ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.155 by root, Wed Nov 28 17:32:24 2007 UTC vs.
Revision 1.315 by root, Wed Aug 26 17:46:22 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
202#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
205#endif 356#endif
206 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
207#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 381# include <winsock.h>
209#endif 382#endif
210 383
211#if !EV_STAT_ENABLE 384#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
213#endif 389# endif
214 390# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 391# ifdef O_CLOEXEC
216# include <sys/inotify.h> 392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
217#endif 396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
218 434
219/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
442
443/*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 452
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 455/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 456
225#if __GNUC__ >= 3 457#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 460#else
236# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
240#endif 466#endif
241 467
242#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
244 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
247 485
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
250 488
251typedef ev_watcher *W; 489typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
254 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
256 515
257#ifdef _WIN32 516#ifdef _WIN32
258# include "ev_win32.c" 517# include "ev_win32.c"
259#endif 518#endif
260 519
267{ 526{
268 syserr_cb = cb; 527 syserr_cb = cb;
269} 528}
270 529
271static void noinline 530static void noinline
272syserr (const char *msg) 531ev_syserr (const char *msg)
273{ 532{
274 if (!msg) 533 if (!msg)
275 msg = "(libev) system error"; 534 msg = "(libev) system error";
276 535
277 if (syserr_cb) 536 if (syserr_cb)
281 perror (msg); 540 perror (msg);
282 abort (); 541 abort ();
283 } 542 }
284} 543}
285 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
286static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 561
288void 562void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 564{
291 alloc = cb; 565 alloc = cb;
292} 566}
293 567
294inline_speed void * 568inline_speed void *
295ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
296{ 570{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
298 572
299 if (!ptr && size) 573 if (!ptr && size)
300 { 574 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 576 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
310 584
311/*****************************************************************************/ 585/*****************************************************************************/
312 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
313typedef struct 591typedef struct
314{ 592{
315 WL head; 593 WL head;
316 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
318#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 602 SOCKET handle;
320#endif 603#endif
321} ANFD; 604} ANFD;
322 605
606/* stores the pending event set for a given watcher */
323typedef struct 607typedef struct
324{ 608{
325 W w; 609 W w;
326 int events; 610 int events; /* the pending event set for the given watcher */
327} ANPENDING; 611} ANPENDING;
328 612
329#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
330typedef struct 615typedef struct
331{ 616{
332 WL head; 617 WL head;
333} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
334#endif 639#endif
335 640
336#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
337 642
338 struct ev_loop 643 struct ev_loop
357 662
358 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
359 664
360#endif 665#endif
361 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
362/*****************************************************************************/ 679/*****************************************************************************/
363 680
681#ifndef EV_HAVE_EV_TIME
364ev_tstamp 682ev_tstamp
365ev_time (void) 683ev_time (void)
366{ 684{
367#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
368 struct timespec ts; 688 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 691 }
692#endif
693
372 struct timeval tv; 694 struct timeval tv;
373 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 697}
698#endif
377 699
378ev_tstamp inline_size 700inline_size ev_tstamp
379get_clock (void) 701get_clock (void)
380{ 702{
381#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
383 { 705 {
396{ 718{
397 return ev_rt_now; 719 return ev_rt_now;
398} 720}
399#endif 721#endif
400 722
401#define array_roundsize(type,n) (((n) | 4) & ~3) 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
758array_nextsize (int elem, int cur, int cnt)
759{
760 int ncur = cur + 1;
761
762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
768 {
769 ncur *= elem;
770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
771 ncur = ncur - sizeof (void *) * 4;
772 ncur /= elem;
773 }
774
775 return ncur;
776}
777
778static noinline void *
779array_realloc (int elem, void *base, int *cur, int cnt)
780{
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
402 787
403#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 789 if (expect_false ((cnt) > (cur))) \
405 { \ 790 { \
406 int newcnt = cur; \ 791 int ocur_ = (cur); \
407 do \ 792 (base) = (type *)array_realloc \
408 { \ 793 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 794 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 795 }
417 796
797#if 0
418#define array_slim(type,stem) \ 798#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 800 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 801 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 804 }
805#endif
425 806
426#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
428 809
429/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
430 817
431void noinline 818void noinline
432ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
433{ 820{
434 W w_ = (W)w; 821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
435 823
436 if (expect_false (w_->pending)) 824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
437 { 827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 831 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 832 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 833}
447 834
448void inline_size 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
449queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 852{
451 int i; 853 int i;
452 854
453 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
454 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
455} 857}
456 858
457/*****************************************************************************/ 859/*****************************************************************************/
458 860
459void inline_size 861inline_speed void
460anfds_init (ANFD *base, int count)
461{
462 while (count--)
463 {
464 base->head = 0;
465 base->events = EV_NONE;
466 base->reify = 0;
467
468 ++base;
469 }
470}
471
472void inline_speed
473fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
474{ 863{
475 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
476 ev_io *w; 865 ev_io *w;
477 866
478 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
482 if (ev) 871 if (ev)
483 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
484 } 873 }
485} 874}
486 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
487void 887void
488ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 889{
890 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
491} 892}
492 893
493void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
494fd_reify (EV_P) 897fd_reify (EV_P)
495{ 898{
496 int i; 899 int i;
497 900
498 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
499 { 902 {
500 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
502 ev_io *w; 905 ev_io *w;
503 906
504 int events = 0; 907 unsigned char events = 0;
505 908
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 910 events |= (unsigned char)w->events;
508 911
509#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
510 if (events) 913 if (events)
511 { 914 {
512 unsigned long argp; 915 unsigned long arg;
513 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
515 } 918 }
516#endif 919#endif
517 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
518 anfd->reify = 0; 925 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
522 } 931 }
523 932
524 fdchangecnt = 0; 933 fdchangecnt = 0;
525} 934}
526 935
527void inline_size 936/* something about the given fd changed */
937inline_size void
528fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
529{ 939{
530 if (expect_false (anfds [fd].reify)) 940 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
534 942
943 if (expect_true (!reify))
944 {
535 ++fdchangecnt; 945 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
538} 949}
539 950
540void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
541fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
542{ 954{
543 ev_io *w; 955 ev_io *w;
544 956
545 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
547 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
548 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
549 } 961 }
550} 962}
551 963
552int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
553fd_valid (int fd) 966fd_valid (int fd)
554{ 967{
555#ifdef _WIN32 968#ifdef _WIN32
556 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
557#else 970#else
565{ 978{
566 int fd; 979 int fd;
567 980
568 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
569 if (anfds [fd].events) 982 if (anfds [fd].events)
570 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
571 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
572} 985}
573 986
574/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
575static void noinline 988static void noinline
579 992
580 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
581 if (anfds [fd].events) 994 if (anfds [fd].events)
582 { 995 {
583 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
584 return; 997 break;
585 } 998 }
586} 999}
587 1000
588/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
589static void noinline 1002static void noinline
590fd_rearm_all (EV_P) 1003fd_rearm_all (EV_P)
591{ 1004{
592 int fd; 1005 int fd;
593 1006
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 1008 if (anfds [fd].events)
597 { 1009 {
598 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
600 } 1013 }
601} 1014}
602 1015
603/*****************************************************************************/ 1016/*****************************************************************************/
604 1017
605void inline_speed 1018/*
606upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
607{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
608 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
609 1023
610 while (k && heap [k >> 1]->at > w->at) 1024/*
611 { 1025 * at the moment we allow libev the luxury of two heaps,
612 heap [k] = heap [k >> 1]; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
613 ((W)heap [k])->active = k + 1; 1027 * which is more cache-efficient.
614 k >>= 1; 1028 * the difference is about 5% with 50000+ watchers.
615 } 1029 */
1030#if EV_USE_4HEAP
616 1031
617 heap [k] = w; 1032#define DHEAP 4
618 ((W)heap [k])->active = k + 1; 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
619 1036
620} 1037/* away from the root */
621 1038inline_speed void
622void inline_speed
623downheap (WT *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
624{ 1040{
625 WT w = heap [k]; 1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
626 1043
627 while (k < (N >> 1)) 1044 for (;;)
628 { 1045 {
629 int j = k << 1; 1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
630 1049
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
632 ++j; 1052 {
633 1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
634 if (w->at <= heap [j]->at) 1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
635 break; 1066 break;
636 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
637 heap [k] = heap [j]; 1106 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 1107 ev_active (ANHE_w (heap [k])) = k;
1108
639 k = j; 1109 k = c;
640 } 1110 }
641 1111
642 heap [k] = w; 1112 heap [k] = he;
643 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (he)) = k;
644} 1114}
1115#endif
645 1116
646void inline_size 1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
1140inline_size void
647adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
648{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
649 upheap (heap, k); 1144 upheap (heap, k);
1145 else
650 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
651} 1159}
652 1160
653/*****************************************************************************/ 1161/*****************************************************************************/
654 1162
1163/* associate signal watchers to a signal signal */
655typedef struct 1164typedef struct
656{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
657 WL head; 1170 WL head;
658 sig_atomic_t volatile gotsig;
659} ANSIG; 1171} ANSIG;
660 1172
661static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
662static int signalmax;
663 1174
664static int sigpipe [2]; 1175/*****************************************************************************/
665static sig_atomic_t volatile gotsig;
666static ev_io sigev;
667 1176
668void inline_size 1177/* used to prepare libev internal fd's */
669signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
670{ 1179inline_speed void
671 while (count--)
672 {
673 base->head = 0;
674 base->gotsig = 0;
675
676 ++base;
677 }
678}
679
680static void
681sighandler (int signum)
682{
683#if _WIN32
684 signal (signum, sighandler);
685#endif
686
687 signals [signum - 1].gotsig = 1;
688
689 if (!gotsig)
690 {
691 int old_errno = errno;
692 gotsig = 1;
693 write (sigpipe [1], &signum, 1);
694 errno = old_errno;
695 }
696}
697
698void noinline
699ev_feed_signal_event (EV_P_ int signum)
700{
701 WL w;
702
703#if EV_MULTIPLICITY
704 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
705#endif
706
707 --signum;
708
709 if (signum < 0 || signum >= signalmax)
710 return;
711
712 signals [signum].gotsig = 0;
713
714 for (w = signals [signum].head; w; w = w->next)
715 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
716}
717
718static void
719sigcb (EV_P_ ev_io *iow, int revents)
720{
721 int signum;
722
723 read (sigpipe [0], &revents, 1);
724 gotsig = 0;
725
726 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1);
729}
730
731void inline_size
732fd_intern (int fd) 1180fd_intern (int fd)
733{ 1181{
734#ifdef _WIN32 1182#ifdef _WIN32
735 int arg = 1; 1183 unsigned long arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
737#else 1185#else
738 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
739 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
740#endif 1188#endif
741} 1189}
742 1190
743static void noinline 1191static void noinline
744siginit (EV_P) 1192evpipe_init (EV_P)
745{ 1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
746 fd_intern (sigpipe [0]); 1213 fd_intern (evpipe [0]);
747 fd_intern (sigpipe [1]); 1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
748 1217
749 ev_io_set (&sigev, sigpipe [0], EV_READ);
750 ev_io_start (EV_A_ &sigev); 1218 ev_io_start (EV_A_ &pipe_w);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
752} 1288}
753 1289
754/*****************************************************************************/ 1290/*****************************************************************************/
755 1291
1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
756static ev_child *childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
757 1354
758#ifndef _WIN32 1355#ifndef _WIN32
759 1356
760static ev_signal childev; 1357static ev_signal childev;
761 1358
762void inline_speed 1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
763child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
764{ 1366{
765 ev_child *w; 1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
766 1369
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
768 if (w->pid == pid || !w->pid) 1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
769 { 1374 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
771 w->rpid = pid; 1376 w->rpid = pid;
772 w->rstatus = status; 1377 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 1379 }
1380 }
775} 1381}
776 1382
777#ifndef WCONTINUED 1383#ifndef WCONTINUED
778# define WCONTINUED 0 1384# define WCONTINUED 0
779#endif 1385#endif
780 1386
1387/* called on sigchld etc., calls waitpid */
781static void 1388static void
782childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
783{ 1390{
784 int pid, status; 1391 int pid, status;
785 1392
788 if (!WCONTINUED 1395 if (!WCONTINUED
789 || errno != EINVAL 1396 || errno != EINVAL
790 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
791 return; 1398 return;
792 1399
793 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
794 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
795 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
796 1403
797 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
798 if (EV_PID_HASHSIZE > 1) 1405 if (EV_PID_HASHSIZE > 1)
799 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
800} 1407}
801 1408
802#endif 1409#endif
803 1410
804/*****************************************************************************/ 1411/*****************************************************************************/
866 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
867 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
868 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
869#endif 1476#endif
870#ifdef __APPLE__ 1477#ifdef __APPLE__
871 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
872 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
873#endif 1481#endif
874 1482
875 return flags; 1483 return flags;
876} 1484}
877 1485
878unsigned int 1486unsigned int
879ev_embeddable_backends (void) 1487ev_embeddable_backends (void)
880{ 1488{
881 return EVBACKEND_EPOLL 1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
882 | EVBACKEND_KQUEUE 1490
883 | EVBACKEND_PORT; 1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
884} 1496}
885 1497
886unsigned int 1498unsigned int
887ev_backend (EV_P) 1499ev_backend (EV_P)
888{ 1500{
889 return backend; 1501 return backend;
890} 1502}
891 1503
1504#if EV_MINIMAL < 2
1505unsigned int
1506ev_loop_count (EV_P)
1507{
1508 return loop_count;
1509}
1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
892static void noinline 1554static void noinline
893loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
894{ 1556{
895 if (!backend) 1557 if (!backend)
896 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
897#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
898 { 1571 {
899 struct timespec ts; 1572 struct timespec ts;
1573
900 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
901 have_monotonic = 1; 1575 have_monotonic = 1;
902 } 1576 }
903#endif 1577#endif
904 1578
905 ev_rt_now = ev_time (); 1579 /* pid check not overridable via env */
906 mn_now = get_clock (); 1580#ifndef _WIN32
907 now_floor = mn_now; 1581 if (flags & EVFLAG_FORKCHECK)
908 rtmn_diff = ev_rt_now - mn_now; 1582 curpid = getpid ();
1583#endif
909 1584
910 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 1586 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
914 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1611#endif
1612
915 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
916 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
917
918 backend = 0;
919 backend_fd = -1;
920#if EV_USE_INOTIFY
921 fs_fd = -2;
922#endif
923 1615
924#if EV_USE_PORT 1616#if EV_USE_PORT
925 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
926#endif 1618#endif
927#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
935#endif 1627#endif
936#if EV_USE_SELECT 1628#if EV_USE_SELECT
937 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
938#endif 1630#endif
939 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
940 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
941 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
942 } 1636 }
943} 1637}
944 1638
1639/* free up a loop structure */
945static void noinline 1640static void noinline
946loop_destroy (EV_P) 1641loop_destroy (EV_P)
947{ 1642{
948 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 {
1665 /*ev_ref (EV_A);*/
1666 /*ev_io_stop (EV_A_ &sigfd_w);*/
1667
1668 close (sigfd);
1669 }
1670#endif
949 1671
950#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
951 if (fs_fd >= 0) 1673 if (fs_fd >= 0)
952 close (fs_fd); 1674 close (fs_fd);
953#endif 1675#endif
970#if EV_USE_SELECT 1692#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1693 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1694#endif
973 1695
974 for (i = NUMPRI; i--; ) 1696 for (i = NUMPRI; i--; )
1697 {
975 array_free (pending, [i]); 1698 array_free (pending, [i]);
1699#if EV_IDLE_ENABLE
1700 array_free (idle, [i]);
1701#endif
1702 }
1703
1704 ev_free (anfds); anfds = 0; anfdmax = 0;
976 1705
977 /* have to use the microsoft-never-gets-it-right macro */ 1706 /* have to use the microsoft-never-gets-it-right macro */
1707 array_free (rfeed, EMPTY);
978 array_free (fdchange, EMPTY0); 1708 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1709 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1710#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1711 array_free (periodic, EMPTY);
982#endif 1712#endif
1713#if EV_FORK_ENABLE
983 array_free (idle, EMPTY0); 1714 array_free (fork, EMPTY);
1715#endif
984 array_free (prepare, EMPTY0); 1716 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1717 array_free (check, EMPTY);
1718#if EV_ASYNC_ENABLE
1719 array_free (async, EMPTY);
1720#endif
986 1721
987 backend = 0; 1722 backend = 0;
988} 1723}
989 1724
1725#if EV_USE_INOTIFY
990void inline_size infy_fork (EV_P); 1726inline_size void infy_fork (EV_P);
1727#endif
991 1728
992void inline_size 1729inline_size void
993loop_fork (EV_P) 1730loop_fork (EV_P)
994{ 1731{
995#if EV_USE_PORT 1732#if EV_USE_PORT
996 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1733 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
997#endif 1734#endif
1003#endif 1740#endif
1004#if EV_USE_INOTIFY 1741#if EV_USE_INOTIFY
1005 infy_fork (EV_A); 1742 infy_fork (EV_A);
1006#endif 1743#endif
1007 1744
1008 if (ev_is_active (&sigev)) 1745 if (ev_is_active (&pipe_w))
1009 { 1746 {
1010 /* default loop */ 1747 /* this "locks" the handlers against writing to the pipe */
1748 /* while we modify the fd vars */
1749 sig_pending = 1;
1750#if EV_ASYNC_ENABLE
1751 async_pending = 1;
1752#endif
1011 1753
1012 ev_ref (EV_A); 1754 ev_ref (EV_A);
1013 ev_io_stop (EV_A_ &sigev); 1755 ev_io_stop (EV_A_ &pipe_w);
1014 close (sigpipe [0]);
1015 close (sigpipe [1]);
1016 1756
1017 while (pipe (sigpipe)) 1757#if EV_USE_EVENTFD
1018 syserr ("(libev) error creating pipe"); 1758 if (evfd >= 0)
1759 close (evfd);
1760#endif
1019 1761
1762 if (evpipe [0] >= 0)
1763 {
1764 EV_WIN32_CLOSE_FD (evpipe [0]);
1765 EV_WIN32_CLOSE_FD (evpipe [1]);
1766 }
1767
1020 siginit (EV_A); 1768 evpipe_init (EV_A);
1769 /* now iterate over everything, in case we missed something */
1770 pipecb (EV_A_ &pipe_w, EV_READ);
1021 } 1771 }
1022 1772
1023 postfork = 0; 1773 postfork = 0;
1024} 1774}
1025 1775
1026#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1777
1027struct ev_loop * 1778struct ev_loop *
1028ev_loop_new (unsigned int flags) 1779ev_loop_new (unsigned int flags)
1029{ 1780{
1030 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1781 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1031 1782
1032 memset (loop, 0, sizeof (struct ev_loop)); 1783 memset (EV_A, 0, sizeof (struct ev_loop));
1033
1034 loop_init (EV_A_ flags); 1784 loop_init (EV_A_ flags);
1035 1785
1036 if (ev_backend (EV_A)) 1786 if (ev_backend (EV_A))
1037 return loop; 1787 return EV_A;
1038 1788
1039 return 0; 1789 return 0;
1040} 1790}
1041 1791
1042void 1792void
1047} 1797}
1048 1798
1049void 1799void
1050ev_loop_fork (EV_P) 1800ev_loop_fork (EV_P)
1051{ 1801{
1052 postfork = 1; 1802 postfork = 1; /* must be in line with ev_default_fork */
1053} 1803}
1804#endif /* multiplicity */
1054 1805
1806#if EV_VERIFY
1807static void noinline
1808verify_watcher (EV_P_ W w)
1809{
1810 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1811
1812 if (w->pending)
1813 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1814}
1815
1816static void noinline
1817verify_heap (EV_P_ ANHE *heap, int N)
1818{
1819 int i;
1820
1821 for (i = HEAP0; i < N + HEAP0; ++i)
1822 {
1823 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1824 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1825 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1826
1827 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1828 }
1829}
1830
1831static void noinline
1832array_verify (EV_P_ W *ws, int cnt)
1833{
1834 while (cnt--)
1835 {
1836 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1837 verify_watcher (EV_A_ ws [cnt]);
1838 }
1839}
1840#endif
1841
1842#if EV_MINIMAL < 2
1843void
1844ev_loop_verify (EV_P)
1845{
1846#if EV_VERIFY
1847 int i;
1848 WL w;
1849
1850 assert (activecnt >= -1);
1851
1852 assert (fdchangemax >= fdchangecnt);
1853 for (i = 0; i < fdchangecnt; ++i)
1854 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1855
1856 assert (anfdmax >= 0);
1857 for (i = 0; i < anfdmax; ++i)
1858 for (w = anfds [i].head; w; w = w->next)
1859 {
1860 verify_watcher (EV_A_ (W)w);
1861 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1862 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1863 }
1864
1865 assert (timermax >= timercnt);
1866 verify_heap (EV_A_ timers, timercnt);
1867
1868#if EV_PERIODIC_ENABLE
1869 assert (periodicmax >= periodiccnt);
1870 verify_heap (EV_A_ periodics, periodiccnt);
1871#endif
1872
1873 for (i = NUMPRI; i--; )
1874 {
1875 assert (pendingmax [i] >= pendingcnt [i]);
1876#if EV_IDLE_ENABLE
1877 assert (idleall >= 0);
1878 assert (idlemax [i] >= idlecnt [i]);
1879 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1880#endif
1881 }
1882
1883#if EV_FORK_ENABLE
1884 assert (forkmax >= forkcnt);
1885 array_verify (EV_A_ (W *)forks, forkcnt);
1886#endif
1887
1888#if EV_ASYNC_ENABLE
1889 assert (asyncmax >= asynccnt);
1890 array_verify (EV_A_ (W *)asyncs, asynccnt);
1891#endif
1892
1893 assert (preparemax >= preparecnt);
1894 array_verify (EV_A_ (W *)prepares, preparecnt);
1895
1896 assert (checkmax >= checkcnt);
1897 array_verify (EV_A_ (W *)checks, checkcnt);
1898
1899# if 0
1900 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1901 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1902# endif
1903#endif
1904}
1055#endif 1905#endif
1056 1906
1057#if EV_MULTIPLICITY 1907#if EV_MULTIPLICITY
1058struct ev_loop * 1908struct ev_loop *
1059ev_default_loop_init (unsigned int flags) 1909ev_default_loop_init (unsigned int flags)
1060#else 1910#else
1061int 1911int
1062ev_default_loop (unsigned int flags) 1912ev_default_loop (unsigned int flags)
1063#endif 1913#endif
1064{ 1914{
1065 if (sigpipe [0] == sigpipe [1])
1066 if (pipe (sigpipe))
1067 return 0;
1068
1069 if (!ev_default_loop_ptr) 1915 if (!ev_default_loop_ptr)
1070 { 1916 {
1071#if EV_MULTIPLICITY 1917#if EV_MULTIPLICITY
1072 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1918 EV_P = ev_default_loop_ptr = &default_loop_struct;
1073#else 1919#else
1074 ev_default_loop_ptr = 1; 1920 ev_default_loop_ptr = 1;
1075#endif 1921#endif
1076 1922
1077 loop_init (EV_A_ flags); 1923 loop_init (EV_A_ flags);
1078 1924
1079 if (ev_backend (EV_A)) 1925 if (ev_backend (EV_A))
1080 { 1926 {
1081 siginit (EV_A);
1082
1083#ifndef _WIN32 1927#ifndef _WIN32
1084 ev_signal_init (&childev, childcb, SIGCHLD); 1928 ev_signal_init (&childev, childcb, SIGCHLD);
1085 ev_set_priority (&childev, EV_MAXPRI); 1929 ev_set_priority (&childev, EV_MAXPRI);
1086 ev_signal_start (EV_A_ &childev); 1930 ev_signal_start (EV_A_ &childev);
1087 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1931 ev_unref (EV_A); /* child watcher should not keep loop alive */
1096 1940
1097void 1941void
1098ev_default_destroy (void) 1942ev_default_destroy (void)
1099{ 1943{
1100#if EV_MULTIPLICITY 1944#if EV_MULTIPLICITY
1101 struct ev_loop *loop = ev_default_loop_ptr; 1945 EV_P = ev_default_loop_ptr;
1102#endif 1946#endif
1947
1948 ev_default_loop_ptr = 0;
1103 1949
1104#ifndef _WIN32 1950#ifndef _WIN32
1105 ev_ref (EV_A); /* child watcher */ 1951 ev_ref (EV_A); /* child watcher */
1106 ev_signal_stop (EV_A_ &childev); 1952 ev_signal_stop (EV_A_ &childev);
1107#endif 1953#endif
1108 1954
1109 ev_ref (EV_A); /* signal watcher */
1110 ev_io_stop (EV_A_ &sigev);
1111
1112 close (sigpipe [0]); sigpipe [0] = 0;
1113 close (sigpipe [1]); sigpipe [1] = 0;
1114
1115 loop_destroy (EV_A); 1955 loop_destroy (EV_A);
1116} 1956}
1117 1957
1118void 1958void
1119ev_default_fork (void) 1959ev_default_fork (void)
1120{ 1960{
1121#if EV_MULTIPLICITY 1961#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr; 1962 EV_P = ev_default_loop_ptr;
1123#endif 1963#endif
1124 1964
1125 if (backend) 1965 postfork = 1; /* must be in line with ev_loop_fork */
1126 postfork = 1;
1127} 1966}
1128 1967
1129/*****************************************************************************/ 1968/*****************************************************************************/
1130 1969
1131int inline_size 1970void
1132any_pending (EV_P) 1971ev_invoke (EV_P_ void *w, int revents)
1972{
1973 EV_CB_INVOKE ((W)w, revents);
1974}
1975
1976unsigned int
1977ev_pending_count (EV_P)
1133{ 1978{
1134 int pri; 1979 int pri;
1980 unsigned int count = 0;
1135 1981
1136 for (pri = NUMPRI; pri--; ) 1982 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri]) 1983 count += pendingcnt [pri];
1138 return 1;
1139 1984
1140 return 0; 1985 return count;
1141} 1986}
1142 1987
1143void inline_speed 1988void noinline
1144call_pending (EV_P) 1989ev_invoke_pending (EV_P)
1145{ 1990{
1146 int pri; 1991 int pri;
1147 1992
1148 for (pri = NUMPRI; pri--; ) 1993 for (pri = NUMPRI; pri--; )
1149 while (pendingcnt [pri]) 1994 while (pendingcnt [pri])
1150 { 1995 {
1151 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1996 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1152 1997
1153 if (expect_true (p->w))
1154 {
1155 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1998 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1999 /* ^ this is no longer true, as pending_w could be here */
1156 2000
1157 p->w->pending = 0; 2001 p->w->pending = 0;
1158 EV_CB_INVOKE (p->w, p->events); 2002 EV_CB_INVOKE (p->w, p->events);
1159 } 2003 EV_FREQUENT_CHECK;
1160 } 2004 }
1161} 2005}
1162 2006
1163void inline_size 2007#if EV_IDLE_ENABLE
2008/* make idle watchers pending. this handles the "call-idle */
2009/* only when higher priorities are idle" logic */
2010inline_size void
2011idle_reify (EV_P)
2012{
2013 if (expect_false (idleall))
2014 {
2015 int pri;
2016
2017 for (pri = NUMPRI; pri--; )
2018 {
2019 if (pendingcnt [pri])
2020 break;
2021
2022 if (idlecnt [pri])
2023 {
2024 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2025 break;
2026 }
2027 }
2028 }
2029}
2030#endif
2031
2032/* make timers pending */
2033inline_size void
1164timers_reify (EV_P) 2034timers_reify (EV_P)
1165{ 2035{
2036 EV_FREQUENT_CHECK;
2037
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 2038 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1167 { 2039 {
1168 ev_timer *w = timers [0]; 2040 do
1169
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171
1172 /* first reschedule or stop timer */
1173 if (w->repeat)
1174 { 2041 {
2042 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2043
2044 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2045
2046 /* first reschedule or stop timer */
2047 if (w->repeat)
2048 {
2049 ev_at (w) += w->repeat;
2050 if (ev_at (w) < mn_now)
2051 ev_at (w) = mn_now;
2052
1175 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2053 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1176 2054
1177 ((WT)w)->at += w->repeat; 2055 ANHE_at_cache (timers [HEAP0]);
1178 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now;
1180
1181 downheap ((WT *)timers, timercnt, 0); 2056 downheap (timers, timercnt, HEAP0);
2057 }
2058 else
2059 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2060
2061 EV_FREQUENT_CHECK;
2062 feed_reverse (EV_A_ (W)w);
1182 } 2063 }
1183 else 2064 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 2065
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2066 feed_reverse_done (EV_A_ EV_TIMEOUT);
1187 } 2067 }
1188} 2068}
1189 2069
1190#if EV_PERIODIC_ENABLE 2070#if EV_PERIODIC_ENABLE
1191void inline_size 2071/* make periodics pending */
2072inline_size void
1192periodics_reify (EV_P) 2073periodics_reify (EV_P)
1193{ 2074{
2075 EV_FREQUENT_CHECK;
2076
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2077 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1195 { 2078 {
1196 ev_periodic *w = periodics [0]; 2079 int feed_count = 0;
1197 2080
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2081 do
1199
1200 /* first reschedule or stop timer */
1201 if (w->reschedule_cb)
1202 { 2082 {
2083 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2084
2085 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2086
2087 /* first reschedule or stop timer */
2088 if (w->reschedule_cb)
2089 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2090 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2091
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2092 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2093
2094 ANHE_at_cache (periodics [HEAP0]);
1205 downheap ((WT *)periodics, periodiccnt, 0); 2095 downheap (periodics, periodiccnt, HEAP0);
2096 }
2097 else if (w->interval)
2098 {
2099 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2100 /* if next trigger time is not sufficiently in the future, put it there */
2101 /* this might happen because of floating point inexactness */
2102 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2103 {
2104 ev_at (w) += w->interval;
2105
2106 /* if interval is unreasonably low we might still have a time in the past */
2107 /* so correct this. this will make the periodic very inexact, but the user */
2108 /* has effectively asked to get triggered more often than possible */
2109 if (ev_at (w) < ev_rt_now)
2110 ev_at (w) = ev_rt_now;
2111 }
2112
2113 ANHE_at_cache (periodics [HEAP0]);
2114 downheap (periodics, periodiccnt, HEAP0);
2115 }
2116 else
2117 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2118
2119 EV_FREQUENT_CHECK;
2120 feed_reverse (EV_A_ (W)w);
1206 } 2121 }
1207 else if (w->interval) 2122 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1208 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0);
1212 }
1213 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 2123
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2124 feed_reverse_done (EV_A_ EV_PERIODIC);
1217 } 2125 }
1218} 2126}
1219 2127
2128/* simply recalculate all periodics */
2129/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1220static void noinline 2130static void noinline
1221periodics_reschedule (EV_P) 2131periodics_reschedule (EV_P)
1222{ 2132{
1223 int i; 2133 int i;
1224 2134
1225 /* adjust periodics after time jump */ 2135 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 2136 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1227 { 2137 {
1228 ev_periodic *w = periodics [i]; 2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1229 2139
1230 if (w->reschedule_cb) 2140 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 2142 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2143 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2144
2145 ANHE_at_cache (periodics [i]);
2146 }
2147
2148 reheap (periodics, periodiccnt);
2149}
2150#endif
2151
2152/* adjust all timers by a given offset */
2153static void noinline
2154timers_reschedule (EV_P_ ev_tstamp adjust)
2155{
2156 int i;
2157
2158 for (i = 0; i < timercnt; ++i)
1234 } 2159 {
1235 2160 ANHE *he = timers + i + HEAP0;
1236 /* now rebuild the heap */ 2161 ANHE_w (*he)->at += adjust;
1237 for (i = periodiccnt >> 1; i--; ) 2162 ANHE_at_cache (*he);
1238 downheap ((WT *)periodics, periodiccnt, i); 2163 }
1239} 2164}
1240#endif
1241 2165
1242int inline_size 2166/* fetch new monotonic and realtime times from the kernel */
1243time_update_monotonic (EV_P) 2167/* also detetc if there was a timejump, and act accordingly */
2168inline_speed void
2169time_update (EV_P_ ev_tstamp max_block)
1244{ 2170{
2171#if EV_USE_MONOTONIC
2172 if (expect_true (have_monotonic))
2173 {
2174 int i;
2175 ev_tstamp odiff = rtmn_diff;
2176
1245 mn_now = get_clock (); 2177 mn_now = get_clock ();
1246 2178
2179 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2180 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2181 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 2182 {
1249 ev_rt_now = rtmn_diff + mn_now; 2183 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 2184 return;
1251 } 2185 }
1252 else 2186
1253 {
1254 now_floor = mn_now; 2187 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 2188 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 2189
1260void inline_size 2190 /* loop a few times, before making important decisions.
1261time_update (EV_P) 2191 * on the choice of "4": one iteration isn't enough,
1262{ 2192 * in case we get preempted during the calls to
1263 int i; 2193 * ev_time and get_clock. a second call is almost guaranteed
1264 2194 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 2195 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 2196 * in the unlikely event of having been preempted here.
1267 { 2197 */
1268 if (time_update_monotonic (EV_A)) 2198 for (i = 4; --i; )
1269 { 2199 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 2200 rtmn_diff = ev_rt_now - mn_now;
1283 2201
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2202 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1285 return; /* all is well */ 2203 return; /* all is well */
1286 2204
1287 ev_rt_now = ev_time (); 2205 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 2206 mn_now = get_clock ();
1289 now_floor = mn_now; 2207 now_floor = mn_now;
1290 } 2208 }
1291 2209
2210 /* no timer adjustment, as the monotonic clock doesn't jump */
2211 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292# if EV_PERIODIC_ENABLE 2212# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 2213 periodics_reschedule (EV_A);
1294# endif 2214# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 2215 }
1299 else 2216 else
1300#endif 2217#endif
1301 { 2218 {
1302 ev_rt_now = ev_time (); 2219 ev_rt_now = ev_time ();
1303 2220
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2221 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 2222 {
2223 /* adjust timers. this is easy, as the offset is the same for all of them */
2224 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1306#if EV_PERIODIC_ENABLE 2225#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 2226 periodics_reschedule (EV_A);
1308#endif 2227#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */
1311 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 2228 }
1314 2229
1315 mn_now = ev_rt_now; 2230 mn_now = ev_rt_now;
1316 } 2231 }
1317} 2232}
1318 2233
1319void 2234void
1320ev_ref (EV_P)
1321{
1322 ++activecnt;
1323}
1324
1325void
1326ev_unref (EV_P)
1327{
1328 --activecnt;
1329}
1330
1331static int loop_done;
1332
1333void
1334ev_loop (EV_P_ int flags) 2235ev_loop (EV_P_ int flags)
1335{ 2236{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2237#if EV_MINIMAL < 2
1337 ? EVUNLOOP_ONE 2238 ++loop_depth;
1338 : EVUNLOOP_CANCEL; 2239#endif
1339 2240
1340 while (activecnt) 2241 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2242
2243 loop_done = EVUNLOOP_CANCEL;
2244
2245 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2246
2247 do
1341 { 2248 {
1342 /* we might have forked, so reify kernel state if necessary */ 2249#if EV_VERIFY >= 2
2250 ev_loop_verify (EV_A);
2251#endif
2252
2253#ifndef _WIN32
2254 if (expect_false (curpid)) /* penalise the forking check even more */
2255 if (expect_false (getpid () != curpid))
2256 {
2257 curpid = getpid ();
2258 postfork = 1;
2259 }
2260#endif
2261
1343 #if EV_FORK_ENABLE 2262#if EV_FORK_ENABLE
2263 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 2264 if (expect_false (postfork))
1345 if (forkcnt) 2265 if (forkcnt)
1346 { 2266 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2267 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 2268 EV_INVOKE_PENDING;
1349 } 2269 }
1350 #endif 2270#endif
1351 2271
1352 /* queue check watchers (and execute them) */ 2272 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 2273 if (expect_false (preparecnt))
1354 { 2274 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2275 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 2276 EV_INVOKE_PENDING;
1357 } 2277 }
2278
2279 if (expect_false (loop_done))
2280 break;
1358 2281
1359 /* we might have forked, so reify kernel state if necessary */ 2282 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 2283 if (expect_false (postfork))
1361 loop_fork (EV_A); 2284 loop_fork (EV_A);
1362 2285
1363 /* update fd-related kernel structures */ 2286 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 2287 fd_reify (EV_A);
1365 2288
1366 /* calculate blocking time */ 2289 /* calculate blocking time */
1367 { 2290 {
1368 double block; 2291 ev_tstamp waittime = 0.;
2292 ev_tstamp sleeptime = 0.;
1369 2293
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 2294 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1371 block = 0.; /* do not block at all */
1372 else
1373 { 2295 {
2296 /* remember old timestamp for io_blocktime calculation */
2297 ev_tstamp prev_mn_now = mn_now;
2298
1374 /* update time to cancel out callback processing overhead */ 2299 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 2300 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 2301
1385 block = MAX_BLOCKTIME; 2302 waittime = MAX_BLOCKTIME;
1386 2303
1387 if (timercnt) 2304 if (timercnt)
1388 { 2305 {
1389 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2306 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1390 if (block > to) block = to; 2307 if (waittime > to) waittime = to;
1391 } 2308 }
1392 2309
1393#if EV_PERIODIC_ENABLE 2310#if EV_PERIODIC_ENABLE
1394 if (periodiccnt) 2311 if (periodiccnt)
1395 { 2312 {
1396 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2313 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1397 if (block > to) block = to; 2314 if (waittime > to) waittime = to;
1398 } 2315 }
1399#endif 2316#endif
1400 2317
2318 /* don't let timeouts decrease the waittime below timeout_blocktime */
2319 if (expect_false (waittime < timeout_blocktime))
2320 waittime = timeout_blocktime;
2321
2322 /* extra check because io_blocktime is commonly 0 */
1401 if (expect_false (block < 0.)) block = 0.; 2323 if (expect_false (io_blocktime))
2324 {
2325 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2326
2327 if (sleeptime > waittime - backend_fudge)
2328 sleeptime = waittime - backend_fudge;
2329
2330 if (expect_true (sleeptime > 0.))
2331 {
2332 ev_sleep (sleeptime);
2333 waittime -= sleeptime;
2334 }
2335 }
1402 } 2336 }
1403 2337
2338#if EV_MINIMAL < 2
2339 ++loop_count;
2340#endif
2341 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1404 backend_poll (EV_A_ block); 2342 backend_poll (EV_A_ waittime);
2343 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2344
2345 /* update ev_rt_now, do magic */
2346 time_update (EV_A_ waittime + sleeptime);
1405 } 2347 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 2348
1410 /* queue pending timers and reschedule them */ 2349 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 2350 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 2351#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 2352 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 2353#endif
1415 2354
2355#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 2356 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 2357 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2358#endif
1419 2359
1420 /* queue check watchers, to be executed first */ 2360 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 2361 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2362 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 2363
1424 call_pending (EV_A); 2364 EV_INVOKE_PENDING;
1425
1426 if (expect_false (loop_done))
1427 break;
1428 } 2365 }
2366 while (expect_true (
2367 activecnt
2368 && !loop_done
2369 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2370 ));
1429 2371
1430 if (loop_done == EVUNLOOP_ONE) 2372 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 2373 loop_done = EVUNLOOP_CANCEL;
2374
2375#if EV_MINIMAL < 2
2376 --loop_depth;
2377#endif
1432} 2378}
1433 2379
1434void 2380void
1435ev_unloop (EV_P_ int how) 2381ev_unloop (EV_P_ int how)
1436{ 2382{
1437 loop_done = how; 2383 loop_done = how;
1438} 2384}
1439 2385
2386void
2387ev_ref (EV_P)
2388{
2389 ++activecnt;
2390}
2391
2392void
2393ev_unref (EV_P)
2394{
2395 --activecnt;
2396}
2397
2398void
2399ev_now_update (EV_P)
2400{
2401 time_update (EV_A_ 1e100);
2402}
2403
2404void
2405ev_suspend (EV_P)
2406{
2407 ev_now_update (EV_A);
2408}
2409
2410void
2411ev_resume (EV_P)
2412{
2413 ev_tstamp mn_prev = mn_now;
2414
2415 ev_now_update (EV_A);
2416 timers_reschedule (EV_A_ mn_now - mn_prev);
2417#if EV_PERIODIC_ENABLE
2418 /* TODO: really do this? */
2419 periodics_reschedule (EV_A);
2420#endif
2421}
2422
1440/*****************************************************************************/ 2423/*****************************************************************************/
2424/* singly-linked list management, used when the expected list length is short */
1441 2425
1442void inline_size 2426inline_size void
1443wlist_add (WL *head, WL elem) 2427wlist_add (WL *head, WL elem)
1444{ 2428{
1445 elem->next = *head; 2429 elem->next = *head;
1446 *head = elem; 2430 *head = elem;
1447} 2431}
1448 2432
1449void inline_size 2433inline_size void
1450wlist_del (WL *head, WL elem) 2434wlist_del (WL *head, WL elem)
1451{ 2435{
1452 while (*head) 2436 while (*head)
1453 { 2437 {
1454 if (*head == elem) 2438 if (expect_true (*head == elem))
1455 { 2439 {
1456 *head = elem->next; 2440 *head = elem->next;
1457 return; 2441 break;
1458 } 2442 }
1459 2443
1460 head = &(*head)->next; 2444 head = &(*head)->next;
1461 } 2445 }
1462} 2446}
1463 2447
1464void inline_speed 2448/* internal, faster, version of ev_clear_pending */
2449inline_speed void
1465ev_clear_pending (EV_P_ W w) 2450clear_pending (EV_P_ W w)
1466{ 2451{
1467 if (w->pending) 2452 if (w->pending)
1468 { 2453 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2454 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1470 w->pending = 0; 2455 w->pending = 0;
1471 } 2456 }
1472} 2457}
1473 2458
1474void inline_speed 2459int
2460ev_clear_pending (EV_P_ void *w)
2461{
2462 W w_ = (W)w;
2463 int pending = w_->pending;
2464
2465 if (expect_true (pending))
2466 {
2467 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2468 p->w = (W)&pending_w;
2469 w_->pending = 0;
2470 return p->events;
2471 }
2472 else
2473 return 0;
2474}
2475
2476inline_size void
2477pri_adjust (EV_P_ W w)
2478{
2479 int pri = ev_priority (w);
2480 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2481 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2482 ev_set_priority (w, pri);
2483}
2484
2485inline_speed void
1475ev_start (EV_P_ W w, int active) 2486ev_start (EV_P_ W w, int active)
1476{ 2487{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2488 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 2489 w->active = active;
1481 ev_ref (EV_A); 2490 ev_ref (EV_A);
1482} 2491}
1483 2492
1484void inline_size 2493inline_size void
1485ev_stop (EV_P_ W w) 2494ev_stop (EV_P_ W w)
1486{ 2495{
1487 ev_unref (EV_A); 2496 ev_unref (EV_A);
1488 w->active = 0; 2497 w->active = 0;
1489} 2498}
1490 2499
1491/*****************************************************************************/ 2500/*****************************************************************************/
1492 2501
1493void 2502void noinline
1494ev_io_start (EV_P_ ev_io *w) 2503ev_io_start (EV_P_ ev_io *w)
1495{ 2504{
1496 int fd = w->fd; 2505 int fd = w->fd;
1497 2506
1498 if (expect_false (ev_is_active (w))) 2507 if (expect_false (ev_is_active (w)))
1499 return; 2508 return;
1500 2509
1501 assert (("ev_io_start called with negative fd", fd >= 0)); 2510 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2511 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2512
2513 EV_FREQUENT_CHECK;
1502 2514
1503 ev_start (EV_A_ (W)w, 1); 2515 ev_start (EV_A_ (W)w, 1);
1504 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2516 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2517 wlist_add (&anfds[fd].head, (WL)w);
1506 2518
1507 fd_change (EV_A_ fd); 2519 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1508} 2520 w->events &= ~EV__IOFDSET;
1509 2521
1510void 2522 EV_FREQUENT_CHECK;
2523}
2524
2525void noinline
1511ev_io_stop (EV_P_ ev_io *w) 2526ev_io_stop (EV_P_ ev_io *w)
1512{ 2527{
1513 ev_clear_pending (EV_A_ (W)w); 2528 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 2529 if (expect_false (!ev_is_active (w)))
1515 return; 2530 return;
1516 2531
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2532 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 2533
2534 EV_FREQUENT_CHECK;
2535
1519 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2536 wlist_del (&anfds[w->fd].head, (WL)w);
1520 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1521 2538
1522 fd_change (EV_A_ w->fd); 2539 fd_change (EV_A_ w->fd, 1);
1523}
1524 2540
1525void 2541 EV_FREQUENT_CHECK;
2542}
2543
2544void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 2545ev_timer_start (EV_P_ ev_timer *w)
1527{ 2546{
1528 if (expect_false (ev_is_active (w))) 2547 if (expect_false (ev_is_active (w)))
1529 return; 2548 return;
1530 2549
1531 ((WT)w)->at += mn_now; 2550 ev_at (w) += mn_now;
1532 2551
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2552 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 2553
2554 EV_FREQUENT_CHECK;
2555
2556 ++timercnt;
1535 ev_start (EV_A_ (W)w, ++timercnt); 2557 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2558 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1537 timers [timercnt - 1] = w; 2559 ANHE_w (timers [ev_active (w)]) = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 2560 ANHE_at_cache (timers [ev_active (w)]);
2561 upheap (timers, ev_active (w));
1539 2562
2563 EV_FREQUENT_CHECK;
2564
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2565 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1541} 2566}
1542 2567
1543void 2568void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 2569ev_timer_stop (EV_P_ ev_timer *w)
1545{ 2570{
1546 ev_clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
1548 return; 2573 return;
1549 2574
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2575 EV_FREQUENT_CHECK;
1551 2576
1552 { 2577 {
1553 int active = ((W)w)->active; 2578 int active = ev_active (w);
1554 2579
2580 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2581
2582 --timercnt;
2583
1555 if (expect_true (--active < --timercnt)) 2584 if (expect_true (active < timercnt + HEAP0))
1556 { 2585 {
1557 timers [active] = timers [timercnt]; 2586 timers [active] = timers [timercnt + HEAP0];
1558 adjustheap ((WT *)timers, timercnt, active); 2587 adjustheap (timers, timercnt, active);
1559 } 2588 }
1560 } 2589 }
1561 2590
1562 ((WT)w)->at -= mn_now; 2591 EV_FREQUENT_CHECK;
2592
2593 ev_at (w) -= mn_now;
1563 2594
1564 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
1565} 2596}
1566 2597
1567void 2598void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 2599ev_timer_again (EV_P_ ev_timer *w)
1569{ 2600{
2601 EV_FREQUENT_CHECK;
2602
1570 if (ev_is_active (w)) 2603 if (ev_is_active (w))
1571 { 2604 {
1572 if (w->repeat) 2605 if (w->repeat)
1573 { 2606 {
1574 ((WT)w)->at = mn_now + w->repeat; 2607 ev_at (w) = mn_now + w->repeat;
2608 ANHE_at_cache (timers [ev_active (w)]);
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2609 adjustheap (timers, timercnt, ev_active (w));
1576 } 2610 }
1577 else 2611 else
1578 ev_timer_stop (EV_A_ w); 2612 ev_timer_stop (EV_A_ w);
1579 } 2613 }
1580 else if (w->repeat) 2614 else if (w->repeat)
1581 { 2615 {
1582 w->at = w->repeat; 2616 ev_at (w) = w->repeat;
1583 ev_timer_start (EV_A_ w); 2617 ev_timer_start (EV_A_ w);
1584 } 2618 }
2619
2620 EV_FREQUENT_CHECK;
2621}
2622
2623ev_tstamp
2624ev_timer_remaining (EV_P_ ev_timer *w)
2625{
2626 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1585} 2627}
1586 2628
1587#if EV_PERIODIC_ENABLE 2629#if EV_PERIODIC_ENABLE
1588void 2630void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 2631ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 2632{
1591 if (expect_false (ev_is_active (w))) 2633 if (expect_false (ev_is_active (w)))
1592 return; 2634 return;
1593 2635
1594 if (w->reschedule_cb) 2636 if (w->reschedule_cb)
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2637 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 2638 else if (w->interval)
1597 { 2639 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2640 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 2641 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 2643 }
2644 else
2645 ev_at (w) = w->offset;
1602 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++periodiccnt;
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 2650 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2651 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 2652 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 2653 ANHE_at_cache (periodics [ev_active (w)]);
2654 upheap (periodics, ev_active (w));
1607 2655
2656 EV_FREQUENT_CHECK;
2657
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2658 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1609} 2659}
1610 2660
1611void 2661void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 2662ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 2663{
1614 ev_clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
1616 return; 2666 return;
1617 2667
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2668 EV_FREQUENT_CHECK;
1619 2669
1620 { 2670 {
1621 int active = ((W)w)->active; 2671 int active = ev_active (w);
1622 2672
2673 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2674
2675 --periodiccnt;
2676
1623 if (expect_true (--active < --periodiccnt)) 2677 if (expect_true (active < periodiccnt + HEAP0))
1624 { 2678 {
1625 periodics [active] = periodics [periodiccnt]; 2679 periodics [active] = periodics [periodiccnt + HEAP0];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 2680 adjustheap (periodics, periodiccnt, active);
1627 } 2681 }
1628 } 2682 }
1629 2683
2684 EV_FREQUENT_CHECK;
2685
1630 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1631} 2687}
1632 2688
1633void 2689void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 2690ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 2691{
1636 /* TODO: use adjustheap and recalculation */ 2692 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 2693 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 2694 ev_periodic_start (EV_A_ w);
1641 2697
1642#ifndef SA_RESTART 2698#ifndef SA_RESTART
1643# define SA_RESTART 0 2699# define SA_RESTART 0
1644#endif 2700#endif
1645 2701
1646void 2702void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 2703ev_signal_start (EV_P_ ev_signal *w)
1648{ 2704{
1649#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif
1652 if (expect_false (ev_is_active (w))) 2705 if (expect_false (ev_is_active (w)))
1653 return; 2706 return;
1654 2707
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2708 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2709
2710#if EV_MULTIPLICITY
2711 assert (("libev: a signal must not be attached to two different loops",
2712 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2713
2714 signals [w->signum - 1].loop = EV_A;
2715#endif
2716
2717 EV_FREQUENT_CHECK;
2718
2719#if EV_USE_SIGNALFD
2720 if (sigfd == -2)
2721 {
2722 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2723 if (sigfd < 0 && errno == EINVAL)
2724 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2725
2726 if (sigfd >= 0)
2727 {
2728 fd_intern (sigfd); /* doing it twice will not hurt */
2729
2730 sigemptyset (&sigfd_set);
2731
2732 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2733 ev_set_priority (&sigfd_w, EV_MAXPRI);
2734 ev_io_start (EV_A_ &sigfd_w);
2735 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2736 }
2737 }
2738
2739 if (sigfd >= 0)
2740 {
2741 /* TODO: check .head */
2742 sigaddset (&sigfd_set, w->signum);
2743 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2744
2745 signalfd (sigfd, &sigfd_set, 0);
2746 }
2747#endif
1656 2748
1657 ev_start (EV_A_ (W)w, 1); 2749 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2750 wlist_add (&signals [w->signum - 1].head, (WL)w);
1660 2751
1661 if (!((WL)w)->next) 2752 if (!((WL)w)->next)
2753# if EV_USE_SIGNALFD
2754 if (sigfd < 0) /*TODO*/
2755# endif
1662 { 2756 {
1663#if _WIN32 2757# if _WIN32
1664 signal (w->signum, sighandler); 2758 signal (w->signum, ev_sighandler);
1665#else 2759# else
1666 struct sigaction sa; 2760 struct sigaction sa;
2761
2762 evpipe_init (EV_A);
2763
1667 sa.sa_handler = sighandler; 2764 sa.sa_handler = ev_sighandler;
1668 sigfillset (&sa.sa_mask); 2765 sigfillset (&sa.sa_mask);
1669 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1670 sigaction (w->signum, &sa, 0); 2767 sigaction (w->signum, &sa, 0);
2768
2769 sigemptyset (&sa.sa_mask);
2770 sigaddset (&sa.sa_mask, w->signum);
2771 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1671#endif 2772#endif
1672 } 2773 }
1673}
1674 2774
1675void 2775 EV_FREQUENT_CHECK;
2776}
2777
2778void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 2779ev_signal_stop (EV_P_ ev_signal *w)
1677{ 2780{
1678 ev_clear_pending (EV_A_ (W)w); 2781 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 2782 if (expect_false (!ev_is_active (w)))
1680 return; 2783 return;
1681 2784
2785 EV_FREQUENT_CHECK;
2786
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2787 wlist_del (&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 2788 ev_stop (EV_A_ (W)w);
1684 2789
1685 if (!signals [w->signum - 1].head) 2790 if (!signals [w->signum - 1].head)
2791 {
2792#if EV_MULTIPLICITY
2793 signals [w->signum - 1].loop = 0; /* unattach from signal */
2794#endif
2795#if EV_USE_SIGNALFD
2796 if (sigfd >= 0)
2797 {
2798 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2799 sigdelset (&sigfd_set, w->signum);
2800 signalfd (sigfd, &sigfd_set, 0);
2801 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2802 /*TODO: maybe unblock signal? */
2803 }
2804 else
2805#endif
1686 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
1687} 2810}
1688 2811
1689void 2812void
1690ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
1691{ 2814{
1692#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
1693 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1694#endif 2817#endif
1695 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1696 return; 2819 return;
1697 2820
2821 EV_FREQUENT_CHECK;
2822
1698 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
1699 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
1700} 2827}
1701 2828
1702void 2829void
1703ev_child_stop (EV_P_ ev_child *w) 2830ev_child_stop (EV_P_ ev_child *w)
1704{ 2831{
1705 ev_clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1707 return; 2834 return;
1708 2835
2836 EV_FREQUENT_CHECK;
2837
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
1711} 2842}
1712 2843
1713#if EV_STAT_ENABLE 2844#if EV_STAT_ENABLE
1714 2845
1715# ifdef _WIN32 2846# ifdef _WIN32
1716# undef lstat 2847# undef lstat
1717# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
1718# endif 2849# endif
1719 2850
1720#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1721#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
1722 2854
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 2856
1725#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
1727 2859
1728static void noinline 2860static void noinline
1730{ 2862{
1731 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1732 2864
1733 if (w->wd < 0) 2865 if (w->wd < 0)
1734 { 2866 {
2867 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1735 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2868 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1736 2869
1737 /* monitor some parent directory for speedup hints */ 2870 /* monitor some parent directory for speedup hints */
2871 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2872 /* but an efficiency issue only */
1738 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2873 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1739 { 2874 {
1740 char path [4096]; 2875 char path [4096];
1741 strcpy (path, w->path); 2876 strcpy (path, w->path);
1742 2877
1745 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2880 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1746 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2881 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1747 2882
1748 char *pend = strrchr (path, '/'); 2883 char *pend = strrchr (path, '/');
1749 2884
1750 if (!pend) 2885 if (!pend || pend == path)
1751 break; /* whoops, no '/', complain to your admin */ 2886 break;
1752 2887
1753 *pend = 0; 2888 *pend = 0;
1754 w->wd = inotify_add_watch (fs_fd, path, mask); 2889 w->wd = inotify_add_watch (fs_fd, path, mask);
1755 } 2890 }
1756 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2891 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1757 } 2892 }
1758 } 2893 }
1759 else
1760 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1761 2894
1762 if (w->wd >= 0) 2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
1763 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2899 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2900
2901 /* now local changes will be tracked by inotify, but remote changes won't */
2902 /* unless the filesystem it known to be local, we therefore still poll */
2903 /* also do poll on <2.6.25, but with normal frequency */
2904
2905 if (fs_2625 && !statfs (w->path, &sfs))
2906 if (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */)
2912 return;
2913
2914 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2915 ev_timer_again (EV_A_ &w->timer);
2916 }
1764} 2917}
1765 2918
1766static void noinline 2919static void noinline
1767infy_del (EV_P_ ev_stat *w) 2920infy_del (EV_P_ ev_stat *w)
1768{ 2921{
1782 2935
1783static void noinline 2936static void noinline
1784infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2937infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1785{ 2938{
1786 if (slot < 0) 2939 if (slot < 0)
1787 /* overflow, need to check for all hahs slots */ 2940 /* overflow, need to check for all hash slots */
1788 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2941 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1789 infy_wd (EV_A_ slot, wd, ev); 2942 infy_wd (EV_A_ slot, wd, ev);
1790 else 2943 else
1791 { 2944 {
1792 WL w_; 2945 WL w_;
1798 2951
1799 if (w->wd == wd || wd == -1) 2952 if (w->wd == wd || wd == -1)
1800 { 2953 {
1801 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2954 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1802 { 2955 {
2956 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1803 w->wd = -1; 2957 w->wd = -1;
1804 infy_add (EV_A_ w); /* re-add, no matter what */ 2958 infy_add (EV_A_ w); /* re-add, no matter what */
1805 } 2959 }
1806 2960
1807 stat_timer_cb (EV_A_ &w->timer, 0); 2961 stat_timer_cb (EV_A_ &w->timer, 0);
1820 2974
1821 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2975 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1822 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2976 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1823} 2977}
1824 2978
1825void inline_size 2979inline_size void
2980check_2625 (EV_P)
2981{
2982 /* kernels < 2.6.25 are borked
2983 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2984 */
2985 struct utsname buf;
2986 int major, minor, micro;
2987
2988 if (uname (&buf))
2989 return;
2990
2991 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2992 return;
2993
2994 if (major < 2
2995 || (major == 2 && minor < 6)
2996 || (major == 2 && minor == 6 && micro < 25))
2997 return;
2998
2999 fs_2625 = 1;
3000}
3001
3002inline_size int
3003infy_newfd (void)
3004{
3005#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3006 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3007 if (fd >= 0)
3008 return fd;
3009#endif
3010 return inotify_init ();
3011}
3012
3013inline_size void
1826infy_init (EV_P) 3014infy_init (EV_P)
1827{ 3015{
1828 if (fs_fd != -2) 3016 if (fs_fd != -2)
1829 return; 3017 return;
1830 3018
3019 fs_fd = -1;
3020
3021 check_2625 (EV_A);
3022
1831 fs_fd = inotify_init (); 3023 fs_fd = infy_newfd ();
1832 3024
1833 if (fs_fd >= 0) 3025 if (fs_fd >= 0)
1834 { 3026 {
3027 fd_intern (fs_fd);
1835 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3028 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1836 ev_set_priority (&fs_w, EV_MAXPRI); 3029 ev_set_priority (&fs_w, EV_MAXPRI);
1837 ev_io_start (EV_A_ &fs_w); 3030 ev_io_start (EV_A_ &fs_w);
1838 } 3031 }
1839} 3032}
1840 3033
1841void inline_size 3034inline_size void
1842infy_fork (EV_P) 3035infy_fork (EV_P)
1843{ 3036{
1844 int slot; 3037 int slot;
1845 3038
1846 if (fs_fd < 0) 3039 if (fs_fd < 0)
1847 return; 3040 return;
1848 3041
3042 ev_io_stop (EV_A_ &fs_w);
1849 close (fs_fd); 3043 close (fs_fd);
1850 fs_fd = inotify_init (); 3044 fs_fd = infy_newfd ();
3045
3046 if (fs_fd >= 0)
3047 {
3048 fd_intern (fs_fd);
3049 ev_io_set (&fs_w, fs_fd, EV_READ);
3050 ev_io_start (EV_A_ &fs_w);
3051 }
1851 3052
1852 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3053 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1853 { 3054 {
1854 WL w_ = fs_hash [slot].head; 3055 WL w_ = fs_hash [slot].head;
1855 fs_hash [slot].head = 0; 3056 fs_hash [slot].head = 0;
1862 w->wd = -1; 3063 w->wd = -1;
1863 3064
1864 if (fs_fd >= 0) 3065 if (fs_fd >= 0)
1865 infy_add (EV_A_ w); /* re-add, no matter what */ 3066 infy_add (EV_A_ w); /* re-add, no matter what */
1866 else 3067 else
1867 ev_timer_start (EV_A_ &w->timer); 3068 ev_timer_again (EV_A_ &w->timer);
1868 } 3069 }
1869
1870 } 3070 }
1871} 3071}
1872 3072
3073#endif
3074
3075#ifdef _WIN32
3076# define EV_LSTAT(p,b) _stati64 (p, b)
3077#else
3078# define EV_LSTAT(p,b) lstat (p, b)
1873#endif 3079#endif
1874 3080
1875void 3081void
1876ev_stat_stat (EV_P_ ev_stat *w) 3082ev_stat_stat (EV_P_ ev_stat *w)
1877{ 3083{
1879 w->attr.st_nlink = 0; 3085 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 3086 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 3087 w->attr.st_nlink = 1;
1882} 3088}
1883 3089
1884void noinline 3090static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3091stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 3092{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3093 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 3094
1889 /* we copy this here each the time so that */ 3095 /* we copy this here each the time so that */
1890 /* prev has the old value when the callback gets invoked */ 3096 /* prev has the old value when the callback gets invoked */
1891 w->prev = w->attr; 3097 w->prev = w->attr;
1892 ev_stat_stat (EV_A_ w); 3098 ev_stat_stat (EV_A_ w);
1893 3099
1894 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 3100 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3101 if (
3102 w->prev.st_dev != w->attr.st_dev
3103 || w->prev.st_ino != w->attr.st_ino
3104 || w->prev.st_mode != w->attr.st_mode
3105 || w->prev.st_nlink != w->attr.st_nlink
3106 || w->prev.st_uid != w->attr.st_uid
3107 || w->prev.st_gid != w->attr.st_gid
3108 || w->prev.st_rdev != w->attr.st_rdev
3109 || w->prev.st_size != w->attr.st_size
3110 || w->prev.st_atime != w->attr.st_atime
3111 || w->prev.st_mtime != w->attr.st_mtime
3112 || w->prev.st_ctime != w->attr.st_ctime
1895 { 3113 ) {
1896 #if EV_USE_INOTIFY 3114 #if EV_USE_INOTIFY
3115 if (fs_fd >= 0)
3116 {
1897 infy_del (EV_A_ w); 3117 infy_del (EV_A_ w);
1898 infy_add (EV_A_ w); 3118 infy_add (EV_A_ w);
1899 ev_stat_stat (EV_A_ w); /* avoid race... */ 3119 ev_stat_stat (EV_A_ w); /* avoid race... */
3120 }
1900 #endif 3121 #endif
1901 3122
1902 ev_feed_event (EV_A_ w, EV_STAT); 3123 ev_feed_event (EV_A_ w, EV_STAT);
1903 } 3124 }
1904} 3125}
1907ev_stat_start (EV_P_ ev_stat *w) 3128ev_stat_start (EV_P_ ev_stat *w)
1908{ 3129{
1909 if (expect_false (ev_is_active (w))) 3130 if (expect_false (ev_is_active (w)))
1910 return; 3131 return;
1911 3132
1912 /* since we use memcmp, we need to clear any padding data etc. */
1913 memset (&w->prev, 0, sizeof (ev_statdata));
1914 memset (&w->attr, 0, sizeof (ev_statdata));
1915
1916 ev_stat_stat (EV_A_ w); 3133 ev_stat_stat (EV_A_ w);
1917 3134
3135 if (w->interval < MIN_STAT_INTERVAL && w->interval)
1918 if (w->interval < MIN_STAT_INTERVAL) 3136 w->interval = MIN_STAT_INTERVAL;
1919 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1920 3137
1921 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3138 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
1922 ev_set_priority (&w->timer, ev_priority (w)); 3139 ev_set_priority (&w->timer, ev_priority (w));
1923 3140
1924#if EV_USE_INOTIFY 3141#if EV_USE_INOTIFY
1925 infy_init (EV_A); 3142 infy_init (EV_A);
1926 3143
1927 if (fs_fd >= 0) 3144 if (fs_fd >= 0)
1928 infy_add (EV_A_ w); 3145 infy_add (EV_A_ w);
1929 else 3146 else
1930#endif 3147#endif
1931 ev_timer_start (EV_A_ &w->timer); 3148 ev_timer_again (EV_A_ &w->timer);
1932 3149
1933 ev_start (EV_A_ (W)w, 1); 3150 ev_start (EV_A_ (W)w, 1);
3151
3152 EV_FREQUENT_CHECK;
1934} 3153}
1935 3154
1936void 3155void
1937ev_stat_stop (EV_P_ ev_stat *w) 3156ev_stat_stop (EV_P_ ev_stat *w)
1938{ 3157{
1939 ev_clear_pending (EV_A_ (W)w); 3158 clear_pending (EV_A_ (W)w);
1940 if (expect_false (!ev_is_active (w))) 3159 if (expect_false (!ev_is_active (w)))
1941 return; 3160 return;
1942 3161
3162 EV_FREQUENT_CHECK;
3163
1943#if EV_USE_INOTIFY 3164#if EV_USE_INOTIFY
1944 infy_del (EV_A_ w); 3165 infy_del (EV_A_ w);
1945#endif 3166#endif
1946 ev_timer_stop (EV_A_ &w->timer); 3167 ev_timer_stop (EV_A_ &w->timer);
1947 3168
1948 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
1949}
1950#endif
1951 3170
3171 EV_FREQUENT_CHECK;
3172}
3173#endif
3174
3175#if EV_IDLE_ENABLE
1952void 3176void
1953ev_idle_start (EV_P_ ev_idle *w) 3177ev_idle_start (EV_P_ ev_idle *w)
1954{ 3178{
1955 if (expect_false (ev_is_active (w))) 3179 if (expect_false (ev_is_active (w)))
1956 return; 3180 return;
1957 3181
3182 pri_adjust (EV_A_ (W)w);
3183
3184 EV_FREQUENT_CHECK;
3185
3186 {
3187 int active = ++idlecnt [ABSPRI (w)];
3188
3189 ++idleall;
1958 ev_start (EV_A_ (W)w, ++idlecnt); 3190 ev_start (EV_A_ (W)w, active);
3191
1959 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 3192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1960 idles [idlecnt - 1] = w; 3193 idles [ABSPRI (w)][active - 1] = w;
3194 }
3195
3196 EV_FREQUENT_CHECK;
1961} 3197}
1962 3198
1963void 3199void
1964ev_idle_stop (EV_P_ ev_idle *w) 3200ev_idle_stop (EV_P_ ev_idle *w)
1965{ 3201{
1966 ev_clear_pending (EV_A_ (W)w); 3202 clear_pending (EV_A_ (W)w);
1967 if (expect_false (!ev_is_active (w))) 3203 if (expect_false (!ev_is_active (w)))
1968 return; 3204 return;
1969 3205
3206 EV_FREQUENT_CHECK;
3207
1970 { 3208 {
1971 int active = ((W)w)->active; 3209 int active = ev_active (w);
1972 idles [active - 1] = idles [--idlecnt]; 3210
1973 ((W)idles [active - 1])->active = active; 3211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3212 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3213
3214 ev_stop (EV_A_ (W)w);
3215 --idleall;
1974 } 3216 }
1975 3217
1976 ev_stop (EV_A_ (W)w); 3218 EV_FREQUENT_CHECK;
1977} 3219}
3220#endif
1978 3221
1979void 3222void
1980ev_prepare_start (EV_P_ ev_prepare *w) 3223ev_prepare_start (EV_P_ ev_prepare *w)
1981{ 3224{
1982 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
1983 return; 3226 return;
3227
3228 EV_FREQUENT_CHECK;
1984 3229
1985 ev_start (EV_A_ (W)w, ++preparecnt); 3230 ev_start (EV_A_ (W)w, ++preparecnt);
1986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3231 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1987 prepares [preparecnt - 1] = w; 3232 prepares [preparecnt - 1] = w;
3233
3234 EV_FREQUENT_CHECK;
1988} 3235}
1989 3236
1990void 3237void
1991ev_prepare_stop (EV_P_ ev_prepare *w) 3238ev_prepare_stop (EV_P_ ev_prepare *w)
1992{ 3239{
1993 ev_clear_pending (EV_A_ (W)w); 3240 clear_pending (EV_A_ (W)w);
1994 if (expect_false (!ev_is_active (w))) 3241 if (expect_false (!ev_is_active (w)))
1995 return; 3242 return;
1996 3243
3244 EV_FREQUENT_CHECK;
3245
1997 { 3246 {
1998 int active = ((W)w)->active; 3247 int active = ev_active (w);
3248
1999 prepares [active - 1] = prepares [--preparecnt]; 3249 prepares [active - 1] = prepares [--preparecnt];
2000 ((W)prepares [active - 1])->active = active; 3250 ev_active (prepares [active - 1]) = active;
2001 } 3251 }
2002 3252
2003 ev_stop (EV_A_ (W)w); 3253 ev_stop (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
2004} 3256}
2005 3257
2006void 3258void
2007ev_check_start (EV_P_ ev_check *w) 3259ev_check_start (EV_P_ ev_check *w)
2008{ 3260{
2009 if (expect_false (ev_is_active (w))) 3261 if (expect_false (ev_is_active (w)))
2010 return; 3262 return;
3263
3264 EV_FREQUENT_CHECK;
2011 3265
2012 ev_start (EV_A_ (W)w, ++checkcnt); 3266 ev_start (EV_A_ (W)w, ++checkcnt);
2013 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3267 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2014 checks [checkcnt - 1] = w; 3268 checks [checkcnt - 1] = w;
3269
3270 EV_FREQUENT_CHECK;
2015} 3271}
2016 3272
2017void 3273void
2018ev_check_stop (EV_P_ ev_check *w) 3274ev_check_stop (EV_P_ ev_check *w)
2019{ 3275{
2020 ev_clear_pending (EV_A_ (W)w); 3276 clear_pending (EV_A_ (W)w);
2021 if (expect_false (!ev_is_active (w))) 3277 if (expect_false (!ev_is_active (w)))
2022 return; 3278 return;
2023 3279
3280 EV_FREQUENT_CHECK;
3281
2024 { 3282 {
2025 int active = ((W)w)->active; 3283 int active = ev_active (w);
3284
2026 checks [active - 1] = checks [--checkcnt]; 3285 checks [active - 1] = checks [--checkcnt];
2027 ((W)checks [active - 1])->active = active; 3286 ev_active (checks [active - 1]) = active;
2028 } 3287 }
2029 3288
2030 ev_stop (EV_A_ (W)w); 3289 ev_stop (EV_A_ (W)w);
3290
3291 EV_FREQUENT_CHECK;
2031} 3292}
2032 3293
2033#if EV_EMBED_ENABLE 3294#if EV_EMBED_ENABLE
2034void noinline 3295void noinline
2035ev_embed_sweep (EV_P_ ev_embed *w) 3296ev_embed_sweep (EV_P_ ev_embed *w)
2036{ 3297{
2037 ev_loop (w->loop, EVLOOP_NONBLOCK); 3298 ev_loop (w->other, EVLOOP_NONBLOCK);
2038} 3299}
2039 3300
2040static void 3301static void
2041embed_cb (EV_P_ ev_io *io, int revents) 3302embed_io_cb (EV_P_ ev_io *io, int revents)
2042{ 3303{
2043 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3304 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2044 3305
2045 if (ev_cb (w)) 3306 if (ev_cb (w))
2046 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3307 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2047 else 3308 else
2048 ev_embed_sweep (loop, w); 3309 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 3310}
3311
3312static void
3313embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3314{
3315 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3316
3317 {
3318 EV_P = w->other;
3319
3320 while (fdchangecnt)
3321 {
3322 fd_reify (EV_A);
3323 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3324 }
3325 }
3326}
3327
3328static void
3329embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3330{
3331 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3332
3333 ev_embed_stop (EV_A_ w);
3334
3335 {
3336 EV_P = w->other;
3337
3338 ev_loop_fork (EV_A);
3339 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3340 }
3341
3342 ev_embed_start (EV_A_ w);
3343}
3344
3345#if 0
3346static void
3347embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3348{
3349 ev_idle_stop (EV_A_ idle);
3350}
3351#endif
2050 3352
2051void 3353void
2052ev_embed_start (EV_P_ ev_embed *w) 3354ev_embed_start (EV_P_ ev_embed *w)
2053{ 3355{
2054 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2055 return; 3357 return;
2056 3358
2057 { 3359 {
2058 struct ev_loop *loop = w->loop; 3360 EV_P = w->other;
2059 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3361 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2060 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3362 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2061 } 3363 }
3364
3365 EV_FREQUENT_CHECK;
2062 3366
2063 ev_set_priority (&w->io, ev_priority (w)); 3367 ev_set_priority (&w->io, ev_priority (w));
2064 ev_io_start (EV_A_ &w->io); 3368 ev_io_start (EV_A_ &w->io);
2065 3369
3370 ev_prepare_init (&w->prepare, embed_prepare_cb);
3371 ev_set_priority (&w->prepare, EV_MINPRI);
3372 ev_prepare_start (EV_A_ &w->prepare);
3373
3374 ev_fork_init (&w->fork, embed_fork_cb);
3375 ev_fork_start (EV_A_ &w->fork);
3376
3377 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3378
2066 ev_start (EV_A_ (W)w, 1); 3379 ev_start (EV_A_ (W)w, 1);
3380
3381 EV_FREQUENT_CHECK;
2067} 3382}
2068 3383
2069void 3384void
2070ev_embed_stop (EV_P_ ev_embed *w) 3385ev_embed_stop (EV_P_ ev_embed *w)
2071{ 3386{
2072 ev_clear_pending (EV_A_ (W)w); 3387 clear_pending (EV_A_ (W)w);
2073 if (expect_false (!ev_is_active (w))) 3388 if (expect_false (!ev_is_active (w)))
2074 return; 3389 return;
2075 3390
3391 EV_FREQUENT_CHECK;
3392
2076 ev_io_stop (EV_A_ &w->io); 3393 ev_io_stop (EV_A_ &w->io);
3394 ev_prepare_stop (EV_A_ &w->prepare);
3395 ev_fork_stop (EV_A_ &w->fork);
2077 3396
2078 ev_stop (EV_A_ (W)w); 3397 EV_FREQUENT_CHECK;
2079} 3398}
2080#endif 3399#endif
2081 3400
2082#if EV_FORK_ENABLE 3401#if EV_FORK_ENABLE
2083void 3402void
2084ev_fork_start (EV_P_ ev_fork *w) 3403ev_fork_start (EV_P_ ev_fork *w)
2085{ 3404{
2086 if (expect_false (ev_is_active (w))) 3405 if (expect_false (ev_is_active (w)))
2087 return; 3406 return;
3407
3408 EV_FREQUENT_CHECK;
2088 3409
2089 ev_start (EV_A_ (W)w, ++forkcnt); 3410 ev_start (EV_A_ (W)w, ++forkcnt);
2090 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3411 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2091 forks [forkcnt - 1] = w; 3412 forks [forkcnt - 1] = w;
3413
3414 EV_FREQUENT_CHECK;
2092} 3415}
2093 3416
2094void 3417void
2095ev_fork_stop (EV_P_ ev_fork *w) 3418ev_fork_stop (EV_P_ ev_fork *w)
2096{ 3419{
2097 ev_clear_pending (EV_A_ (W)w); 3420 clear_pending (EV_A_ (W)w);
2098 if (expect_false (!ev_is_active (w))) 3421 if (expect_false (!ev_is_active (w)))
2099 return; 3422 return;
2100 3423
3424 EV_FREQUENT_CHECK;
3425
2101 { 3426 {
2102 int active = ((W)w)->active; 3427 int active = ev_active (w);
3428
2103 forks [active - 1] = forks [--forkcnt]; 3429 forks [active - 1] = forks [--forkcnt];
2104 ((W)forks [active - 1])->active = active; 3430 ev_active (forks [active - 1]) = active;
2105 } 3431 }
2106 3432
2107 ev_stop (EV_A_ (W)w); 3433 ev_stop (EV_A_ (W)w);
3434
3435 EV_FREQUENT_CHECK;
3436}
3437#endif
3438
3439#if EV_ASYNC_ENABLE
3440void
3441ev_async_start (EV_P_ ev_async *w)
3442{
3443 if (expect_false (ev_is_active (w)))
3444 return;
3445
3446 evpipe_init (EV_A);
3447
3448 EV_FREQUENT_CHECK;
3449
3450 ev_start (EV_A_ (W)w, ++asynccnt);
3451 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3452 asyncs [asynccnt - 1] = w;
3453
3454 EV_FREQUENT_CHECK;
3455}
3456
3457void
3458ev_async_stop (EV_P_ ev_async *w)
3459{
3460 clear_pending (EV_A_ (W)w);
3461 if (expect_false (!ev_is_active (w)))
3462 return;
3463
3464 EV_FREQUENT_CHECK;
3465
3466 {
3467 int active = ev_active (w);
3468
3469 asyncs [active - 1] = asyncs [--asynccnt];
3470 ev_active (asyncs [active - 1]) = active;
3471 }
3472
3473 ev_stop (EV_A_ (W)w);
3474
3475 EV_FREQUENT_CHECK;
3476}
3477
3478void
3479ev_async_send (EV_P_ ev_async *w)
3480{
3481 w->sent = 1;
3482 evpipe_write (EV_A_ &async_pending);
2108} 3483}
2109#endif 3484#endif
2110 3485
2111/*****************************************************************************/ 3486/*****************************************************************************/
2112 3487
2122once_cb (EV_P_ struct ev_once *once, int revents) 3497once_cb (EV_P_ struct ev_once *once, int revents)
2123{ 3498{
2124 void (*cb)(int revents, void *arg) = once->cb; 3499 void (*cb)(int revents, void *arg) = once->cb;
2125 void *arg = once->arg; 3500 void *arg = once->arg;
2126 3501
2127 ev_io_stop (EV_A_ &once->io); 3502 ev_io_stop (EV_A_ &once->io);
2128 ev_timer_stop (EV_A_ &once->to); 3503 ev_timer_stop (EV_A_ &once->to);
2129 ev_free (once); 3504 ev_free (once);
2130 3505
2131 cb (revents, arg); 3506 cb (revents, arg);
2132} 3507}
2133 3508
2134static void 3509static void
2135once_cb_io (EV_P_ ev_io *w, int revents) 3510once_cb_io (EV_P_ ev_io *w, int revents)
2136{ 3511{
2137 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3512 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3513
3514 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2138} 3515}
2139 3516
2140static void 3517static void
2141once_cb_to (EV_P_ ev_timer *w, int revents) 3518once_cb_to (EV_P_ ev_timer *w, int revents)
2142{ 3519{
2143 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3520 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3521
3522 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2144} 3523}
2145 3524
2146void 3525void
2147ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3526ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2148{ 3527{
2170 ev_timer_set (&once->to, timeout, 0.); 3549 ev_timer_set (&once->to, timeout, 0.);
2171 ev_timer_start (EV_A_ &once->to); 3550 ev_timer_start (EV_A_ &once->to);
2172 } 3551 }
2173} 3552}
2174 3553
3554/*****************************************************************************/
3555
3556#if EV_WALK_ENABLE
3557void
3558ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3559{
3560 int i, j;
3561 ev_watcher_list *wl, *wn;
3562
3563 if (types & (EV_IO | EV_EMBED))
3564 for (i = 0; i < anfdmax; ++i)
3565 for (wl = anfds [i].head; wl; )
3566 {
3567 wn = wl->next;
3568
3569#if EV_EMBED_ENABLE
3570 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3571 {
3572 if (types & EV_EMBED)
3573 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3574 }
3575 else
3576#endif
3577#if EV_USE_INOTIFY
3578 if (ev_cb ((ev_io *)wl) == infy_cb)
3579 ;
3580 else
3581#endif
3582 if ((ev_io *)wl != &pipe_w)
3583 if (types & EV_IO)
3584 cb (EV_A_ EV_IO, wl);
3585
3586 wl = wn;
3587 }
3588
3589 if (types & (EV_TIMER | EV_STAT))
3590 for (i = timercnt + HEAP0; i-- > HEAP0; )
3591#if EV_STAT_ENABLE
3592 /*TODO: timer is not always active*/
3593 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3594 {
3595 if (types & EV_STAT)
3596 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3597 }
3598 else
3599#endif
3600 if (types & EV_TIMER)
3601 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3602
3603#if EV_PERIODIC_ENABLE
3604 if (types & EV_PERIODIC)
3605 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3606 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3607#endif
3608
3609#if EV_IDLE_ENABLE
3610 if (types & EV_IDLE)
3611 for (j = NUMPRI; i--; )
3612 for (i = idlecnt [j]; i--; )
3613 cb (EV_A_ EV_IDLE, idles [j][i]);
3614#endif
3615
3616#if EV_FORK_ENABLE
3617 if (types & EV_FORK)
3618 for (i = forkcnt; i--; )
3619 if (ev_cb (forks [i]) != embed_fork_cb)
3620 cb (EV_A_ EV_FORK, forks [i]);
3621#endif
3622
3623#if EV_ASYNC_ENABLE
3624 if (types & EV_ASYNC)
3625 for (i = asynccnt; i--; )
3626 cb (EV_A_ EV_ASYNC, asyncs [i]);
3627#endif
3628
3629 if (types & EV_PREPARE)
3630 for (i = preparecnt; i--; )
3631#if EV_EMBED_ENABLE
3632 if (ev_cb (prepares [i]) != embed_prepare_cb)
3633#endif
3634 cb (EV_A_ EV_PREPARE, prepares [i]);
3635
3636 if (types & EV_CHECK)
3637 for (i = checkcnt; i--; )
3638 cb (EV_A_ EV_CHECK, checks [i]);
3639
3640 if (types & EV_SIGNAL)
3641 for (i = 0; i < EV_NSIG - 1; ++i)
3642 for (wl = signals [i].head; wl; )
3643 {
3644 wn = wl->next;
3645 cb (EV_A_ EV_SIGNAL, wl);
3646 wl = wn;
3647 }
3648
3649 if (types & EV_CHILD)
3650 for (i = EV_PID_HASHSIZE; i--; )
3651 for (wl = childs [i]; wl; )
3652 {
3653 wn = wl->next;
3654 cb (EV_A_ EV_CHILD, wl);
3655 wl = wn;
3656 }
3657/* EV_STAT 0x00001000 /* stat data changed */
3658/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3659}
3660#endif
3661
3662#if EV_MULTIPLICITY
3663 #include "ev_wrap.h"
3664#endif
3665
2175#ifdef __cplusplus 3666#ifdef __cplusplus
2176} 3667}
2177#endif 3668#endif
2178 3669

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines