ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.54 by root, Sun Nov 4 00:24:16 2007 UTC vs.
Revision 1.314 by root, Wed Aug 26 17:31:20 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
33#endif 154#endif
34 155
35#include <math.h> 156#include <math.h>
36#include <stdlib.h> 157#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 158#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 159#include <stddef.h>
41 160
42#include <stdio.h> 161#include <stdio.h>
43 162
44#include <assert.h> 163#include <assert.h>
45#include <errno.h> 164#include <errno.h>
46#include <sys/types.h> 165#include <sys/types.h>
166#include <time.h>
167
168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
47#ifndef WIN32 176#ifndef _WIN32
177# include <sys/time.h>
48# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
49#endif 186# endif
50#include <sys/time.h> 187#endif
51#include <time.h>
52 188
53/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
54 225
55#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
56# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
232#endif
233
234#ifndef EV_USE_REALTIME
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
57#endif 244#endif
58 245
59#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
61#endif 248#endif
62 249
63#ifndef EV_USEV_POLL 250#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 251# ifdef _WIN32
252# define EV_USE_POLL 0
253# else
254# define EV_USE_POLL 1
255# endif
65#endif 256#endif
66 257
67#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
68# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
69#endif 264#endif
70 265
71#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
73#endif 268#endif
74 269
75#ifndef EV_USE_REALTIME 270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
76# define EV_USE_REALTIME 1 276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
77#endif 279# endif
280#endif
78 281
79/**/ 282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
80 347
81#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
83# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
84#endif 351#endif
86#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
87# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
89#endif 356#endif
90 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
91/**/ 435/**/
92 436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
442
443/*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
452
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 455/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
97 456
98#include "ev.h"
99
100#if __GNUC__ >= 3 457#if __GNUC__ >= 4
101# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 459# define noinline __attribute__ ((noinline))
103#else 460#else
104# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
105# define inline static 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
106#endif 466#endif
107 467
108#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
110 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
112#define ABSPRI(w) ((w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
113 485
486#define EMPTY /* required for microsofts broken pseudo-c compiler */
487#define EMPTY2(a,b) /* used to suppress some warnings */
488
114typedef struct ev_watcher *W; 489typedef ev_watcher *W;
115typedef struct ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
117 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
515
516#ifdef _WIN32
517# include "ev_win32.c"
518#endif
119 519
120/*****************************************************************************/ 520/*****************************************************************************/
121 521
522static void (*syserr_cb)(const char *msg);
523
524void
525ev_set_syserr_cb (void (*cb)(const char *msg))
526{
527 syserr_cb = cb;
528}
529
530static void noinline
531ev_syserr (const char *msg)
532{
533 if (!msg)
534 msg = "(libev) system error";
535
536 if (syserr_cb)
537 syserr_cb (msg);
538 else
539 {
540 perror (msg);
541 abort ();
542 }
543}
544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
561
562void
563ev_set_allocator (void *(*cb)(void *ptr, long size))
564{
565 alloc = cb;
566}
567
568inline_speed void *
569ev_realloc (void *ptr, long size)
570{
571 ptr = alloc (ptr, size);
572
573 if (!ptr && size)
574 {
575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
576 abort ();
577 }
578
579 return ptr;
580}
581
582#define ev_malloc(size) ev_realloc (0, (size))
583#define ev_free(ptr) ev_realloc ((ptr), 0)
584
585/*****************************************************************************/
586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
122typedef struct 591typedef struct
123{ 592{
124 struct ev_watcher_list *head; 593 WL head;
125 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
126 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
601#if EV_SELECT_IS_WINSOCKET
602 SOCKET handle;
603#endif
127} ANFD; 604} ANFD;
128 605
606/* stores the pending event set for a given watcher */
129typedef struct 607typedef struct
130{ 608{
131 W w; 609 W w;
132 int events; 610 int events; /* the pending event set for the given watcher */
133} ANPENDING; 611} ANPENDING;
134 612
135#ifdef EV_MULTIPLICITY 613#if EV_USE_INOTIFY
136 614/* hash table entry per inotify-id */
137struct ev_loop 615typedef struct
138{ 616{
139# define VAR(name,decl) decl; 617 WL head;
140# include "ev_vars.h" 618} ANFS;
141}; 619#endif
142# undef VAR
143# include "ev_wrap.h"
144 620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
145#else 632#else
633 /* a heap element */
634 typedef WT ANHE;
146 635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
639#endif
640
641#if EV_MULTIPLICITY
642
643 struct ev_loop
644 {
645 ev_tstamp ev_rt_now;
646 #define ev_rt_now ((loop)->ev_rt_now)
647 #define VAR(name,decl) decl;
648 #include "ev_vars.h"
649 #undef VAR
650 };
651 #include "ev_wrap.h"
652
653 static struct ev_loop default_loop_struct;
654 struct ev_loop *ev_default_loop_ptr;
655
656#else
657
658 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 659 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 660 #include "ev_vars.h"
149# undef VAR 661 #undef VAR
150 662
663 static int ev_default_loop_ptr;
664
151#endif 665#endif
666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
152 678
153/*****************************************************************************/ 679/*****************************************************************************/
154 680
155inline ev_tstamp 681#ifndef EV_HAVE_EV_TIME
682ev_tstamp
156ev_time (void) 683ev_time (void)
157{ 684{
158#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
159 struct timespec ts; 688 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
161 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
162#else 691 }
692#endif
693
163 struct timeval tv; 694 struct timeval tv;
164 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
165 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
166#endif
167} 697}
698#endif
168 699
169inline ev_tstamp 700inline_size ev_tstamp
170get_clock (void) 701get_clock (void)
171{ 702{
172#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
173 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
174 { 705 {
179#endif 710#endif
180 711
181 return ev_time (); 712 return ev_time ();
182} 713}
183 714
715#if EV_MULTIPLICITY
184ev_tstamp 716ev_tstamp
185ev_now (EV_P) 717ev_now (EV_P)
186{ 718{
187 return rt_now; 719 return ev_rt_now;
188} 720}
721#endif
189 722
190#define array_roundsize(base,n) ((n) | 4 & ~3) 723void
191 724ev_sleep (ev_tstamp delay)
192#define array_needsize(base,cur,cnt,init) \ 725{
193 if (expect_false ((cnt) > cur)) \ 726 if (delay > 0.)
194 { \
195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \
203 init (base + cur, newcnt - cur); \
204 cur = newcnt; \
205 } 727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
206 750
207/*****************************************************************************/ 751/*****************************************************************************/
208 752
209static void 753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
210anfds_init (ANFD *base, int count)
211{
212 while (count--)
213 {
214 base->head = 0;
215 base->events = EV_NONE;
216 base->reify = 0;
217 754
218 ++base; 755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
758array_nextsize (int elem, int cur, int cnt)
759{
760 int ncur = cur + 1;
761
762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
219 } 768 {
220} 769 ncur *= elem;
221 770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
222static void 771 ncur = ncur - sizeof (void *) * 4;
223event (EV_P_ W w, int events) 772 ncur /= elem;
224{
225 if (w->pending)
226 { 773 }
774
775 return ncur;
776}
777
778static noinline void *
779array_realloc (int elem, void *base, int *cur, int cnt)
780{
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
787
788#define array_needsize(type,base,cur,cnt,init) \
789 if (expect_false ((cnt) > (cur))) \
790 { \
791 int ocur_ = (cur); \
792 (base) = (type *)array_realloc \
793 (sizeof (type), (base), &(cur), (cnt)); \
794 init ((base) + (ocur_), (cur) - ocur_); \
795 }
796
797#if 0
798#define array_slim(type,stem) \
799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
800 { \
801 stem ## max = array_roundsize (stem ## cnt >> 1); \
802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
804 }
805#endif
806
807#define array_free(stem, idx) \
808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
809
810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
817
818void noinline
819ev_feed_event (EV_P_ void *w, int revents)
820{
821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
823
824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 831 pendings [pri][w_->pending - 1].events = revents;
228 return;
229 } 832 }
230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235} 833}
236 834
237static void 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
238queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 852{
240 int i; 853 int i;
241 854
242 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
244} 857}
245 858
246static void 859/*****************************************************************************/
860
861inline_speed void
247fd_event (EV_P_ int fd, int events) 862fd_event_nc (EV_P_ int fd, int revents)
248{ 863{
249 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 865 ev_io *w;
251 866
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
253 { 868 {
254 int ev = w->events & events; 869 int ev = w->events & revents;
255 870
256 if (ev) 871 if (ev)
257 event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
258 } 873 }
259} 874}
260 875
261/*****************************************************************************/ 876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
262 882
263static void 883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
887void
888ev_feed_fd_event (EV_P_ int fd, int revents)
889{
890 if (fd >= 0 && fd < anfdmax)
891 fd_event_nc (EV_A_ fd, revents);
892}
893
894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
264fd_reify (EV_P) 897fd_reify (EV_P)
265{ 898{
266 int i; 899 int i;
267 900
268 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
269 { 902 {
270 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 905 ev_io *w;
273 906
274 int events = 0; 907 unsigned char events = 0;
275 908
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
277 events |= w->events; 910 events |= (unsigned char)w->events;
278 911
279 anfd->reify = 0; 912#if EV_SELECT_IS_WINSOCKET
280 913 if (events)
281 if (anfd->events != events)
282 { 914 {
283 method_modify (EV_A_ fd, anfd->events, events); 915 unsigned long arg;
284 anfd->events = events; 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
285 } 918 }
919#endif
920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
925 anfd->reify = 0;
926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
286 } 931 }
287 932
288 fdchangecnt = 0; 933 fdchangecnt = 0;
289} 934}
290 935
291static void 936/* something about the given fd changed */
937inline_size void
292fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
293{ 939{
294 if (anfds [fd].reify || fdchangecnt < 0) 940 unsigned char reify = anfds [fd].reify;
295 return;
296
297 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
298 942
943 if (expect_true (!reify))
944 {
299 ++fdchangecnt; 945 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
301 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
302} 949}
303 950
304static void 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
305fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
306{ 954{
307 struct ev_io *w; 955 ev_io *w;
308 956
309 while ((w = (struct ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
310 { 958 {
311 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 961 }
962}
963
964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
966fd_valid (int fd)
967{
968#ifdef _WIN32
969 return _get_osfhandle (fd) != -1;
970#else
971 return fcntl (fd, F_GETFD) != -1;
972#endif
314} 973}
315 974
316/* called on EBADF to verify fds */ 975/* called on EBADF to verify fds */
317static void 976static void noinline
318fd_ebadf (EV_P) 977fd_ebadf (EV_P)
319{ 978{
320 int fd; 979 int fd;
321 980
322 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 982 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
325 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
326} 985}
327 986
328/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 988static void noinline
330fd_enomem (EV_P) 989fd_enomem (EV_P)
331{ 990{
332 int fd = anfdmax; 991 int fd;
333 992
334 while (fd--) 993 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 994 if (anfds [fd].events)
336 { 995 {
337 close (fd);
338 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
339 return; 997 break;
340 } 998 }
341} 999}
342 1000
1001/* usually called after fork if backend needs to re-arm all fds from scratch */
1002static void noinline
1003fd_rearm_all (EV_P)
1004{
1005 int fd;
1006
1007 for (fd = 0; fd < anfdmax; ++fd)
1008 if (anfds [fd].events)
1009 {
1010 anfds [fd].events = 0;
1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1013 }
1014}
1015
343/*****************************************************************************/ 1016/*****************************************************************************/
344 1017
1018/*
1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1021 * the branching factor of the d-tree.
1022 */
1023
1024/*
1025 * at the moment we allow libev the luxury of two heaps,
1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1027 * which is more cache-efficient.
1028 * the difference is about 5% with 50000+ watchers.
1029 */
1030#if EV_USE_4HEAP
1031
1032#define DHEAP 4
1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
1036
1037/* away from the root */
1038inline_speed void
1039downheap (ANHE *heap, int N, int k)
1040{
1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
1043
1044 for (;;)
1045 {
1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1049
1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
1052 {
1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
1066 break;
1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
1106 heap [k] = heap [c];
1107 ev_active (ANHE_w (heap [k])) = k;
1108
1109 k = c;
1110 }
1111
1112 heap [k] = he;
1113 ev_active (ANHE_w (he)) = k;
1114}
1115#endif
1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
1140inline_size void
1141adjustheap (ANHE *heap, int N, int k)
1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1144 upheap (heap, k);
1145 else
1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
1159}
1160
1161/*****************************************************************************/
1162
1163/* associate signal watchers to a signal signal */
1164typedef struct
1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
1170 WL head;
1171} ANSIG;
1172
1173static ANSIG signals [EV_NSIG - 1];
1174
1175/*****************************************************************************/
1176
1177/* used to prepare libev internal fd's */
1178/* this is not fork-safe */
1179inline_speed void
1180fd_intern (int fd)
1181{
1182#ifdef _WIN32
1183 unsigned long arg = 1;
1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1185#else
1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
1187 fcntl (fd, F_SETFL, O_NONBLOCK);
1188#endif
1189}
1190
1191static void noinline
1192evpipe_init (EV_P)
1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
1213 fd_intern (evpipe [0]);
1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
1217
1218 ev_io_start (EV_A_ &pipe_w);
1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
345static void 1248static void
346upheap (WT *heap, int k) 1249pipecb (EV_P_ ev_io *iow, int revents)
347{ 1250{
348 WT w = heap [k]; 1251 int i;
349 1252
350 while (k && heap [k >> 1]->at > w->at) 1253#if EV_USE_EVENTFD
351 { 1254 if (evfd >= 0)
352 heap [k] = heap [k >> 1];
353 heap [k]->active = k + 1;
354 k >>= 1;
355 } 1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
356 1265
357 heap [k] = w; 1266 if (sig_pending)
358 heap [k]->active = k + 1; 1267 {
1268 sig_pending = 0;
359 1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
360} 1288}
1289
1290/*****************************************************************************/
361 1291
362static void 1292static void
363downheap (WT *heap, int N, int k) 1293ev_sighandler (int signum)
364{ 1294{
365 WT w = heap [k]; 1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
366 1298
367 while (k < (N >> 1)) 1299#if _WIN32
368 { 1300 signal (signum, ev_sighandler);
369 int j = k << 1; 1301#endif
370 1302
371 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1303 signals [signum - 1].pending = 1;
372 ++j; 1304 evpipe_write (EV_A_ &sig_pending);
1305}
373 1306
374 if (w->at <= heap [j]->at) 1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
375 break; 1346 break;
376
377 heap [k] = heap [j];
378 heap [k]->active = k + 1;
379 k = j;
380 } 1347 }
381
382 heap [k] = w;
383 heap [k]->active = k + 1;
384} 1348}
1349#endif
385 1350
386/*****************************************************************************/ 1351/*****************************************************************************/
387 1352
388typedef struct 1353static WL childs [EV_PID_HASHSIZE];
389{
390 struct ev_watcher_list *head;
391 sig_atomic_t volatile gotsig;
392} ANSIG;
393 1354
394static ANSIG *signals;
395static int signalmax;
396
397static int sigpipe [2];
398static sig_atomic_t volatile gotsig;
399
400static void
401signals_init (ANSIG *base, int count)
402{
403 while (count--)
404 {
405 base->head = 0;
406 base->gotsig = 0;
407
408 ++base;
409 }
410}
411
412static void
413sighandler (int signum)
414{
415 signals [signum - 1].gotsig = 1;
416
417 if (!gotsig)
418 {
419 int old_errno = errno;
420 gotsig = 1;
421 write (sigpipe [1], &signum, 1);
422 errno = old_errno;
423 }
424}
425
426static void
427sigcb (EV_P_ struct ev_io *iow, int revents)
428{
429 struct ev_watcher_list *w;
430 int signum;
431
432 read (sigpipe [0], &revents, 1);
433 gotsig = 0;
434
435 for (signum = signalmax; signum--; )
436 if (signals [signum].gotsig)
437 {
438 signals [signum].gotsig = 0;
439
440 for (w = signals [signum].head; w; w = w->next)
441 event (EV_A_ (W)w, EV_SIGNAL);
442 }
443}
444
445static void
446siginit (EV_P)
447{
448#ifndef WIN32 1355#ifndef _WIN32
449 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
450 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
451 1356
452 /* rather than sort out wether we really need nb, set it */ 1357static ev_signal childev;
453 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
454 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
455#endif
456 1358
457 ev_io_set (&sigev, sigpipe [0], EV_READ); 1359#ifndef WIFCONTINUED
458 ev_io_start (EV_A_ &sigev); 1360# define WIFCONTINUED(status) 0
459 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1361#endif
460}
461 1362
462/*****************************************************************************/ 1363/* handle a single child status event */
1364inline_speed void
1365child_reap (EV_P_ int chain, int pid, int status)
1366{
1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
463 1369
464#ifndef WIN32 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
1374 {
1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1376 w->rpid = pid;
1377 w->rstatus = status;
1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1379 }
1380 }
1381}
465 1382
466#ifndef WCONTINUED 1383#ifndef WCONTINUED
467# define WCONTINUED 0 1384# define WCONTINUED 0
468#endif 1385#endif
469 1386
1387/* called on sigchld etc., calls waitpid */
470static void 1388static void
471child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472{
473 struct ev_child *w;
474
475 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 if (w->pid == pid || !w->pid)
477 {
478 w->priority = sw->priority; /* need to do it *now* */
479 w->rpid = pid;
480 w->rstatus = status;
481 event (EV_A_ (W)w, EV_CHILD);
482 }
483}
484
485static void
486childcb (EV_P_ struct ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
487{ 1390{
488 int pid, status; 1391 int pid, status;
489 1392
1393 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
490 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1394 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
491 { 1395 if (!WCONTINUED
1396 || errno != EINVAL
1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1398 return;
1399
492 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
1401 /* we need to do it this way so that the callback gets called before we continue */
493 event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
494 1403
495 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
1405 if (EV_PID_HASHSIZE > 1)
496 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
497 }
498} 1407}
499 1408
500#endif 1409#endif
501 1410
502/*****************************************************************************/ 1411/*****************************************************************************/
503 1412
1413#if EV_USE_PORT
1414# include "ev_port.c"
1415#endif
504#if EV_USE_KQUEUE 1416#if EV_USE_KQUEUE
505# include "ev_kqueue.c" 1417# include "ev_kqueue.c"
506#endif 1418#endif
507#if EV_USE_EPOLL 1419#if EV_USE_EPOLL
508# include "ev_epoll.c" 1420# include "ev_epoll.c"
509#endif 1421#endif
510#if EV_USEV_POLL 1422#if EV_USE_POLL
511# include "ev_poll.c" 1423# include "ev_poll.c"
512#endif 1424#endif
513#if EV_USE_SELECT 1425#if EV_USE_SELECT
514# include "ev_select.c" 1426# include "ev_select.c"
515#endif 1427#endif
525{ 1437{
526 return EV_VERSION_MINOR; 1438 return EV_VERSION_MINOR;
527} 1439}
528 1440
529/* return true if we are running with elevated privileges and should ignore env variables */ 1441/* return true if we are running with elevated privileges and should ignore env variables */
530static int 1442int inline_size
531enable_secure (void) 1443enable_secure (void)
532{ 1444{
533#ifdef WIN32 1445#ifdef _WIN32
534 return 0; 1446 return 0;
535#else 1447#else
536 return getuid () != geteuid () 1448 return getuid () != geteuid ()
537 || getgid () != getegid (); 1449 || getgid () != getegid ();
538#endif 1450#endif
539} 1451}
540 1452
1453unsigned int
1454ev_supported_backends (void)
1455{
1456 unsigned int flags = 0;
1457
1458 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1459 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1460 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1461 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1462 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1463
1464 return flags;
1465}
1466
1467unsigned int
1468ev_recommended_backends (void)
1469{
1470 unsigned int flags = ev_supported_backends ();
1471
1472#ifndef __NetBSD__
1473 /* kqueue is borked on everything but netbsd apparently */
1474 /* it usually doesn't work correctly on anything but sockets and pipes */
1475 flags &= ~EVBACKEND_KQUEUE;
1476#endif
1477#ifdef __APPLE__
1478 /* only select works correctly on that "unix-certified" platform */
1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1481#endif
1482
1483 return flags;
1484}
1485
1486unsigned int
1487ev_embeddable_backends (void)
1488{
1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1490
1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
1496}
1497
1498unsigned int
1499ev_backend (EV_P)
1500{
1501 return backend;
1502}
1503
1504#if EV_MINIMAL < 2
1505unsigned int
1506ev_loop_count (EV_P)
1507{
1508 return loop_count;
1509}
1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1554static void noinline
1555loop_init (EV_P_ unsigned int flags)
1556{
1557 if (!backend)
1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
1571 {
1572 struct timespec ts;
1573
1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1575 have_monotonic = 1;
1576 }
1577#endif
1578
1579 /* pid check not overridable via env */
1580#ifndef _WIN32
1581 if (flags & EVFLAG_FORKCHECK)
1582 curpid = getpid ();
1583#endif
1584
1585 if (!(flags & EVFLAG_NOENV)
1586 && !enable_secure ()
1587 && getenv ("LIBEV_FLAGS"))
1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1611#endif
1612
1613 if (!(flags & 0x0000ffffU))
1614 flags |= ev_recommended_backends ();
1615
1616#if EV_USE_PORT
1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1618#endif
1619#if EV_USE_KQUEUE
1620 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1621#endif
1622#if EV_USE_EPOLL
1623 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1624#endif
1625#if EV_USE_POLL
1626 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1627#endif
1628#if EV_USE_SELECT
1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1630#endif
1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
1634 ev_init (&pipe_w, pipecb);
1635 ev_set_priority (&pipe_w, EV_MAXPRI);
1636 }
1637}
1638
1639/* free up a loop structure */
1640static void noinline
1641loop_destroy (EV_P)
1642{
1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 {
1665 /*ev_ref (EV_A);*/
1666 /*ev_io_stop (EV_A_ &sigfd_w);*/
1667
1668 close (sigfd);
1669 }
1670#endif
1671
1672#if EV_USE_INOTIFY
1673 if (fs_fd >= 0)
1674 close (fs_fd);
1675#endif
1676
1677 if (backend_fd >= 0)
1678 close (backend_fd);
1679
1680#if EV_USE_PORT
1681 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1682#endif
1683#if EV_USE_KQUEUE
1684 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1685#endif
1686#if EV_USE_EPOLL
1687 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1688#endif
1689#if EV_USE_POLL
1690 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1691#endif
1692#if EV_USE_SELECT
1693 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1694#endif
1695
1696 for (i = NUMPRI; i--; )
1697 {
1698 array_free (pending, [i]);
1699#if EV_IDLE_ENABLE
1700 array_free (idle, [i]);
1701#endif
1702 }
1703
1704 ev_free (anfds); anfds = 0; anfdmax = 0;
1705
1706 /* have to use the microsoft-never-gets-it-right macro */
1707 array_free (rfeed, EMPTY);
1708 array_free (fdchange, EMPTY);
1709 array_free (timer, EMPTY);
1710#if EV_PERIODIC_ENABLE
1711 array_free (periodic, EMPTY);
1712#endif
1713#if EV_FORK_ENABLE
1714 array_free (fork, EMPTY);
1715#endif
1716 array_free (prepare, EMPTY);
1717 array_free (check, EMPTY);
1718#if EV_ASYNC_ENABLE
1719 array_free (async, EMPTY);
1720#endif
1721
1722 backend = 0;
1723}
1724
1725#if EV_USE_INOTIFY
1726inline_size void infy_fork (EV_P);
1727#endif
1728
1729inline_size void
1730loop_fork (EV_P)
1731{
1732#if EV_USE_PORT
1733 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1734#endif
1735#if EV_USE_KQUEUE
1736 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1737#endif
1738#if EV_USE_EPOLL
1739 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1740#endif
1741#if EV_USE_INOTIFY
1742 infy_fork (EV_A);
1743#endif
1744
1745 if (ev_is_active (&pipe_w))
1746 {
1747 /* this "locks" the handlers against writing to the pipe */
1748 /* while we modify the fd vars */
1749 sig_pending = 1;
1750#if EV_ASYNC_ENABLE
1751 async_pending = 1;
1752#endif
1753
1754 ev_ref (EV_A);
1755 ev_io_stop (EV_A_ &pipe_w);
1756
1757#if EV_USE_EVENTFD
1758 if (evfd >= 0)
1759 close (evfd);
1760#endif
1761
1762 if (evpipe [0] >= 0)
1763 {
1764 EV_WIN32_CLOSE_FD (evpipe [0]);
1765 EV_WIN32_CLOSE_FD (evpipe [1]);
1766 }
1767
1768 evpipe_init (EV_A);
1769 /* now iterate over everything, in case we missed something */
1770 pipecb (EV_A_ &pipe_w, EV_READ);
1771 }
1772
1773 postfork = 0;
1774}
1775
1776#if EV_MULTIPLICITY
1777
1778struct ev_loop *
1779ev_loop_new (unsigned int flags)
1780{
1781 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1782
1783 memset (EV_A, 0, sizeof (struct ev_loop));
1784 loop_init (EV_A_ flags);
1785
1786 if (ev_backend (EV_A))
1787 return EV_A;
1788
1789 return 0;
1790}
1791
1792void
1793ev_loop_destroy (EV_P)
1794{
1795 loop_destroy (EV_A);
1796 ev_free (loop);
1797}
1798
1799void
1800ev_loop_fork (EV_P)
1801{
1802 postfork = 1; /* must be in line with ev_default_fork */
1803}
1804#endif /* multiplicity */
1805
1806#if EV_VERIFY
1807static void noinline
1808verify_watcher (EV_P_ W w)
1809{
1810 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1811
1812 if (w->pending)
1813 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1814}
1815
1816static void noinline
1817verify_heap (EV_P_ ANHE *heap, int N)
1818{
1819 int i;
1820
1821 for (i = HEAP0; i < N + HEAP0; ++i)
1822 {
1823 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1824 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1825 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1826
1827 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1828 }
1829}
1830
1831static void noinline
1832array_verify (EV_P_ W *ws, int cnt)
1833{
1834 while (cnt--)
1835 {
1836 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1837 verify_watcher (EV_A_ ws [cnt]);
1838 }
1839}
1840#endif
1841
1842#if EV_MINIMAL < 2
1843void
1844ev_loop_verify (EV_P)
1845{
1846#if EV_VERIFY
1847 int i;
1848 WL w;
1849
1850 assert (activecnt >= -1);
1851
1852 assert (fdchangemax >= fdchangecnt);
1853 for (i = 0; i < fdchangecnt; ++i)
1854 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1855
1856 assert (anfdmax >= 0);
1857 for (i = 0; i < anfdmax; ++i)
1858 for (w = anfds [i].head; w; w = w->next)
1859 {
1860 verify_watcher (EV_A_ (W)w);
1861 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1862 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1863 }
1864
1865 assert (timermax >= timercnt);
1866 verify_heap (EV_A_ timers, timercnt);
1867
1868#if EV_PERIODIC_ENABLE
1869 assert (periodicmax >= periodiccnt);
1870 verify_heap (EV_A_ periodics, periodiccnt);
1871#endif
1872
1873 for (i = NUMPRI; i--; )
1874 {
1875 assert (pendingmax [i] >= pendingcnt [i]);
1876#if EV_IDLE_ENABLE
1877 assert (idleall >= 0);
1878 assert (idlemax [i] >= idlecnt [i]);
1879 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1880#endif
1881 }
1882
1883#if EV_FORK_ENABLE
1884 assert (forkmax >= forkcnt);
1885 array_verify (EV_A_ (W *)forks, forkcnt);
1886#endif
1887
1888#if EV_ASYNC_ENABLE
1889 assert (asyncmax >= asynccnt);
1890 array_verify (EV_A_ (W *)asyncs, asynccnt);
1891#endif
1892
1893 assert (preparemax >= preparecnt);
1894 array_verify (EV_A_ (W *)prepares, preparecnt);
1895
1896 assert (checkmax >= checkcnt);
1897 array_verify (EV_A_ (W *)checks, checkcnt);
1898
1899# if 0
1900 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1901 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1902# endif
1903#endif
1904}
1905#endif
1906
1907#if EV_MULTIPLICITY
1908struct ev_loop *
1909ev_default_loop_init (unsigned int flags)
1910#else
541int 1911int
542ev_method (EV_P) 1912ev_default_loop (unsigned int flags)
1913#endif
543{ 1914{
544 return method; 1915 if (!ev_default_loop_ptr)
545}
546
547static void
548loop_init (EV_P_ int methods)
549{
550 if (!method)
551 {
552#if EV_USE_MONOTONIC
553 { 1916 {
554 struct timespec ts; 1917#if EV_MULTIPLICITY
555 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1918 EV_P = ev_default_loop_ptr = &default_loop_struct;
556 have_monotonic = 1; 1919#else
557 } 1920 ev_default_loop_ptr = 1;
558#endif 1921#endif
559 1922
560 rt_now = ev_time (); 1923 loop_init (EV_A_ flags);
561 mn_now = get_clock ();
562 now_floor = mn_now;
563 rtmn_diff = rt_now - mn_now;
564 1924
565 if (pipe (sigpipe)) 1925 if (ev_backend (EV_A))
566 return 0;
567
568 if (methods == EVMETHOD_AUTO)
569 if (!enable_secure () && getenv ("LIBmethodS"))
570 methods = atoi (getenv ("LIBmethodS"));
571 else
572 methods = EVMETHOD_ANY;
573
574 method = 0;
575#if EV_USE_KQUEUE
576 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
577#endif
578#if EV_USE_EPOLL
579 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
580#endif
581#if EV_USEV_POLL
582 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
583#endif
584#if EV_USE_SELECT
585 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
586#endif
587
588 if (method)
589 { 1926 {
590 ev_watcher_init (&sigev, sigcb);
591 ev_set_priority (&sigev, EV_MAXPRI);
592 siginit (EV_A);
593
594#ifndef WIN32 1927#ifndef _WIN32
595 ev_signal_init (&childev, childcb, SIGCHLD); 1928 ev_signal_init (&childev, childcb, SIGCHLD);
596 ev_set_priority (&childev, EV_MAXPRI); 1929 ev_set_priority (&childev, EV_MAXPRI);
597 ev_signal_start (EV_A_ &childev); 1930 ev_signal_start (EV_A_ &childev);
598 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1931 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 1932#endif
600 } 1933 }
1934 else
1935 ev_default_loop_ptr = 0;
601 } 1936 }
602 1937
603 return method; 1938 return ev_default_loop_ptr;
604} 1939}
605 1940
1941void
1942ev_default_destroy (void)
1943{
606#ifdef EV_MULTIPLICITY 1944#if EV_MULTIPLICITY
607 1945 EV_P = ev_default_loop_ptr;
608struct ev_loop *
609ev_loop_new (int methods)
610{
611 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
612
613 loop_init (EV_A_ methods);
614
615 return loop;
616}
617
618void
619ev_loop_delete (EV_P)
620{
621 /*TODO*/
622 free (loop);
623}
624
625#else
626
627int
628ev_init (int methods)
629{
630 loop_init ();
631}
632
633#endif 1946#endif
1947
1948 ev_default_loop_ptr = 0;
1949
1950#ifndef _WIN32
1951 ev_ref (EV_A); /* child watcher */
1952 ev_signal_stop (EV_A_ &childev);
1953#endif
1954
1955 loop_destroy (EV_A);
1956}
1957
1958void
1959ev_default_fork (void)
1960{
1961#if EV_MULTIPLICITY
1962 EV_P = ev_default_loop_ptr;
1963#endif
1964
1965 postfork = 1; /* must be in line with ev_loop_fork */
1966}
634 1967
635/*****************************************************************************/ 1968/*****************************************************************************/
636 1969
637void 1970void
638ev_fork_prepare (void) 1971ev_invoke (EV_P_ void *w, int revents)
639{ 1972{
640 /* nop */ 1973 EV_CB_INVOKE ((W)w, revents);
641} 1974}
642 1975
643void 1976unsigned int
644ev_fork_parent (void) 1977ev_pending_count (EV_P)
645{ 1978{
646 /* nop */ 1979 int pri;
647} 1980 unsigned int count = 0;
648 1981
649void 1982 for (pri = NUMPRI; pri--; )
650ev_fork_child (void) 1983 count += pendingcnt [pri];
651{
652 /*TODO*/
653#if !EV_MULTIPLICITY
654#if EV_USE_EPOLL
655 if (method == EVMETHOD_EPOLL)
656 epoll_postfork_child (EV_A);
657#endif
658 1984
659 ev_io_stop (EV_A_ &sigev); 1985 return count;
660 close (sigpipe [0]);
661 close (sigpipe [1]);
662 pipe (sigpipe);
663 siginit (EV_A);
664#endif
665} 1986}
666 1987
667/*****************************************************************************/ 1988void noinline
668 1989ev_invoke_pending (EV_P)
669static void
670call_pending (EV_P)
671{ 1990{
672 int pri; 1991 int pri;
673 1992
674 for (pri = NUMPRI; pri--; ) 1993 for (pri = NUMPRI; pri--; )
675 while (pendingcnt [pri]) 1994 while (pendingcnt [pri])
676 { 1995 {
677 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1996 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
678 1997
679 if (p->w) 1998 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
680 { 1999 /* ^ this is no longer true, as pending_w could be here */
2000
681 p->w->pending = 0; 2001 p->w->pending = 0;
682 p->w->cb (EV_A_ p->w, p->events); 2002 EV_CB_INVOKE (p->w, p->events);
683 } 2003 EV_FREQUENT_CHECK;
684 } 2004 }
685} 2005}
686 2006
687static void 2007#if EV_IDLE_ENABLE
2008/* make idle watchers pending. this handles the "call-idle */
2009/* only when higher priorities are idle" logic */
2010inline_size void
688timers_reify (EV_P) 2011idle_reify (EV_P)
689{ 2012{
690 while (timercnt && timers [0]->at <= mn_now) 2013 if (expect_false (idleall))
691 { 2014 {
692 struct ev_timer *w = timers [0]; 2015 int pri;
693 2016
694 /* first reschedule or stop timer */ 2017 for (pri = NUMPRI; pri--; )
695 if (w->repeat)
696 { 2018 {
697 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2019 if (pendingcnt [pri])
698 w->at = mn_now + w->repeat; 2020 break;
699 downheap ((WT *)timers, timercnt, 0);
700 }
701 else
702 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
703 2021
704 event (EV_A_ (W)w, EV_TIMEOUT); 2022 if (idlecnt [pri])
705 }
706}
707
708static void
709periodics_reify (EV_P)
710{
711 while (periodiccnt && periodics [0]->at <= rt_now)
712 {
713 struct ev_periodic *w = periodics [0];
714
715 /* first reschedule or stop timer */
716 if (w->interval)
717 {
718 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
719 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
720 downheap ((WT *)periodics, periodiccnt, 0);
721 }
722 else
723 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
724
725 event (EV_A_ (W)w, EV_PERIODIC);
726 }
727}
728
729static void
730periodics_reschedule (EV_P)
731{
732 int i;
733
734 /* adjust periodics after time jump */
735 for (i = 0; i < periodiccnt; ++i)
736 {
737 struct ev_periodic *w = periodics [i];
738
739 if (w->interval)
740 {
741 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
742
743 if (fabs (diff) >= 1e-4)
744 { 2023 {
745 ev_periodic_stop (EV_A_ w); 2024 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
746 ev_periodic_start (EV_A_ w); 2025 break;
747
748 i = 0; /* restart loop, inefficient, but time jumps should be rare */
749 } 2026 }
750 } 2027 }
751 } 2028 }
752} 2029}
2030#endif
753 2031
754inline int 2032/* make timers pending */
755time_update_monotonic (EV_P) 2033inline_size void
2034timers_reify (EV_P)
756{ 2035{
757 mn_now = get_clock (); 2036 EV_FREQUENT_CHECK;
758 2037
759 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2038 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
760 {
761 rt_now = rtmn_diff + mn_now;
762 return 0;
763 } 2039 {
764 else 2040 do
2041 {
2042 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2043
2044 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2045
2046 /* first reschedule or stop timer */
2047 if (w->repeat)
2048 {
2049 ev_at (w) += w->repeat;
2050 if (ev_at (w) < mn_now)
2051 ev_at (w) = mn_now;
2052
2053 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2054
2055 ANHE_at_cache (timers [HEAP0]);
2056 downheap (timers, timercnt, HEAP0);
2057 }
2058 else
2059 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2060
2061 EV_FREQUENT_CHECK;
2062 feed_reverse (EV_A_ (W)w);
2063 }
2064 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2065
2066 feed_reverse_done (EV_A_ EV_TIMEOUT);
765 { 2067 }
766 now_floor = mn_now; 2068}
767 rt_now = ev_time (); 2069
768 return 1; 2070#if EV_PERIODIC_ENABLE
2071/* make periodics pending */
2072inline_size void
2073periodics_reify (EV_P)
2074{
2075 EV_FREQUENT_CHECK;
2076
2077 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
769 } 2078 {
770} 2079 int feed_count = 0;
771 2080
772static void 2081 do
773time_update (EV_P) 2082 {
2083 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2084
2085 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2086
2087 /* first reschedule or stop timer */
2088 if (w->reschedule_cb)
2089 {
2090 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2091
2092 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2093
2094 ANHE_at_cache (periodics [HEAP0]);
2095 downheap (periodics, periodiccnt, HEAP0);
2096 }
2097 else if (w->interval)
2098 {
2099 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2100 /* if next trigger time is not sufficiently in the future, put it there */
2101 /* this might happen because of floating point inexactness */
2102 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2103 {
2104 ev_at (w) += w->interval;
2105
2106 /* if interval is unreasonably low we might still have a time in the past */
2107 /* so correct this. this will make the periodic very inexact, but the user */
2108 /* has effectively asked to get triggered more often than possible */
2109 if (ev_at (w) < ev_rt_now)
2110 ev_at (w) = ev_rt_now;
2111 }
2112
2113 ANHE_at_cache (periodics [HEAP0]);
2114 downheap (periodics, periodiccnt, HEAP0);
2115 }
2116 else
2117 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2118
2119 EV_FREQUENT_CHECK;
2120 feed_reverse (EV_A_ (W)w);
2121 }
2122 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2123
2124 feed_reverse_done (EV_A_ EV_PERIODIC);
2125 }
2126}
2127
2128/* simply recalculate all periodics */
2129/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2130static void noinline
2131periodics_reschedule (EV_P)
774{ 2132{
775 int i; 2133 int i;
776 2134
2135 /* adjust periodics after time jump */
2136 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2139
2140 if (w->reschedule_cb)
2141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2142 else if (w->interval)
2143 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2144
2145 ANHE_at_cache (periodics [i]);
2146 }
2147
2148 reheap (periodics, periodiccnt);
2149}
2150#endif
2151
2152/* adjust all timers by a given offset */
2153static void noinline
2154timers_reschedule (EV_P_ ev_tstamp adjust)
2155{
2156 int i;
2157
2158 for (i = 0; i < timercnt; ++i)
2159 {
2160 ANHE *he = timers + i + HEAP0;
2161 ANHE_w (*he)->at += adjust;
2162 ANHE_at_cache (*he);
2163 }
2164}
2165
2166/* fetch new monotonic and realtime times from the kernel */
2167/* also detetc if there was a timejump, and act accordingly */
2168inline_speed void
2169time_update (EV_P_ ev_tstamp max_block)
2170{
777#if EV_USE_MONOTONIC 2171#if EV_USE_MONOTONIC
778 if (expect_true (have_monotonic)) 2172 if (expect_true (have_monotonic))
779 { 2173 {
780 if (time_update_monotonic (EV_A)) 2174 int i;
2175 ev_tstamp odiff = rtmn_diff;
2176
2177 mn_now = get_clock ();
2178
2179 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2180 /* interpolate in the meantime */
2181 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
781 { 2182 {
782 ev_tstamp odiff = rtmn_diff; 2183 ev_rt_now = rtmn_diff + mn_now;
2184 return;
2185 }
783 2186
2187 now_floor = mn_now;
2188 ev_rt_now = ev_time ();
2189
784 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2190 /* loop a few times, before making important decisions.
2191 * on the choice of "4": one iteration isn't enough,
2192 * in case we get preempted during the calls to
2193 * ev_time and get_clock. a second call is almost guaranteed
2194 * to succeed in that case, though. and looping a few more times
2195 * doesn't hurt either as we only do this on time-jumps or
2196 * in the unlikely event of having been preempted here.
2197 */
2198 for (i = 4; --i; )
785 { 2199 {
786 rtmn_diff = rt_now - mn_now; 2200 rtmn_diff = ev_rt_now - mn_now;
787 2201
788 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2202 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
789 return; /* all is well */ 2203 return; /* all is well */
790 2204
791 rt_now = ev_time (); 2205 ev_rt_now = ev_time ();
792 mn_now = get_clock (); 2206 mn_now = get_clock ();
793 now_floor = mn_now; 2207 now_floor = mn_now;
794 } 2208 }
795 2209
2210 /* no timer adjustment, as the monotonic clock doesn't jump */
2211 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2212# if EV_PERIODIC_ENABLE
2213 periodics_reschedule (EV_A);
2214# endif
2215 }
2216 else
2217#endif
2218 {
2219 ev_rt_now = ev_time ();
2220
2221 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2222 {
2223 /* adjust timers. this is easy, as the offset is the same for all of them */
2224 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2225#if EV_PERIODIC_ENABLE
796 periodics_reschedule (EV_A); 2226 periodics_reschedule (EV_A);
797 /* no timer adjustment, as the monotonic clock doesn't jump */ 2227#endif
798 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
799 } 2228 }
800 }
801 else
802#endif
803 {
804 rt_now = ev_time ();
805 2229
806 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
807 {
808 periodics_reschedule (EV_A);
809
810 /* adjust timers. this is easy, as the offset is the same for all */
811 for (i = 0; i < timercnt; ++i)
812 timers [i]->at += rt_now - mn_now;
813 }
814
815 mn_now = rt_now; 2230 mn_now = ev_rt_now;
816 } 2231 }
817} 2232}
818
819void
820ev_ref (EV_P)
821{
822 ++activecnt;
823}
824
825void
826ev_unref (EV_P)
827{
828 --activecnt;
829}
830
831static int loop_done;
832 2233
833void 2234void
834ev_loop (EV_P_ int flags) 2235ev_loop (EV_P_ int flags)
835{ 2236{
836 double block; 2237#if EV_MINIMAL < 2
837 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2238 ++loop_depth;
2239#endif
2240
2241 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2242
2243 loop_done = EVUNLOOP_CANCEL;
2244
2245 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
838 2246
839 do 2247 do
840 { 2248 {
2249#if EV_VERIFY >= 2
2250 ev_loop_verify (EV_A);
2251#endif
2252
2253#ifndef _WIN32
2254 if (expect_false (curpid)) /* penalise the forking check even more */
2255 if (expect_false (getpid () != curpid))
2256 {
2257 curpid = getpid ();
2258 postfork = 1;
2259 }
2260#endif
2261
2262#if EV_FORK_ENABLE
2263 /* we might have forked, so queue fork handlers */
2264 if (expect_false (postfork))
2265 if (forkcnt)
2266 {
2267 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2268 EV_INVOKE_PENDING;
2269 }
2270#endif
2271
841 /* queue check watchers (and execute them) */ 2272 /* queue prepare watchers (and execute them) */
842 if (expect_false (preparecnt)) 2273 if (expect_false (preparecnt))
843 { 2274 {
844 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2275 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
845 call_pending (EV_A); 2276 EV_INVOKE_PENDING;
846 } 2277 }
2278
2279 if (expect_false (loop_done))
2280 break;
2281
2282 /* we might have forked, so reify kernel state if necessary */
2283 if (expect_false (postfork))
2284 loop_fork (EV_A);
847 2285
848 /* update fd-related kernel structures */ 2286 /* update fd-related kernel structures */
849 fd_reify (EV_A); 2287 fd_reify (EV_A);
850 2288
851 /* calculate blocking time */ 2289 /* calculate blocking time */
2290 {
2291 ev_tstamp waittime = 0.;
2292 ev_tstamp sleeptime = 0.;
852 2293
853 /* we only need this for !monotonic clockor timers, but as we basically 2294 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
854 always have timers, we just calculate it always */
855#if EV_USE_MONOTONIC
856 if (expect_true (have_monotonic))
857 time_update_monotonic (EV_A);
858 else
859#endif
860 { 2295 {
861 rt_now = ev_time (); 2296 /* remember old timestamp for io_blocktime calculation */
862 mn_now = rt_now; 2297 ev_tstamp prev_mn_now = mn_now;
863 }
864 2298
865 if (flags & EVLOOP_NONBLOCK || idlecnt) 2299 /* update time to cancel out callback processing overhead */
866 block = 0.; 2300 time_update (EV_A_ 1e100);
867 else 2301
868 {
869 block = MAX_BLOCKTIME; 2302 waittime = MAX_BLOCKTIME;
870 2303
871 if (timercnt) 2304 if (timercnt)
872 { 2305 {
873 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 2306 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
874 if (block > to) block = to; 2307 if (waittime > to) waittime = to;
875 } 2308 }
876 2309
2310#if EV_PERIODIC_ENABLE
877 if (periodiccnt) 2311 if (periodiccnt)
878 { 2312 {
879 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 2313 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
880 if (block > to) block = to; 2314 if (waittime > to) waittime = to;
881 } 2315 }
2316#endif
882 2317
883 if (block < 0.) block = 0.; 2318 /* don't let timeouts decrease the waittime below timeout_blocktime */
2319 if (expect_false (waittime < timeout_blocktime))
2320 waittime = timeout_blocktime;
2321
2322 /* extra check because io_blocktime is commonly 0 */
2323 if (expect_false (io_blocktime))
2324 {
2325 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2326
2327 if (sleeptime > waittime - backend_fudge)
2328 sleeptime = waittime - backend_fudge;
2329
2330 if (expect_true (sleeptime > 0.))
2331 {
2332 ev_sleep (sleeptime);
2333 waittime -= sleeptime;
2334 }
2335 }
884 } 2336 }
885 2337
886 method_poll (EV_A_ block); 2338#if EV_MINIMAL < 2
2339 ++loop_count;
2340#endif
2341 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2342 backend_poll (EV_A_ waittime);
2343 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
887 2344
888 /* update rt_now, do magic */ 2345 /* update ev_rt_now, do magic */
889 time_update (EV_A); 2346 time_update (EV_A_ waittime + sleeptime);
2347 }
890 2348
891 /* queue pending timers and reschedule them */ 2349 /* queue pending timers and reschedule them */
892 timers_reify (EV_A); /* relative timers called last */ 2350 timers_reify (EV_A); /* relative timers called last */
2351#if EV_PERIODIC_ENABLE
893 periodics_reify (EV_A); /* absolute timers called first */ 2352 periodics_reify (EV_A); /* absolute timers called first */
2353#endif
894 2354
2355#if EV_IDLE_ENABLE
895 /* queue idle watchers unless io or timers are pending */ 2356 /* queue idle watchers unless other events are pending */
896 if (!pendingcnt) 2357 idle_reify (EV_A);
897 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2358#endif
898 2359
899 /* queue check watchers, to be executed first */ 2360 /* queue check watchers, to be executed first */
900 if (checkcnt) 2361 if (expect_false (checkcnt))
901 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2362 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
902 2363
903 call_pending (EV_A); 2364 EV_INVOKE_PENDING;
904 } 2365 }
905 while (activecnt && !loop_done); 2366 while (expect_true (
2367 activecnt
2368 && !loop_done
2369 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2370 ));
906 2371
907 if (loop_done != 2) 2372 if (loop_done == EVUNLOOP_ONE)
908 loop_done = 0; 2373 loop_done = EVUNLOOP_CANCEL;
2374
2375#if EV_MINIMAL < 2
2376 --loop_depth;
2377#endif
909} 2378}
910 2379
911void 2380void
912ev_unloop (EV_P_ int how) 2381ev_unloop (EV_P_ int how)
913{ 2382{
914 loop_done = how; 2383 loop_done = how;
915} 2384}
916 2385
2386void
2387ev_ref (EV_P)
2388{
2389 ++activecnt;
2390}
2391
2392void
2393ev_unref (EV_P)
2394{
2395 --activecnt;
2396}
2397
2398void
2399ev_now_update (EV_P)
2400{
2401 time_update (EV_A_ 1e100);
2402}
2403
2404void
2405ev_suspend (EV_P)
2406{
2407 ev_now_update (EV_A);
2408}
2409
2410void
2411ev_resume (EV_P)
2412{
2413 ev_tstamp mn_prev = mn_now;
2414
2415 ev_now_update (EV_A);
2416 timers_reschedule (EV_A_ mn_now - mn_prev);
2417#if EV_PERIODIC_ENABLE
2418 /* TODO: really do this? */
2419 periodics_reschedule (EV_A);
2420#endif
2421}
2422
917/*****************************************************************************/ 2423/*****************************************************************************/
2424/* singly-linked list management, used when the expected list length is short */
918 2425
919inline void 2426inline_size void
920wlist_add (WL *head, WL elem) 2427wlist_add (WL *head, WL elem)
921{ 2428{
922 elem->next = *head; 2429 elem->next = *head;
923 *head = elem; 2430 *head = elem;
924} 2431}
925 2432
926inline void 2433inline_size void
927wlist_del (WL *head, WL elem) 2434wlist_del (WL *head, WL elem)
928{ 2435{
929 while (*head) 2436 while (*head)
930 { 2437 {
931 if (*head == elem) 2438 if (expect_true (*head == elem))
932 { 2439 {
933 *head = elem->next; 2440 *head = elem->next;
934 return; 2441 break;
935 } 2442 }
936 2443
937 head = &(*head)->next; 2444 head = &(*head)->next;
938 } 2445 }
939} 2446}
940 2447
2448/* internal, faster, version of ev_clear_pending */
941inline void 2449inline_speed void
942ev_clear_pending (EV_P_ W w) 2450clear_pending (EV_P_ W w)
943{ 2451{
944 if (w->pending) 2452 if (w->pending)
945 { 2453 {
946 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2454 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
947 w->pending = 0; 2455 w->pending = 0;
948 } 2456 }
949} 2457}
950 2458
2459int
2460ev_clear_pending (EV_P_ void *w)
2461{
2462 W w_ = (W)w;
2463 int pending = w_->pending;
2464
2465 if (expect_true (pending))
2466 {
2467 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2468 p->w = (W)&pending_w;
2469 w_->pending = 0;
2470 return p->events;
2471 }
2472 else
2473 return 0;
2474}
2475
951inline void 2476inline_size void
2477pri_adjust (EV_P_ W w)
2478{
2479 int pri = ev_priority (w);
2480 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2481 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2482 ev_set_priority (w, pri);
2483}
2484
2485inline_speed void
952ev_start (EV_P_ W w, int active) 2486ev_start (EV_P_ W w, int active)
953{ 2487{
954 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2488 pri_adjust (EV_A_ w);
955 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
956
957 w->active = active; 2489 w->active = active;
958 ev_ref (EV_A); 2490 ev_ref (EV_A);
959} 2491}
960 2492
961inline void 2493inline_size void
962ev_stop (EV_P_ W w) 2494ev_stop (EV_P_ W w)
963{ 2495{
964 ev_unref (EV_A); 2496 ev_unref (EV_A);
965 w->active = 0; 2497 w->active = 0;
966} 2498}
967 2499
968/*****************************************************************************/ 2500/*****************************************************************************/
969 2501
970void 2502void noinline
971ev_io_start (EV_P_ struct ev_io *w) 2503ev_io_start (EV_P_ ev_io *w)
972{ 2504{
973 int fd = w->fd; 2505 int fd = w->fd;
974 2506
975 if (ev_is_active (w)) 2507 if (expect_false (ev_is_active (w)))
976 return; 2508 return;
977 2509
978 assert (("ev_io_start called with negative fd", fd >= 0)); 2510 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2511 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2512
2513 EV_FREQUENT_CHECK;
979 2514
980 ev_start (EV_A_ (W)w, 1); 2515 ev_start (EV_A_ (W)w, 1);
981 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 2516 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
982 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2517 wlist_add (&anfds[fd].head, (WL)w);
983 2518
984 fd_change (EV_A_ fd); 2519 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
985} 2520 w->events &= ~EV__IOFDSET;
986 2521
987void 2522 EV_FREQUENT_CHECK;
2523}
2524
2525void noinline
988ev_io_stop (EV_P_ struct ev_io *w) 2526ev_io_stop (EV_P_ ev_io *w)
989{ 2527{
990 ev_clear_pending (EV_A_ (W)w); 2528 clear_pending (EV_A_ (W)w);
991 if (!ev_is_active (w)) 2529 if (expect_false (!ev_is_active (w)))
992 return; 2530 return;
993 2531
2532 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2533
2534 EV_FREQUENT_CHECK;
2535
994 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2536 wlist_del (&anfds[w->fd].head, (WL)w);
995 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
996 2538
997 fd_change (EV_A_ w->fd); 2539 fd_change (EV_A_ w->fd, 1);
998}
999 2540
1000void 2541 EV_FREQUENT_CHECK;
2542}
2543
2544void noinline
1001ev_timer_start (EV_P_ struct ev_timer *w) 2545ev_timer_start (EV_P_ ev_timer *w)
1002{ 2546{
1003 if (ev_is_active (w)) 2547 if (expect_false (ev_is_active (w)))
1004 return; 2548 return;
1005 2549
1006 w->at += mn_now; 2550 ev_at (w) += mn_now;
1007 2551
1008 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2552 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1009 2553
2554 EV_FREQUENT_CHECK;
2555
2556 ++timercnt;
1010 ev_start (EV_A_ (W)w, ++timercnt); 2557 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1011 array_needsize (timers, timermax, timercnt, ); 2558 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1012 timers [timercnt - 1] = w; 2559 ANHE_w (timers [ev_active (w)]) = (WT)w;
1013 upheap ((WT *)timers, timercnt - 1); 2560 ANHE_at_cache (timers [ev_active (w)]);
1014} 2561 upheap (timers, ev_active (w));
1015 2562
1016void 2563 EV_FREQUENT_CHECK;
2564
2565 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2566}
2567
2568void noinline
1017ev_timer_stop (EV_P_ struct ev_timer *w) 2569ev_timer_stop (EV_P_ ev_timer *w)
1018{ 2570{
1019 ev_clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
1020 if (!ev_is_active (w)) 2572 if (expect_false (!ev_is_active (w)))
1021 return; 2573 return;
1022 2574
1023 if (w->active < timercnt--) 2575 EV_FREQUENT_CHECK;
2576
2577 {
2578 int active = ev_active (w);
2579
2580 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2581
2582 --timercnt;
2583
2584 if (expect_true (active < timercnt + HEAP0))
1024 { 2585 {
1025 timers [w->active - 1] = timers [timercnt]; 2586 timers [active] = timers [timercnt + HEAP0];
1026 downheap ((WT *)timers, timercnt, w->active - 1); 2587 adjustheap (timers, timercnt, active);
1027 } 2588 }
2589 }
1028 2590
1029 w->at = w->repeat; 2591 EV_FREQUENT_CHECK;
2592
2593 ev_at (w) -= mn_now;
1030 2594
1031 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
1032} 2596}
1033 2597
1034void 2598void noinline
1035ev_timer_again (EV_P_ struct ev_timer *w) 2599ev_timer_again (EV_P_ ev_timer *w)
1036{ 2600{
2601 EV_FREQUENT_CHECK;
2602
1037 if (ev_is_active (w)) 2603 if (ev_is_active (w))
1038 { 2604 {
1039 if (w->repeat) 2605 if (w->repeat)
1040 { 2606 {
1041 w->at = mn_now + w->repeat; 2607 ev_at (w) = mn_now + w->repeat;
2608 ANHE_at_cache (timers [ev_active (w)]);
1042 downheap ((WT *)timers, timercnt, w->active - 1); 2609 adjustheap (timers, timercnt, ev_active (w));
1043 } 2610 }
1044 else 2611 else
1045 ev_timer_stop (EV_A_ w); 2612 ev_timer_stop (EV_A_ w);
1046 } 2613 }
1047 else if (w->repeat) 2614 else if (w->repeat)
2615 {
2616 ev_at (w) = w->repeat;
1048 ev_timer_start (EV_A_ w); 2617 ev_timer_start (EV_A_ w);
1049} 2618 }
1050 2619
1051void 2620 EV_FREQUENT_CHECK;
2621}
2622
2623ev_tstamp
2624ev_timer_remaining (EV_P_ ev_timer *w)
2625{
2626 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2627}
2628
2629#if EV_PERIODIC_ENABLE
2630void noinline
1052ev_periodic_start (EV_P_ struct ev_periodic *w) 2631ev_periodic_start (EV_P_ ev_periodic *w)
1053{ 2632{
1054 if (ev_is_active (w)) 2633 if (expect_false (ev_is_active (w)))
1055 return; 2634 return;
1056 2635
2636 if (w->reschedule_cb)
2637 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2638 else if (w->interval)
2639 {
1057 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2640 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1058
1059 /* this formula differs from the one in periodic_reify because we do not always round up */ 2641 /* this formula differs from the one in periodic_reify because we do not always round up */
1060 if (w->interval)
1061 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 2642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2643 }
2644 else
2645 ev_at (w) = w->offset;
1062 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++periodiccnt;
1063 ev_start (EV_A_ (W)w, ++periodiccnt); 2650 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1064 array_needsize (periodics, periodicmax, periodiccnt, ); 2651 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1065 periodics [periodiccnt - 1] = w; 2652 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1066 upheap ((WT *)periodics, periodiccnt - 1); 2653 ANHE_at_cache (periodics [ev_active (w)]);
1067} 2654 upheap (periodics, ev_active (w));
1068 2655
1069void 2656 EV_FREQUENT_CHECK;
2657
2658 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2659}
2660
2661void noinline
1070ev_periodic_stop (EV_P_ struct ev_periodic *w) 2662ev_periodic_stop (EV_P_ ev_periodic *w)
1071{ 2663{
1072 ev_clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
1073 if (!ev_is_active (w)) 2665 if (expect_false (!ev_is_active (w)))
1074 return; 2666 return;
1075 2667
1076 if (w->active < periodiccnt--) 2668 EV_FREQUENT_CHECK;
2669
2670 {
2671 int active = ev_active (w);
2672
2673 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2674
2675 --periodiccnt;
2676
2677 if (expect_true (active < periodiccnt + HEAP0))
1077 { 2678 {
1078 periodics [w->active - 1] = periodics [periodiccnt]; 2679 periodics [active] = periodics [periodiccnt + HEAP0];
1079 downheap ((WT *)periodics, periodiccnt, w->active - 1); 2680 adjustheap (periodics, periodiccnt, active);
1080 } 2681 }
2682 }
2683
2684 EV_FREQUENT_CHECK;
1081 2685
1082 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1083} 2687}
2688
2689void noinline
2690ev_periodic_again (EV_P_ ev_periodic *w)
2691{
2692 /* TODO: use adjustheap and recalculation */
2693 ev_periodic_stop (EV_A_ w);
2694 ev_periodic_start (EV_A_ w);
2695}
2696#endif
1084 2697
1085#ifndef SA_RESTART 2698#ifndef SA_RESTART
1086# define SA_RESTART 0 2699# define SA_RESTART 0
1087#endif 2700#endif
1088 2701
1089void 2702void noinline
1090ev_signal_start (EV_P_ struct ev_signal *w) 2703ev_signal_start (EV_P_ ev_signal *w)
1091{ 2704{
1092 if (ev_is_active (w)) 2705 if (expect_false (ev_is_active (w)))
1093 return; 2706 return;
1094 2707
1095 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2708 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2709
2710#if EV_MULTIPLICITY
2711 assert (("libev: a signal must not be attached to two different loops",
2712 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2713
2714 signals [w->signum - 1].loop = EV_A;
2715#endif
2716
2717 EV_FREQUENT_CHECK;
2718
2719#if EV_USE_SIGNALFD
2720 if (sigfd == -2)
2721 {
2722 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2723 if (sigfd < 0 && errno == EINVAL)
2724 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2725
2726 if (sigfd >= 0)
2727 {
2728 fd_intern (sigfd); /* doing it twice will not hurt */
2729
2730 sigemptyset (&sigfd_set);
2731
2732 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2733 ev_set_priority (&sigfd_w, EV_MAXPRI);
2734 ev_io_start (EV_A_ &sigfd_w);
2735 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2736 }
2737 }
2738
2739 if (sigfd >= 0)
2740 {
2741 /* TODO: check .head */
2742 sigaddset (&sigfd_set, w->signum);
2743 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2744
2745 signalfd (sigfd, &sigfd_set, 0);
2746 }
2747#endif
1096 2748
1097 ev_start (EV_A_ (W)w, 1); 2749 ev_start (EV_A_ (W)w, 1);
1098 array_needsize (signals, signalmax, w->signum, signals_init);
1099 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2750 wlist_add (&signals [w->signum - 1].head, (WL)w);
1100 2751
1101 if (!w->next) 2752 if (!((WL)w)->next)
2753# if EV_USE_SIGNALFD
2754 if (sigfd < 0) /*TODO*/
2755# endif
1102 { 2756 {
2757# if _WIN32
2758 signal (w->signum, ev_sighandler);
2759# else
1103 struct sigaction sa; 2760 struct sigaction sa;
2761
2762 evpipe_init (EV_A);
2763
1104 sa.sa_handler = sighandler; 2764 sa.sa_handler = ev_sighandler;
1105 sigfillset (&sa.sa_mask); 2765 sigfillset (&sa.sa_mask);
1106 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1107 sigaction (w->signum, &sa, 0); 2767 sigaction (w->signum, &sa, 0);
2768
2769 sigemptyset (&sa.sa_mask);
2770 sigaddset (&sa.sa_mask, w->signum);
2771 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2772#endif
1108 } 2773 }
1109}
1110 2774
1111void 2775 EV_FREQUENT_CHECK;
2776}
2777
2778void noinline
1112ev_signal_stop (EV_P_ struct ev_signal *w) 2779ev_signal_stop (EV_P_ ev_signal *w)
1113{ 2780{
1114 ev_clear_pending (EV_A_ (W)w); 2781 clear_pending (EV_A_ (W)w);
1115 if (!ev_is_active (w)) 2782 if (expect_false (!ev_is_active (w)))
1116 return; 2783 return;
1117 2784
2785 EV_FREQUENT_CHECK;
2786
1118 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2787 wlist_del (&signals [w->signum - 1].head, (WL)w);
1119 ev_stop (EV_A_ (W)w); 2788 ev_stop (EV_A_ (W)w);
1120 2789
1121 if (!signals [w->signum - 1].head) 2790 if (!signals [w->signum - 1].head)
2791 {
2792#if EV_MULTIPLICITY
2793 signals [w->signum - 1].loop = 0; /* unattach from signal */
2794#endif
2795#if EV_USE_SIGNALFD
2796 if (sigfd >= 0)
2797 {
2798 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2799 sigdelset (&sigfd_set, w->signum);
2800 signalfd (sigfd, &sigfd_set, 0);
2801 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2802 /*TODO: maybe unblock signal? */
2803 }
2804 else
2805#endif
1122 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
1123} 2807 }
1124 2808
2809 EV_FREQUENT_CHECK;
2810}
2811
1125void 2812void
1126ev_idle_start (EV_P_ struct ev_idle *w) 2813ev_child_start (EV_P_ ev_child *w)
1127{ 2814{
2815#if EV_MULTIPLICITY
2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2817#endif
1128 if (ev_is_active (w)) 2818 if (expect_false (ev_is_active (w)))
1129 return; 2819 return;
1130 2820
2821 EV_FREQUENT_CHECK;
2822
1131 ev_start (EV_A_ (W)w, ++idlecnt); 2823 ev_start (EV_A_ (W)w, 1);
1132 array_needsize (idles, idlemax, idlecnt, ); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1133 idles [idlecnt - 1] = w;
1134}
1135 2825
2826 EV_FREQUENT_CHECK;
2827}
2828
1136void 2829void
1137ev_idle_stop (EV_P_ struct ev_idle *w) 2830ev_child_stop (EV_P_ ev_child *w)
1138{ 2831{
1139 ev_clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1140 if (ev_is_active (w)) 2833 if (expect_false (!ev_is_active (w)))
1141 return; 2834 return;
1142 2835
1143 idles [w->active - 1] = idles [--idlecnt]; 2836 EV_FREQUENT_CHECK;
2837
2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1144 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
1145}
1146 2840
1147void 2841 EV_FREQUENT_CHECK;
1148ev_prepare_start (EV_P_ struct ev_prepare *w) 2842}
2843
2844#if EV_STAT_ENABLE
2845
2846# ifdef _WIN32
2847# undef lstat
2848# define lstat(a,b) _stati64 (a,b)
2849# endif
2850
2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2853#define MIN_STAT_INTERVAL 0.1074891
2854
2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2856
2857#if EV_USE_INOTIFY
2858# define EV_INOTIFY_BUFSIZE 8192
2859
2860static void noinline
2861infy_add (EV_P_ ev_stat *w)
1149{ 2862{
1150 if (ev_is_active (w)) 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2864
2865 if (w->wd < 0)
2866 {
2867 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2868 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2869
2870 /* monitor some parent directory for speedup hints */
2871 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2872 /* but an efficiency issue only */
2873 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2874 {
2875 char path [4096];
2876 strcpy (path, w->path);
2877
2878 do
2879 {
2880 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2881 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2882
2883 char *pend = strrchr (path, '/');
2884
2885 if (!pend || pend == path)
2886 break;
2887
2888 *pend = 0;
2889 w->wd = inotify_add_watch (fs_fd, path, mask);
2890 }
2891 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2892 }
2893 }
2894
2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
2899 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2900
2901 /* now local changes will be tracked by inotify, but remote changes won't */
2902 /* unless the filesystem it known to be local, we therefore still poll */
2903 /* also do poll on <2.6.25, but with normal frequency */
2904
2905 if (fs_2625 && !statfs (w->path, &sfs))
2906 if (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */)
2912 return;
2913
2914 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2915 ev_timer_again (EV_A_ &w->timer);
2916 }
2917}
2918
2919static void noinline
2920infy_del (EV_P_ ev_stat *w)
2921{
2922 int slot;
2923 int wd = w->wd;
2924
2925 if (wd < 0)
1151 return; 2926 return;
1152 2927
2928 w->wd = -2;
2929 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2930 wlist_del (&fs_hash [slot].head, (WL)w);
2931
2932 /* remove this watcher, if others are watching it, they will rearm */
2933 inotify_rm_watch (fs_fd, wd);
2934}
2935
2936static void noinline
2937infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2938{
2939 if (slot < 0)
2940 /* overflow, need to check for all hash slots */
2941 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2942 infy_wd (EV_A_ slot, wd, ev);
2943 else
2944 {
2945 WL w_;
2946
2947 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2948 {
2949 ev_stat *w = (ev_stat *)w_;
2950 w_ = w_->next; /* lets us remove this watcher and all before it */
2951
2952 if (w->wd == wd || wd == -1)
2953 {
2954 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2955 {
2956 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2957 w->wd = -1;
2958 infy_add (EV_A_ w); /* re-add, no matter what */
2959 }
2960
2961 stat_timer_cb (EV_A_ &w->timer, 0);
2962 }
2963 }
2964 }
2965}
2966
2967static void
2968infy_cb (EV_P_ ev_io *w, int revents)
2969{
2970 char buf [EV_INOTIFY_BUFSIZE];
2971 struct inotify_event *ev = (struct inotify_event *)buf;
2972 int ofs;
2973 int len = read (fs_fd, buf, sizeof (buf));
2974
2975 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2976 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2977}
2978
2979inline_size void
2980check_2625 (EV_P)
2981{
2982 /* kernels < 2.6.25 are borked
2983 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2984 */
2985 struct utsname buf;
2986 int major, minor, micro;
2987
2988 if (uname (&buf))
2989 return;
2990
2991 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2992 return;
2993
2994 if (major < 2
2995 || (major == 2 && minor < 6)
2996 || (major == 2 && minor == 6 && micro < 25))
2997 return;
2998
2999 fs_2625 = 1;
3000}
3001
3002inline_size void
3003infy_init (EV_P)
3004{
3005 if (fs_fd != -2)
3006 return;
3007
3008 fs_fd = -1;
3009
3010 check_2625 (EV_A);
3011
3012 fs_fd = inotify_init ();
3013
3014 if (fs_fd >= 0)
3015 {
3016 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3017 ev_set_priority (&fs_w, EV_MAXPRI);
3018 ev_io_start (EV_A_ &fs_w);
3019 }
3020}
3021
3022inline_size void
3023infy_fork (EV_P)
3024{
3025 int slot;
3026
3027 if (fs_fd < 0)
3028 return;
3029
3030 close (fs_fd);
3031 fs_fd = inotify_init ();
3032
3033 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3034 {
3035 WL w_ = fs_hash [slot].head;
3036 fs_hash [slot].head = 0;
3037
3038 while (w_)
3039 {
3040 ev_stat *w = (ev_stat *)w_;
3041 w_ = w_->next; /* lets us add this watcher */
3042
3043 w->wd = -1;
3044
3045 if (fs_fd >= 0)
3046 infy_add (EV_A_ w); /* re-add, no matter what */
3047 else
3048 ev_timer_again (EV_A_ &w->timer);
3049 }
3050 }
3051}
3052
3053#endif
3054
3055#ifdef _WIN32
3056# define EV_LSTAT(p,b) _stati64 (p, b)
3057#else
3058# define EV_LSTAT(p,b) lstat (p, b)
3059#endif
3060
3061void
3062ev_stat_stat (EV_P_ ev_stat *w)
3063{
3064 if (lstat (w->path, &w->attr) < 0)
3065 w->attr.st_nlink = 0;
3066 else if (!w->attr.st_nlink)
3067 w->attr.st_nlink = 1;
3068}
3069
3070static void noinline
3071stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3072{
3073 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3074
3075 /* we copy this here each the time so that */
3076 /* prev has the old value when the callback gets invoked */
3077 w->prev = w->attr;
3078 ev_stat_stat (EV_A_ w);
3079
3080 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3081 if (
3082 w->prev.st_dev != w->attr.st_dev
3083 || w->prev.st_ino != w->attr.st_ino
3084 || w->prev.st_mode != w->attr.st_mode
3085 || w->prev.st_nlink != w->attr.st_nlink
3086 || w->prev.st_uid != w->attr.st_uid
3087 || w->prev.st_gid != w->attr.st_gid
3088 || w->prev.st_rdev != w->attr.st_rdev
3089 || w->prev.st_size != w->attr.st_size
3090 || w->prev.st_atime != w->attr.st_atime
3091 || w->prev.st_mtime != w->attr.st_mtime
3092 || w->prev.st_ctime != w->attr.st_ctime
3093 ) {
3094 #if EV_USE_INOTIFY
3095 if (fs_fd >= 0)
3096 {
3097 infy_del (EV_A_ w);
3098 infy_add (EV_A_ w);
3099 ev_stat_stat (EV_A_ w); /* avoid race... */
3100 }
3101 #endif
3102
3103 ev_feed_event (EV_A_ w, EV_STAT);
3104 }
3105}
3106
3107void
3108ev_stat_start (EV_P_ ev_stat *w)
3109{
3110 if (expect_false (ev_is_active (w)))
3111 return;
3112
3113 ev_stat_stat (EV_A_ w);
3114
3115 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3116 w->interval = MIN_STAT_INTERVAL;
3117
3118 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3119 ev_set_priority (&w->timer, ev_priority (w));
3120
3121#if EV_USE_INOTIFY
3122 infy_init (EV_A);
3123
3124 if (fs_fd >= 0)
3125 infy_add (EV_A_ w);
3126 else
3127#endif
3128 ev_timer_again (EV_A_ &w->timer);
3129
3130 ev_start (EV_A_ (W)w, 1);
3131
3132 EV_FREQUENT_CHECK;
3133}
3134
3135void
3136ev_stat_stop (EV_P_ ev_stat *w)
3137{
3138 clear_pending (EV_A_ (W)w);
3139 if (expect_false (!ev_is_active (w)))
3140 return;
3141
3142 EV_FREQUENT_CHECK;
3143
3144#if EV_USE_INOTIFY
3145 infy_del (EV_A_ w);
3146#endif
3147 ev_timer_stop (EV_A_ &w->timer);
3148
3149 ev_stop (EV_A_ (W)w);
3150
3151 EV_FREQUENT_CHECK;
3152}
3153#endif
3154
3155#if EV_IDLE_ENABLE
3156void
3157ev_idle_start (EV_P_ ev_idle *w)
3158{
3159 if (expect_false (ev_is_active (w)))
3160 return;
3161
3162 pri_adjust (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
3165
3166 {
3167 int active = ++idlecnt [ABSPRI (w)];
3168
3169 ++idleall;
3170 ev_start (EV_A_ (W)w, active);
3171
3172 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3173 idles [ABSPRI (w)][active - 1] = w;
3174 }
3175
3176 EV_FREQUENT_CHECK;
3177}
3178
3179void
3180ev_idle_stop (EV_P_ ev_idle *w)
3181{
3182 clear_pending (EV_A_ (W)w);
3183 if (expect_false (!ev_is_active (w)))
3184 return;
3185
3186 EV_FREQUENT_CHECK;
3187
3188 {
3189 int active = ev_active (w);
3190
3191 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3192 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3193
3194 ev_stop (EV_A_ (W)w);
3195 --idleall;
3196 }
3197
3198 EV_FREQUENT_CHECK;
3199}
3200#endif
3201
3202void
3203ev_prepare_start (EV_P_ ev_prepare *w)
3204{
3205 if (expect_false (ev_is_active (w)))
3206 return;
3207
3208 EV_FREQUENT_CHECK;
3209
1153 ev_start (EV_A_ (W)w, ++preparecnt); 3210 ev_start (EV_A_ (W)w, ++preparecnt);
1154 array_needsize (prepares, preparemax, preparecnt, ); 3211 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1155 prepares [preparecnt - 1] = w; 3212 prepares [preparecnt - 1] = w;
1156}
1157 3213
3214 EV_FREQUENT_CHECK;
3215}
3216
1158void 3217void
1159ev_prepare_stop (EV_P_ struct ev_prepare *w) 3218ev_prepare_stop (EV_P_ ev_prepare *w)
1160{ 3219{
1161 ev_clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
1162 if (ev_is_active (w)) 3221 if (expect_false (!ev_is_active (w)))
1163 return; 3222 return;
1164 3223
3224 EV_FREQUENT_CHECK;
3225
3226 {
3227 int active = ev_active (w);
3228
1165 prepares [w->active - 1] = prepares [--preparecnt]; 3229 prepares [active - 1] = prepares [--preparecnt];
3230 ev_active (prepares [active - 1]) = active;
3231 }
3232
1166 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
1167}
1168 3234
3235 EV_FREQUENT_CHECK;
3236}
3237
1169void 3238void
1170ev_check_start (EV_P_ struct ev_check *w) 3239ev_check_start (EV_P_ ev_check *w)
1171{ 3240{
1172 if (ev_is_active (w)) 3241 if (expect_false (ev_is_active (w)))
1173 return; 3242 return;
1174 3243
3244 EV_FREQUENT_CHECK;
3245
1175 ev_start (EV_A_ (W)w, ++checkcnt); 3246 ev_start (EV_A_ (W)w, ++checkcnt);
1176 array_needsize (checks, checkmax, checkcnt, ); 3247 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1177 checks [checkcnt - 1] = w; 3248 checks [checkcnt - 1] = w;
1178}
1179 3249
3250 EV_FREQUENT_CHECK;
3251}
3252
1180void 3253void
1181ev_check_stop (EV_P_ struct ev_check *w) 3254ev_check_stop (EV_P_ ev_check *w)
1182{ 3255{
1183 ev_clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
1184 if (ev_is_active (w)) 3257 if (expect_false (!ev_is_active (w)))
1185 return; 3258 return;
1186 3259
3260 EV_FREQUENT_CHECK;
3261
3262 {
3263 int active = ev_active (w);
3264
1187 checks [w->active - 1] = checks [--checkcnt]; 3265 checks [active - 1] = checks [--checkcnt];
3266 ev_active (checks [active - 1]) = active;
3267 }
3268
1188 ev_stop (EV_A_ (W)w); 3269 ev_stop (EV_A_ (W)w);
1189}
1190 3270
1191void 3271 EV_FREQUENT_CHECK;
1192ev_child_start (EV_P_ struct ev_child *w) 3272}
3273
3274#if EV_EMBED_ENABLE
3275void noinline
3276ev_embed_sweep (EV_P_ ev_embed *w)
1193{ 3277{
3278 ev_loop (w->other, EVLOOP_NONBLOCK);
3279}
3280
3281static void
3282embed_io_cb (EV_P_ ev_io *io, int revents)
3283{
3284 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3285
1194 if (ev_is_active (w)) 3286 if (ev_cb (w))
3287 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3288 else
3289 ev_loop (w->other, EVLOOP_NONBLOCK);
3290}
3291
3292static void
3293embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3294{
3295 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3296
3297 {
3298 EV_P = w->other;
3299
3300 while (fdchangecnt)
3301 {
3302 fd_reify (EV_A);
3303 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3304 }
3305 }
3306}
3307
3308static void
3309embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3310{
3311 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3312
3313 ev_embed_stop (EV_A_ w);
3314
3315 {
3316 EV_P = w->other;
3317
3318 ev_loop_fork (EV_A);
3319 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3320 }
3321
3322 ev_embed_start (EV_A_ w);
3323}
3324
3325#if 0
3326static void
3327embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3328{
3329 ev_idle_stop (EV_A_ idle);
3330}
3331#endif
3332
3333void
3334ev_embed_start (EV_P_ ev_embed *w)
3335{
3336 if (expect_false (ev_is_active (w)))
1195 return; 3337 return;
1196 3338
3339 {
3340 EV_P = w->other;
3341 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3342 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3343 }
3344
3345 EV_FREQUENT_CHECK;
3346
3347 ev_set_priority (&w->io, ev_priority (w));
3348 ev_io_start (EV_A_ &w->io);
3349
3350 ev_prepare_init (&w->prepare, embed_prepare_cb);
3351 ev_set_priority (&w->prepare, EV_MINPRI);
3352 ev_prepare_start (EV_A_ &w->prepare);
3353
3354 ev_fork_init (&w->fork, embed_fork_cb);
3355 ev_fork_start (EV_A_ &w->fork);
3356
3357 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3358
1197 ev_start (EV_A_ (W)w, 1); 3359 ev_start (EV_A_ (W)w, 1);
1198 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1199}
1200 3360
3361 EV_FREQUENT_CHECK;
3362}
3363
1201void 3364void
1202ev_child_stop (EV_P_ struct ev_child *w) 3365ev_embed_stop (EV_P_ ev_embed *w)
1203{ 3366{
1204 ev_clear_pending (EV_A_ (W)w); 3367 clear_pending (EV_A_ (W)w);
1205 if (ev_is_active (w)) 3368 if (expect_false (!ev_is_active (w)))
1206 return; 3369 return;
1207 3370
1208 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3371 EV_FREQUENT_CHECK;
3372
3373 ev_io_stop (EV_A_ &w->io);
3374 ev_prepare_stop (EV_A_ &w->prepare);
3375 ev_fork_stop (EV_A_ &w->fork);
3376
3377 EV_FREQUENT_CHECK;
3378}
3379#endif
3380
3381#if EV_FORK_ENABLE
3382void
3383ev_fork_start (EV_P_ ev_fork *w)
3384{
3385 if (expect_false (ev_is_active (w)))
3386 return;
3387
3388 EV_FREQUENT_CHECK;
3389
3390 ev_start (EV_A_ (W)w, ++forkcnt);
3391 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3392 forks [forkcnt - 1] = w;
3393
3394 EV_FREQUENT_CHECK;
3395}
3396
3397void
3398ev_fork_stop (EV_P_ ev_fork *w)
3399{
3400 clear_pending (EV_A_ (W)w);
3401 if (expect_false (!ev_is_active (w)))
3402 return;
3403
3404 EV_FREQUENT_CHECK;
3405
3406 {
3407 int active = ev_active (w);
3408
3409 forks [active - 1] = forks [--forkcnt];
3410 ev_active (forks [active - 1]) = active;
3411 }
3412
1209 ev_stop (EV_A_ (W)w); 3413 ev_stop (EV_A_ (W)w);
3414
3415 EV_FREQUENT_CHECK;
1210} 3416}
3417#endif
3418
3419#if EV_ASYNC_ENABLE
3420void
3421ev_async_start (EV_P_ ev_async *w)
3422{
3423 if (expect_false (ev_is_active (w)))
3424 return;
3425
3426 evpipe_init (EV_A);
3427
3428 EV_FREQUENT_CHECK;
3429
3430 ev_start (EV_A_ (W)w, ++asynccnt);
3431 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3432 asyncs [asynccnt - 1] = w;
3433
3434 EV_FREQUENT_CHECK;
3435}
3436
3437void
3438ev_async_stop (EV_P_ ev_async *w)
3439{
3440 clear_pending (EV_A_ (W)w);
3441 if (expect_false (!ev_is_active (w)))
3442 return;
3443
3444 EV_FREQUENT_CHECK;
3445
3446 {
3447 int active = ev_active (w);
3448
3449 asyncs [active - 1] = asyncs [--asynccnt];
3450 ev_active (asyncs [active - 1]) = active;
3451 }
3452
3453 ev_stop (EV_A_ (W)w);
3454
3455 EV_FREQUENT_CHECK;
3456}
3457
3458void
3459ev_async_send (EV_P_ ev_async *w)
3460{
3461 w->sent = 1;
3462 evpipe_write (EV_A_ &async_pending);
3463}
3464#endif
1211 3465
1212/*****************************************************************************/ 3466/*****************************************************************************/
1213 3467
1214struct ev_once 3468struct ev_once
1215{ 3469{
1216 struct ev_io io; 3470 ev_io io;
1217 struct ev_timer to; 3471 ev_timer to;
1218 void (*cb)(int revents, void *arg); 3472 void (*cb)(int revents, void *arg);
1219 void *arg; 3473 void *arg;
1220}; 3474};
1221 3475
1222static void 3476static void
1223once_cb (EV_P_ struct ev_once *once, int revents) 3477once_cb (EV_P_ struct ev_once *once, int revents)
1224{ 3478{
1225 void (*cb)(int revents, void *arg) = once->cb; 3479 void (*cb)(int revents, void *arg) = once->cb;
1226 void *arg = once->arg; 3480 void *arg = once->arg;
1227 3481
1228 ev_io_stop (EV_A_ &once->io); 3482 ev_io_stop (EV_A_ &once->io);
1229 ev_timer_stop (EV_A_ &once->to); 3483 ev_timer_stop (EV_A_ &once->to);
1230 free (once); 3484 ev_free (once);
1231 3485
1232 cb (revents, arg); 3486 cb (revents, arg);
1233} 3487}
1234 3488
1235static void 3489static void
1236once_cb_io (EV_P_ struct ev_io *w, int revents) 3490once_cb_io (EV_P_ ev_io *w, int revents)
1237{ 3491{
1238 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3492 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3493
3494 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1239} 3495}
1240 3496
1241static void 3497static void
1242once_cb_to (EV_P_ struct ev_timer *w, int revents) 3498once_cb_to (EV_P_ ev_timer *w, int revents)
1243{ 3499{
1244 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3500 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3501
3502 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1245} 3503}
1246 3504
1247void 3505void
1248ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3506ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1249{ 3507{
1250 struct ev_once *once = malloc (sizeof (struct ev_once)); 3508 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1251 3509
1252 if (!once) 3510 if (expect_false (!once))
3511 {
1253 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3512 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1254 else 3513 return;
1255 { 3514 }
3515
1256 once->cb = cb; 3516 once->cb = cb;
1257 once->arg = arg; 3517 once->arg = arg;
1258 3518
1259 ev_watcher_init (&once->io, once_cb_io); 3519 ev_init (&once->io, once_cb_io);
1260 if (fd >= 0) 3520 if (fd >= 0)
3521 {
3522 ev_io_set (&once->io, fd, events);
3523 ev_io_start (EV_A_ &once->io);
3524 }
3525
3526 ev_init (&once->to, once_cb_to);
3527 if (timeout >= 0.)
3528 {
3529 ev_timer_set (&once->to, timeout, 0.);
3530 ev_timer_start (EV_A_ &once->to);
3531 }
3532}
3533
3534/*****************************************************************************/
3535
3536#if EV_WALK_ENABLE
3537void
3538ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3539{
3540 int i, j;
3541 ev_watcher_list *wl, *wn;
3542
3543 if (types & (EV_IO | EV_EMBED))
3544 for (i = 0; i < anfdmax; ++i)
3545 for (wl = anfds [i].head; wl; )
1261 { 3546 {
1262 ev_io_set (&once->io, fd, events); 3547 wn = wl->next;
1263 ev_io_start (EV_A_ &once->io); 3548
3549#if EV_EMBED_ENABLE
3550 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3551 {
3552 if (types & EV_EMBED)
3553 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3554 }
3555 else
3556#endif
3557#if EV_USE_INOTIFY
3558 if (ev_cb ((ev_io *)wl) == infy_cb)
3559 ;
3560 else
3561#endif
3562 if ((ev_io *)wl != &pipe_w)
3563 if (types & EV_IO)
3564 cb (EV_A_ EV_IO, wl);
3565
3566 wl = wn;
1264 } 3567 }
1265 3568
1266 ev_watcher_init (&once->to, once_cb_to); 3569 if (types & (EV_TIMER | EV_STAT))
1267 if (timeout >= 0.) 3570 for (i = timercnt + HEAP0; i-- > HEAP0; )
3571#if EV_STAT_ENABLE
3572 /*TODO: timer is not always active*/
3573 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1268 { 3574 {
1269 ev_timer_set (&once->to, timeout, 0.); 3575 if (types & EV_STAT)
1270 ev_timer_start (EV_A_ &once->to); 3576 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1271 } 3577 }
1272 } 3578 else
1273} 3579#endif
3580 if (types & EV_TIMER)
3581 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1274 3582
1275/*****************************************************************************/ 3583#if EV_PERIODIC_ENABLE
3584 if (types & EV_PERIODIC)
3585 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3586 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3587#endif
1276 3588
1277#if 0 3589#if EV_IDLE_ENABLE
3590 if (types & EV_IDLE)
3591 for (j = NUMPRI; i--; )
3592 for (i = idlecnt [j]; i--; )
3593 cb (EV_A_ EV_IDLE, idles [j][i]);
3594#endif
1278 3595
1279struct ev_io wio; 3596#if EV_FORK_ENABLE
3597 if (types & EV_FORK)
3598 for (i = forkcnt; i--; )
3599 if (ev_cb (forks [i]) != embed_fork_cb)
3600 cb (EV_A_ EV_FORK, forks [i]);
3601#endif
1280 3602
1281static void 3603#if EV_ASYNC_ENABLE
1282sin_cb (struct ev_io *w, int revents) 3604 if (types & EV_ASYNC)
1283{ 3605 for (i = asynccnt; i--; )
1284 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3606 cb (EV_A_ EV_ASYNC, asyncs [i]);
1285} 3607#endif
1286 3608
1287static void 3609 if (types & EV_PREPARE)
1288ocb (struct ev_timer *w, int revents) 3610 for (i = preparecnt; i--; )
1289{ 3611#if EV_EMBED_ENABLE
1290 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3612 if (ev_cb (prepares [i]) != embed_prepare_cb)
1291 ev_timer_stop (w); 3613#endif
1292 ev_timer_start (w); 3614 cb (EV_A_ EV_PREPARE, prepares [i]);
1293}
1294 3615
1295static void 3616 if (types & EV_CHECK)
1296scb (struct ev_signal *w, int revents) 3617 for (i = checkcnt; i--; )
1297{ 3618 cb (EV_A_ EV_CHECK, checks [i]);
1298 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1299 ev_io_stop (&wio);
1300 ev_io_start (&wio);
1301}
1302 3619
1303static void 3620 if (types & EV_SIGNAL)
1304gcb (struct ev_signal *w, int revents)
1305{
1306 fprintf (stderr, "generic %x\n", revents);
1307
1308}
1309
1310int main (void)
1311{
1312 ev_init (0);
1313
1314 ev_io_init (&wio, sin_cb, 0, EV_READ);
1315 ev_io_start (&wio);
1316
1317 struct ev_timer t[10000];
1318
1319#if 0
1320 int i;
1321 for (i = 0; i < 10000; ++i) 3621 for (i = 0; i < EV_NSIG - 1; ++i)
1322 { 3622 for (wl = signals [i].head; wl; )
1323 struct ev_timer *w = t + i; 3623 {
1324 ev_watcher_init (w, ocb, i); 3624 wn = wl->next;
1325 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3625 cb (EV_A_ EV_SIGNAL, wl);
1326 ev_timer_start (w); 3626 wl = wn;
1327 if (drand48 () < 0.5) 3627 }
1328 ev_timer_stop (w);
1329 }
1330#endif
1331 3628
1332 struct ev_timer t1; 3629 if (types & EV_CHILD)
1333 ev_timer_init (&t1, ocb, 5, 10); 3630 for (i = EV_PID_HASHSIZE; i--; )
1334 ev_timer_start (&t1); 3631 for (wl = childs [i]; wl; )
1335 3632 {
1336 struct ev_signal sig; 3633 wn = wl->next;
1337 ev_signal_init (&sig, scb, SIGQUIT); 3634 cb (EV_A_ EV_CHILD, wl);
1338 ev_signal_start (&sig); 3635 wl = wn;
1339 3636 }
1340 struct ev_check cw; 3637/* EV_STAT 0x00001000 /* stat data changed */
1341 ev_check_init (&cw, gcb); 3638/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1342 ev_check_start (&cw);
1343
1344 struct ev_idle iw;
1345 ev_idle_init (&iw, gcb);
1346 ev_idle_start (&iw);
1347
1348 ev_loop (0);
1349
1350 return 0;
1351} 3639}
1352
1353#endif 3640#endif
1354 3641
3642#if EV_MULTIPLICITY
3643 #include "ev_wrap.h"
3644#endif
1355 3645
3646#ifdef __cplusplus
3647}
3648#endif
1356 3649
1357

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines