK_ENABLE
1859 assert (forkmax >= forkcnt);
1860 array_verify (EV_A_ (W *)forks, forkcnt);
1861#endif
1862
1863#if EV_ASYNC_ENABLE
1864 assert (asyncmax >= asynccnt);
1865 array_verify (EV_A_ (W *)asyncs, asynccnt);
1866#endif
1867
1868 assert (preparemax >= preparecnt);
1869 array_verify (EV_A_ (W *)prepares, preparecnt);
1870
1871 assert (checkmax >= checkcnt);
1872 array_verify (EV_A_ (W *)checks, checkcnt);
1873
1874# if 0
1875 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1876 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1877# endif
1878#endif
1489} 1879}
1490#endif 1880#endif
1491 1881
1492#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
1493struct ev_loop * 1883struct ev_loop *
1498#endif 1888#endif
1499{ 1889{
1500 if (!ev_default_loop_ptr) 1890 if (!ev_default_loop_ptr)
1501 { 1891 {
1502#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1893 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 1894#else
1505 ev_default_loop_ptr = 1; 1895 ev_default_loop_ptr = 1;
1506#endif 1896#endif
1507 1897
1508 loop_init (EV_A_ flags); 1898 loop_init (EV_A_ flags);
1525 1915
1526void 1916void
1527ev_default_destroy (void) 1917ev_default_destroy (void)
1528{ 1918{
1529#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr; 1920 EV_P = ev_default_loop_ptr;
1531#endif 1921#endif
1922
1923 ev_default_loop_ptr = 0;
1532 1924
1533#ifndef _WIN32 1925#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */ 1926 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev); 1927 ev_signal_stop (EV_A_ &childev);
1536#endif 1928#endif
1540 1932
1541void 1933void
1542ev_default_fork (void) 1934ev_default_fork (void)
1543{ 1935{
1544#if EV_MULTIPLICITY 1936#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr; 1937 EV_P = ev_default_loop_ptr;
1546#endif 1938#endif
1547 1939
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 1940 postfork = 1; /* must be in line with ev_loop_fork */
1550} 1941}
1551 1942
1552/*****************************************************************************/ 1943/*****************************************************************************/
1553 1944
1554void 1945void
1555ev_invoke (EV_P_ void *w, int revents) 1946ev_invoke (EV_P_ void *w, int revents)
1556{ 1947{
1557 EV_CB_INVOKE ((W)w, revents); 1948 EV_CB_INVOKE ((W)w, revents);
1558} 1949}
1559 1950
1560void inline_speed 1951unsigned int
1561call_pending (EV_P) 1952ev_pending_count (EV_P)
1953{
1954 int pri;
1955 unsigned int count = 0;
1956
1957 for (pri = NUMPRI; pri--; )
1958 count += pendingcnt [pri];
1959
1960 return count;
1961}
1962
1963void noinline
1964ev_invoke_pending (EV_P)
1562{ 1965{
1563 int pri; 1966 int pri;
1564 1967
1565 for (pri = NUMPRI; pri--; ) 1968 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 1969 while (pendingcnt [pri])
1567 { 1970 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 1972
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1973 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1974 /* ^ this is no longer true, as pending_w could be here */
1573 1975
1574 p->w->pending = 0; 1976 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 1977 EV_CB_INVOKE (p->w, p->events);
1576 } 1978 EV_FREQUENT_CHECK;
1577 } 1979 }
1578} 1980}
1579 1981
1580#if EV_IDLE_ENABLE 1982#if EV_IDLE_ENABLE
1581void inline_size 1983/* make idle watchers pending. this handles the "call-idle */
1984/* only when higher priorities are idle" logic */
1985inline_size void
1582idle_reify (EV_P) 1986idle_reify (EV_P)
1583{ 1987{
1584 if (expect_false (idleall)) 1988 if (expect_false (idleall))
1585 { 1989 {
1586 int pri; 1990 int pri;
1598 } 2002 }
1599 } 2003 }
1600} 2004}
1601#endif 2005#endif
1602 2006
1603void inline_size 2007/* make timers pending */
2008inline_size void
1604timers_reify (EV_P) 2009timers_reify (EV_P)
1605{ 2010{
2011 EV_FREQUENT_CHECK;
2012
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2013 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 2014 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2015 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 2016 {
2017 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2018
2019 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2020
2021 /* first reschedule or stop timer */
2022 if (w->repeat)
2023 {
1615 ev_at (w) += w->repeat; 2024 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 2025 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 2026 ev_at (w) = mn_now;
1618 2027
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2028 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 2029
1621 ANHE_at_set (timers [HEAP0]); 2030 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 2031 downheap (timers, timercnt, HEAP0);
2032 }
2033 else
2034 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2035
2036 EV_FREQUENT_CHECK;
2037 feed_reverse (EV_A_ (W)w);
1623 } 2038 }
1624 else 2039 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2040
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2041 feed_reverse_done (EV_A_ EV_TIMEOUT);
1628 } 2042 }
1629} 2043}
1630 2044
1631#if EV_PERIODIC_ENABLE 2045#if EV_PERIODIC_ENABLE
1632void inline_size 2046/* make periodics pending */
2047inline_size void
1633periodics_reify (EV_P) 2048periodics_reify (EV_P)
1634{ 2049{
2050 EV_FREQUENT_CHECK;
2051
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2052 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2053 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2054 int feed_count = 0;
1638 2055
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2056 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2057 {
2058 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2059
2060 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2061
2062 /* first reschedule or stop timer */
2063 if (w->reschedule_cb)
2064 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2065 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2066
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2067 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2068
1648 ANHE_at_set (periodics [HEAP0]); 2069 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2070 downheap (periodics, periodiccnt, HEAP0);
2071 }
2072 else if (w->interval)
2073 {
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075 /* if next trigger time is not sufficiently in the future, put it there */
2076 /* this might happen because of floating point inexactness */
2077 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2078 {
2079 ev_at (w) += w->interval;
2080
2081 /* if interval is unreasonably low we might still have a time in the past */
2082 /* so correct this. this will make the periodic very inexact, but the user */
2083 /* has effectively asked to get triggered more often than possible */
2084 if (ev_at (w) < ev_rt_now)
2085 ev_at (w) = ev_rt_now;
2086 }
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else
2092 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2093
2094 EV_FREQUENT_CHECK;
2095 feed_reverse (EV_A_ (W)w);
1650 } 2096 }
1651 else if (w->interval) 2097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 2098
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2099 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 2100 }
1666} 2101}
1667 2102
2103/* simply recalculate all periodics */
2104/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1668static void noinline 2105static void noinline
1669periodics_reschedule (EV_P) 2106periodics_reschedule (EV_P)
1670{ 2107{
1671 int i; 2108 int i;
1672 2109
1678 if (w->reschedule_cb) 2115 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2116 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 2117 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2118 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682 2119
1683 ANHE_at_set (periodics [i]); 2120 ANHE_at_cache (periodics [i]);
1684 } 2121 }
1685 2122
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2123 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2124}
2125#endif
2126
2127/* adjust all timers by a given offset */
2128static void noinline
2129timers_reschedule (EV_P_ ev_tstamp adjust)
2130{
2131 int i;
2132
1688 for (i = 0; i < periodiccnt; ++i) 2133 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 2134 {
2135 ANHE *he = timers + i + HEAP0;
2136 ANHE_w (*he)->at += adjust;
2137 ANHE_at_cache (*he);
2138 }
1690} 2139}
1691#endif
1692 2140
1693void inline_speed 2141/* fetch new monotonic and realtime times from the kernel */
2142/* also detetc if there was a timejump, and act accordingly */
2143inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 2144time_update (EV_P_ ev_tstamp max_block)
1695{ 2145{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 2146#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 2147 if (expect_true (have_monotonic))
1700 { 2148 {
2149 int i;
1701 ev_tstamp odiff = rtmn_diff; 2150 ev_tstamp odiff = rtmn_diff;
1702 2151
1703 mn_now = get_clock (); 2152 mn_now = get_clock ();
1704 2153
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2154 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1731 ev_rt_now = ev_time (); 2180 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 2181 mn_now = get_clock ();
1733 now_floor = mn_now; 2182 now_floor = mn_now;
1734 } 2183 }
1735 2184
2185 /* no timer adjustment, as the monotonic clock doesn't jump */
2186 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 2187# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 2188 periodics_reschedule (EV_A);
1738# endif 2189# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 2190 }
1742 else 2191 else
1743#endif 2192#endif
1744 { 2193 {
1745 ev_rt_now = ev_time (); 2194 ev_rt_now = ev_time ();
1746 2195
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2196 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 2197 {
2198 /* adjust timers. this is easy, as the offset is the same for all of them */
2199 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 2200#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2201 periodics_reschedule (EV_A);
1751#endif 2202#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 2203 }
1760 2204
1761 mn_now = ev_rt_now; 2205 mn_now = ev_rt_now;
1762 } 2206 }
1763} 2207}
1764 2208
1765void 2209void
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 2210ev_loop (EV_P_ int flags)
1781{ 2211{
2212#if EV_MINIMAL < 2
2213 ++loop_depth;
2214#endif
2215
2216 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2217
1782 loop_done = EVUNLOOP_CANCEL; 2218 loop_done = EVUNLOOP_CANCEL;
1783 2219
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2220 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 2221
1786 do 2222 do
1787 { 2223 {
2224#if EV_VERIFY >= 2
2225 ev_loop_verify (EV_A);
2226#endif
2227
1788#ifndef _WIN32 2228#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 2229 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 2230 if (expect_false (getpid () != curpid))
1791 { 2231 {
1792 curpid = getpid (); 2232 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 2238 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 2239 if (expect_false (postfork))
1800 if (forkcnt) 2240 if (forkcnt)
1801 { 2241 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2242 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 2243 EV_INVOKE_PENDING;
1804 } 2244 }
1805#endif 2245#endif
1806 2246
1807 /* queue prepare watchers (and execute them) */ 2247 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 2248 if (expect_false (preparecnt))
1809 { 2249 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 2251 EV_INVOKE_PENDING;
1812 } 2252 }
1813 2253
1814 if (expect_false (!activecnt)) 2254 if (expect_false (loop_done))
1815 break; 2255 break;
1816 2256
1817 /* we might have forked, so reify kernel state if necessary */ 2257 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1819 loop_fork (EV_A); 2259 loop_fork (EV_A);
1826 ev_tstamp waittime = 0.; 2266 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 2267 ev_tstamp sleeptime = 0.;
1828 2268
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2269 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1830 { 2270 {
2271 /* remember old timestamp for io_blocktime calculation */
2272 ev_tstamp prev_mn_now = mn_now;
2273
1831 /* update time to cancel out callback processing overhead */ 2274 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100); 2275 time_update (EV_A_ 1e100);
1833 2276
1834 waittime = MAX_BLOCKTIME; 2277 waittime = MAX_BLOCKTIME;
1835 2278
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2288 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1846 if (waittime > to) waittime = to; 2289 if (waittime > to) waittime = to;
1847 } 2290 }
1848#endif 2291#endif
1849 2292
2293 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 2294 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 2295 waittime = timeout_blocktime;
1852 2296
1853 sleeptime = waittime - backend_fudge; 2297 /* extra check because io_blocktime is commonly 0 */
1854
1855 if (expect_true (sleeptime > io_blocktime)) 2298 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 2299 {
2300 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2301
2302 if (sleeptime > waittime - backend_fudge)
2303 sleeptime = waittime - backend_fudge;
2304
2305 if (expect_true (sleeptime > 0.))
2306 {
1860 ev_sleep (sleeptime); 2307 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 2308 waittime -= sleeptime;
2309 }
1862 } 2310 }
1863 } 2311 }
1864 2312
2313#if EV_MINIMAL < 2
1865 ++loop_count; 2314 ++loop_count;
2315#endif
2316 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 2317 backend_poll (EV_A_ waittime);
2318 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1867 2319
1868 /* update ev_rt_now, do magic */ 2320 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 2321 time_update (EV_A_ waittime + sleeptime);
1870 } 2322 }
1871 2323
1882 2334
1883 /* queue check watchers, to be executed first */ 2335 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 2336 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2337 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1886 2338
1887 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1888 } 2340 }
1889 while (expect_true ( 2341 while (expect_true (
1890 activecnt 2342 activecnt
1891 && !loop_done 2343 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2344 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1893 )); 2345 ));
1894 2346
1895 if (loop_done == EVUNLOOP_ONE) 2347 if (loop_done == EVUNLOOP_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 2348 loop_done = EVUNLOOP_CANCEL;
2349
2350#if EV_MINIMAL < 2
2351 --loop_depth;
2352#endif
1897} 2353}
1898 2354
1899void 2355void
1900ev_unloop (EV_P_ int how) 2356ev_unloop (EV_P_ int how)
1901{ 2357{
1902 loop_done = how; 2358 loop_done = how;
1903} 2359}
1904 2360
2361void
2362ev_ref (EV_P)
2363{
2364 ++activecnt;
2365}
2366
2367void
2368ev_unref (EV_P)
2369{
2370 --activecnt;
2371}
2372
2373void
2374ev_now_update (EV_P)
2375{
2376 time_update (EV_A_ 1e100);
2377}
2378
2379void
2380ev_suspend (EV_P)
2381{
2382 ev_now_update (EV_A);
2383}
2384
2385void
2386ev_resume (EV_P)
2387{
2388 ev_tstamp mn_prev = mn_now;
2389
2390 ev_now_update (EV_A);
2391 timers_reschedule (EV_A_ mn_now - mn_prev);
2392#if EV_PERIODIC_ENABLE
2393 /* TODO: really do this? */
2394 periodics_reschedule (EV_A);
2395#endif
2396}
2397
1905/*****************************************************************************/ 2398/*****************************************************************************/
2399/* singly-linked list management, used when the expected list length is short */
1906 2400
1907void inline_size 2401inline_size void
1908wlist_add (WL *head, WL elem) 2402wlist_add (WL *head, WL elem)
1909{ 2403{
1910 elem->next = *head; 2404 elem->next = *head;
1911 *head = elem; 2405 *head = elem;
1912} 2406}
1913 2407
1914void inline_size 2408inline_size void
1915wlist_del (WL *head, WL elem) 2409wlist_del (WL *head, WL elem)
1916{ 2410{
1917 while (*head) 2411 while (*head)
1918 { 2412 {
1919 if (*head == elem) 2413 if (expect_true (*head == elem))
1920 { 2414 {
1921 *head = elem->next; 2415 *head = elem->next;
1922 return; 2416 break;
1923 } 2417 }
1924 2418
1925 head = &(*head)->next; 2419 head = &(*head)->next;
1926 } 2420 }
1927} 2421}
1928 2422
1929void inline_speed 2423/* internal, faster, version of ev_clear_pending */
2424inline_speed void
1930clear_pending (EV_P_ W w) 2425clear_pending (EV_P_ W w)
1931{ 2426{
1932 if (w->pending) 2427 if (w->pending)
1933 { 2428 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2429 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 2430 w->pending = 0;
1936 } 2431 }
1937} 2432}
1938 2433
1939int 2434int
1943 int pending = w_->pending; 2438 int pending = w_->pending;
1944 2439
1945 if (expect_true (pending)) 2440 if (expect_true (pending))
1946 { 2441 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2442 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2443 p->w = (W)&pending_w;
1948 w_->pending = 0; 2444 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 2445 return p->events;
1951 } 2446 }
1952 else 2447 else
1953 return 0; 2448 return 0;
1954} 2449}
1955 2450
1956void inline_size 2451inline_size void
1957pri_adjust (EV_P_ W w) 2452pri_adjust (EV_P_ W w)
1958{ 2453{
1959 int pri = w->priority; 2454 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2455 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2456 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 2457 ev_set_priority (w, pri);
1963} 2458}
1964 2459
1965void inline_speed 2460inline_speed void
1966ev_start (EV_P_ W w, int active) 2461ev_start (EV_P_ W w, int active)
1967{ 2462{
1968 pri_adjust (EV_A_ w); 2463 pri_adjust (EV_A_ w);
1969 w->active = active; 2464 w->active = active;
1970 ev_ref (EV_A); 2465 ev_ref (EV_A);
1971} 2466}
1972 2467
1973void inline_size 2468inline_size void
1974ev_stop (EV_P_ W w) 2469ev_stop (EV_P_ W w)
1975{ 2470{
1976 ev_unref (EV_A); 2471 ev_unref (EV_A);
1977 w->active = 0; 2472 w->active = 0;
1978} 2473}
1985 int fd = w->fd; 2480 int fd = w->fd;
1986 2481
1987 if (expect_false (ev_is_active (w))) 2482 if (expect_false (ev_is_active (w)))
1988 return; 2483 return;
1989 2484
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 2485 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2486 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2487
2488 EV_FREQUENT_CHECK;
1991 2489
1992 ev_start (EV_A_ (W)w, 1); 2490 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2491 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 2492 wlist_add (&anfds[fd].head, (WL)w);
1995 2493
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2494 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 2495 w->events &= ~EV__IOFDSET;
2496
2497 EV_FREQUENT_CHECK;
1998} 2498}
1999 2499
2000void noinline 2500void noinline
2001ev_io_stop (EV_P_ ev_io *w) 2501ev_io_stop (EV_P_ ev_io *w)
2002{ 2502{
2003 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
2005 return; 2505 return;
2006 2506
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2507 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2508
2509 EV_FREQUENT_CHECK;
2008 2510
2009 wlist_del (&anfds[w->fd].head, (WL)w); 2511 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 2512 ev_stop (EV_A_ (W)w);
2011 2513
2012 fd_change (EV_A_ w->fd, 1); 2514 fd_change (EV_A_ w->fd, 1);
2515
2516 EV_FREQUENT_CHECK;
2013} 2517}
2014 2518
2015void noinline 2519void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 2520ev_timer_start (EV_P_ ev_timer *w)
2017{ 2521{
2018 if (expect_false (ev_is_active (w))) 2522 if (expect_false (ev_is_active (w)))
2019 return; 2523 return;
2020 2524
2021 ev_at (w) += mn_now; 2525 ev_at (w) += mn_now;
2022 2526
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2527 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 2528
2529 EV_FREQUENT_CHECK;
2530
2531 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2532 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2533 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 2534 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 2535 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 2536 upheap (timers, ev_active (w));
2030 2537
2538 EV_FREQUENT_CHECK;
2539
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2540 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 2541}
2033 2542
2034void noinline 2543void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 2544ev_timer_stop (EV_P_ ev_timer *w)
2036{ 2545{
2037 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2039 return; 2548 return;
2040 2549
2550 EV_FREQUENT_CHECK;
2551
2041 { 2552 {
2042 int active = ev_active (w); 2553 int active = ev_active (w);
2043 2554
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2555 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 2556
2557 --timercnt;
2558
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 2559 if (expect_true (active < timercnt + HEAP0))
2047 { 2560 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 2561 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 2562 adjustheap (timers, timercnt, active);
2050 } 2563 }
2051
2052 --timercnt;
2053 } 2564 }
2565
2566 EV_FREQUENT_CHECK;
2054 2567
2055 ev_at (w) -= mn_now; 2568 ev_at (w) -= mn_now;
2056 2569
2057 ev_stop (EV_A_ (W)w); 2570 ev_stop (EV_A_ (W)w);
2058} 2571}
2059 2572
2060void noinline 2573void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 2574ev_timer_again (EV_P_ ev_timer *w)
2062{ 2575{
2576 EV_FREQUENT_CHECK;
2577
2063 if (ev_is_active (w)) 2578 if (ev_is_active (w))
2064 { 2579 {
2065 if (w->repeat) 2580 if (w->repeat)
2066 { 2581 {
2067 ev_at (w) = mn_now + w->repeat; 2582 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 2583 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 2584 adjustheap (timers, timercnt, ev_active (w));
2070 } 2585 }
2071 else 2586 else
2072 ev_timer_stop (EV_A_ w); 2587 ev_timer_stop (EV_A_ w);
2073 } 2588 }
2074 else if (w->repeat) 2589 else if (w->repeat)
2075 { 2590 {
2076 ev_at (w) = w->repeat; 2591 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 2592 ev_timer_start (EV_A_ w);
2078 } 2593 }
2594
2595 EV_FREQUENT_CHECK;
2596}
2597
2598ev_tstamp
2599ev_timer_remaining (EV_P_ ev_timer *w)
2600{
2601 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 2602}
2080 2603
2081#if EV_PERIODIC_ENABLE 2604#if EV_PERIODIC_ENABLE
2082void noinline 2605void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 2606ev_periodic_start (EV_P_ ev_periodic *w)
2087 2610
2088 if (w->reschedule_cb) 2611 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2612 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 2613 else if (w->interval)
2091 { 2614 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2615 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 2616 /* this formula differs from the one in periodic_reify because we do not always round up */
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 2618 }
2096 else 2619 else
2097 ev_at (w) = w->offset; 2620 ev_at (w) = w->offset;
2098 2621
2622 EV_FREQUENT_CHECK;
2623
2624 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2625 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2626 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2627 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 2628 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 2629 upheap (periodics, ev_active (w));
2104 2630
2631 EV_FREQUENT_CHECK;
2632
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2633 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 2634}
2107 2635
2108void noinline 2636void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 2637ev_periodic_stop (EV_P_ ev_periodic *w)
2110{ 2638{
2111 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
2113 return; 2641 return;
2114 2642
2643 EV_FREQUENT_CHECK;
2644
2115 { 2645 {
2116 int active = ev_active (w); 2646 int active = ev_active (w);
2117 2647
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2648 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 2649
2650 --periodiccnt;
2651
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2652 if (expect_true (active < periodiccnt + HEAP0))
2121 { 2653 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2654 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 2655 adjustheap (periodics, periodiccnt, active);
2124 } 2656 }
2125
2126 --periodiccnt;
2127 } 2657 }
2658
2659 EV_FREQUENT_CHECK;
2128 2660
2129 ev_stop (EV_A_ (W)w); 2661 ev_stop (EV_A_ (W)w);
2130} 2662}
2131 2663
2132void noinline 2664void noinline
2143#endif 2675#endif
2144 2676
2145void noinline 2677void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 2678ev_signal_start (EV_P_ ev_signal *w)
2147{ 2679{
2148#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif
2151 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
2152 return; 2681 return;
2153 2682
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2683 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2155 2684
2156 evpipe_init (EV_A); 2685#if EV_MULTIPLICITY
2686 assert (("libev: a signal must not be attached to two different loops",
2687 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2157 2688
2689 signals [w->signum - 1].loop = EV_A;
2690#endif
2691
2692 EV_FREQUENT_CHECK;
2693
2694#if EV_USE_SIGNALFD
2695 if (sigfd == -2)
2158 { 2696 {
2159#ifndef _WIN32 2697 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 2698 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 2699 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 2700
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2701 if (sigfd >= 0)
2702 {
2703 fd_intern (sigfd); /* doing it twice will not hurt */
2166 2704
2167#ifndef _WIN32 2705 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 2706
2169#endif 2707 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2708 ev_set_priority (&sigfd_w, EV_MAXPRI);
2709 ev_io_start (EV_A_ &sigfd_w);
2710 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2711 }
2170 } 2712 }
2713
2714 if (sigfd >= 0)
2715 {
2716 /* TODO: check .head */
2717 sigaddset (&sigfd_set, w->signum);
2718 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2719
2720 signalfd (sigfd, &sigfd_set, 0);
2721 }
2722#endif
2171 2723
2172 ev_start (EV_A_ (W)w, 1); 2724 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 2725 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 2726
2175 if (!((WL)w)->next) 2727 if (!((WL)w)->next)
2728# if EV_USE_SIGNALFD
2729 if (sigfd < 0) /*TODO*/
2730# endif
2176 { 2731 {
2177#if _WIN32 2732# if _WIN32
2178 signal (w->signum, ev_sighandler); 2733 signal (w->signum, ev_sighandler);
2179#else 2734# else
2180 struct sigaction sa; 2735 struct sigaction sa;
2736
2737 evpipe_init (EV_A);
2738
2181 sa.sa_handler = ev_sighandler; 2739 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 2740 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2741 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 2742 sigaction (w->signum, &sa, 0);
2743
2744 sigemptyset (&sa.sa_mask);
2745 sigaddset (&sa.sa_mask, w->signum);
2746 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2185#endif 2747#endif
2186 } 2748 }
2749
2750 EV_FREQUENT_CHECK;
2187} 2751}
2188 2752
2189void noinline 2753void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 2754ev_signal_stop (EV_P_ ev_signal *w)
2191{ 2755{
2192 clear_pending (EV_A_ (W)w); 2756 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2757 if (expect_false (!ev_is_active (w)))
2194 return; 2758 return;
2195 2759
2760 EV_FREQUENT_CHECK;
2761
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 2762 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2198 2764
2199 if (!signals [w->signum - 1].head) 2765 if (!signals [w->signum - 1].head)
2766 {
2767#if EV_MULTIPLICITY
2768 signals [w->signum - 1].loop = 0; /* unattach from signal */
2769#endif
2770#if EV_USE_SIGNALFD
2771 if (sigfd >= 0)
2772 {
2773 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2774 sigdelset (&sigfd_set, w->signum);
2775 signalfd (sigfd, &sigfd_set, 0);
2776 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2777 /*TODO: maybe unblock signal? */
2778 }
2779 else
2780#endif
2200 signal (w->signum, SIG_DFL); 2781 signal (w->signum, SIG_DFL);
2782 }
2783
2784 EV_FREQUENT_CHECK;
2201} 2785}
2202 2786
2203void 2787void
2204ev_child_start (EV_P_ ev_child *w) 2788ev_child_start (EV_P_ ev_child *w)
2205{ 2789{
2206#if EV_MULTIPLICITY 2790#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2791 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 2792#endif
2209 if (expect_false (ev_is_active (w))) 2793 if (expect_false (ev_is_active (w)))
2210 return; 2794 return;
2211 2795
2796 EV_FREQUENT_CHECK;
2797
2212 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2799 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2800
2801 EV_FREQUENT_CHECK;
2214} 2802}
2215 2803
2216void 2804void
2217ev_child_stop (EV_P_ ev_child *w) 2805ev_child_stop (EV_P_ ev_child *w)
2218{ 2806{
2219 clear_pending (EV_A_ (W)w); 2807 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2808 if (expect_false (!ev_is_active (w)))
2221 return; 2809 return;
2222 2810
2811 EV_FREQUENT_CHECK;
2812
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2813 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2225} 2817}
2226 2818
2227#if EV_STAT_ENABLE 2819#if EV_STAT_ENABLE
2228 2820
2229# ifdef _WIN32 2821# ifdef _WIN32
2230# undef lstat 2822# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 2823# define lstat(a,b) _stati64 (a,b)
2232# endif 2824# endif
2233 2825
2234#define DEF_STAT_INTERVAL 5.0074891 2826#define DEF_STAT_INTERVAL 5.0074891
2827#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 2828#define MIN_STAT_INTERVAL 0.1074891
2236 2829
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 2831
2239#if EV_USE_INOTIFY 2832#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 2833# define EV_INOTIFY_BUFSIZE 8192
2244{ 2837{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 2839
2247 if (w->wd < 0) 2840 if (w->wd < 0)
2248 { 2841 {
2842 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2843 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2250 2844
2251 /* monitor some parent directory for speedup hints */ 2845 /* monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2846 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 2847 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2848 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 2849 {
2256 char path [4096]; 2850 char path [4096];
2257 strcpy (path, w->path); 2851 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2855 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2856 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 2857
2264 char *pend = strrchr (path, '/'); 2858 char *pend = strrchr (path, '/');
2265 2859
2266 if (!pend) 2860 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 2861 break;
2268 2862
2269 *pend = 0; 2863 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 2864 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 2865 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2866 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 2867 }
2274 } 2868 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 2869
2278 if (w->wd >= 0) 2870 if (w->wd >= 0)
2871 {
2872 struct statfs sfs;
2873
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2874 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2875
2876 /* now local changes will be tracked by inotify, but remote changes won't */
2877 /* unless the filesystem it known to be local, we therefore still poll */
2878 /* also do poll on <2.6.25, but with normal frequency */
2879
2880 if (fs_2625 && !statfs (w->path, &sfs))
2881 if (sfs.f_type == 0x1373 /* devfs */
2882 || sfs.f_type == 0xEF53 /* ext2/3 */
2883 || sfs.f_type == 0x3153464a /* jfs */
2884 || sfs.f_type == 0x52654973 /* reiser3 */
2885 || sfs.f_type == 0x01021994 /* tempfs */
2886 || sfs.f_type == 0x58465342 /* xfs */)
2887 return;
2888
2889 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2890 ev_timer_again (EV_A_ &w->timer);
2891 }
2280} 2892}
2281 2893
2282static void noinline 2894static void noinline
2283infy_del (EV_P_ ev_stat *w) 2895infy_del (EV_P_ ev_stat *w)
2284{ 2896{
2298 2910
2299static void noinline 2911static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2912infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 2913{
2302 if (slot < 0) 2914 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 2915 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2916 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 2917 infy_wd (EV_A_ slot, wd, ev);
2306 else 2918 else
2307 { 2919 {
2308 WL w_; 2920 WL w_;
2314 2926
2315 if (w->wd == wd || wd == -1) 2927 if (w->wd == wd || wd == -1)
2316 { 2928 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2929 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 2930 {
2931 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2319 w->wd = -1; 2932 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 2933 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 2934 }
2322 2935
2323 stat_timer_cb (EV_A_ &w->timer, 0); 2936 stat_timer_cb (EV_A_ &w->timer, 0);
2336 2949
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2950 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2951 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2339} 2952}
2340 2953
2341void inline_size 2954inline_size void
2955check_2625 (EV_P)
2956{
2957 /* kernels < 2.6.25 are borked
2958 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2959 */
2960 struct utsname buf;
2961 int major, minor, micro;
2962
2963 if (uname (&buf))
2964 return;
2965
2966 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2967 return;
2968
2969 if (major < 2
2970 || (major == 2 && minor < 6)
2971 || (major == 2 && minor == 6 && micro < 25))
2972 return;
2973
2974 fs_2625 = 1;
2975}
2976
2977inline_size void
2342infy_init (EV_P) 2978infy_init (EV_P)
2343{ 2979{
2344 if (fs_fd != -2) 2980 if (fs_fd != -2)
2345 return; 2981 return;
2982
2983 fs_fd = -1;
2984
2985 check_2625 (EV_A);
2346 2986
2347 fs_fd = inotify_init (); 2987 fs_fd = inotify_init ();
2348 2988
2349 if (fs_fd >= 0) 2989 if (fs_fd >= 0)
2350 { 2990 {
2352 ev_set_priority (&fs_w, EV_MAXPRI); 2992 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 2993 ev_io_start (EV_A_ &fs_w);
2354 } 2994 }
2355} 2995}
2356 2996
2357void inline_size 2997inline_size void
2358infy_fork (EV_P) 2998infy_fork (EV_P)
2359{ 2999{
2360 int slot; 3000 int slot;
2361 3001
2362 if (fs_fd < 0) 3002 if (fs_fd < 0)
2378 w->wd = -1; 3018 w->wd = -1;
2379 3019
2380 if (fs_fd >= 0) 3020 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 3021 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 3022 else
2383 ev_timer_start (EV_A_ &w->timer); 3023 ev_timer_again (EV_A_ &w->timer);
2384 } 3024 }
2385
2386 } 3025 }
2387} 3026}
2388 3027
3028#endif
3029
3030#ifdef _WIN32
3031# define EV_LSTAT(p,b) _stati64 (p, b)
3032#else
3033# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 3034#endif
2390 3035
2391void 3036void
2392ev_stat_stat (EV_P_ ev_stat *w) 3037ev_stat_stat (EV_P_ ev_stat *w)
2393{ 3038{
2420 || w->prev.st_atime != w->attr.st_atime 3065 || w->prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 3066 || w->prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 3067 || w->prev.st_ctime != w->attr.st_ctime
2423 ) { 3068 ) {
2424 #if EV_USE_INOTIFY 3069 #if EV_USE_INOTIFY
3070 if (fs_fd >= 0)
3071 {
2425 infy_del (EV_A_ w); 3072 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 3073 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 3074 ev_stat_stat (EV_A_ w); /* avoid race... */
3075 }
2428 #endif 3076 #endif
2429 3077
2430 ev_feed_event (EV_A_ w, EV_STAT); 3078 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 3079 }
2432} 3080}
2435ev_stat_start (EV_P_ ev_stat *w) 3083ev_stat_start (EV_P_ ev_stat *w)
2436{ 3084{
2437 if (expect_false (ev_is_active (w))) 3085 if (expect_false (ev_is_active (w)))
2438 return; 3086 return;
2439 3087
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 3088 ev_stat_stat (EV_A_ w);
2445 3089
3090 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 3091 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 3092
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3093 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 3094 ev_set_priority (&w->timer, ev_priority (w));
2451 3095
2452#if EV_USE_INOTIFY 3096#if EV_USE_INOTIFY
2453 infy_init (EV_A); 3097 infy_init (EV_A);
2454 3098
2455 if (fs_fd >= 0) 3099 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 3100 infy_add (EV_A_ w);
2457 else 3101 else
2458#endif 3102#endif
2459 ev_timer_start (EV_A_ &w->timer); 3103 ev_timer_again (EV_A_ &w->timer);
2460 3104
2461 ev_start (EV_A_ (W)w, 1); 3105 ev_start (EV_A_ (W)w, 1);
3106
3107 EV_FREQUENT_CHECK;
2462} 3108}
2463 3109
2464void 3110void
2465ev_stat_stop (EV_P_ ev_stat *w) 3111ev_stat_stop (EV_P_ ev_stat *w)
2466{ 3112{
2467 clear_pending (EV_A_ (W)w); 3113 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 3114 if (expect_false (!ev_is_active (w)))
2469 return; 3115 return;
2470 3116
3117 EV_FREQUENT_CHECK;
3118
2471#if EV_USE_INOTIFY 3119#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 3120 infy_del (EV_A_ w);
2473#endif 3121#endif
2474 ev_timer_stop (EV_A_ &w->timer); 3122 ev_timer_stop (EV_A_ &w->timer);
2475 3123
2476 ev_stop (EV_A_ (W)w); 3124 ev_stop (EV_A_ (W)w);
3125
3126 EV_FREQUENT_CHECK;
2477} 3127}
2478#endif 3128#endif
2479 3129
2480#if EV_IDLE_ENABLE 3130#if EV_IDLE_ENABLE
2481void 3131void
2483{ 3133{
2484 if (expect_false (ev_is_active (w))) 3134 if (expect_false (ev_is_active (w)))
2485 return; 3135 return;
2486 3136
2487 pri_adjust (EV_A_ (W)w); 3137 pri_adjust (EV_A_ (W)w);
3138
3139 EV_FREQUENT_CHECK;
2488 3140
2489 { 3141 {
2490 int active = ++idlecnt [ABSPRI (w)]; 3142 int active = ++idlecnt [ABSPRI (w)];
2491 3143
2492 ++idleall; 3144 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 3145 ev_start (EV_A_ (W)w, active);
2494 3146
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3147 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 3148 idles [ABSPRI (w)][active - 1] = w;
2497 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
2498} 3152}
2499 3153
2500void 3154void
2501ev_idle_stop (EV_P_ ev_idle *w) 3155ev_idle_stop (EV_P_ ev_idle *w)
2502{ 3156{
2503 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2505 return; 3159 return;
2506 3160
3161 EV_FREQUENT_CHECK;
3162
2507 { 3163 {
2508 int active = ev_active (w); 3164 int active = ev_active (w);
2509 3165
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3166 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3167 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 3168
2513 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
2514 --idleall; 3170 --idleall;
2515 } 3171 }
3172
3173 EV_FREQUENT_CHECK;
2516} 3174}
2517#endif 3175#endif
2518 3176
2519void 3177void
2520ev_prepare_start (EV_P_ ev_prepare *w) 3178ev_prepare_start (EV_P_ ev_prepare *w)
2521{ 3179{
2522 if (expect_false (ev_is_active (w))) 3180 if (expect_false (ev_is_active (w)))
2523 return; 3181 return;
3182
3183 EV_FREQUENT_CHECK;
2524 3184
2525 ev_start (EV_A_ (W)w, ++preparecnt); 3185 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3186 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 3187 prepares [preparecnt - 1] = w;
3188
3189 EV_FREQUENT_CHECK;
2528} 3190}
2529 3191
2530void 3192void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 3193ev_prepare_stop (EV_P_ ev_prepare *w)
2532{ 3194{
2533 clear_pending (EV_A_ (W)w); 3195 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 3196 if (expect_false (!ev_is_active (w)))
2535 return; 3197 return;
2536 3198
3199 EV_FREQUENT_CHECK;
3200
2537 { 3201 {
2538 int active = ev_active (w); 3202 int active = ev_active (w);
2539 3203
2540 prepares [active - 1] = prepares [--preparecnt]; 3204 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 3205 ev_active (prepares [active - 1]) = active;
2542 } 3206 }
2543 3207
2544 ev_stop (EV_A_ (W)w); 3208 ev_stop (EV_A_ (W)w);
3209
3210 EV_FREQUENT_CHECK;
2545} 3211}
2546 3212
2547void 3213void
2548ev_check_start (EV_P_ ev_check *w) 3214ev_check_start (EV_P_ ev_check *w)
2549{ 3215{
2550 if (expect_false (ev_is_active (w))) 3216 if (expect_false (ev_is_active (w)))
2551 return; 3217 return;
3218
3219 EV_FREQUENT_CHECK;
2552 3220
2553 ev_start (EV_A_ (W)w, ++checkcnt); 3221 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3222 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 3223 checks [checkcnt - 1] = w;
3224
3225 EV_FREQUENT_CHECK;
2556} 3226}
2557 3227
2558void 3228void
2559ev_check_stop (EV_P_ ev_check *w) 3229ev_check_stop (EV_P_ ev_check *w)
2560{ 3230{
2561 clear_pending (EV_A_ (W)w); 3231 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 3232 if (expect_false (!ev_is_active (w)))
2563 return; 3233 return;
2564 3234
3235 EV_FREQUENT_CHECK;
3236
2565 { 3237 {
2566 int active = ev_active (w); 3238 int active = ev_active (w);
2567 3239
2568 checks [active - 1] = checks [--checkcnt]; 3240 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 3241 ev_active (checks [active - 1]) = active;
2570 } 3242 }
2571 3243
2572 ev_stop (EV_A_ (W)w); 3244 ev_stop (EV_A_ (W)w);
3245
3246 EV_FREQUENT_CHECK;
2573} 3247}
2574 3248
2575#if EV_EMBED_ENABLE 3249#if EV_EMBED_ENABLE
2576void noinline 3250void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 3251ev_embed_sweep (EV_P_ ev_embed *w)
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3268embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 3269{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3270 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 3271
2598 { 3272 {
2599 struct ev_loop *loop = w->other; 3273 EV_P = w->other;
2600 3274
2601 while (fdchangecnt) 3275 while (fdchangecnt)
2602 { 3276 {
2603 fd_reify (EV_A); 3277 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2605 } 3279 }
2606 } 3280 }
2607} 3281}
2608 3282
3283static void
3284embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3285{
3286 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3287
3288 ev_embed_stop (EV_A_ w);
3289
3290 {
3291 EV_P = w->other;
3292
3293 ev_loop_fork (EV_A);
3294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3295 }
3296
3297 ev_embed_start (EV_A_ w);
3298}
3299
2609#if 0 3300#if 0
2610static void 3301static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3302embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{ 3303{
2613 ev_idle_stop (EV_A_ idle); 3304 ev_idle_stop (EV_A_ idle);
2619{ 3310{
2620 if (expect_false (ev_is_active (w))) 3311 if (expect_false (ev_is_active (w)))
2621 return; 3312 return;
2622 3313
2623 { 3314 {
2624 struct ev_loop *loop = w->other; 3315 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3316 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3317 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 3318 }
3319
3320 EV_FREQUENT_CHECK;
2628 3321
2629 ev_set_priority (&w->io, ev_priority (w)); 3322 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 3323 ev_io_start (EV_A_ &w->io);
2631 3324
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 3325 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 3326 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 3327 ev_prepare_start (EV_A_ &w->prepare);
2635 3328
3329 ev_fork_init (&w->fork, embed_fork_cb);
3330 ev_fork_start (EV_A_ &w->fork);
3331
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3332 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 3333
2638 ev_start (EV_A_ (W)w, 1); 3334 ev_start (EV_A_ (W)w, 1);
3335
3336 EV_FREQUENT_CHECK;
2639} 3337}
2640 3338
2641void 3339void
2642ev_embed_stop (EV_P_ ev_embed *w) 3340ev_embed_stop (EV_P_ ev_embed *w)
2643{ 3341{
2644 clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 3343 if (expect_false (!ev_is_active (w)))
2646 return; 3344 return;
2647 3345
3346 EV_FREQUENT_CHECK;
3347
2648 ev_io_stop (EV_A_ &w->io); 3348 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 3349 ev_prepare_stop (EV_A_ &w->prepare);
3350 ev_fork_stop (EV_A_ &w->fork);
2650 3351
2651 ev_stop (EV_A_ (W)w); 3352 EV_FREQUENT_CHECK;
2652} 3353}
2653#endif 3354#endif
2654 3355
2655#if EV_FORK_ENABLE 3356#if EV_FORK_ENABLE
2656void 3357void
2657ev_fork_start (EV_P_ ev_fork *w) 3358ev_fork_start (EV_P_ ev_fork *w)
2658{ 3359{
2659 if (expect_false (ev_is_active (w))) 3360 if (expect_false (ev_is_active (w)))
2660 return; 3361 return;
3362
3363 EV_FREQUENT_CHECK;
2661 3364
2662 ev_start (EV_A_ (W)w, ++forkcnt); 3365 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3366 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 3367 forks [forkcnt - 1] = w;
3368
3369 EV_FREQUENT_CHECK;
2665} 3370}
2666 3371
2667void 3372void
2668ev_fork_stop (EV_P_ ev_fork *w) 3373ev_fork_stop (EV_P_ ev_fork *w)
2669{ 3374{
2670 clear_pending (EV_A_ (W)w); 3375 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 3376 if (expect_false (!ev_is_active (w)))
2672 return; 3377 return;
2673 3378
3379 EV_FREQUENT_CHECK;
3380
2674 { 3381 {
2675 int active = ev_active (w); 3382 int active = ev_active (w);
2676 3383
2677 forks [active - 1] = forks [--forkcnt]; 3384 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 3385 ev_active (forks [active - 1]) = active;
2679 } 3386 }
2680 3387
2681 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
2682} 3391}
2683#endif 3392#endif
2684 3393
2685#if EV_ASYNC_ENABLE 3394#if EV_ASYNC_ENABLE
2686void 3395void
2688{ 3397{
2689 if (expect_false (ev_is_active (w))) 3398 if (expect_false (ev_is_active (w)))
2690 return; 3399 return;
2691 3400
2692 evpipe_init (EV_A); 3401 evpipe_init (EV_A);
3402
3403 EV_FREQUENT_CHECK;
2693 3404
2694 ev_start (EV_A_ (W)w, ++asynccnt); 3405 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3406 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 3407 asyncs [asynccnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
2697} 3410}
2698 3411
2699void 3412void
2700ev_async_stop (EV_P_ ev_async *w) 3413ev_async_stop (EV_P_ ev_async *w)
2701{ 3414{
2702 clear_pending (EV_A_ (W)w); 3415 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3416 if (expect_false (!ev_is_active (w)))
2704 return; 3417 return;
2705 3418
3419 EV_FREQUENT_CHECK;
3420
2706 { 3421 {
2707 int active = ev_active (w); 3422 int active = ev_active (w);
2708 3423
2709 asyncs [active - 1] = asyncs [--asynccnt]; 3424 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 3425 ev_active (asyncs [active - 1]) = active;
2711 } 3426 }
2712 3427
2713 ev_stop (EV_A_ (W)w); 3428 ev_stop (EV_A_ (W)w);
3429
3430 EV_FREQUENT_CHECK;
2714} 3431}
2715 3432
2716void 3433void
2717ev_async_send (EV_P_ ev_async *w) 3434ev_async_send (EV_P_ ev_async *w)
2718{ 3435{
2719 w->sent = 1; 3436 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 3437 evpipe_write (EV_A_ &async_pending);
2721} 3438}
2722#endif 3439#endif
2723 3440
2724/*****************************************************************************/ 3441/*****************************************************************************/
2725 3442
2735once_cb (EV_P_ struct ev_once *once, int revents) 3452once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 3453{
2737 void (*cb)(int revents, void *arg) = once->cb; 3454 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 3455 void *arg = once->arg;
2739 3456
2740 ev_io_stop (EV_A_ &once->io); 3457 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 3458 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 3459 ev_free (once);
2743 3460
2744 cb (revents, arg); 3461 cb (revents, arg);
2745} 3462}
2746 3463
2747static void 3464static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 3465once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 3466{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3467 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3468
3469 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 3470}
2752 3471
2753static void 3472static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 3473once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 3474{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3476
3477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 3478}
2758 3479
2759void 3480void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2761{ 3482{
2783 ev_timer_set (&once->to, timeout, 0.); 3504 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 3505 ev_timer_start (EV_A_ &once->to);
2785 } 3506 }
2786} 3507}
2787 3508
3509/*****************************************************************************/
3510
3511#if EV_WALK_ENABLE
3512void
3513ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3514{
3515 int i, j;
3516 ev_watcher_list *wl, *wn;
3517
3518 if (types & (EV_IO | EV_EMBED))
3519 for (i = 0; i < anfdmax; ++i)
3520 for (wl = anfds [i].head; wl; )
3521 {
3522 wn = wl->next;
3523
3524#if EV_EMBED_ENABLE
3525 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3526 {
3527 if (types & EV_EMBED)
3528 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3529 }
3530 else
3531#endif
3532#if EV_USE_INOTIFY
3533 if (ev_cb ((ev_io *)wl) == infy_cb)
3534 ;
3535 else
3536#endif
3537 if ((ev_io *)wl != &pipe_w)
3538 if (types & EV_IO)
3539 cb (EV_A_ EV_IO, wl);
3540
3541 wl = wn;
3542 }
3543
3544 if (types & (EV_TIMER | EV_STAT))
3545 for (i = timercnt + HEAP0; i-- > HEAP0; )
3546#if EV_STAT_ENABLE
3547 /*TODO: timer is not always active*/
3548 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3549 {
3550 if (types & EV_STAT)
3551 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3552 }
3553 else
3554#endif
3555 if (types & EV_TIMER)
3556 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3557
3558#if EV_PERIODIC_ENABLE
3559 if (types & EV_PERIODIC)
3560 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3561 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3562#endif
3563
3564#if EV_IDLE_ENABLE
3565 if (types & EV_IDLE)
3566 for (j = NUMPRI; i--; )
3567 for (i = idlecnt [j]; i--; )
3568 cb (EV_A_ EV_IDLE, idles [j][i]);
3569#endif
3570
3571#if EV_FORK_ENABLE
3572 if (types & EV_FORK)
3573 for (i = forkcnt; i--; )
3574 if (ev_cb (forks [i]) != embed_fork_cb)
3575 cb (EV_A_ EV_FORK, forks [i]);
3576#endif
3577
3578#if EV_ASYNC_ENABLE
3579 if (types & EV_ASYNC)
3580 for (i = asynccnt; i--; )
3581 cb (EV_A_ EV_ASYNC, asyncs [i]);
3582#endif
3583
3584 if (types & EV_PREPARE)
3585 for (i = preparecnt; i--; )
3586#if EV_EMBED_ENABLE
3587 if (ev_cb (prepares [i]) != embed_prepare_cb)
3588#endif
3589 cb (EV_A_ EV_PREPARE, prepares [i]);
3590
3591 if (types & EV_CHECK)
3592 for (i = checkcnt; i--; )
3593 cb (EV_A_ EV_CHECK, checks [i]);
3594
3595 if (types & EV_SIGNAL)
3596 for (i = 0; i < EV_NSIG - 1; ++i)
3597 for (wl = signals [i].head; wl; )
3598 {
3599 wn = wl->next;
3600 cb (EV_A_ EV_SIGNAL, wl);
3601 wl = wn;
3602 }
3603
3604 if (types & EV_CHILD)
3605 for (i = EV_PID_HASHSIZE; i--; )
3606 for (wl = childs [i]; wl; )
3607 {
3608 wn = wl->next;
3609 cb (EV_A_ EV_CHILD, wl);
3610 wl = wn;
3611 }
3612/* EV_STAT 0x00001000 /* stat data changed */
3613/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3614}
3615#endif
3616
2788#if EV_MULTIPLICITY 3617#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 3618 #include "ev_wrap.h"
2790#endif 3619#endif
2791 3620
2792#ifdef __cplusplus 3621#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines