ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.179 by root, Tue Dec 11 21:04:40 2007 UTC vs.
Revision 1.315 by root, Wed Aug 26 17:46:22 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
202#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
205#endif 356#endif
206 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
207#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 381# include <winsock.h>
209#endif 382#endif
210 383
211#if !EV_STAT_ENABLE 384#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
213#endif 389# endif
214 390# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 391# ifdef O_CLOEXEC
216# include <sys/inotify.h> 392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
217#endif 396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
218 434
219/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
220 442
221/* 443/*
222 * This is used to avoid floating point rounding problems. 444 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 445 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 446 * to ensure progress, time-wise, even when rounding
230 452
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 455/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 456
235#if __GNUC__ >= 3 457#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
238#else 460#else
239# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
240# define noinline 462# define noinline
241# if __STDC_VERSION__ < 199901L 463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 464# define inline
243# endif 465# endif
244#endif 466#endif
245 467
246#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
251# define inline_speed static noinline 473# define inline_speed static noinline
252#else 474#else
253# define inline_speed static inline 475# define inline_speed static inline
254#endif 476#endif
255 477
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
258 485
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
261 488
262typedef ev_watcher *W; 489typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
265 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
267 515
268#ifdef _WIN32 516#ifdef _WIN32
269# include "ev_win32.c" 517# include "ev_win32.c"
270#endif 518#endif
271 519
278{ 526{
279 syserr_cb = cb; 527 syserr_cb = cb;
280} 528}
281 529
282static void noinline 530static void noinline
283syserr (const char *msg) 531ev_syserr (const char *msg)
284{ 532{
285 if (!msg) 533 if (!msg)
286 msg = "(libev) system error"; 534 msg = "(libev) system error";
287 535
288 if (syserr_cb) 536 if (syserr_cb)
292 perror (msg); 540 perror (msg);
293 abort (); 541 abort ();
294 } 542 }
295} 543}
296 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
297static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 561
299void 562void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 564{
302 alloc = cb; 565 alloc = cb;
303} 566}
304 567
305inline_speed void * 568inline_speed void *
306ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
307{ 570{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
309 572
310 if (!ptr && size) 573 if (!ptr && size)
311 { 574 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 576 abort ();
319#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
321 584
322/*****************************************************************************/ 585/*****************************************************************************/
323 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
324typedef struct 591typedef struct
325{ 592{
326 WL head; 593 WL head;
327 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
329#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 602 SOCKET handle;
331#endif 603#endif
332} ANFD; 604} ANFD;
333 605
606/* stores the pending event set for a given watcher */
334typedef struct 607typedef struct
335{ 608{
336 W w; 609 W w;
337 int events; 610 int events; /* the pending event set for the given watcher */
338} ANPENDING; 611} ANPENDING;
339 612
340#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
341typedef struct 615typedef struct
342{ 616{
343 WL head; 617 WL head;
344} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
345#endif 639#endif
346 640
347#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
348 642
349 struct ev_loop 643 struct ev_loop
368 662
369 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
370 664
371#endif 665#endif
372 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
373/*****************************************************************************/ 679/*****************************************************************************/
374 680
681#ifndef EV_HAVE_EV_TIME
375ev_tstamp 682ev_tstamp
376ev_time (void) 683ev_time (void)
377{ 684{
378#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
379 struct timespec ts; 688 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 691 }
692#endif
693
383 struct timeval tv; 694 struct timeval tv;
384 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 697}
698#endif
388 699
389ev_tstamp inline_size 700inline_size ev_tstamp
390get_clock (void) 701get_clock (void)
391{ 702{
392#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
394 { 705 {
407{ 718{
408 return ev_rt_now; 719 return ev_rt_now;
409} 720}
410#endif 721#endif
411 722
412int inline_size 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
413array_nextsize (int elem, int cur, int cnt) 758array_nextsize (int elem, int cur, int cnt)
414{ 759{
415 int ncur = cur + 1; 760 int ncur = cur + 1;
416 761
417 do 762 do
418 ncur <<= 1; 763 ncur <<= 1;
419 while (cnt > ncur); 764 while (cnt > ncur);
420 765
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 768 {
424 ncur *= elem; 769 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 771 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 772 ncur /= elem;
428 } 773 }
429 774
430 return ncur; 775 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 779array_realloc (int elem, void *base, int *cur, int cnt)
435{ 780{
436 *cur = array_nextsize (elem, *cur, cnt); 781 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 782 return ev_realloc (base, elem * *cur);
438} 783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 787
440#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 789 if (expect_false ((cnt) > (cur))) \
442 { \ 790 { \
443 int ocur_ = (cur); \ 791 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 804 }
457#endif 805#endif
458 806
459#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 809
462/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
463 817
464void noinline 818void noinline
465ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
466{ 820{
467 W w_ = (W)w; 821 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 830 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 831 pendings [pri][w_->pending - 1].events = revents;
478 } 832 }
479} 833}
480 834
481void inline_speed 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 852{
484 int i; 853 int i;
485 854
486 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
488} 857}
489 858
490/*****************************************************************************/ 859/*****************************************************************************/
491 860
492void inline_size 861inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
507{ 863{
508 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
509 ev_io *w; 865 ev_io *w;
510 866
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 871 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
517 } 873 }
518} 874}
519 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
520void 887void
521ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 889{
523 if (fd >= 0 && fd < anfdmax) 890 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
525} 892}
526 893
527void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
528fd_reify (EV_P) 897fd_reify (EV_P)
529{ 898{
530 int i; 899 int i;
531 900
532 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
533 { 902 {
534 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
536 ev_io *w; 905 ev_io *w;
537 906
538 int events = 0; 907 unsigned char events = 0;
539 908
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 910 events |= (unsigned char)w->events;
542 911
543#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
544 if (events) 913 if (events)
545 { 914 {
546 unsigned long argp; 915 unsigned long arg;
547 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 918 }
550#endif 919#endif
551 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
552 anfd->reify = 0; 925 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
556 } 931 }
557 932
558 fdchangecnt = 0; 933 fdchangecnt = 0;
559} 934}
560 935
561void inline_size 936/* something about the given fd changed */
937inline_size void
562fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
563{ 939{
564 if (expect_false (anfds [fd].reify)) 940 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
568 942
943 if (expect_true (!reify))
944 {
569 ++fdchangecnt; 945 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
572} 949}
573 950
574void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
575fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
576{ 954{
577 ev_io *w; 955 ev_io *w;
578 956
579 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
581 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
583 } 961 }
584} 962}
585 963
586int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
587fd_valid (int fd) 966fd_valid (int fd)
588{ 967{
589#ifdef _WIN32 968#ifdef _WIN32
590 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
591#else 970#else
599{ 978{
600 int fd; 979 int fd;
601 980
602 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 982 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
606} 985}
607 986
608/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 988static void noinline
613 992
614 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
615 if (anfds [fd].events) 994 if (anfds [fd].events)
616 { 995 {
617 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
618 return; 997 break;
619 } 998 }
620} 999}
621 1000
622/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
623static void noinline 1002static void noinline
627 1006
628 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 1008 if (anfds [fd].events)
630 { 1009 {
631 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
633 } 1013 }
634} 1014}
635 1015
636/*****************************************************************************/ 1016/*****************************************************************************/
637 1017
638void inline_speed 1018/*
639upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
640{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
641 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
642 1023
643 while (k) 1024/*
644 { 1025 * at the moment we allow libev the luxury of two heaps,
645 int p = (k - 1) >> 1; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1027 * which is more cache-efficient.
1028 * the difference is about 5% with 50000+ watchers.
1029 */
1030#if EV_USE_4HEAP
646 1031
647 if (heap [p]->at <= w->at) 1032#define DHEAP 4
1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
1036
1037/* away from the root */
1038inline_speed void
1039downheap (ANHE *heap, int N, int k)
1040{
1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
1043
1044 for (;;)
1045 {
1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1049
1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
1052 {
1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
648 break; 1066 break;
649 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
1106 heap [k] = heap [c];
1107 ev_active (ANHE_w (heap [k])) = k;
1108
1109 k = c;
1110 }
1111
1112 heap [k] = he;
1113 ev_active (ANHE_w (he)) = k;
1114}
1115#endif
1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
650 heap [k] = heap [p]; 1130 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 1131 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 1132 k = p;
653 } 1133 }
654 1134
655 heap [k] = w; 1135 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 1136 ev_active (ANHE_w (he)) = k;
657
658} 1137}
659 1138
660void inline_speed 1139/* move an element suitably so it is in a correct place */
661downheap (WT *heap, int N, int k) 1140inline_size void
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686}
687
688void inline_size
689adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
690{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
691 upheap (heap, k); 1144 upheap (heap, k);
1145 else
692 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
693} 1159}
694 1160
695/*****************************************************************************/ 1161/*****************************************************************************/
696 1162
1163/* associate signal watchers to a signal signal */
697typedef struct 1164typedef struct
698{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
699 WL head; 1170 WL head;
700 sig_atomic_t volatile gotsig;
701} ANSIG; 1171} ANSIG;
702 1172
703static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
704static int signalmax;
705 1174
706static int sigpipe [2]; 1175/*****************************************************************************/
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 1176
710void inline_size 1177/* used to prepare libev internal fd's */
711signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
712{ 1179inline_speed void
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717
718 ++base;
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772
773void inline_speed
774fd_intern (int fd) 1180fd_intern (int fd)
775{ 1181{
776#ifdef _WIN32 1182#ifdef _WIN32
777 int arg = 1; 1183 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
779#else 1185#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 1188#endif
783} 1189}
784 1190
785static void noinline 1191static void noinline
786siginit (EV_P) 1192evpipe_init (EV_P)
787{ 1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
788 fd_intern (sigpipe [0]); 1213 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
790 1217
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1218 ev_io_start (EV_A_ &pipe_w);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
794} 1288}
795 1289
796/*****************************************************************************/ 1290/*****************************************************************************/
797 1291
1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
798static ev_child *childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
799 1354
800#ifndef _WIN32 1355#ifndef _WIN32
801 1356
802static ev_signal childev; 1357static ev_signal childev;
803 1358
804void inline_speed 1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
806{ 1366{
807 ev_child *w; 1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1369
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
810 if (w->pid == pid || !w->pid) 1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
811 { 1374 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1376 w->rpid = pid;
814 w->rstatus = status; 1377 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1379 }
1380 }
817} 1381}
818 1382
819#ifndef WCONTINUED 1383#ifndef WCONTINUED
820# define WCONTINUED 0 1384# define WCONTINUED 0
821#endif 1385#endif
822 1386
1387/* called on sigchld etc., calls waitpid */
823static void 1388static void
824childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
825{ 1390{
826 int pid, status; 1391 int pid, status;
827 1392
830 if (!WCONTINUED 1395 if (!WCONTINUED
831 || errno != EINVAL 1396 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1398 return;
834 1399
835 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1403
839 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1405 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1407}
843 1408
844#endif 1409#endif
845 1410
846/*****************************************************************************/ 1411/*****************************************************************************/
908 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
911#endif 1476#endif
912#ifdef __APPLE__ 1477#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
914 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
915#endif 1481#endif
916 1482
917 return flags; 1483 return flags;
918} 1484}
919 1485
920unsigned int 1486unsigned int
921ev_embeddable_backends (void) 1487ev_embeddable_backends (void)
922{ 1488{
923 return EVBACKEND_EPOLL 1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1490
925 | EVBACKEND_PORT; 1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
926} 1496}
927 1497
928unsigned int 1498unsigned int
929ev_backend (EV_P) 1499ev_backend (EV_P)
930{ 1500{
931 return backend; 1501 return backend;
932} 1502}
933 1503
1504#if EV_MINIMAL < 2
934unsigned int 1505unsigned int
935ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
936{ 1507{
937 return loop_count; 1508 return loop_count;
938} 1509}
939 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
940static void noinline 1554static void noinline
941loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
942{ 1556{
943 if (!backend) 1557 if (!backend)
944 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
945#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
946 { 1571 {
947 struct timespec ts; 1572 struct timespec ts;
1573
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1575 have_monotonic = 1;
950 } 1576 }
951#endif 1577#endif
952
953 ev_rt_now = ev_time ();
954 mn_now = get_clock ();
955 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now;
957 1578
958 /* pid check not overridable via env */ 1579 /* pid check not overridable via env */
959#ifndef _WIN32 1580#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1581 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1582 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1586 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1611#endif
1612
969 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1615
978#if EV_USE_PORT 1616#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1618#endif
981#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
989#endif 1627#endif
990#if EV_USE_SELECT 1628#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1630#endif
993 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
994 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
996 } 1636 }
997} 1637}
998 1638
1639/* free up a loop structure */
999static void noinline 1640static void noinline
1000loop_destroy (EV_P) 1641loop_destroy (EV_P)
1001{ 1642{
1002 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 {
1665 /*ev_ref (EV_A);*/
1666 /*ev_io_stop (EV_A_ &sigfd_w);*/
1667
1668 close (sigfd);
1669 }
1670#endif
1003 1671
1004#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1673 if (fs_fd >= 0)
1006 close (fs_fd); 1674 close (fs_fd);
1007#endif 1675#endif
1031#if EV_IDLE_ENABLE 1699#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1700 array_free (idle, [i]);
1033#endif 1701#endif
1034 } 1702 }
1035 1703
1704 ev_free (anfds); anfds = 0; anfdmax = 0;
1705
1036 /* have to use the microsoft-never-gets-it-right macro */ 1706 /* have to use the microsoft-never-gets-it-right macro */
1707 array_free (rfeed, EMPTY);
1037 array_free (fdchange, EMPTY); 1708 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1709 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1710#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1711 array_free (periodic, EMPTY);
1041#endif 1712#endif
1713#if EV_FORK_ENABLE
1714 array_free (fork, EMPTY);
1715#endif
1042 array_free (prepare, EMPTY); 1716 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1717 array_free (check, EMPTY);
1718#if EV_ASYNC_ENABLE
1719 array_free (async, EMPTY);
1720#endif
1044 1721
1045 backend = 0; 1722 backend = 0;
1046} 1723}
1047 1724
1725#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1726inline_size void infy_fork (EV_P);
1727#endif
1049 1728
1050void inline_size 1729inline_size void
1051loop_fork (EV_P) 1730loop_fork (EV_P)
1052{ 1731{
1053#if EV_USE_PORT 1732#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1733 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif 1734#endif
1061#endif 1740#endif
1062#if EV_USE_INOTIFY 1741#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1742 infy_fork (EV_A);
1064#endif 1743#endif
1065 1744
1066 if (ev_is_active (&sigev)) 1745 if (ev_is_active (&pipe_w))
1067 { 1746 {
1068 /* default loop */ 1747 /* this "locks" the handlers against writing to the pipe */
1748 /* while we modify the fd vars */
1749 sig_pending = 1;
1750#if EV_ASYNC_ENABLE
1751 async_pending = 1;
1752#endif
1069 1753
1070 ev_ref (EV_A); 1754 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1755 ev_io_stop (EV_A_ &pipe_w);
1072 close (sigpipe [0]);
1073 close (sigpipe [1]);
1074 1756
1075 while (pipe (sigpipe)) 1757#if EV_USE_EVENTFD
1076 syserr ("(libev) error creating pipe"); 1758 if (evfd >= 0)
1759 close (evfd);
1760#endif
1077 1761
1762 if (evpipe [0] >= 0)
1763 {
1764 EV_WIN32_CLOSE_FD (evpipe [0]);
1765 EV_WIN32_CLOSE_FD (evpipe [1]);
1766 }
1767
1078 siginit (EV_A); 1768 evpipe_init (EV_A);
1769 /* now iterate over everything, in case we missed something */
1770 pipecb (EV_A_ &pipe_w, EV_READ);
1079 } 1771 }
1080 1772
1081 postfork = 0; 1773 postfork = 0;
1082} 1774}
1083 1775
1084#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1777
1085struct ev_loop * 1778struct ev_loop *
1086ev_loop_new (unsigned int flags) 1779ev_loop_new (unsigned int flags)
1087{ 1780{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1781 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1782
1090 memset (loop, 0, sizeof (struct ev_loop)); 1783 memset (EV_A, 0, sizeof (struct ev_loop));
1091
1092 loop_init (EV_A_ flags); 1784 loop_init (EV_A_ flags);
1093 1785
1094 if (ev_backend (EV_A)) 1786 if (ev_backend (EV_A))
1095 return loop; 1787 return EV_A;
1096 1788
1097 return 0; 1789 return 0;
1098} 1790}
1099 1791
1100void 1792void
1105} 1797}
1106 1798
1107void 1799void
1108ev_loop_fork (EV_P) 1800ev_loop_fork (EV_P)
1109{ 1801{
1110 postfork = 1; 1802 postfork = 1; /* must be in line with ev_default_fork */
1111} 1803}
1804#endif /* multiplicity */
1112 1805
1806#if EV_VERIFY
1807static void noinline
1808verify_watcher (EV_P_ W w)
1809{
1810 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1811
1812 if (w->pending)
1813 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1814}
1815
1816static void noinline
1817verify_heap (EV_P_ ANHE *heap, int N)
1818{
1819 int i;
1820
1821 for (i = HEAP0; i < N + HEAP0; ++i)
1822 {
1823 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1824 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1825 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1826
1827 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1828 }
1829}
1830
1831static void noinline
1832array_verify (EV_P_ W *ws, int cnt)
1833{
1834 while (cnt--)
1835 {
1836 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1837 verify_watcher (EV_A_ ws [cnt]);
1838 }
1839}
1840#endif
1841
1842#if EV_MINIMAL < 2
1843void
1844ev_loop_verify (EV_P)
1845{
1846#if EV_VERIFY
1847 int i;
1848 WL w;
1849
1850 assert (activecnt >= -1);
1851
1852 assert (fdchangemax >= fdchangecnt);
1853 for (i = 0; i < fdchangecnt; ++i)
1854 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1855
1856 assert (anfdmax >= 0);
1857 for (i = 0; i < anfdmax; ++i)
1858 for (w = anfds [i].head; w; w = w->next)
1859 {
1860 verify_watcher (EV_A_ (W)w);
1861 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1862 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1863 }
1864
1865 assert (timermax >= timercnt);
1866 verify_heap (EV_A_ timers, timercnt);
1867
1868#if EV_PERIODIC_ENABLE
1869 assert (periodicmax >= periodiccnt);
1870 verify_heap (EV_A_ periodics, periodiccnt);
1871#endif
1872
1873 for (i = NUMPRI; i--; )
1874 {
1875 assert (pendingmax [i] >= pendingcnt [i]);
1876#if EV_IDLE_ENABLE
1877 assert (idleall >= 0);
1878 assert (idlemax [i] >= idlecnt [i]);
1879 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1880#endif
1881 }
1882
1883#if EV_FORK_ENABLE
1884 assert (forkmax >= forkcnt);
1885 array_verify (EV_A_ (W *)forks, forkcnt);
1886#endif
1887
1888#if EV_ASYNC_ENABLE
1889 assert (asyncmax >= asynccnt);
1890 array_verify (EV_A_ (W *)asyncs, asynccnt);
1891#endif
1892
1893 assert (preparemax >= preparecnt);
1894 array_verify (EV_A_ (W *)prepares, preparecnt);
1895
1896 assert (checkmax >= checkcnt);
1897 array_verify (EV_A_ (W *)checks, checkcnt);
1898
1899# if 0
1900 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1901 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1902# endif
1903#endif
1904}
1113#endif 1905#endif
1114 1906
1115#if EV_MULTIPLICITY 1907#if EV_MULTIPLICITY
1116struct ev_loop * 1908struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1909ev_default_loop_init (unsigned int flags)
1118#else 1910#else
1119int 1911int
1120ev_default_loop (unsigned int flags) 1912ev_default_loop (unsigned int flags)
1121#endif 1913#endif
1122{ 1914{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1915 if (!ev_default_loop_ptr)
1128 { 1916 {
1129#if EV_MULTIPLICITY 1917#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1918 EV_P = ev_default_loop_ptr = &default_loop_struct;
1131#else 1919#else
1132 ev_default_loop_ptr = 1; 1920 ev_default_loop_ptr = 1;
1133#endif 1921#endif
1134 1922
1135 loop_init (EV_A_ flags); 1923 loop_init (EV_A_ flags);
1136 1924
1137 if (ev_backend (EV_A)) 1925 if (ev_backend (EV_A))
1138 { 1926 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1927#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1928 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1929 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1930 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1931 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154 1940
1155void 1941void
1156ev_default_destroy (void) 1942ev_default_destroy (void)
1157{ 1943{
1158#if EV_MULTIPLICITY 1944#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1945 EV_P = ev_default_loop_ptr;
1160#endif 1946#endif
1947
1948 ev_default_loop_ptr = 0;
1161 1949
1162#ifndef _WIN32 1950#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1951 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1952 ev_signal_stop (EV_A_ &childev);
1165#endif 1953#endif
1166 1954
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1955 loop_destroy (EV_A);
1174} 1956}
1175 1957
1176void 1958void
1177ev_default_fork (void) 1959ev_default_fork (void)
1178{ 1960{
1179#if EV_MULTIPLICITY 1961#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1962 EV_P = ev_default_loop_ptr;
1181#endif 1963#endif
1182 1964
1183 if (backend) 1965 postfork = 1; /* must be in line with ev_loop_fork */
1184 postfork = 1;
1185} 1966}
1186 1967
1187/*****************************************************************************/ 1968/*****************************************************************************/
1188 1969
1189void 1970void
1190ev_invoke (EV_P_ void *w, int revents) 1971ev_invoke (EV_P_ void *w, int revents)
1191{ 1972{
1192 EV_CB_INVOKE ((W)w, revents); 1973 EV_CB_INVOKE ((W)w, revents);
1193} 1974}
1194 1975
1195void inline_speed 1976unsigned int
1196call_pending (EV_P) 1977ev_pending_count (EV_P)
1978{
1979 int pri;
1980 unsigned int count = 0;
1981
1982 for (pri = NUMPRI; pri--; )
1983 count += pendingcnt [pri];
1984
1985 return count;
1986}
1987
1988void noinline
1989ev_invoke_pending (EV_P)
1197{ 1990{
1198 int pri; 1991 int pri;
1199 1992
1200 for (pri = NUMPRI; pri--; ) 1993 for (pri = NUMPRI; pri--; )
1201 while (pendingcnt [pri]) 1994 while (pendingcnt [pri])
1202 { 1995 {
1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1996 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1204 1997
1205 if (expect_true (p->w))
1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1998 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1999 /* ^ this is no longer true, as pending_w could be here */
1208 2000
1209 p->w->pending = 0; 2001 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 2002 EV_CB_INVOKE (p->w, p->events);
1211 } 2003 EV_FREQUENT_CHECK;
1212 } 2004 }
1213} 2005}
1214 2006
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294
1295#if EV_IDLE_ENABLE 2007#if EV_IDLE_ENABLE
1296void inline_size 2008/* make idle watchers pending. this handles the "call-idle */
2009/* only when higher priorities are idle" logic */
2010inline_size void
1297idle_reify (EV_P) 2011idle_reify (EV_P)
1298{ 2012{
1299 if (expect_false (idleall)) 2013 if (expect_false (idleall))
1300 { 2014 {
1301 int pri; 2015 int pri;
1313 } 2027 }
1314 } 2028 }
1315} 2029}
1316#endif 2030#endif
1317 2031
1318void inline_speed 2032/* make timers pending */
2033inline_size void
2034timers_reify (EV_P)
2035{
2036 EV_FREQUENT_CHECK;
2037
2038 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2039 {
2040 do
2041 {
2042 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2043
2044 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2045
2046 /* first reschedule or stop timer */
2047 if (w->repeat)
2048 {
2049 ev_at (w) += w->repeat;
2050 if (ev_at (w) < mn_now)
2051 ev_at (w) = mn_now;
2052
2053 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2054
2055 ANHE_at_cache (timers [HEAP0]);
2056 downheap (timers, timercnt, HEAP0);
2057 }
2058 else
2059 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2060
2061 EV_FREQUENT_CHECK;
2062 feed_reverse (EV_A_ (W)w);
2063 }
2064 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2065
2066 feed_reverse_done (EV_A_ EV_TIMEOUT);
2067 }
2068}
2069
2070#if EV_PERIODIC_ENABLE
2071/* make periodics pending */
2072inline_size void
2073periodics_reify (EV_P)
2074{
2075 EV_FREQUENT_CHECK;
2076
2077 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2078 {
2079 int feed_count = 0;
2080
2081 do
2082 {
2083 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2084
2085 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2086
2087 /* first reschedule or stop timer */
2088 if (w->reschedule_cb)
2089 {
2090 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2091
2092 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2093
2094 ANHE_at_cache (periodics [HEAP0]);
2095 downheap (periodics, periodiccnt, HEAP0);
2096 }
2097 else if (w->interval)
2098 {
2099 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2100 /* if next trigger time is not sufficiently in the future, put it there */
2101 /* this might happen because of floating point inexactness */
2102 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2103 {
2104 ev_at (w) += w->interval;
2105
2106 /* if interval is unreasonably low we might still have a time in the past */
2107 /* so correct this. this will make the periodic very inexact, but the user */
2108 /* has effectively asked to get triggered more often than possible */
2109 if (ev_at (w) < ev_rt_now)
2110 ev_at (w) = ev_rt_now;
2111 }
2112
2113 ANHE_at_cache (periodics [HEAP0]);
2114 downheap (periodics, periodiccnt, HEAP0);
2115 }
2116 else
2117 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2118
2119 EV_FREQUENT_CHECK;
2120 feed_reverse (EV_A_ (W)w);
2121 }
2122 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2123
2124 feed_reverse_done (EV_A_ EV_PERIODIC);
2125 }
2126}
2127
2128/* simply recalculate all periodics */
2129/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2130static void noinline
2131periodics_reschedule (EV_P)
2132{
2133 int i;
2134
2135 /* adjust periodics after time jump */
2136 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2139
2140 if (w->reschedule_cb)
2141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2142 else if (w->interval)
2143 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2144
2145 ANHE_at_cache (periodics [i]);
2146 }
2147
2148 reheap (periodics, periodiccnt);
2149}
2150#endif
2151
2152/* adjust all timers by a given offset */
2153static void noinline
2154timers_reschedule (EV_P_ ev_tstamp adjust)
2155{
2156 int i;
2157
2158 for (i = 0; i < timercnt; ++i)
2159 {
2160 ANHE *he = timers + i + HEAP0;
2161 ANHE_w (*he)->at += adjust;
2162 ANHE_at_cache (*he);
2163 }
2164}
2165
2166/* fetch new monotonic and realtime times from the kernel */
2167/* also detetc if there was a timejump, and act accordingly */
2168inline_speed void
1319time_update (EV_P_ ev_tstamp max_block) 2169time_update (EV_P_ ev_tstamp max_block)
1320{ 2170{
1321 int i;
1322
1323#if EV_USE_MONOTONIC 2171#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic)) 2172 if (expect_true (have_monotonic))
1325 { 2173 {
2174 int i;
1326 ev_tstamp odiff = rtmn_diff; 2175 ev_tstamp odiff = rtmn_diff;
1327 2176
1328 mn_now = get_clock (); 2177 mn_now = get_clock ();
1329 2178
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2179 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1348 */ 2197 */
1349 for (i = 4; --i; ) 2198 for (i = 4; --i; )
1350 { 2199 {
1351 rtmn_diff = ev_rt_now - mn_now; 2200 rtmn_diff = ev_rt_now - mn_now;
1352 2201
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2202 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 2203 return; /* all is well */
1355 2204
1356 ev_rt_now = ev_time (); 2205 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 2206 mn_now = get_clock ();
1358 now_floor = mn_now; 2207 now_floor = mn_now;
1359 } 2208 }
1360 2209
2210 /* no timer adjustment, as the monotonic clock doesn't jump */
2211 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1361# if EV_PERIODIC_ENABLE 2212# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2213 periodics_reschedule (EV_A);
1363# endif 2214# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 } 2215 }
1367 else 2216 else
1368#endif 2217#endif
1369 { 2218 {
1370 ev_rt_now = ev_time (); 2219 ev_rt_now = ev_time ();
1371 2220
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2221 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 { 2222 {
2223 /* adjust timers. this is easy, as the offset is the same for all of them */
2224 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1374#if EV_PERIODIC_ENABLE 2225#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 2226 periodics_reschedule (EV_A);
1376#endif 2227#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2228 }
1381 2229
1382 mn_now = ev_rt_now; 2230 mn_now = ev_rt_now;
1383 } 2231 }
1384} 2232}
1385 2233
1386void 2234void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2235ev_loop (EV_P_ int flags)
1402{ 2236{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2237#if EV_MINIMAL < 2
1404 ? EVUNLOOP_ONE 2238 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2239#endif
1406 2240
2241 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2242
2243 loop_done = EVUNLOOP_CANCEL;
2244
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2245 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2246
1409 do 2247 do
1410 { 2248 {
2249#if EV_VERIFY >= 2
2250 ev_loop_verify (EV_A);
2251#endif
2252
1411#ifndef _WIN32 2253#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2254 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2255 if (expect_false (getpid () != curpid))
1414 { 2256 {
1415 curpid = getpid (); 2257 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2263 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2264 if (expect_false (postfork))
1423 if (forkcnt) 2265 if (forkcnt)
1424 { 2266 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2267 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2268 EV_INVOKE_PENDING;
1427 } 2269 }
1428#endif 2270#endif
1429 2271
1430 /* queue prepare watchers (and execute them) */ 2272 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2273 if (expect_false (preparecnt))
1432 { 2274 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2275 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2276 EV_INVOKE_PENDING;
1435 } 2277 }
1436 2278
1437 if (expect_false (!activecnt)) 2279 if (expect_false (loop_done))
1438 break; 2280 break;
1439 2281
1440 /* we might have forked, so reify kernel state if necessary */ 2282 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2283 if (expect_false (postfork))
1442 loop_fork (EV_A); 2284 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2286 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2287 fd_reify (EV_A);
1446 2288
1447 /* calculate blocking time */ 2289 /* calculate blocking time */
1448 { 2290 {
1449 ev_tstamp block; 2291 ev_tstamp waittime = 0.;
2292 ev_tstamp sleeptime = 0.;
1450 2293
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2294 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2295 {
2296 /* remember old timestamp for io_blocktime calculation */
2297 ev_tstamp prev_mn_now = mn_now;
2298
1455 /* update time to cancel out callback processing overhead */ 2299 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 2300 time_update (EV_A_ 1e100);
1457 2301
1458 block = MAX_BLOCKTIME; 2302 waittime = MAX_BLOCKTIME;
1459 2303
1460 if (timercnt) 2304 if (timercnt)
1461 { 2305 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2306 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 2307 if (waittime > to) waittime = to;
1464 } 2308 }
1465 2309
1466#if EV_PERIODIC_ENABLE 2310#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 2311 if (periodiccnt)
1468 { 2312 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2313 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 2314 if (waittime > to) waittime = to;
1471 } 2315 }
1472#endif 2316#endif
1473 2317
2318 /* don't let timeouts decrease the waittime below timeout_blocktime */
2319 if (expect_false (waittime < timeout_blocktime))
2320 waittime = timeout_blocktime;
2321
2322 /* extra check because io_blocktime is commonly 0 */
1474 if (expect_false (block < 0.)) block = 0.; 2323 if (expect_false (io_blocktime))
2324 {
2325 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2326
2327 if (sleeptime > waittime - backend_fudge)
2328 sleeptime = waittime - backend_fudge;
2329
2330 if (expect_true (sleeptime > 0.))
2331 {
2332 ev_sleep (sleeptime);
2333 waittime -= sleeptime;
2334 }
2335 }
1475 } 2336 }
1476 2337
2338#if EV_MINIMAL < 2
1477 ++loop_count; 2339 ++loop_count;
2340#endif
2341 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1478 backend_poll (EV_A_ block); 2342 backend_poll (EV_A_ waittime);
2343 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1479 2344
1480 /* update ev_rt_now, do magic */ 2345 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2346 time_update (EV_A_ waittime + sleeptime);
1482 } 2347 }
1483 2348
1484 /* queue pending timers and reschedule them */ 2349 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2350 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2351#if EV_PERIODIC_ENABLE
1494 2359
1495 /* queue check watchers, to be executed first */ 2360 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2361 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2362 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2363
1499 call_pending (EV_A); 2364 EV_INVOKE_PENDING;
1500
1501 } 2365 }
1502 while (expect_true (activecnt && !loop_done)); 2366 while (expect_true (
2367 activecnt
2368 && !loop_done
2369 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2370 ));
1503 2371
1504 if (loop_done == EVUNLOOP_ONE) 2372 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2373 loop_done = EVUNLOOP_CANCEL;
2374
2375#if EV_MINIMAL < 2
2376 --loop_depth;
2377#endif
1506} 2378}
1507 2379
1508void 2380void
1509ev_unloop (EV_P_ int how) 2381ev_unloop (EV_P_ int how)
1510{ 2382{
1511 loop_done = how; 2383 loop_done = how;
1512} 2384}
1513 2385
2386void
2387ev_ref (EV_P)
2388{
2389 ++activecnt;
2390}
2391
2392void
2393ev_unref (EV_P)
2394{
2395 --activecnt;
2396}
2397
2398void
2399ev_now_update (EV_P)
2400{
2401 time_update (EV_A_ 1e100);
2402}
2403
2404void
2405ev_suspend (EV_P)
2406{
2407 ev_now_update (EV_A);
2408}
2409
2410void
2411ev_resume (EV_P)
2412{
2413 ev_tstamp mn_prev = mn_now;
2414
2415 ev_now_update (EV_A);
2416 timers_reschedule (EV_A_ mn_now - mn_prev);
2417#if EV_PERIODIC_ENABLE
2418 /* TODO: really do this? */
2419 periodics_reschedule (EV_A);
2420#endif
2421}
2422
1514/*****************************************************************************/ 2423/*****************************************************************************/
2424/* singly-linked list management, used when the expected list length is short */
1515 2425
1516void inline_size 2426inline_size void
1517wlist_add (WL *head, WL elem) 2427wlist_add (WL *head, WL elem)
1518{ 2428{
1519 elem->next = *head; 2429 elem->next = *head;
1520 *head = elem; 2430 *head = elem;
1521} 2431}
1522 2432
1523void inline_size 2433inline_size void
1524wlist_del (WL *head, WL elem) 2434wlist_del (WL *head, WL elem)
1525{ 2435{
1526 while (*head) 2436 while (*head)
1527 { 2437 {
1528 if (*head == elem) 2438 if (expect_true (*head == elem))
1529 { 2439 {
1530 *head = elem->next; 2440 *head = elem->next;
1531 return; 2441 break;
1532 } 2442 }
1533 2443
1534 head = &(*head)->next; 2444 head = &(*head)->next;
1535 } 2445 }
1536} 2446}
1537 2447
1538void inline_speed 2448/* internal, faster, version of ev_clear_pending */
2449inline_speed void
1539clear_pending (EV_P_ W w) 2450clear_pending (EV_P_ W w)
1540{ 2451{
1541 if (w->pending) 2452 if (w->pending)
1542 { 2453 {
1543 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2454 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1544 w->pending = 0; 2455 w->pending = 0;
1545 } 2456 }
1546} 2457}
1547 2458
1548int 2459int
1552 int pending = w_->pending; 2463 int pending = w_->pending;
1553 2464
1554 if (expect_true (pending)) 2465 if (expect_true (pending))
1555 { 2466 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2467 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2468 p->w = (W)&pending_w;
1557 w_->pending = 0; 2469 w_->pending = 0;
1558 p->w = 0;
1559 return p->events; 2470 return p->events;
1560 } 2471 }
1561 else 2472 else
1562 return 0; 2473 return 0;
1563} 2474}
1564 2475
1565void inline_size 2476inline_size void
1566pri_adjust (EV_P_ W w) 2477pri_adjust (EV_P_ W w)
1567{ 2478{
1568 int pri = w->priority; 2479 int pri = ev_priority (w);
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2480 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2481 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri; 2482 ev_set_priority (w, pri);
1572} 2483}
1573 2484
1574void inline_speed 2485inline_speed void
1575ev_start (EV_P_ W w, int active) 2486ev_start (EV_P_ W w, int active)
1576{ 2487{
1577 pri_adjust (EV_A_ w); 2488 pri_adjust (EV_A_ w);
1578 w->active = active; 2489 w->active = active;
1579 ev_ref (EV_A); 2490 ev_ref (EV_A);
1580} 2491}
1581 2492
1582void inline_size 2493inline_size void
1583ev_stop (EV_P_ W w) 2494ev_stop (EV_P_ W w)
1584{ 2495{
1585 ev_unref (EV_A); 2496 ev_unref (EV_A);
1586 w->active = 0; 2497 w->active = 0;
1587} 2498}
1594 int fd = w->fd; 2505 int fd = w->fd;
1595 2506
1596 if (expect_false (ev_is_active (w))) 2507 if (expect_false (ev_is_active (w)))
1597 return; 2508 return;
1598 2509
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2510 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2511 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2512
2513 EV_FREQUENT_CHECK;
1600 2514
1601 ev_start (EV_A_ (W)w, 1); 2515 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2516 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2517 wlist_add (&anfds[fd].head, (WL)w);
1604 2518
1605 fd_change (EV_A_ fd); 2519 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2520 w->events &= ~EV__IOFDSET;
2521
2522 EV_FREQUENT_CHECK;
1606} 2523}
1607 2524
1608void noinline 2525void noinline
1609ev_io_stop (EV_P_ ev_io *w) 2526ev_io_stop (EV_P_ ev_io *w)
1610{ 2527{
1611 clear_pending (EV_A_ (W)w); 2528 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 2529 if (expect_false (!ev_is_active (w)))
1613 return; 2530 return;
1614 2531
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2532 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 2533
2534 EV_FREQUENT_CHECK;
2535
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2536 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1619 2538
1620 fd_change (EV_A_ w->fd); 2539 fd_change (EV_A_ w->fd, 1);
2540
2541 EV_FREQUENT_CHECK;
1621} 2542}
1622 2543
1623void noinline 2544void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 2545ev_timer_start (EV_P_ ev_timer *w)
1625{ 2546{
1626 if (expect_false (ev_is_active (w))) 2547 if (expect_false (ev_is_active (w)))
1627 return; 2548 return;
1628 2549
1629 ((WT)w)->at += mn_now; 2550 ev_at (w) += mn_now;
1630 2551
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2552 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 2553
2554 EV_FREQUENT_CHECK;
2555
2556 ++timercnt;
1633 ev_start (EV_A_ (W)w, ++timercnt); 2557 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2558 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 2559 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 2560 ANHE_at_cache (timers [ev_active (w)]);
2561 upheap (timers, ev_active (w));
1637 2562
2563 EV_FREQUENT_CHECK;
2564
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2565 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 2566}
1640 2567
1641void noinline 2568void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 2569ev_timer_stop (EV_P_ ev_timer *w)
1643{ 2570{
1644 clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
1646 return; 2573 return;
1647 2574
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2575 EV_FREQUENT_CHECK;
1649 2576
1650 { 2577 {
1651 int active = ((W)w)->active; 2578 int active = ev_active (w);
1652 2579
2580 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2581
2582 --timercnt;
2583
1653 if (expect_true (--active < --timercnt)) 2584 if (expect_true (active < timercnt + HEAP0))
1654 { 2585 {
1655 timers [active] = timers [timercnt]; 2586 timers [active] = timers [timercnt + HEAP0];
1656 adjustheap ((WT *)timers, timercnt, active); 2587 adjustheap (timers, timercnt, active);
1657 } 2588 }
1658 } 2589 }
1659 2590
1660 ((WT)w)->at -= mn_now; 2591 EV_FREQUENT_CHECK;
2592
2593 ev_at (w) -= mn_now;
1661 2594
1662 ev_stop (EV_A_ (W)w); 2595 ev_stop (EV_A_ (W)w);
1663} 2596}
1664 2597
1665void noinline 2598void noinline
1666ev_timer_again (EV_P_ ev_timer *w) 2599ev_timer_again (EV_P_ ev_timer *w)
1667{ 2600{
2601 EV_FREQUENT_CHECK;
2602
1668 if (ev_is_active (w)) 2603 if (ev_is_active (w))
1669 { 2604 {
1670 if (w->repeat) 2605 if (w->repeat)
1671 { 2606 {
1672 ((WT)w)->at = mn_now + w->repeat; 2607 ev_at (w) = mn_now + w->repeat;
2608 ANHE_at_cache (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2609 adjustheap (timers, timercnt, ev_active (w));
1674 } 2610 }
1675 else 2611 else
1676 ev_timer_stop (EV_A_ w); 2612 ev_timer_stop (EV_A_ w);
1677 } 2613 }
1678 else if (w->repeat) 2614 else if (w->repeat)
1679 { 2615 {
1680 w->at = w->repeat; 2616 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 2617 ev_timer_start (EV_A_ w);
1682 } 2618 }
2619
2620 EV_FREQUENT_CHECK;
2621}
2622
2623ev_tstamp
2624ev_timer_remaining (EV_P_ ev_timer *w)
2625{
2626 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1683} 2627}
1684 2628
1685#if EV_PERIODIC_ENABLE 2629#if EV_PERIODIC_ENABLE
1686void noinline 2630void noinline
1687ev_periodic_start (EV_P_ ev_periodic *w) 2631ev_periodic_start (EV_P_ ev_periodic *w)
1688{ 2632{
1689 if (expect_false (ev_is_active (w))) 2633 if (expect_false (ev_is_active (w)))
1690 return; 2634 return;
1691 2635
1692 if (w->reschedule_cb) 2636 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2637 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 2638 else if (w->interval)
1695 { 2639 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2640 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 2641 /* this formula differs from the one in periodic_reify because we do not always round up */
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 2643 }
1700 else 2644 else
1701 ((WT)w)->at = w->offset; 2645 ev_at (w) = w->offset;
1702 2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++periodiccnt;
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 2650 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2651 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 2652 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 2653 ANHE_at_cache (periodics [ev_active (w)]);
2654 upheap (periodics, ev_active (w));
1707 2655
2656 EV_FREQUENT_CHECK;
2657
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2658 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 2659}
1710 2660
1711void noinline 2661void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 2662ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 2663{
1714 clear_pending (EV_A_ (W)w); 2664 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 2665 if (expect_false (!ev_is_active (w)))
1716 return; 2666 return;
1717 2667
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2668 EV_FREQUENT_CHECK;
1719 2669
1720 { 2670 {
1721 int active = ((W)w)->active; 2671 int active = ev_active (w);
1722 2672
2673 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2674
2675 --periodiccnt;
2676
1723 if (expect_true (--active < --periodiccnt)) 2677 if (expect_true (active < periodiccnt + HEAP0))
1724 { 2678 {
1725 periodics [active] = periodics [periodiccnt]; 2679 periodics [active] = periodics [periodiccnt + HEAP0];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 2680 adjustheap (periodics, periodiccnt, active);
1727 } 2681 }
1728 } 2682 }
2683
2684 EV_FREQUENT_CHECK;
1729 2685
1730 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
1731} 2687}
1732 2688
1733void noinline 2689void noinline
1744#endif 2700#endif
1745 2701
1746void noinline 2702void noinline
1747ev_signal_start (EV_P_ ev_signal *w) 2703ev_signal_start (EV_P_ ev_signal *w)
1748{ 2704{
1749#if EV_MULTIPLICITY
1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1751#endif
1752 if (expect_false (ev_is_active (w))) 2705 if (expect_false (ev_is_active (w)))
1753 return; 2706 return;
1754 2707
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2708 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2709
2710#if EV_MULTIPLICITY
2711 assert (("libev: a signal must not be attached to two different loops",
2712 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2713
2714 signals [w->signum - 1].loop = EV_A;
2715#endif
2716
2717 EV_FREQUENT_CHECK;
2718
2719#if EV_USE_SIGNALFD
2720 if (sigfd == -2)
2721 {
2722 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2723 if (sigfd < 0 && errno == EINVAL)
2724 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2725
2726 if (sigfd >= 0)
2727 {
2728 fd_intern (sigfd); /* doing it twice will not hurt */
2729
2730 sigemptyset (&sigfd_set);
2731
2732 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2733 ev_set_priority (&sigfd_w, EV_MAXPRI);
2734 ev_io_start (EV_A_ &sigfd_w);
2735 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2736 }
2737 }
2738
2739 if (sigfd >= 0)
2740 {
2741 /* TODO: check .head */
2742 sigaddset (&sigfd_set, w->signum);
2743 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2744
2745 signalfd (sigfd, &sigfd_set, 0);
2746 }
2747#endif
1756 2748
1757 ev_start (EV_A_ (W)w, 1); 2749 ev_start (EV_A_ (W)w, 1);
1758 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1759 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2750 wlist_add (&signals [w->signum - 1].head, (WL)w);
1760 2751
1761 if (!((WL)w)->next) 2752 if (!((WL)w)->next)
2753# if EV_USE_SIGNALFD
2754 if (sigfd < 0) /*TODO*/
2755# endif
1762 { 2756 {
1763#if _WIN32 2757# if _WIN32
1764 signal (w->signum, sighandler); 2758 signal (w->signum, ev_sighandler);
1765#else 2759# else
1766 struct sigaction sa; 2760 struct sigaction sa;
2761
2762 evpipe_init (EV_A);
2763
1767 sa.sa_handler = sighandler; 2764 sa.sa_handler = ev_sighandler;
1768 sigfillset (&sa.sa_mask); 2765 sigfillset (&sa.sa_mask);
1769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1770 sigaction (w->signum, &sa, 0); 2767 sigaction (w->signum, &sa, 0);
2768
2769 sigemptyset (&sa.sa_mask);
2770 sigaddset (&sa.sa_mask, w->signum);
2771 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1771#endif 2772#endif
1772 } 2773 }
2774
2775 EV_FREQUENT_CHECK;
1773} 2776}
1774 2777
1775void noinline 2778void noinline
1776ev_signal_stop (EV_P_ ev_signal *w) 2779ev_signal_stop (EV_P_ ev_signal *w)
1777{ 2780{
1778 clear_pending (EV_A_ (W)w); 2781 clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w))) 2782 if (expect_false (!ev_is_active (w)))
1780 return; 2783 return;
1781 2784
2785 EV_FREQUENT_CHECK;
2786
1782 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2787 wlist_del (&signals [w->signum - 1].head, (WL)w);
1783 ev_stop (EV_A_ (W)w); 2788 ev_stop (EV_A_ (W)w);
1784 2789
1785 if (!signals [w->signum - 1].head) 2790 if (!signals [w->signum - 1].head)
2791 {
2792#if EV_MULTIPLICITY
2793 signals [w->signum - 1].loop = 0; /* unattach from signal */
2794#endif
2795#if EV_USE_SIGNALFD
2796 if (sigfd >= 0)
2797 {
2798 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2799 sigdelset (&sigfd_set, w->signum);
2800 signalfd (sigfd, &sigfd_set, 0);
2801 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2802 /*TODO: maybe unblock signal? */
2803 }
2804 else
2805#endif
1786 signal (w->signum, SIG_DFL); 2806 signal (w->signum, SIG_DFL);
2807 }
2808
2809 EV_FREQUENT_CHECK;
1787} 2810}
1788 2811
1789void 2812void
1790ev_child_start (EV_P_ ev_child *w) 2813ev_child_start (EV_P_ ev_child *w)
1791{ 2814{
1792#if EV_MULTIPLICITY 2815#if EV_MULTIPLICITY
1793 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1794#endif 2817#endif
1795 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
1796 return; 2819 return;
1797 2820
2821 EV_FREQUENT_CHECK;
2822
1798 ev_start (EV_A_ (W)w, 1); 2823 ev_start (EV_A_ (W)w, 1);
1799 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
1800} 2827}
1801 2828
1802void 2829void
1803ev_child_stop (EV_P_ ev_child *w) 2830ev_child_stop (EV_P_ ev_child *w)
1804{ 2831{
1805 clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
1806 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
1807 return; 2834 return;
1808 2835
2836 EV_FREQUENT_CHECK;
2837
1809 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1810 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
1811} 2842}
1812 2843
1813#if EV_STAT_ENABLE 2844#if EV_STAT_ENABLE
1814 2845
1815# ifdef _WIN32 2846# ifdef _WIN32
1816# undef lstat 2847# undef lstat
1817# define lstat(a,b) _stati64 (a,b) 2848# define lstat(a,b) _stati64 (a,b)
1818# endif 2849# endif
1819 2850
1820#define DEF_STAT_INTERVAL 5.0074891 2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1821#define MIN_STAT_INTERVAL 0.1074891 2853#define MIN_STAT_INTERVAL 0.1074891
1822 2854
1823static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1824 2856
1825#if EV_USE_INOTIFY 2857#if EV_USE_INOTIFY
1826# define EV_INOTIFY_BUFSIZE 8192 2858# define EV_INOTIFY_BUFSIZE 8192
1830{ 2862{
1831 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1832 2864
1833 if (w->wd < 0) 2865 if (w->wd < 0)
1834 { 2866 {
2867 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1835 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2868 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1836 2869
1837 /* monitor some parent directory for speedup hints */ 2870 /* monitor some parent directory for speedup hints */
2871 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2872 /* but an efficiency issue only */
1838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2873 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1839 { 2874 {
1840 char path [4096]; 2875 char path [4096];
1841 strcpy (path, w->path); 2876 strcpy (path, w->path);
1842 2877
1845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2880 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2881 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1847 2882
1848 char *pend = strrchr (path, '/'); 2883 char *pend = strrchr (path, '/');
1849 2884
1850 if (!pend) 2885 if (!pend || pend == path)
1851 break; /* whoops, no '/', complain to your admin */ 2886 break;
1852 2887
1853 *pend = 0; 2888 *pend = 0;
1854 w->wd = inotify_add_watch (fs_fd, path, mask); 2889 w->wd = inotify_add_watch (fs_fd, path, mask);
1855 } 2890 }
1856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2891 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1857 } 2892 }
1858 } 2893 }
1859 else
1860 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1861 2894
1862 if (w->wd >= 0) 2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
1863 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2899 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2900
2901 /* now local changes will be tracked by inotify, but remote changes won't */
2902 /* unless the filesystem it known to be local, we therefore still poll */
2903 /* also do poll on <2.6.25, but with normal frequency */
2904
2905 if (fs_2625 && !statfs (w->path, &sfs))
2906 if (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */)
2912 return;
2913
2914 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2915 ev_timer_again (EV_A_ &w->timer);
2916 }
1864} 2917}
1865 2918
1866static void noinline 2919static void noinline
1867infy_del (EV_P_ ev_stat *w) 2920infy_del (EV_P_ ev_stat *w)
1868{ 2921{
1882 2935
1883static void noinline 2936static void noinline
1884infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2937infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1885{ 2938{
1886 if (slot < 0) 2939 if (slot < 0)
1887 /* overflow, need to check for all hahs slots */ 2940 /* overflow, need to check for all hash slots */
1888 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2941 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1889 infy_wd (EV_A_ slot, wd, ev); 2942 infy_wd (EV_A_ slot, wd, ev);
1890 else 2943 else
1891 { 2944 {
1892 WL w_; 2945 WL w_;
1898 2951
1899 if (w->wd == wd || wd == -1) 2952 if (w->wd == wd || wd == -1)
1900 { 2953 {
1901 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2954 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1902 { 2955 {
2956 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1903 w->wd = -1; 2957 w->wd = -1;
1904 infy_add (EV_A_ w); /* re-add, no matter what */ 2958 infy_add (EV_A_ w); /* re-add, no matter what */
1905 } 2959 }
1906 2960
1907 stat_timer_cb (EV_A_ &w->timer, 0); 2961 stat_timer_cb (EV_A_ &w->timer, 0);
1920 2974
1921 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2975 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1922 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2976 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1923} 2977}
1924 2978
1925void inline_size 2979inline_size void
2980check_2625 (EV_P)
2981{
2982 /* kernels < 2.6.25 are borked
2983 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2984 */
2985 struct utsname buf;
2986 int major, minor, micro;
2987
2988 if (uname (&buf))
2989 return;
2990
2991 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2992 return;
2993
2994 if (major < 2
2995 || (major == 2 && minor < 6)
2996 || (major == 2 && minor == 6 && micro < 25))
2997 return;
2998
2999 fs_2625 = 1;
3000}
3001
3002inline_size int
3003infy_newfd (void)
3004{
3005#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3006 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3007 if (fd >= 0)
3008 return fd;
3009#endif
3010 return inotify_init ();
3011}
3012
3013inline_size void
1926infy_init (EV_P) 3014infy_init (EV_P)
1927{ 3015{
1928 if (fs_fd != -2) 3016 if (fs_fd != -2)
1929 return; 3017 return;
1930 3018
3019 fs_fd = -1;
3020
3021 check_2625 (EV_A);
3022
1931 fs_fd = inotify_init (); 3023 fs_fd = infy_newfd ();
1932 3024
1933 if (fs_fd >= 0) 3025 if (fs_fd >= 0)
1934 { 3026 {
3027 fd_intern (fs_fd);
1935 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3028 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1936 ev_set_priority (&fs_w, EV_MAXPRI); 3029 ev_set_priority (&fs_w, EV_MAXPRI);
1937 ev_io_start (EV_A_ &fs_w); 3030 ev_io_start (EV_A_ &fs_w);
1938 } 3031 }
1939} 3032}
1940 3033
1941void inline_size 3034inline_size void
1942infy_fork (EV_P) 3035infy_fork (EV_P)
1943{ 3036{
1944 int slot; 3037 int slot;
1945 3038
1946 if (fs_fd < 0) 3039 if (fs_fd < 0)
1947 return; 3040 return;
1948 3041
3042 ev_io_stop (EV_A_ &fs_w);
1949 close (fs_fd); 3043 close (fs_fd);
1950 fs_fd = inotify_init (); 3044 fs_fd = infy_newfd ();
3045
3046 if (fs_fd >= 0)
3047 {
3048 fd_intern (fs_fd);
3049 ev_io_set (&fs_w, fs_fd, EV_READ);
3050 ev_io_start (EV_A_ &fs_w);
3051 }
1951 3052
1952 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3053 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1953 { 3054 {
1954 WL w_ = fs_hash [slot].head; 3055 WL w_ = fs_hash [slot].head;
1955 fs_hash [slot].head = 0; 3056 fs_hash [slot].head = 0;
1962 w->wd = -1; 3063 w->wd = -1;
1963 3064
1964 if (fs_fd >= 0) 3065 if (fs_fd >= 0)
1965 infy_add (EV_A_ w); /* re-add, no matter what */ 3066 infy_add (EV_A_ w); /* re-add, no matter what */
1966 else 3067 else
1967 ev_timer_start (EV_A_ &w->timer); 3068 ev_timer_again (EV_A_ &w->timer);
1968 } 3069 }
1969
1970 } 3070 }
1971} 3071}
1972 3072
3073#endif
3074
3075#ifdef _WIN32
3076# define EV_LSTAT(p,b) _stati64 (p, b)
3077#else
3078# define EV_LSTAT(p,b) lstat (p, b)
1973#endif 3079#endif
1974 3080
1975void 3081void
1976ev_stat_stat (EV_P_ ev_stat *w) 3082ev_stat_stat (EV_P_ ev_stat *w)
1977{ 3083{
2004 || w->prev.st_atime != w->attr.st_atime 3110 || w->prev.st_atime != w->attr.st_atime
2005 || w->prev.st_mtime != w->attr.st_mtime 3111 || w->prev.st_mtime != w->attr.st_mtime
2006 || w->prev.st_ctime != w->attr.st_ctime 3112 || w->prev.st_ctime != w->attr.st_ctime
2007 ) { 3113 ) {
2008 #if EV_USE_INOTIFY 3114 #if EV_USE_INOTIFY
3115 if (fs_fd >= 0)
3116 {
2009 infy_del (EV_A_ w); 3117 infy_del (EV_A_ w);
2010 infy_add (EV_A_ w); 3118 infy_add (EV_A_ w);
2011 ev_stat_stat (EV_A_ w); /* avoid race... */ 3119 ev_stat_stat (EV_A_ w); /* avoid race... */
3120 }
2012 #endif 3121 #endif
2013 3122
2014 ev_feed_event (EV_A_ w, EV_STAT); 3123 ev_feed_event (EV_A_ w, EV_STAT);
2015 } 3124 }
2016} 3125}
2019ev_stat_start (EV_P_ ev_stat *w) 3128ev_stat_start (EV_P_ ev_stat *w)
2020{ 3129{
2021 if (expect_false (ev_is_active (w))) 3130 if (expect_false (ev_is_active (w)))
2022 return; 3131 return;
2023 3132
2024 /* since we use memcmp, we need to clear any padding data etc. */
2025 memset (&w->prev, 0, sizeof (ev_statdata));
2026 memset (&w->attr, 0, sizeof (ev_statdata));
2027
2028 ev_stat_stat (EV_A_ w); 3133 ev_stat_stat (EV_A_ w);
2029 3134
3135 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2030 if (w->interval < MIN_STAT_INTERVAL) 3136 w->interval = MIN_STAT_INTERVAL;
2031 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2032 3137
2033 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3138 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2034 ev_set_priority (&w->timer, ev_priority (w)); 3139 ev_set_priority (&w->timer, ev_priority (w));
2035 3140
2036#if EV_USE_INOTIFY 3141#if EV_USE_INOTIFY
2037 infy_init (EV_A); 3142 infy_init (EV_A);
2038 3143
2039 if (fs_fd >= 0) 3144 if (fs_fd >= 0)
2040 infy_add (EV_A_ w); 3145 infy_add (EV_A_ w);
2041 else 3146 else
2042#endif 3147#endif
2043 ev_timer_start (EV_A_ &w->timer); 3148 ev_timer_again (EV_A_ &w->timer);
2044 3149
2045 ev_start (EV_A_ (W)w, 1); 3150 ev_start (EV_A_ (W)w, 1);
3151
3152 EV_FREQUENT_CHECK;
2046} 3153}
2047 3154
2048void 3155void
2049ev_stat_stop (EV_P_ ev_stat *w) 3156ev_stat_stop (EV_P_ ev_stat *w)
2050{ 3157{
2051 clear_pending (EV_A_ (W)w); 3158 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 3159 if (expect_false (!ev_is_active (w)))
2053 return; 3160 return;
2054 3161
3162 EV_FREQUENT_CHECK;
3163
2055#if EV_USE_INOTIFY 3164#if EV_USE_INOTIFY
2056 infy_del (EV_A_ w); 3165 infy_del (EV_A_ w);
2057#endif 3166#endif
2058 ev_timer_stop (EV_A_ &w->timer); 3167 ev_timer_stop (EV_A_ &w->timer);
2059 3168
2060 ev_stop (EV_A_ (W)w); 3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
2061} 3172}
2062#endif 3173#endif
2063 3174
2064#if EV_IDLE_ENABLE 3175#if EV_IDLE_ENABLE
2065void 3176void
2067{ 3178{
2068 if (expect_false (ev_is_active (w))) 3179 if (expect_false (ev_is_active (w)))
2069 return; 3180 return;
2070 3181
2071 pri_adjust (EV_A_ (W)w); 3182 pri_adjust (EV_A_ (W)w);
3183
3184 EV_FREQUENT_CHECK;
2072 3185
2073 { 3186 {
2074 int active = ++idlecnt [ABSPRI (w)]; 3187 int active = ++idlecnt [ABSPRI (w)];
2075 3188
2076 ++idleall; 3189 ++idleall;
2077 ev_start (EV_A_ (W)w, active); 3190 ev_start (EV_A_ (W)w, active);
2078 3191
2079 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2080 idles [ABSPRI (w)][active - 1] = w; 3193 idles [ABSPRI (w)][active - 1] = w;
2081 } 3194 }
3195
3196 EV_FREQUENT_CHECK;
2082} 3197}
2083 3198
2084void 3199void
2085ev_idle_stop (EV_P_ ev_idle *w) 3200ev_idle_stop (EV_P_ ev_idle *w)
2086{ 3201{
2087 clear_pending (EV_A_ (W)w); 3202 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 3203 if (expect_false (!ev_is_active (w)))
2089 return; 3204 return;
2090 3205
3206 EV_FREQUENT_CHECK;
3207
2091 { 3208 {
2092 int active = ((W)w)->active; 3209 int active = ev_active (w);
2093 3210
2094 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2095 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3212 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2096 3213
2097 ev_stop (EV_A_ (W)w); 3214 ev_stop (EV_A_ (W)w);
2098 --idleall; 3215 --idleall;
2099 } 3216 }
3217
3218 EV_FREQUENT_CHECK;
2100} 3219}
2101#endif 3220#endif
2102 3221
2103void 3222void
2104ev_prepare_start (EV_P_ ev_prepare *w) 3223ev_prepare_start (EV_P_ ev_prepare *w)
2105{ 3224{
2106 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
2107 return; 3226 return;
3227
3228 EV_FREQUENT_CHECK;
2108 3229
2109 ev_start (EV_A_ (W)w, ++preparecnt); 3230 ev_start (EV_A_ (W)w, ++preparecnt);
2110 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3231 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2111 prepares [preparecnt - 1] = w; 3232 prepares [preparecnt - 1] = w;
3233
3234 EV_FREQUENT_CHECK;
2112} 3235}
2113 3236
2114void 3237void
2115ev_prepare_stop (EV_P_ ev_prepare *w) 3238ev_prepare_stop (EV_P_ ev_prepare *w)
2116{ 3239{
2117 clear_pending (EV_A_ (W)w); 3240 clear_pending (EV_A_ (W)w);
2118 if (expect_false (!ev_is_active (w))) 3241 if (expect_false (!ev_is_active (w)))
2119 return; 3242 return;
2120 3243
3244 EV_FREQUENT_CHECK;
3245
2121 { 3246 {
2122 int active = ((W)w)->active; 3247 int active = ev_active (w);
3248
2123 prepares [active - 1] = prepares [--preparecnt]; 3249 prepares [active - 1] = prepares [--preparecnt];
2124 ((W)prepares [active - 1])->active = active; 3250 ev_active (prepares [active - 1]) = active;
2125 } 3251 }
2126 3252
2127 ev_stop (EV_A_ (W)w); 3253 ev_stop (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
2128} 3256}
2129 3257
2130void 3258void
2131ev_check_start (EV_P_ ev_check *w) 3259ev_check_start (EV_P_ ev_check *w)
2132{ 3260{
2133 if (expect_false (ev_is_active (w))) 3261 if (expect_false (ev_is_active (w)))
2134 return; 3262 return;
3263
3264 EV_FREQUENT_CHECK;
2135 3265
2136 ev_start (EV_A_ (W)w, ++checkcnt); 3266 ev_start (EV_A_ (W)w, ++checkcnt);
2137 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3267 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2138 checks [checkcnt - 1] = w; 3268 checks [checkcnt - 1] = w;
3269
3270 EV_FREQUENT_CHECK;
2139} 3271}
2140 3272
2141void 3273void
2142ev_check_stop (EV_P_ ev_check *w) 3274ev_check_stop (EV_P_ ev_check *w)
2143{ 3275{
2144 clear_pending (EV_A_ (W)w); 3276 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3277 if (expect_false (!ev_is_active (w)))
2146 return; 3278 return;
2147 3279
3280 EV_FREQUENT_CHECK;
3281
2148 { 3282 {
2149 int active = ((W)w)->active; 3283 int active = ev_active (w);
3284
2150 checks [active - 1] = checks [--checkcnt]; 3285 checks [active - 1] = checks [--checkcnt];
2151 ((W)checks [active - 1])->active = active; 3286 ev_active (checks [active - 1]) = active;
2152 } 3287 }
2153 3288
2154 ev_stop (EV_A_ (W)w); 3289 ev_stop (EV_A_ (W)w);
3290
3291 EV_FREQUENT_CHECK;
2155} 3292}
2156 3293
2157#if EV_EMBED_ENABLE 3294#if EV_EMBED_ENABLE
2158void noinline 3295void noinline
2159ev_embed_sweep (EV_P_ ev_embed *w) 3296ev_embed_sweep (EV_P_ ev_embed *w)
2160{ 3297{
2161 ev_loop (w->loop, EVLOOP_NONBLOCK); 3298 ev_loop (w->other, EVLOOP_NONBLOCK);
2162} 3299}
2163 3300
2164static void 3301static void
2165embed_cb (EV_P_ ev_io *io, int revents) 3302embed_io_cb (EV_P_ ev_io *io, int revents)
2166{ 3303{
2167 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3304 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2168 3305
2169 if (ev_cb (w)) 3306 if (ev_cb (w))
2170 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3307 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2171 else 3308 else
2172 ev_embed_sweep (loop, w); 3309 ev_loop (w->other, EVLOOP_NONBLOCK);
2173} 3310}
3311
3312static void
3313embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3314{
3315 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3316
3317 {
3318 EV_P = w->other;
3319
3320 while (fdchangecnt)
3321 {
3322 fd_reify (EV_A);
3323 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3324 }
3325 }
3326}
3327
3328static void
3329embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3330{
3331 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3332
3333 ev_embed_stop (EV_A_ w);
3334
3335 {
3336 EV_P = w->other;
3337
3338 ev_loop_fork (EV_A);
3339 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3340 }
3341
3342 ev_embed_start (EV_A_ w);
3343}
3344
3345#if 0
3346static void
3347embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3348{
3349 ev_idle_stop (EV_A_ idle);
3350}
3351#endif
2174 3352
2175void 3353void
2176ev_embed_start (EV_P_ ev_embed *w) 3354ev_embed_start (EV_P_ ev_embed *w)
2177{ 3355{
2178 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
2179 return; 3357 return;
2180 3358
2181 { 3359 {
2182 struct ev_loop *loop = w->loop; 3360 EV_P = w->other;
2183 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3361 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2184 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3362 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2185 } 3363 }
3364
3365 EV_FREQUENT_CHECK;
2186 3366
2187 ev_set_priority (&w->io, ev_priority (w)); 3367 ev_set_priority (&w->io, ev_priority (w));
2188 ev_io_start (EV_A_ &w->io); 3368 ev_io_start (EV_A_ &w->io);
2189 3369
3370 ev_prepare_init (&w->prepare, embed_prepare_cb);
3371 ev_set_priority (&w->prepare, EV_MINPRI);
3372 ev_prepare_start (EV_A_ &w->prepare);
3373
3374 ev_fork_init (&w->fork, embed_fork_cb);
3375 ev_fork_start (EV_A_ &w->fork);
3376
3377 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3378
2190 ev_start (EV_A_ (W)w, 1); 3379 ev_start (EV_A_ (W)w, 1);
3380
3381 EV_FREQUENT_CHECK;
2191} 3382}
2192 3383
2193void 3384void
2194ev_embed_stop (EV_P_ ev_embed *w) 3385ev_embed_stop (EV_P_ ev_embed *w)
2195{ 3386{
2196 clear_pending (EV_A_ (W)w); 3387 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 3388 if (expect_false (!ev_is_active (w)))
2198 return; 3389 return;
2199 3390
3391 EV_FREQUENT_CHECK;
3392
2200 ev_io_stop (EV_A_ &w->io); 3393 ev_io_stop (EV_A_ &w->io);
3394 ev_prepare_stop (EV_A_ &w->prepare);
3395 ev_fork_stop (EV_A_ &w->fork);
2201 3396
2202 ev_stop (EV_A_ (W)w); 3397 EV_FREQUENT_CHECK;
2203} 3398}
2204#endif 3399#endif
2205 3400
2206#if EV_FORK_ENABLE 3401#if EV_FORK_ENABLE
2207void 3402void
2208ev_fork_start (EV_P_ ev_fork *w) 3403ev_fork_start (EV_P_ ev_fork *w)
2209{ 3404{
2210 if (expect_false (ev_is_active (w))) 3405 if (expect_false (ev_is_active (w)))
2211 return; 3406 return;
3407
3408 EV_FREQUENT_CHECK;
2212 3409
2213 ev_start (EV_A_ (W)w, ++forkcnt); 3410 ev_start (EV_A_ (W)w, ++forkcnt);
2214 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3411 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2215 forks [forkcnt - 1] = w; 3412 forks [forkcnt - 1] = w;
3413
3414 EV_FREQUENT_CHECK;
2216} 3415}
2217 3416
2218void 3417void
2219ev_fork_stop (EV_P_ ev_fork *w) 3418ev_fork_stop (EV_P_ ev_fork *w)
2220{ 3419{
2221 clear_pending (EV_A_ (W)w); 3420 clear_pending (EV_A_ (W)w);
2222 if (expect_false (!ev_is_active (w))) 3421 if (expect_false (!ev_is_active (w)))
2223 return; 3422 return;
2224 3423
3424 EV_FREQUENT_CHECK;
3425
2225 { 3426 {
2226 int active = ((W)w)->active; 3427 int active = ev_active (w);
3428
2227 forks [active - 1] = forks [--forkcnt]; 3429 forks [active - 1] = forks [--forkcnt];
2228 ((W)forks [active - 1])->active = active; 3430 ev_active (forks [active - 1]) = active;
2229 } 3431 }
2230 3432
2231 ev_stop (EV_A_ (W)w); 3433 ev_stop (EV_A_ (W)w);
3434
3435 EV_FREQUENT_CHECK;
3436}
3437#endif
3438
3439#if EV_ASYNC_ENABLE
3440void
3441ev_async_start (EV_P_ ev_async *w)
3442{
3443 if (expect_false (ev_is_active (w)))
3444 return;
3445
3446 evpipe_init (EV_A);
3447
3448 EV_FREQUENT_CHECK;
3449
3450 ev_start (EV_A_ (W)w, ++asynccnt);
3451 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3452 asyncs [asynccnt - 1] = w;
3453
3454 EV_FREQUENT_CHECK;
3455}
3456
3457void
3458ev_async_stop (EV_P_ ev_async *w)
3459{
3460 clear_pending (EV_A_ (W)w);
3461 if (expect_false (!ev_is_active (w)))
3462 return;
3463
3464 EV_FREQUENT_CHECK;
3465
3466 {
3467 int active = ev_active (w);
3468
3469 asyncs [active - 1] = asyncs [--asynccnt];
3470 ev_active (asyncs [active - 1]) = active;
3471 }
3472
3473 ev_stop (EV_A_ (W)w);
3474
3475 EV_FREQUENT_CHECK;
3476}
3477
3478void
3479ev_async_send (EV_P_ ev_async *w)
3480{
3481 w->sent = 1;
3482 evpipe_write (EV_A_ &async_pending);
2232} 3483}
2233#endif 3484#endif
2234 3485
2235/*****************************************************************************/ 3486/*****************************************************************************/
2236 3487
2246once_cb (EV_P_ struct ev_once *once, int revents) 3497once_cb (EV_P_ struct ev_once *once, int revents)
2247{ 3498{
2248 void (*cb)(int revents, void *arg) = once->cb; 3499 void (*cb)(int revents, void *arg) = once->cb;
2249 void *arg = once->arg; 3500 void *arg = once->arg;
2250 3501
2251 ev_io_stop (EV_A_ &once->io); 3502 ev_io_stop (EV_A_ &once->io);
2252 ev_timer_stop (EV_A_ &once->to); 3503 ev_timer_stop (EV_A_ &once->to);
2253 ev_free (once); 3504 ev_free (once);
2254 3505
2255 cb (revents, arg); 3506 cb (revents, arg);
2256} 3507}
2257 3508
2258static void 3509static void
2259once_cb_io (EV_P_ ev_io *w, int revents) 3510once_cb_io (EV_P_ ev_io *w, int revents)
2260{ 3511{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3512 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3513
3514 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2262} 3515}
2263 3516
2264static void 3517static void
2265once_cb_to (EV_P_ ev_timer *w, int revents) 3518once_cb_to (EV_P_ ev_timer *w, int revents)
2266{ 3519{
2267 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3520 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3521
3522 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2268} 3523}
2269 3524
2270void 3525void
2271ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3526ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2272{ 3527{
2294 ev_timer_set (&once->to, timeout, 0.); 3549 ev_timer_set (&once->to, timeout, 0.);
2295 ev_timer_start (EV_A_ &once->to); 3550 ev_timer_start (EV_A_ &once->to);
2296 } 3551 }
2297} 3552}
2298 3553
3554/*****************************************************************************/
3555
3556#if EV_WALK_ENABLE
3557void
3558ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3559{
3560 int i, j;
3561 ev_watcher_list *wl, *wn;
3562
3563 if (types & (EV_IO | EV_EMBED))
3564 for (i = 0; i < anfdmax; ++i)
3565 for (wl = anfds [i].head; wl; )
3566 {
3567 wn = wl->next;
3568
3569#if EV_EMBED_ENABLE
3570 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3571 {
3572 if (types & EV_EMBED)
3573 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3574 }
3575 else
3576#endif
3577#if EV_USE_INOTIFY
3578 if (ev_cb ((ev_io *)wl) == infy_cb)
3579 ;
3580 else
3581#endif
3582 if ((ev_io *)wl != &pipe_w)
3583 if (types & EV_IO)
3584 cb (EV_A_ EV_IO, wl);
3585
3586 wl = wn;
3587 }
3588
3589 if (types & (EV_TIMER | EV_STAT))
3590 for (i = timercnt + HEAP0; i-- > HEAP0; )
3591#if EV_STAT_ENABLE
3592 /*TODO: timer is not always active*/
3593 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3594 {
3595 if (types & EV_STAT)
3596 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3597 }
3598 else
3599#endif
3600 if (types & EV_TIMER)
3601 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3602
3603#if EV_PERIODIC_ENABLE
3604 if (types & EV_PERIODIC)
3605 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3606 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3607#endif
3608
3609#if EV_IDLE_ENABLE
3610 if (types & EV_IDLE)
3611 for (j = NUMPRI; i--; )
3612 for (i = idlecnt [j]; i--; )
3613 cb (EV_A_ EV_IDLE, idles [j][i]);
3614#endif
3615
3616#if EV_FORK_ENABLE
3617 if (types & EV_FORK)
3618 for (i = forkcnt; i--; )
3619 if (ev_cb (forks [i]) != embed_fork_cb)
3620 cb (EV_A_ EV_FORK, forks [i]);
3621#endif
3622
3623#if EV_ASYNC_ENABLE
3624 if (types & EV_ASYNC)
3625 for (i = asynccnt; i--; )
3626 cb (EV_A_ EV_ASYNC, asyncs [i]);
3627#endif
3628
3629 if (types & EV_PREPARE)
3630 for (i = preparecnt; i--; )
3631#if EV_EMBED_ENABLE
3632 if (ev_cb (prepares [i]) != embed_prepare_cb)
3633#endif
3634 cb (EV_A_ EV_PREPARE, prepares [i]);
3635
3636 if (types & EV_CHECK)
3637 for (i = checkcnt; i--; )
3638 cb (EV_A_ EV_CHECK, checks [i]);
3639
3640 if (types & EV_SIGNAL)
3641 for (i = 0; i < EV_NSIG - 1; ++i)
3642 for (wl = signals [i].head; wl; )
3643 {
3644 wn = wl->next;
3645 cb (EV_A_ EV_SIGNAL, wl);
3646 wl = wn;
3647 }
3648
3649 if (types & EV_CHILD)
3650 for (i = EV_PID_HASHSIZE; i--; )
3651 for (wl = childs [i]; wl; )
3652 {
3653 wn = wl->next;
3654 cb (EV_A_ EV_CHILD, wl);
3655 wl = wn;
3656 }
3657/* EV_STAT 0x00001000 /* stat data changed */
3658/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3659}
3660#endif
3661
3662#if EV_MULTIPLICITY
3663 #include "ev_wrap.h"
3664#endif
3665
2299#ifdef __cplusplus 3666#ifdef __cplusplus
2300} 3667}
2301#endif 3668#endif
2302 3669

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines