ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.34 by root, Thu Nov 1 11:43:11 2007 UTC vs.
Revision 1.315 by root, Wed Aug 26 17:46:22 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
6 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
7 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
8 * 27 *
9 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
10 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
11 * 30 * in which case the provisions of the GPL are applicable instead of
12 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
13 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
14 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
15 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
16 * 35 * and other provisions required by the GPL. If you do not delete the
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
29#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
30# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
31#endif 154#endif
32 155
33#include <math.h> 156#include <math.h>
34#include <stdlib.h> 157#include <stdlib.h>
35#include <unistd.h>
36#include <fcntl.h> 158#include <fcntl.h>
37#include <signal.h>
38#include <stddef.h> 159#include <stddef.h>
39 160
40#include <stdio.h> 161#include <stdio.h>
41 162
42#include <assert.h> 163#include <assert.h>
43#include <errno.h> 164#include <errno.h>
44#include <sys/types.h> 165#include <sys/types.h>
45#include <sys/wait.h>
46#include <sys/time.h>
47#include <time.h> 166#include <time.h>
48 167
168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
176#ifndef _WIN32
177# include <sys/time.h>
178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
186# endif
187#endif
188
189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
49#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC 227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
51# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
232#endif
233
234#ifndef EV_USE_REALTIME
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
52# endif 243# endif
53#endif 244#endif
54 245
55#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
57#endif 248#endif
58 249
250#ifndef EV_USE_POLL
251# ifdef _WIN32
252# define EV_USE_POLL 0
253# else
254# define EV_USE_POLL 1
255# endif
256#endif
257
59#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
60# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
264#endif
265
266#ifndef EV_USE_KQUEUE
267# define EV_USE_KQUEUE 0
268#endif
269
270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
279# endif
280#endif
281
282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
347
348#ifndef CLOCK_MONOTONIC
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 0
61#endif 351#endif
62 352
63#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
354# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
65#endif 356#endif
66#ifndef EV_USE_REALTIME 357
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
68#endif 366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
442
443/*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
69 452
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 455/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
74 456
75#include "ev.h" 457#if __GNUC__ >= 4
458# define expect(expr,value) __builtin_expect ((expr),(value))
459# define noinline __attribute__ ((noinline))
460#else
461# define expect(expr,value) (expr)
462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
466#endif
76 467
468#define expect_false(expr) expect ((expr) != 0, 0)
469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
485
486#define EMPTY /* required for microsofts broken pseudo-c compiler */
487#define EMPTY2(a,b) /* used to suppress some warnings */
488
77typedef struct ev_watcher *W; 489typedef ev_watcher *W;
78typedef struct ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
80 492
81static ev_tstamp now, diff; /* monotonic clock */ 493#define ev_active(w) ((W)(w))->active
82ev_tstamp ev_now; 494#define ev_at(w) ((WT)(w))->at
83int ev_method;
84 495
85static int have_monotonic; /* runtime */ 496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
86 501
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 502#if EV_USE_MONOTONIC
88static void (*method_modify)(int fd, int oev, int nev); 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
89static void (*method_poll)(ev_tstamp timeout); 504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
515
516#ifdef _WIN32
517# include "ev_win32.c"
518#endif
90 519
91/*****************************************************************************/ 520/*****************************************************************************/
92 521
522static void (*syserr_cb)(const char *msg);
523
524void
525ev_set_syserr_cb (void (*cb)(const char *msg))
526{
527 syserr_cb = cb;
528}
529
530static void noinline
531ev_syserr (const char *msg)
532{
533 if (!msg)
534 msg = "(libev) system error";
535
536 if (syserr_cb)
537 syserr_cb (msg);
538 else
539 {
540 perror (msg);
541 abort ();
542 }
543}
544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
561
562void
563ev_set_allocator (void *(*cb)(void *ptr, long size))
564{
565 alloc = cb;
566}
567
568inline_speed void *
569ev_realloc (void *ptr, long size)
570{
571 ptr = alloc (ptr, size);
572
573 if (!ptr && size)
574 {
575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
576 abort ();
577 }
578
579 return ptr;
580}
581
582#define ev_malloc(size) ev_realloc (0, (size))
583#define ev_free(ptr) ev_realloc ((ptr), 0)
584
585/*****************************************************************************/
586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
591typedef struct
592{
593 WL head;
594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
601#if EV_SELECT_IS_WINSOCKET
602 SOCKET handle;
603#endif
604} ANFD;
605
606/* stores the pending event set for a given watcher */
607typedef struct
608{
609 W w;
610 int events; /* the pending event set for the given watcher */
611} ANPENDING;
612
613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
615typedef struct
616{
617 WL head;
618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
639#endif
640
641#if EV_MULTIPLICITY
642
643 struct ev_loop
644 {
645 ev_tstamp ev_rt_now;
646 #define ev_rt_now ((loop)->ev_rt_now)
647 #define VAR(name,decl) decl;
648 #include "ev_vars.h"
649 #undef VAR
650 };
651 #include "ev_wrap.h"
652
653 static struct ev_loop default_loop_struct;
654 struct ev_loop *ev_default_loop_ptr;
655
656#else
657
658 ev_tstamp ev_rt_now;
659 #define VAR(name,decl) static decl;
660 #include "ev_vars.h"
661 #undef VAR
662
663 static int ev_default_loop_ptr;
664
665#endif
666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
679/*****************************************************************************/
680
681#ifndef EV_HAVE_EV_TIME
93ev_tstamp 682ev_tstamp
94ev_time (void) 683ev_time (void)
95{ 684{
96#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
97 struct timespec ts; 688 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
99 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
100#else 691 }
692#endif
693
101 struct timeval tv; 694 struct timeval tv;
102 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif
105} 697}
698#endif
106 699
107static ev_tstamp 700inline_size ev_tstamp
108get_clock (void) 701get_clock (void)
109{ 702{
110#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
111 if (have_monotonic) 704 if (expect_true (have_monotonic))
112 { 705 {
113 struct timespec ts; 706 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 707 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 708 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 709 }
117#endif 710#endif
118 711
119 return ev_time (); 712 return ev_time ();
120} 713}
121 714
122#define array_roundsize(base,n) ((n) | 4 & ~3) 715#if EV_MULTIPLICITY
716ev_tstamp
717ev_now (EV_P)
718{
719 return ev_rt_now;
720}
721#endif
123 722
124#define array_needsize(base,cur,cnt,init) \ 723void
125 if ((cnt) > cur) \ 724ev_sleep (ev_tstamp delay)
126 { \ 725{
127 int newcnt = cur; \ 726 if (delay > 0.)
128 do \
129 { \
130 newcnt = array_roundsize (base, newcnt << 1); \
131 } \
132 while ((cnt) > newcnt); \
133 \
134 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \
136 cur = newcnt; \
137 } 727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
138 750
139/*****************************************************************************/ 751/*****************************************************************************/
140 752
141typedef struct 753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
142{
143 struct ev_io *head;
144 unsigned char events;
145 unsigned char reify;
146} ANFD;
147 754
148static ANFD *anfds; 755/* find a suitable new size for the given array, */
149static int anfdmax; 756/* hopefully by rounding to a ncie-to-malloc size */
150 757inline_size int
151static void 758array_nextsize (int elem, int cur, int cnt)
152anfds_init (ANFD *base, int count)
153{ 759{
154 while (count--) 760 int ncur = cur + 1;
155 {
156 base->head = 0;
157 base->events = EV_NONE;
158 base->reify = 0;
159 761
160 ++base; 762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
161 } 768 {
162} 769 ncur *= elem;
163 770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
164typedef struct 771 ncur = ncur - sizeof (void *) * 4;
165{ 772 ncur /= elem;
166 W w;
167 int events;
168} ANPENDING;
169
170static ANPENDING *pendings;
171static int pendingmax, pendingcnt;
172
173static void
174event (W w, int events)
175{
176 if (w->pending)
177 { 773 }
774
775 return ncur;
776}
777
778static noinline void *
779array_realloc (int elem, void *base, int *cur, int cnt)
780{
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
787
788#define array_needsize(type,base,cur,cnt,init) \
789 if (expect_false ((cnt) > (cur))) \
790 { \
791 int ocur_ = (cur); \
792 (base) = (type *)array_realloc \
793 (sizeof (type), (base), &(cur), (cnt)); \
794 init ((base) + (ocur_), (cur) - ocur_); \
795 }
796
797#if 0
798#define array_slim(type,stem) \
799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
800 { \
801 stem ## max = array_roundsize (stem ## cnt >> 1); \
802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
804 }
805#endif
806
807#define array_free(stem, idx) \
808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
809
810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
817
818void noinline
819ev_feed_event (EV_P_ void *w, int revents)
820{
821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
823
824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
178 pendings [w->pending - 1].events |= events; 831 pendings [pri][w_->pending - 1].events = revents;
179 return;
180 } 832 }
181
182 w->pending = ++pendingcnt;
183 array_needsize (pendings, pendingmax, pendingcnt, );
184 pendings [pendingcnt - 1].w = w;
185 pendings [pendingcnt - 1].events = events;
186} 833}
187 834
188static void 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
189queue_events (W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
190{ 852{
191 int i; 853 int i;
192 854
193 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
194 event (events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
195} 857}
196 858
197static void 859/*****************************************************************************/
860
861inline_speed void
198fd_event (int fd, int events) 862fd_event_nc (EV_P_ int fd, int revents)
199{ 863{
200 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
201 struct ev_io *w; 865 ev_io *w;
202 866
203 for (w = anfd->head; w; w = w->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
204 { 868 {
205 int ev = w->events & events; 869 int ev = w->events & revents;
206 870
207 if (ev) 871 if (ev)
208 event ((W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
209 } 873 }
210} 874}
211 875
212/*****************************************************************************/ 876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
213 882
214static int *fdchanges; 883 if (expect_true (!anfd->reify))
215static int fdchangemax, fdchangecnt; 884 fd_event_nc (EV_A_ fd, revents);
885}
216 886
217static void 887void
218fd_reify (void) 888ev_feed_fd_event (EV_P_ int fd, int revents)
889{
890 if (fd >= 0 && fd < anfdmax)
891 fd_event_nc (EV_A_ fd, revents);
892}
893
894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
897fd_reify (EV_P)
219{ 898{
220 int i; 899 int i;
221 900
222 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
223 { 902 {
224 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
225 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
226 struct ev_io *w; 905 ev_io *w;
227 906
228 int events = 0; 907 unsigned char events = 0;
229 908
230 for (w = anfd->head; w; w = w->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
231 events |= w->events; 910 events |= (unsigned char)w->events;
232 911
233 anfd->reify = 0; 912#if EV_SELECT_IS_WINSOCKET
234 913 if (events)
235 if (anfd->events != events)
236 { 914 {
237 method_modify (fd, anfd->events, events); 915 unsigned long arg;
238 anfd->events = events; 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
239 } 918 }
919#endif
920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
925 anfd->reify = 0;
926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
240 } 931 }
241 932
242 fdchangecnt = 0; 933 fdchangecnt = 0;
243} 934}
244 935
245static void 936/* something about the given fd changed */
246fd_change (int fd) 937inline_size void
938fd_change (EV_P_ int fd, int flags)
247{ 939{
248 if (anfds [fd].reify || fdchangecnt < 0) 940 unsigned char reify = anfds [fd].reify;
249 return;
250
251 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
252 942
943 if (expect_true (!reify))
944 {
253 ++fdchangecnt; 945 ++fdchangecnt;
254 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
255 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
949}
950
951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
953fd_kill (EV_P_ int fd)
954{
955 ev_io *w;
956
957 while ((w = (ev_io *)anfds [fd].head))
958 {
959 ev_io_stop (EV_A_ w);
960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
961 }
962}
963
964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
966fd_valid (int fd)
967{
968#ifdef _WIN32
969 return _get_osfhandle (fd) != -1;
970#else
971 return fcntl (fd, F_GETFD) != -1;
972#endif
256} 973}
257 974
258/* called on EBADF to verify fds */ 975/* called on EBADF to verify fds */
259static void 976static void noinline
260fd_recheck (void) 977fd_ebadf (EV_P)
261{ 978{
262 int fd; 979 int fd;
263 980
264 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
265 if (anfds [fd].events) 982 if (anfds [fd].events)
266 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
267 while (anfds [fd].head) 984 fd_kill (EV_A_ fd);
985}
986
987/* called on ENOMEM in select/poll to kill some fds and retry */
988static void noinline
989fd_enomem (EV_P)
990{
991 int fd;
992
993 for (fd = anfdmax; fd--; )
994 if (anfds [fd].events)
995 {
996 fd_kill (EV_A_ fd);
997 break;
998 }
999}
1000
1001/* usually called after fork if backend needs to re-arm all fds from scratch */
1002static void noinline
1003fd_rearm_all (EV_P)
1004{
1005 int fd;
1006
1007 for (fd = 0; fd < anfdmax; ++fd)
1008 if (anfds [fd].events)
1009 {
1010 anfds [fd].events = 0;
1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1013 }
1014}
1015
1016/*****************************************************************************/
1017
1018/*
1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1021 * the branching factor of the d-tree.
1022 */
1023
1024/*
1025 * at the moment we allow libev the luxury of two heaps,
1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1027 * which is more cache-efficient.
1028 * the difference is about 5% with 50000+ watchers.
1029 */
1030#if EV_USE_4HEAP
1031
1032#define DHEAP 4
1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
1036
1037/* away from the root */
1038inline_speed void
1039downheap (ANHE *heap, int N, int k)
1040{
1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
1043
1044 for (;;)
1045 {
1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1049
1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
1052 {
1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
1066 break;
1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
1106 heap [k] = heap [c];
1107 ev_active (ANHE_w (heap [k])) = k;
1108
1109 k = c;
1110 }
1111
1112 heap [k] = he;
1113 ev_active (ANHE_w (he)) = k;
1114}
1115#endif
1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
1140inline_size void
1141adjustheap (ANHE *heap, int N, int k)
1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1144 upheap (heap, k);
1145 else
1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
1159}
1160
1161/*****************************************************************************/
1162
1163/* associate signal watchers to a signal signal */
1164typedef struct
1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
1170 WL head;
1171} ANSIG;
1172
1173static ANSIG signals [EV_NSIG - 1];
1174
1175/*****************************************************************************/
1176
1177/* used to prepare libev internal fd's */
1178/* this is not fork-safe */
1179inline_speed void
1180fd_intern (int fd)
1181{
1182#ifdef _WIN32
1183 unsigned long arg = 1;
1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1185#else
1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
1187 fcntl (fd, F_SETFL, O_NONBLOCK);
1188#endif
1189}
1190
1191static void noinline
1192evpipe_init (EV_P)
1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
1213 fd_intern (evpipe [0]);
1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
1217
1218 ev_io_start (EV_A_ &pipe_w);
1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
268 { 1282 {
269 ev_io_stop (anfds [fd].head); 1283 asyncs [i]->sent = 0;
270 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE); 1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
271 } 1285 }
1286 }
1287#endif
272} 1288}
273 1289
274/*****************************************************************************/ 1290/*****************************************************************************/
275 1291
276static struct ev_timer **timers;
277static int timermax, timercnt;
278
279static struct ev_periodic **periodics;
280static int periodicmax, periodiccnt;
281
282static void 1292static void
283upheap (WT *timers, int k) 1293ev_sighandler (int signum)
284{ 1294{
285 WT w = timers [k]; 1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
286 1298
287 while (k && timers [k >> 1]->at > w->at) 1299#if _WIN32
288 { 1300 signal (signum, ev_sighandler);
289 timers [k] = timers [k >> 1]; 1301#endif
290 timers [k]->active = k + 1;
291 k >>= 1;
292 }
293 1302
294 timers [k] = w; 1303 signals [signum - 1].pending = 1;
295 timers [k]->active = k + 1; 1304 evpipe_write (EV_A_ &sig_pending);
296
297} 1305}
298 1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
299static void 1332static void
300downheap (WT *timers, int N, int k) 1333sigfdcb (EV_P_ ev_io *iow, int revents)
301{ 1334{
302 WT w = timers [k]; 1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
303 1336
304 while (k < (N >> 1)) 1337 for (;;)
305 { 1338 {
306 int j = k << 1; 1339 ssize_t res = read (sigfd, si, sizeof (si));
307 1340
308 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1341 /* not ISO-C, as res might be -1, but works with SuS */
309 ++j; 1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
310 1344
311 if (w->at <= timers [j]->at) 1345 if (res < (ssize_t)sizeof (si))
312 break; 1346 break;
313
314 timers [k] = timers [j];
315 timers [k]->active = k + 1;
316 k = j;
317 } 1347 }
318
319 timers [k] = w;
320 timers [k]->active = k + 1;
321} 1348}
1349#endif
322 1350
323/*****************************************************************************/ 1351/*****************************************************************************/
324 1352
325typedef struct 1353static WL childs [EV_PID_HASHSIZE];
326{
327 struct ev_signal *head;
328 sig_atomic_t volatile gotsig;
329} ANSIG;
330 1354
331static ANSIG *signals; 1355#ifndef _WIN32
332static int signalmax;
333 1356
334static int sigpipe [2];
335static sig_atomic_t volatile gotsig;
336static struct ev_io sigev;
337
338static void
339signals_init (ANSIG *base, int count)
340{
341 while (count--)
342 {
343 base->head = 0;
344 base->gotsig = 0;
345
346 ++base;
347 }
348}
349
350static void
351sighandler (int signum)
352{
353 signals [signum - 1].gotsig = 1;
354
355 if (!gotsig)
356 {
357 gotsig = 1;
358 write (sigpipe [1], &signum, 1);
359 }
360}
361
362static void
363sigcb (struct ev_io *iow, int revents)
364{
365 struct ev_signal *w;
366 int sig;
367
368 read (sigpipe [0], &revents, 1);
369 gotsig = 0;
370
371 for (sig = signalmax; sig--; )
372 if (signals [sig].gotsig)
373 {
374 signals [sig].gotsig = 0;
375
376 for (w = signals [sig].head; w; w = w->next)
377 event ((W)w, EV_SIGNAL);
378 }
379}
380
381static void
382siginit (void)
383{
384 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
385 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
386
387 /* rather than sort out wether we really need nb, set it */
388 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
389 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
390
391 ev_io_set (&sigev, sigpipe [0], EV_READ);
392 ev_io_start (&sigev);
393}
394
395/*****************************************************************************/
396
397static struct ev_idle **idles;
398static int idlemax, idlecnt;
399
400static struct ev_prepare **prepares;
401static int preparemax, preparecnt;
402
403static struct ev_check **checks;
404static int checkmax, checkcnt;
405
406/*****************************************************************************/
407
408static struct ev_child *childs [PID_HASHSIZE];
409static struct ev_signal childev; 1357static ev_signal childev;
1358
1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
1365child_reap (EV_P_ int chain, int pid, int status)
1366{
1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1369
1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
1374 {
1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1376 w->rpid = pid;
1377 w->rstatus = status;
1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1379 }
1380 }
1381}
410 1382
411#ifndef WCONTINUED 1383#ifndef WCONTINUED
412# define WCONTINUED 0 1384# define WCONTINUED 0
413#endif 1385#endif
414 1386
1387/* called on sigchld etc., calls waitpid */
415static void 1388static void
416childcb (struct ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
417{ 1390{
418 struct ev_child *w;
419 int pid, status; 1391 int pid, status;
420 1392
1393 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
421 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1394 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
422 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1395 if (!WCONTINUED
423 if (w->pid == pid || w->pid == -1) 1396 || errno != EINVAL
424 { 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
425 w->status = status; 1398 return;
426 event ((W)w, EV_CHILD); 1399
427 } 1400 /* make sure we are called again until all children have been reaped */
1401 /* we need to do it this way so that the callback gets called before we continue */
1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1403
1404 child_reap (EV_A_ pid, pid, status);
1405 if (EV_PID_HASHSIZE > 1)
1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
428} 1407}
1408
1409#endif
429 1410
430/*****************************************************************************/ 1411/*****************************************************************************/
431 1412
1413#if EV_USE_PORT
1414# include "ev_port.c"
1415#endif
1416#if EV_USE_KQUEUE
1417# include "ev_kqueue.c"
1418#endif
432#if EV_USE_EPOLL 1419#if EV_USE_EPOLL
433# include "ev_epoll.c" 1420# include "ev_epoll.c"
434#endif 1421#endif
1422#if EV_USE_POLL
1423# include "ev_poll.c"
1424#endif
435#if EV_USE_SELECT 1425#if EV_USE_SELECT
436# include "ev_select.c" 1426# include "ev_select.c"
437#endif 1427#endif
438 1428
439int 1429int
446ev_version_minor (void) 1436ev_version_minor (void)
447{ 1437{
448 return EV_VERSION_MINOR; 1438 return EV_VERSION_MINOR;
449} 1439}
450 1440
451int ev_init (int flags) 1441/* return true if we are running with elevated privileges and should ignore env variables */
1442int inline_size
1443enable_secure (void)
452{ 1444{
453 if (!ev_method) 1445#ifdef _WIN32
1446 return 0;
1447#else
1448 return getuid () != geteuid ()
1449 || getgid () != getegid ();
1450#endif
1451}
1452
1453unsigned int
1454ev_supported_backends (void)
1455{
1456 unsigned int flags = 0;
1457
1458 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1459 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1460 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1461 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1462 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1463
1464 return flags;
1465}
1466
1467unsigned int
1468ev_recommended_backends (void)
1469{
1470 unsigned int flags = ev_supported_backends ();
1471
1472#ifndef __NetBSD__
1473 /* kqueue is borked on everything but netbsd apparently */
1474 /* it usually doesn't work correctly on anything but sockets and pipes */
1475 flags &= ~EVBACKEND_KQUEUE;
1476#endif
1477#ifdef __APPLE__
1478 /* only select works correctly on that "unix-certified" platform */
1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1481#endif
1482
1483 return flags;
1484}
1485
1486unsigned int
1487ev_embeddable_backends (void)
1488{
1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1490
1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
1496}
1497
1498unsigned int
1499ev_backend (EV_P)
1500{
1501 return backend;
1502}
1503
1504#if EV_MINIMAL < 2
1505unsigned int
1506ev_loop_count (EV_P)
1507{
1508 return loop_count;
1509}
1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1554static void noinline
1555loop_init (EV_P_ unsigned int flags)
1556{
1557 if (!backend)
454 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
455#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
1571 {
1572 struct timespec ts;
1573
1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1575 have_monotonic = 1;
1576 }
1577#endif
1578
1579 /* pid check not overridable via env */
1580#ifndef _WIN32
1581 if (flags & EVFLAG_FORKCHECK)
1582 curpid = getpid ();
1583#endif
1584
1585 if (!(flags & EVFLAG_NOENV)
1586 && !enable_secure ()
1587 && getenv ("LIBEV_FLAGS"))
1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1611#endif
1612
1613 if (!(flags & 0x0000ffffU))
1614 flags |= ev_recommended_backends ();
1615
1616#if EV_USE_PORT
1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1618#endif
1619#if EV_USE_KQUEUE
1620 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1621#endif
1622#if EV_USE_EPOLL
1623 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1624#endif
1625#if EV_USE_POLL
1626 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1627#endif
1628#if EV_USE_SELECT
1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1630#endif
1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
1634 ev_init (&pipe_w, pipecb);
1635 ev_set_priority (&pipe_w, EV_MAXPRI);
1636 }
1637}
1638
1639/* free up a loop structure */
1640static void noinline
1641loop_destroy (EV_P)
1642{
1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 {
1665 /*ev_ref (EV_A);*/
1666 /*ev_io_stop (EV_A_ &sigfd_w);*/
1667
1668 close (sigfd);
1669 }
1670#endif
1671
1672#if EV_USE_INOTIFY
1673 if (fs_fd >= 0)
1674 close (fs_fd);
1675#endif
1676
1677 if (backend_fd >= 0)
1678 close (backend_fd);
1679
1680#if EV_USE_PORT
1681 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1682#endif
1683#if EV_USE_KQUEUE
1684 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1685#endif
1686#if EV_USE_EPOLL
1687 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1688#endif
1689#if EV_USE_POLL
1690 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1691#endif
1692#if EV_USE_SELECT
1693 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1694#endif
1695
1696 for (i = NUMPRI; i--; )
1697 {
1698 array_free (pending, [i]);
1699#if EV_IDLE_ENABLE
1700 array_free (idle, [i]);
1701#endif
1702 }
1703
1704 ev_free (anfds); anfds = 0; anfdmax = 0;
1705
1706 /* have to use the microsoft-never-gets-it-right macro */
1707 array_free (rfeed, EMPTY);
1708 array_free (fdchange, EMPTY);
1709 array_free (timer, EMPTY);
1710#if EV_PERIODIC_ENABLE
1711 array_free (periodic, EMPTY);
1712#endif
1713#if EV_FORK_ENABLE
1714 array_free (fork, EMPTY);
1715#endif
1716 array_free (prepare, EMPTY);
1717 array_free (check, EMPTY);
1718#if EV_ASYNC_ENABLE
1719 array_free (async, EMPTY);
1720#endif
1721
1722 backend = 0;
1723}
1724
1725#if EV_USE_INOTIFY
1726inline_size void infy_fork (EV_P);
1727#endif
1728
1729inline_size void
1730loop_fork (EV_P)
1731{
1732#if EV_USE_PORT
1733 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1734#endif
1735#if EV_USE_KQUEUE
1736 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1737#endif
1738#if EV_USE_EPOLL
1739 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1740#endif
1741#if EV_USE_INOTIFY
1742 infy_fork (EV_A);
1743#endif
1744
1745 if (ev_is_active (&pipe_w))
1746 {
1747 /* this "locks" the handlers against writing to the pipe */
1748 /* while we modify the fd vars */
1749 sig_pending = 1;
1750#if EV_ASYNC_ENABLE
1751 async_pending = 1;
1752#endif
1753
1754 ev_ref (EV_A);
1755 ev_io_stop (EV_A_ &pipe_w);
1756
1757#if EV_USE_EVENTFD
1758 if (evfd >= 0)
1759 close (evfd);
1760#endif
1761
1762 if (evpipe [0] >= 0)
1763 {
1764 EV_WIN32_CLOSE_FD (evpipe [0]);
1765 EV_WIN32_CLOSE_FD (evpipe [1]);
1766 }
1767
1768 evpipe_init (EV_A);
1769 /* now iterate over everything, in case we missed something */
1770 pipecb (EV_A_ &pipe_w, EV_READ);
1771 }
1772
1773 postfork = 0;
1774}
1775
1776#if EV_MULTIPLICITY
1777
1778struct ev_loop *
1779ev_loop_new (unsigned int flags)
1780{
1781 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1782
1783 memset (EV_A, 0, sizeof (struct ev_loop));
1784 loop_init (EV_A_ flags);
1785
1786 if (ev_backend (EV_A))
1787 return EV_A;
1788
1789 return 0;
1790}
1791
1792void
1793ev_loop_destroy (EV_P)
1794{
1795 loop_destroy (EV_A);
1796 ev_free (loop);
1797}
1798
1799void
1800ev_loop_fork (EV_P)
1801{
1802 postfork = 1; /* must be in line with ev_default_fork */
1803}
1804#endif /* multiplicity */
1805
1806#if EV_VERIFY
1807static void noinline
1808verify_watcher (EV_P_ W w)
1809{
1810 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1811
1812 if (w->pending)
1813 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1814}
1815
1816static void noinline
1817verify_heap (EV_P_ ANHE *heap, int N)
1818{
1819 int i;
1820
1821 for (i = HEAP0; i < N + HEAP0; ++i)
1822 {
1823 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1824 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1825 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1826
1827 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1828 }
1829}
1830
1831static void noinline
1832array_verify (EV_P_ W *ws, int cnt)
1833{
1834 while (cnt--)
1835 {
1836 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1837 verify_watcher (EV_A_ ws [cnt]);
1838 }
1839}
1840#endif
1841
1842#if EV_MINIMAL < 2
1843void
1844ev_loop_verify (EV_P)
1845{
1846#if EV_VERIFY
1847 int i;
1848 WL w;
1849
1850 assert (activecnt >= -1);
1851
1852 assert (fdchangemax >= fdchangecnt);
1853 for (i = 0; i < fdchangecnt; ++i)
1854 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1855
1856 assert (anfdmax >= 0);
1857 for (i = 0; i < anfdmax; ++i)
1858 for (w = anfds [i].head; w; w = w->next)
456 { 1859 {
457 struct timespec ts; 1860 verify_watcher (EV_A_ (W)w);
458 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1861 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
459 have_monotonic = 1; 1862 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
460 } 1863 }
1864
1865 assert (timermax >= timercnt);
1866 verify_heap (EV_A_ timers, timercnt);
1867
1868#if EV_PERIODIC_ENABLE
1869 assert (periodicmax >= periodiccnt);
1870 verify_heap (EV_A_ periodics, periodiccnt);
1871#endif
1872
1873 for (i = NUMPRI; i--; )
1874 {
1875 assert (pendingmax [i] >= pendingcnt [i]);
1876#if EV_IDLE_ENABLE
1877 assert (idleall >= 0);
1878 assert (idlemax [i] >= idlecnt [i]);
1879 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1880#endif
1881 }
1882
1883#if EV_FORK_ENABLE
1884 assert (forkmax >= forkcnt);
1885 array_verify (EV_A_ (W *)forks, forkcnt);
1886#endif
1887
1888#if EV_ASYNC_ENABLE
1889 assert (asyncmax >= asynccnt);
1890 array_verify (EV_A_ (W *)asyncs, asynccnt);
1891#endif
1892
1893 assert (preparemax >= preparecnt);
1894 array_verify (EV_A_ (W *)prepares, preparecnt);
1895
1896 assert (checkmax >= checkcnt);
1897 array_verify (EV_A_ (W *)checks, checkcnt);
1898
1899# if 0
1900 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1901 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
461#endif 1902# endif
462
463 ev_now = ev_time ();
464 now = get_clock ();
465 diff = ev_now - now;
466
467 if (pipe (sigpipe))
468 return 0;
469
470 ev_method = EVMETHOD_NONE;
471#if EV_USE_EPOLL
472 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
473#endif 1903#endif
474#if EV_USE_SELECT 1904}
475 if (ev_method == EVMETHOD_NONE) select_init (flags);
476#endif 1905#endif
477 1906
478 if (ev_method) 1907#if EV_MULTIPLICITY
1908struct ev_loop *
1909ev_default_loop_init (unsigned int flags)
1910#else
1911int
1912ev_default_loop (unsigned int flags)
1913#endif
1914{
1915 if (!ev_default_loop_ptr)
1916 {
1917#if EV_MULTIPLICITY
1918 EV_P = ev_default_loop_ptr = &default_loop_struct;
1919#else
1920 ev_default_loop_ptr = 1;
1921#endif
1922
1923 loop_init (EV_A_ flags);
1924
1925 if (ev_backend (EV_A))
479 { 1926 {
480 ev_watcher_init (&sigev, sigcb); 1927#ifndef _WIN32
481 siginit ();
482
483 ev_signal_init (&childev, childcb, SIGCHLD); 1928 ev_signal_init (&childev, childcb, SIGCHLD);
1929 ev_set_priority (&childev, EV_MAXPRI);
484 ev_signal_start (&childev); 1930 ev_signal_start (EV_A_ &childev);
1931 ev_unref (EV_A); /* child watcher should not keep loop alive */
1932#endif
485 } 1933 }
1934 else
1935 ev_default_loop_ptr = 0;
486 } 1936 }
487 1937
488 return ev_method; 1938 return ev_default_loop_ptr;
1939}
1940
1941void
1942ev_default_destroy (void)
1943{
1944#if EV_MULTIPLICITY
1945 EV_P = ev_default_loop_ptr;
1946#endif
1947
1948 ev_default_loop_ptr = 0;
1949
1950#ifndef _WIN32
1951 ev_ref (EV_A); /* child watcher */
1952 ev_signal_stop (EV_A_ &childev);
1953#endif
1954
1955 loop_destroy (EV_A);
1956}
1957
1958void
1959ev_default_fork (void)
1960{
1961#if EV_MULTIPLICITY
1962 EV_P = ev_default_loop_ptr;
1963#endif
1964
1965 postfork = 1; /* must be in line with ev_loop_fork */
489} 1966}
490 1967
491/*****************************************************************************/ 1968/*****************************************************************************/
492 1969
493void 1970void
494ev_prefork (void) 1971ev_invoke (EV_P_ void *w, int revents)
495{ 1972{
496 /* nop */ 1973 EV_CB_INVOKE ((W)w, revents);
497} 1974}
498 1975
499void 1976unsigned int
500ev_postfork_parent (void) 1977ev_pending_count (EV_P)
501{ 1978{
502 /* nop */ 1979 int pri;
503} 1980 unsigned int count = 0;
504 1981
505void 1982 for (pri = NUMPRI; pri--; )
506ev_postfork_child (void) 1983 count += pendingcnt [pri];
1984
1985 return count;
1986}
1987
1988void noinline
1989ev_invoke_pending (EV_P)
507{ 1990{
508#if EV_USE_EPOLL 1991 int pri;
509 if (ev_method == EVMETHOD_EPOLL) 1992
510 epoll_postfork_child (); 1993 for (pri = NUMPRI; pri--; )
1994 while (pendingcnt [pri])
1995 {
1996 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1997
1998 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1999 /* ^ this is no longer true, as pending_w could be here */
2000
2001 p->w->pending = 0;
2002 EV_CB_INVOKE (p->w, p->events);
2003 EV_FREQUENT_CHECK;
2004 }
2005}
2006
2007#if EV_IDLE_ENABLE
2008/* make idle watchers pending. this handles the "call-idle */
2009/* only when higher priorities are idle" logic */
2010inline_size void
2011idle_reify (EV_P)
2012{
2013 if (expect_false (idleall))
2014 {
2015 int pri;
2016
2017 for (pri = NUMPRI; pri--; )
2018 {
2019 if (pendingcnt [pri])
2020 break;
2021
2022 if (idlecnt [pri])
2023 {
2024 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2025 break;
2026 }
2027 }
2028 }
2029}
2030#endif
2031
2032/* make timers pending */
2033inline_size void
2034timers_reify (EV_P)
2035{
2036 EV_FREQUENT_CHECK;
2037
2038 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2039 {
2040 do
2041 {
2042 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2043
2044 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2045
2046 /* first reschedule or stop timer */
2047 if (w->repeat)
2048 {
2049 ev_at (w) += w->repeat;
2050 if (ev_at (w) < mn_now)
2051 ev_at (w) = mn_now;
2052
2053 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2054
2055 ANHE_at_cache (timers [HEAP0]);
2056 downheap (timers, timercnt, HEAP0);
2057 }
2058 else
2059 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2060
2061 EV_FREQUENT_CHECK;
2062 feed_reverse (EV_A_ (W)w);
2063 }
2064 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2065
2066 feed_reverse_done (EV_A_ EV_TIMEOUT);
2067 }
2068}
2069
2070#if EV_PERIODIC_ENABLE
2071/* make periodics pending */
2072inline_size void
2073periodics_reify (EV_P)
2074{
2075 EV_FREQUENT_CHECK;
2076
2077 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2078 {
2079 int feed_count = 0;
2080
2081 do
2082 {
2083 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2084
2085 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2086
2087 /* first reschedule or stop timer */
2088 if (w->reschedule_cb)
2089 {
2090 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2091
2092 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2093
2094 ANHE_at_cache (periodics [HEAP0]);
2095 downheap (periodics, periodiccnt, HEAP0);
2096 }
2097 else if (w->interval)
2098 {
2099 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2100 /* if next trigger time is not sufficiently in the future, put it there */
2101 /* this might happen because of floating point inexactness */
2102 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2103 {
2104 ev_at (w) += w->interval;
2105
2106 /* if interval is unreasonably low we might still have a time in the past */
2107 /* so correct this. this will make the periodic very inexact, but the user */
2108 /* has effectively asked to get triggered more often than possible */
2109 if (ev_at (w) < ev_rt_now)
2110 ev_at (w) = ev_rt_now;
2111 }
2112
2113 ANHE_at_cache (periodics [HEAP0]);
2114 downheap (periodics, periodiccnt, HEAP0);
2115 }
2116 else
2117 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2118
2119 EV_FREQUENT_CHECK;
2120 feed_reverse (EV_A_ (W)w);
2121 }
2122 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2123
2124 feed_reverse_done (EV_A_ EV_PERIODIC);
2125 }
2126}
2127
2128/* simply recalculate all periodics */
2129/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2130static void noinline
2131periodics_reschedule (EV_P)
2132{
2133 int i;
2134
2135 /* adjust periodics after time jump */
2136 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2139
2140 if (w->reschedule_cb)
2141 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2142 else if (w->interval)
2143 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2144
2145 ANHE_at_cache (periodics [i]);
2146 }
2147
2148 reheap (periodics, periodiccnt);
2149}
2150#endif
2151
2152/* adjust all timers by a given offset */
2153static void noinline
2154timers_reschedule (EV_P_ ev_tstamp adjust)
2155{
2156 int i;
2157
2158 for (i = 0; i < timercnt; ++i)
2159 {
2160 ANHE *he = timers + i + HEAP0;
2161 ANHE_w (*he)->at += adjust;
2162 ANHE_at_cache (*he);
2163 }
2164}
2165
2166/* fetch new monotonic and realtime times from the kernel */
2167/* also detetc if there was a timejump, and act accordingly */
2168inline_speed void
2169time_update (EV_P_ ev_tstamp max_block)
2170{
2171#if EV_USE_MONOTONIC
2172 if (expect_true (have_monotonic))
2173 {
2174 int i;
2175 ev_tstamp odiff = rtmn_diff;
2176
2177 mn_now = get_clock ();
2178
2179 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2180 /* interpolate in the meantime */
2181 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2182 {
2183 ev_rt_now = rtmn_diff + mn_now;
2184 return;
2185 }
2186
2187 now_floor = mn_now;
2188 ev_rt_now = ev_time ();
2189
2190 /* loop a few times, before making important decisions.
2191 * on the choice of "4": one iteration isn't enough,
2192 * in case we get preempted during the calls to
2193 * ev_time and get_clock. a second call is almost guaranteed
2194 * to succeed in that case, though. and looping a few more times
2195 * doesn't hurt either as we only do this on time-jumps or
2196 * in the unlikely event of having been preempted here.
2197 */
2198 for (i = 4; --i; )
2199 {
2200 rtmn_diff = ev_rt_now - mn_now;
2201
2202 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2203 return; /* all is well */
2204
2205 ev_rt_now = ev_time ();
2206 mn_now = get_clock ();
2207 now_floor = mn_now;
2208 }
2209
2210 /* no timer adjustment, as the monotonic clock doesn't jump */
2211 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2212# if EV_PERIODIC_ENABLE
2213 periodics_reschedule (EV_A);
511#endif 2214# endif
2215 }
2216 else
2217#endif
2218 {
2219 ev_rt_now = ev_time ();
512 2220
513 ev_io_stop (&sigev); 2221 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
514 close (sigpipe [0]); 2222 {
515 close (sigpipe [1]); 2223 /* adjust timers. this is easy, as the offset is the same for all of them */
516 pipe (sigpipe); 2224 timers_reschedule (EV_A_ ev_rt_now - mn_now);
517 siginit (); 2225#if EV_PERIODIC_ENABLE
2226 periodics_reschedule (EV_A);
2227#endif
2228 }
2229
2230 mn_now = ev_rt_now;
2231 }
2232}
2233
2234void
2235ev_loop (EV_P_ int flags)
2236{
2237#if EV_MINIMAL < 2
2238 ++loop_depth;
2239#endif
2240
2241 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2242
2243 loop_done = EVUNLOOP_CANCEL;
2244
2245 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2246
2247 do
2248 {
2249#if EV_VERIFY >= 2
2250 ev_loop_verify (EV_A);
2251#endif
2252
2253#ifndef _WIN32
2254 if (expect_false (curpid)) /* penalise the forking check even more */
2255 if (expect_false (getpid () != curpid))
2256 {
2257 curpid = getpid ();
2258 postfork = 1;
2259 }
2260#endif
2261
2262#if EV_FORK_ENABLE
2263 /* we might have forked, so queue fork handlers */
2264 if (expect_false (postfork))
2265 if (forkcnt)
2266 {
2267 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2268 EV_INVOKE_PENDING;
2269 }
2270#endif
2271
2272 /* queue prepare watchers (and execute them) */
2273 if (expect_false (preparecnt))
2274 {
2275 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2276 EV_INVOKE_PENDING;
2277 }
2278
2279 if (expect_false (loop_done))
2280 break;
2281
2282 /* we might have forked, so reify kernel state if necessary */
2283 if (expect_false (postfork))
2284 loop_fork (EV_A);
2285
2286 /* update fd-related kernel structures */
2287 fd_reify (EV_A);
2288
2289 /* calculate blocking time */
2290 {
2291 ev_tstamp waittime = 0.;
2292 ev_tstamp sleeptime = 0.;
2293
2294 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2295 {
2296 /* remember old timestamp for io_blocktime calculation */
2297 ev_tstamp prev_mn_now = mn_now;
2298
2299 /* update time to cancel out callback processing overhead */
2300 time_update (EV_A_ 1e100);
2301
2302 waittime = MAX_BLOCKTIME;
2303
2304 if (timercnt)
2305 {
2306 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2307 if (waittime > to) waittime = to;
2308 }
2309
2310#if EV_PERIODIC_ENABLE
2311 if (periodiccnt)
2312 {
2313 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2314 if (waittime > to) waittime = to;
2315 }
2316#endif
2317
2318 /* don't let timeouts decrease the waittime below timeout_blocktime */
2319 if (expect_false (waittime < timeout_blocktime))
2320 waittime = timeout_blocktime;
2321
2322 /* extra check because io_blocktime is commonly 0 */
2323 if (expect_false (io_blocktime))
2324 {
2325 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2326
2327 if (sleeptime > waittime - backend_fudge)
2328 sleeptime = waittime - backend_fudge;
2329
2330 if (expect_true (sleeptime > 0.))
2331 {
2332 ev_sleep (sleeptime);
2333 waittime -= sleeptime;
2334 }
2335 }
2336 }
2337
2338#if EV_MINIMAL < 2
2339 ++loop_count;
2340#endif
2341 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2342 backend_poll (EV_A_ waittime);
2343 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2344
2345 /* update ev_rt_now, do magic */
2346 time_update (EV_A_ waittime + sleeptime);
2347 }
2348
2349 /* queue pending timers and reschedule them */
2350 timers_reify (EV_A); /* relative timers called last */
2351#if EV_PERIODIC_ENABLE
2352 periodics_reify (EV_A); /* absolute timers called first */
2353#endif
2354
2355#if EV_IDLE_ENABLE
2356 /* queue idle watchers unless other events are pending */
2357 idle_reify (EV_A);
2358#endif
2359
2360 /* queue check watchers, to be executed first */
2361 if (expect_false (checkcnt))
2362 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2363
2364 EV_INVOKE_PENDING;
2365 }
2366 while (expect_true (
2367 activecnt
2368 && !loop_done
2369 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2370 ));
2371
2372 if (loop_done == EVUNLOOP_ONE)
2373 loop_done = EVUNLOOP_CANCEL;
2374
2375#if EV_MINIMAL < 2
2376 --loop_depth;
2377#endif
2378}
2379
2380void
2381ev_unloop (EV_P_ int how)
2382{
2383 loop_done = how;
2384}
2385
2386void
2387ev_ref (EV_P)
2388{
2389 ++activecnt;
2390}
2391
2392void
2393ev_unref (EV_P)
2394{
2395 --activecnt;
2396}
2397
2398void
2399ev_now_update (EV_P)
2400{
2401 time_update (EV_A_ 1e100);
2402}
2403
2404void
2405ev_suspend (EV_P)
2406{
2407 ev_now_update (EV_A);
2408}
2409
2410void
2411ev_resume (EV_P)
2412{
2413 ev_tstamp mn_prev = mn_now;
2414
2415 ev_now_update (EV_A);
2416 timers_reschedule (EV_A_ mn_now - mn_prev);
2417#if EV_PERIODIC_ENABLE
2418 /* TODO: really do this? */
2419 periodics_reschedule (EV_A);
2420#endif
518} 2421}
519 2422
520/*****************************************************************************/ 2423/*****************************************************************************/
2424/* singly-linked list management, used when the expected list length is short */
521 2425
522static void 2426inline_size void
523call_pending (void) 2427wlist_add (WL *head, WL elem)
524{ 2428{
525 while (pendingcnt) 2429 elem->next = *head;
526 { 2430 *head = elem;
527 ANPENDING *p = pendings + --pendingcnt; 2431}
528 2432
529 if (p->w) 2433inline_size void
2434wlist_del (WL *head, WL elem)
2435{
2436 while (*head)
2437 {
2438 if (expect_true (*head == elem))
530 { 2439 {
531 p->w->pending = 0; 2440 *head = elem->next;
532 p->w->cb (p->w, p->events); 2441 break;
533 } 2442 }
2443
2444 head = &(*head)->next;
2445 }
2446}
2447
2448/* internal, faster, version of ev_clear_pending */
2449inline_speed void
2450clear_pending (EV_P_ W w)
2451{
2452 if (w->pending)
534 } 2453 {
2454 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2455 w->pending = 0;
2456 }
535} 2457}
536 2458
537static void 2459int
538timers_reify (void) 2460ev_clear_pending (EV_P_ void *w)
539{ 2461{
540 while (timercnt && timers [0]->at <= now) 2462 W w_ = (W)w;
2463 int pending = w_->pending;
2464
2465 if (expect_true (pending))
2466 {
2467 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2468 p->w = (W)&pending_w;
2469 w_->pending = 0;
2470 return p->events;
2471 }
2472 else
2473 return 0;
2474}
2475
2476inline_size void
2477pri_adjust (EV_P_ W w)
2478{
2479 int pri = ev_priority (w);
2480 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2481 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2482 ev_set_priority (w, pri);
2483}
2484
2485inline_speed void
2486ev_start (EV_P_ W w, int active)
2487{
2488 pri_adjust (EV_A_ w);
2489 w->active = active;
2490 ev_ref (EV_A);
2491}
2492
2493inline_size void
2494ev_stop (EV_P_ W w)
2495{
2496 ev_unref (EV_A);
2497 w->active = 0;
2498}
2499
2500/*****************************************************************************/
2501
2502void noinline
2503ev_io_start (EV_P_ ev_io *w)
2504{
2505 int fd = w->fd;
2506
2507 if (expect_false (ev_is_active (w)))
2508 return;
2509
2510 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2511 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2512
2513 EV_FREQUENT_CHECK;
2514
2515 ev_start (EV_A_ (W)w, 1);
2516 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2517 wlist_add (&anfds[fd].head, (WL)w);
2518
2519 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2520 w->events &= ~EV__IOFDSET;
2521
2522 EV_FREQUENT_CHECK;
2523}
2524
2525void noinline
2526ev_io_stop (EV_P_ ev_io *w)
2527{
2528 clear_pending (EV_A_ (W)w);
2529 if (expect_false (!ev_is_active (w)))
2530 return;
2531
2532 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2533
2534 EV_FREQUENT_CHECK;
2535
2536 wlist_del (&anfds[w->fd].head, (WL)w);
2537 ev_stop (EV_A_ (W)w);
2538
2539 fd_change (EV_A_ w->fd, 1);
2540
2541 EV_FREQUENT_CHECK;
2542}
2543
2544void noinline
2545ev_timer_start (EV_P_ ev_timer *w)
2546{
2547 if (expect_false (ev_is_active (w)))
2548 return;
2549
2550 ev_at (w) += mn_now;
2551
2552 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2553
2554 EV_FREQUENT_CHECK;
2555
2556 ++timercnt;
2557 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2558 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2559 ANHE_w (timers [ev_active (w)]) = (WT)w;
2560 ANHE_at_cache (timers [ev_active (w)]);
2561 upheap (timers, ev_active (w));
2562
2563 EV_FREQUENT_CHECK;
2564
2565 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2566}
2567
2568void noinline
2569ev_timer_stop (EV_P_ ev_timer *w)
2570{
2571 clear_pending (EV_A_ (W)w);
2572 if (expect_false (!ev_is_active (w)))
2573 return;
2574
2575 EV_FREQUENT_CHECK;
2576
2577 {
2578 int active = ev_active (w);
2579
2580 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2581
2582 --timercnt;
2583
2584 if (expect_true (active < timercnt + HEAP0))
541 { 2585 {
542 struct ev_timer *w = timers [0]; 2586 timers [active] = timers [timercnt + HEAP0];
2587 adjustheap (timers, timercnt, active);
2588 }
2589 }
543 2590
544 /* first reschedule or stop timer */ 2591 EV_FREQUENT_CHECK;
2592
2593 ev_at (w) -= mn_now;
2594
2595 ev_stop (EV_A_ (W)w);
2596}
2597
2598void noinline
2599ev_timer_again (EV_P_ ev_timer *w)
2600{
2601 EV_FREQUENT_CHECK;
2602
2603 if (ev_is_active (w))
2604 {
545 if (w->repeat) 2605 if (w->repeat)
546 { 2606 {
547 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
548 w->at = now + w->repeat; 2607 ev_at (w) = mn_now + w->repeat;
549 downheap ((WT *)timers, timercnt, 0); 2608 ANHE_at_cache (timers [ev_active (w)]);
2609 adjustheap (timers, timercnt, ev_active (w));
550 } 2610 }
551 else 2611 else
552 ev_timer_stop (w); /* nonrepeating: stop timer */ 2612 ev_timer_stop (EV_A_ w);
553
554 event ((W)w, EV_TIMEOUT);
555 }
556}
557
558static void
559periodics_reify (void)
560{
561 while (periodiccnt && periodics [0]->at <= ev_now)
562 { 2613 }
563 struct ev_periodic *w = periodics [0]; 2614 else if (w->repeat)
2615 {
2616 ev_at (w) = w->repeat;
2617 ev_timer_start (EV_A_ w);
2618 }
564 2619
565 /* first reschedule or stop timer */ 2620 EV_FREQUENT_CHECK;
2621}
2622
2623ev_tstamp
2624ev_timer_remaining (EV_P_ ev_timer *w)
2625{
2626 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2627}
2628
2629#if EV_PERIODIC_ENABLE
2630void noinline
2631ev_periodic_start (EV_P_ ev_periodic *w)
2632{
2633 if (expect_false (ev_is_active (w)))
2634 return;
2635
2636 if (w->reschedule_cb)
2637 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
566 if (w->interval) 2638 else if (w->interval)
2639 {
2640 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2641 /* this formula differs from the one in periodic_reify because we do not always round up */
2642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2643 }
2644 else
2645 ev_at (w) = w->offset;
2646
2647 EV_FREQUENT_CHECK;
2648
2649 ++periodiccnt;
2650 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2651 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2652 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2653 ANHE_at_cache (periodics [ev_active (w)]);
2654 upheap (periodics, ev_active (w));
2655
2656 EV_FREQUENT_CHECK;
2657
2658 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2659}
2660
2661void noinline
2662ev_periodic_stop (EV_P_ ev_periodic *w)
2663{
2664 clear_pending (EV_A_ (W)w);
2665 if (expect_false (!ev_is_active (w)))
2666 return;
2667
2668 EV_FREQUENT_CHECK;
2669
2670 {
2671 int active = ev_active (w);
2672
2673 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2674
2675 --periodiccnt;
2676
2677 if (expect_true (active < periodiccnt + HEAP0))
2678 {
2679 periodics [active] = periodics [periodiccnt + HEAP0];
2680 adjustheap (periodics, periodiccnt, active);
2681 }
2682 }
2683
2684 EV_FREQUENT_CHECK;
2685
2686 ev_stop (EV_A_ (W)w);
2687}
2688
2689void noinline
2690ev_periodic_again (EV_P_ ev_periodic *w)
2691{
2692 /* TODO: use adjustheap and recalculation */
2693 ev_periodic_stop (EV_A_ w);
2694 ev_periodic_start (EV_A_ w);
2695}
2696#endif
2697
2698#ifndef SA_RESTART
2699# define SA_RESTART 0
2700#endif
2701
2702void noinline
2703ev_signal_start (EV_P_ ev_signal *w)
2704{
2705 if (expect_false (ev_is_active (w)))
2706 return;
2707
2708 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2709
2710#if EV_MULTIPLICITY
2711 assert (("libev: a signal must not be attached to two different loops",
2712 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2713
2714 signals [w->signum - 1].loop = EV_A;
2715#endif
2716
2717 EV_FREQUENT_CHECK;
2718
2719#if EV_USE_SIGNALFD
2720 if (sigfd == -2)
2721 {
2722 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2723 if (sigfd < 0 && errno == EINVAL)
2724 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2725
2726 if (sigfd >= 0)
567 { 2727 {
568 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 2728 fd_intern (sigfd); /* doing it twice will not hurt */
569 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 2729
570 downheap ((WT *)periodics, periodiccnt, 0); 2730 sigemptyset (&sigfd_set);
2731
2732 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2733 ev_set_priority (&sigfd_w, EV_MAXPRI);
2734 ev_io_start (EV_A_ &sigfd_w);
2735 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2736 }
2737 }
2738
2739 if (sigfd >= 0)
2740 {
2741 /* TODO: check .head */
2742 sigaddset (&sigfd_set, w->signum);
2743 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2744
2745 signalfd (sigfd, &sigfd_set, 0);
2746 }
2747#endif
2748
2749 ev_start (EV_A_ (W)w, 1);
2750 wlist_add (&signals [w->signum - 1].head, (WL)w);
2751
2752 if (!((WL)w)->next)
2753# if EV_USE_SIGNALFD
2754 if (sigfd < 0) /*TODO*/
2755# endif
2756 {
2757# if _WIN32
2758 signal (w->signum, ev_sighandler);
2759# else
2760 struct sigaction sa;
2761
2762 evpipe_init (EV_A);
2763
2764 sa.sa_handler = ev_sighandler;
2765 sigfillset (&sa.sa_mask);
2766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2767 sigaction (w->signum, &sa, 0);
2768
2769 sigemptyset (&sa.sa_mask);
2770 sigaddset (&sa.sa_mask, w->signum);
2771 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2772#endif
2773 }
2774
2775 EV_FREQUENT_CHECK;
2776}
2777
2778void noinline
2779ev_signal_stop (EV_P_ ev_signal *w)
2780{
2781 clear_pending (EV_A_ (W)w);
2782 if (expect_false (!ev_is_active (w)))
2783 return;
2784
2785 EV_FREQUENT_CHECK;
2786
2787 wlist_del (&signals [w->signum - 1].head, (WL)w);
2788 ev_stop (EV_A_ (W)w);
2789
2790 if (!signals [w->signum - 1].head)
2791 {
2792#if EV_MULTIPLICITY
2793 signals [w->signum - 1].loop = 0; /* unattach from signal */
2794#endif
2795#if EV_USE_SIGNALFD
2796 if (sigfd >= 0)
2797 {
2798 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2799 sigdelset (&sigfd_set, w->signum);
2800 signalfd (sigfd, &sigfd_set, 0);
2801 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2802 /*TODO: maybe unblock signal? */
571 } 2803 }
572 else 2804 else
573 ev_periodic_stop (w); /* nonrepeating: stop timer */ 2805#endif
574 2806 signal (w->signum, SIG_DFL);
575 event ((W)w, EV_PERIODIC);
576 }
577}
578
579static void
580periodics_reschedule (ev_tstamp diff)
581{
582 int i;
583
584 /* adjust periodics after time jump */
585 for (i = 0; i < periodiccnt; ++i)
586 { 2807 }
587 struct ev_periodic *w = periodics [i];
588 2808
589 if (w->interval) 2809 EV_FREQUENT_CHECK;
2810}
2811
2812void
2813ev_child_start (EV_P_ ev_child *w)
2814{
2815#if EV_MULTIPLICITY
2816 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2817#endif
2818 if (expect_false (ev_is_active (w)))
2819 return;
2820
2821 EV_FREQUENT_CHECK;
2822
2823 ev_start (EV_A_ (W)w, 1);
2824 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2825
2826 EV_FREQUENT_CHECK;
2827}
2828
2829void
2830ev_child_stop (EV_P_ ev_child *w)
2831{
2832 clear_pending (EV_A_ (W)w);
2833 if (expect_false (!ev_is_active (w)))
2834 return;
2835
2836 EV_FREQUENT_CHECK;
2837
2838 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2839 ev_stop (EV_A_ (W)w);
2840
2841 EV_FREQUENT_CHECK;
2842}
2843
2844#if EV_STAT_ENABLE
2845
2846# ifdef _WIN32
2847# undef lstat
2848# define lstat(a,b) _stati64 (a,b)
2849# endif
2850
2851#define DEF_STAT_INTERVAL 5.0074891
2852#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2853#define MIN_STAT_INTERVAL 0.1074891
2854
2855static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2856
2857#if EV_USE_INOTIFY
2858# define EV_INOTIFY_BUFSIZE 8192
2859
2860static void noinline
2861infy_add (EV_P_ ev_stat *w)
2862{
2863 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2864
2865 if (w->wd < 0)
2866 {
2867 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2868 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2869
2870 /* monitor some parent directory for speedup hints */
2871 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2872 /* but an efficiency issue only */
2873 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
590 { 2874 {
591 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 2875 char path [4096];
2876 strcpy (path, w->path);
592 2877
593 if (fabs (diff) >= 1e-4) 2878 do
594 { 2879 {
595 ev_periodic_stop (w); 2880 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
596 ev_periodic_start (w); 2881 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
597 2882
598 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 2883 char *pend = strrchr (path, '/');
2884
2885 if (!pend || pend == path)
2886 break;
2887
2888 *pend = 0;
2889 w->wd = inotify_add_watch (fs_fd, path, mask);
2890 }
2891 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2892 }
2893 }
2894
2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
2899 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2900
2901 /* now local changes will be tracked by inotify, but remote changes won't */
2902 /* unless the filesystem it known to be local, we therefore still poll */
2903 /* also do poll on <2.6.25, but with normal frequency */
2904
2905 if (fs_2625 && !statfs (w->path, &sfs))
2906 if (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */)
2912 return;
2913
2914 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2915 ev_timer_again (EV_A_ &w->timer);
2916 }
2917}
2918
2919static void noinline
2920infy_del (EV_P_ ev_stat *w)
2921{
2922 int slot;
2923 int wd = w->wd;
2924
2925 if (wd < 0)
2926 return;
2927
2928 w->wd = -2;
2929 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2930 wlist_del (&fs_hash [slot].head, (WL)w);
2931
2932 /* remove this watcher, if others are watching it, they will rearm */
2933 inotify_rm_watch (fs_fd, wd);
2934}
2935
2936static void noinline
2937infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2938{
2939 if (slot < 0)
2940 /* overflow, need to check for all hash slots */
2941 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2942 infy_wd (EV_A_ slot, wd, ev);
2943 else
2944 {
2945 WL w_;
2946
2947 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2948 {
2949 ev_stat *w = (ev_stat *)w_;
2950 w_ = w_->next; /* lets us remove this watcher and all before it */
2951
2952 if (w->wd == wd || wd == -1)
2953 {
2954 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2955 {
2956 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2957 w->wd = -1;
2958 infy_add (EV_A_ w); /* re-add, no matter what */
2959 }
2960
2961 stat_timer_cb (EV_A_ &w->timer, 0);
599 } 2962 }
600 } 2963 }
601 } 2964 }
602} 2965}
603 2966
604static void 2967static void
605time_update (void) 2968infy_cb (EV_P_ ev_io *w, int revents)
606{ 2969{
2970 char buf [EV_INOTIFY_BUFSIZE];
2971 struct inotify_event *ev = (struct inotify_event *)buf;
607 int i; 2972 int ofs;
2973 int len = read (fs_fd, buf, sizeof (buf));
608 2974
609 ev_now = ev_time (); 2975 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2976 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2977}
610 2978
611 if (have_monotonic) 2979inline_size void
2980check_2625 (EV_P)
2981{
2982 /* kernels < 2.6.25 are borked
2983 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2984 */
2985 struct utsname buf;
2986 int major, minor, micro;
2987
2988 if (uname (&buf))
2989 return;
2990
2991 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2992 return;
2993
2994 if (major < 2
2995 || (major == 2 && minor < 6)
2996 || (major == 2 && minor == 6 && micro < 25))
2997 return;
2998
2999 fs_2625 = 1;
3000}
3001
3002inline_size int
3003infy_newfd (void)
3004{
3005#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3006 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3007 if (fd >= 0)
3008 return fd;
3009#endif
3010 return inotify_init ();
3011}
3012
3013inline_size void
3014infy_init (EV_P)
3015{
3016 if (fs_fd != -2)
3017 return;
3018
3019 fs_fd = -1;
3020
3021 check_2625 (EV_A);
3022
3023 fs_fd = infy_newfd ();
3024
3025 if (fs_fd >= 0)
3026 {
3027 fd_intern (fs_fd);
3028 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3029 ev_set_priority (&fs_w, EV_MAXPRI);
3030 ev_io_start (EV_A_ &fs_w);
612 { 3031 }
613 ev_tstamp odiff = diff; 3032}
614 3033
615 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 3034inline_size void
3035infy_fork (EV_P)
3036{
3037 int slot;
3038
3039 if (fs_fd < 0)
3040 return;
3041
3042 ev_io_stop (EV_A_ &fs_w);
3043 close (fs_fd);
3044 fs_fd = infy_newfd ();
3045
3046 if (fs_fd >= 0)
3047 {
3048 fd_intern (fs_fd);
3049 ev_io_set (&fs_w, fs_fd, EV_READ);
3050 ev_io_start (EV_A_ &fs_w);
3051 }
3052
3053 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3054 {
3055 WL w_ = fs_hash [slot].head;
3056 fs_hash [slot].head = 0;
3057
3058 while (w_)
616 { 3059 {
617 now = get_clock (); 3060 ev_stat *w = (ev_stat *)w_;
618 diff = ev_now - now; 3061 w_ = w_->next; /* lets us add this watcher */
619 3062
620 if (fabs (odiff - diff) < MIN_TIMEJUMP) 3063 w->wd = -1;
621 return; /* all is well */
622 3064
623 ev_now = ev_time (); 3065 if (fs_fd >= 0)
3066 infy_add (EV_A_ w); /* re-add, no matter what */
3067 else
3068 ev_timer_again (EV_A_ &w->timer);
624 } 3069 }
625
626 periodics_reschedule (diff - odiff);
627 /* no timer adjustment, as the monotonic clock doesn't jump */
628 } 3070 }
3071}
3072
3073#endif
3074
3075#ifdef _WIN32
3076# define EV_LSTAT(p,b) _stati64 (p, b)
3077#else
3078# define EV_LSTAT(p,b) lstat (p, b)
3079#endif
3080
3081void
3082ev_stat_stat (EV_P_ ev_stat *w)
3083{
3084 if (lstat (w->path, &w->attr) < 0)
3085 w->attr.st_nlink = 0;
3086 else if (!w->attr.st_nlink)
3087 w->attr.st_nlink = 1;
3088}
3089
3090static void noinline
3091stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3092{
3093 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3094
3095 /* we copy this here each the time so that */
3096 /* prev has the old value when the callback gets invoked */
3097 w->prev = w->attr;
3098 ev_stat_stat (EV_A_ w);
3099
3100 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3101 if (
3102 w->prev.st_dev != w->attr.st_dev
3103 || w->prev.st_ino != w->attr.st_ino
3104 || w->prev.st_mode != w->attr.st_mode
3105 || w->prev.st_nlink != w->attr.st_nlink
3106 || w->prev.st_uid != w->attr.st_uid
3107 || w->prev.st_gid != w->attr.st_gid
3108 || w->prev.st_rdev != w->attr.st_rdev
3109 || w->prev.st_size != w->attr.st_size
3110 || w->prev.st_atime != w->attr.st_atime
3111 || w->prev.st_mtime != w->attr.st_mtime
3112 || w->prev.st_ctime != w->attr.st_ctime
3113 ) {
3114 #if EV_USE_INOTIFY
3115 if (fs_fd >= 0)
3116 {
3117 infy_del (EV_A_ w);
3118 infy_add (EV_A_ w);
3119 ev_stat_stat (EV_A_ w); /* avoid race... */
3120 }
3121 #endif
3122
3123 ev_feed_event (EV_A_ w, EV_STAT);
3124 }
3125}
3126
3127void
3128ev_stat_start (EV_P_ ev_stat *w)
3129{
3130 if (expect_false (ev_is_active (w)))
3131 return;
3132
3133 ev_stat_stat (EV_A_ w);
3134
3135 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3136 w->interval = MIN_STAT_INTERVAL;
3137
3138 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3139 ev_set_priority (&w->timer, ev_priority (w));
3140
3141#if EV_USE_INOTIFY
3142 infy_init (EV_A);
3143
3144 if (fs_fd >= 0)
3145 infy_add (EV_A_ w);
629 else 3146 else
3147#endif
3148 ev_timer_again (EV_A_ &w->timer);
3149
3150 ev_start (EV_A_ (W)w, 1);
3151
3152 EV_FREQUENT_CHECK;
3153}
3154
3155void
3156ev_stat_stop (EV_P_ ev_stat *w)
3157{
3158 clear_pending (EV_A_ (W)w);
3159 if (expect_false (!ev_is_active (w)))
3160 return;
3161
3162 EV_FREQUENT_CHECK;
3163
3164#if EV_USE_INOTIFY
3165 infy_del (EV_A_ w);
3166#endif
3167 ev_timer_stop (EV_A_ &w->timer);
3168
3169 ev_stop (EV_A_ (W)w);
3170
3171 EV_FREQUENT_CHECK;
3172}
3173#endif
3174
3175#if EV_IDLE_ENABLE
3176void
3177ev_idle_start (EV_P_ ev_idle *w)
3178{
3179 if (expect_false (ev_is_active (w)))
3180 return;
3181
3182 pri_adjust (EV_A_ (W)w);
3183
3184 EV_FREQUENT_CHECK;
3185
630 { 3186 {
631 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 3187 int active = ++idlecnt [ABSPRI (w)];
3188
3189 ++idleall;
3190 ev_start (EV_A_ (W)w, active);
3191
3192 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3193 idles [ABSPRI (w)][active - 1] = w;
3194 }
3195
3196 EV_FREQUENT_CHECK;
3197}
3198
3199void
3200ev_idle_stop (EV_P_ ev_idle *w)
3201{
3202 clear_pending (EV_A_ (W)w);
3203 if (expect_false (!ev_is_active (w)))
3204 return;
3205
3206 EV_FREQUENT_CHECK;
3207
3208 {
3209 int active = ev_active (w);
3210
3211 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3212 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3213
3214 ev_stop (EV_A_ (W)w);
3215 --idleall;
3216 }
3217
3218 EV_FREQUENT_CHECK;
3219}
3220#endif
3221
3222void
3223ev_prepare_start (EV_P_ ev_prepare *w)
3224{
3225 if (expect_false (ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230 ev_start (EV_A_ (W)w, ++preparecnt);
3231 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3232 prepares [preparecnt - 1] = w;
3233
3234 EV_FREQUENT_CHECK;
3235}
3236
3237void
3238ev_prepare_stop (EV_P_ ev_prepare *w)
3239{
3240 clear_pending (EV_A_ (W)w);
3241 if (expect_false (!ev_is_active (w)))
3242 return;
3243
3244 EV_FREQUENT_CHECK;
3245
3246 {
3247 int active = ev_active (w);
3248
3249 prepares [active - 1] = prepares [--preparecnt];
3250 ev_active (prepares [active - 1]) = active;
3251 }
3252
3253 ev_stop (EV_A_ (W)w);
3254
3255 EV_FREQUENT_CHECK;
3256}
3257
3258void
3259ev_check_start (EV_P_ ev_check *w)
3260{
3261 if (expect_false (ev_is_active (w)))
3262 return;
3263
3264 EV_FREQUENT_CHECK;
3265
3266 ev_start (EV_A_ (W)w, ++checkcnt);
3267 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3268 checks [checkcnt - 1] = w;
3269
3270 EV_FREQUENT_CHECK;
3271}
3272
3273void
3274ev_check_stop (EV_P_ ev_check *w)
3275{
3276 clear_pending (EV_A_ (W)w);
3277 if (expect_false (!ev_is_active (w)))
3278 return;
3279
3280 EV_FREQUENT_CHECK;
3281
3282 {
3283 int active = ev_active (w);
3284
3285 checks [active - 1] = checks [--checkcnt];
3286 ev_active (checks [active - 1]) = active;
3287 }
3288
3289 ev_stop (EV_A_ (W)w);
3290
3291 EV_FREQUENT_CHECK;
3292}
3293
3294#if EV_EMBED_ENABLE
3295void noinline
3296ev_embed_sweep (EV_P_ ev_embed *w)
3297{
3298 ev_loop (w->other, EVLOOP_NONBLOCK);
3299}
3300
3301static void
3302embed_io_cb (EV_P_ ev_io *io, int revents)
3303{
3304 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3305
3306 if (ev_cb (w))
3307 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3308 else
3309 ev_loop (w->other, EVLOOP_NONBLOCK);
3310}
3311
3312static void
3313embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3314{
3315 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3316
3317 {
3318 EV_P = w->other;
3319
3320 while (fdchangecnt)
632 { 3321 {
633 periodics_reschedule (ev_now - now); 3322 fd_reify (EV_A);
634 3323 ev_loop (EV_A_ EVLOOP_NONBLOCK);
635 /* adjust timers. this is easy, as the offset is the same for all */
636 for (i = 0; i < timercnt; ++i)
637 timers [i]->at += diff;
638 } 3324 }
639
640 now = ev_now;
641 } 3325 }
642} 3326}
643 3327
644int ev_loop_done; 3328static void
645 3329embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
646void ev_loop (int flags)
647{ 3330{
648 double block; 3331 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
649 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
650 3332
651 do 3333 ev_embed_stop (EV_A_ w);
3334
652 { 3335 {
653 /* queue check watchers (and execute them) */ 3336 EV_P = w->other;
654 if (preparecnt)
655 {
656 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
657 call_pending ();
658 }
659 3337
660 /* update fd-related kernel structures */ 3338 ev_loop_fork (EV_A);
661 fd_reify (); 3339 ev_loop (EV_A_ EVLOOP_NONBLOCK);
662
663 /* calculate blocking time */
664
665 /* we only need this for !monotonic clockor timers, but as we basically
666 always have timers, we just calculate it always */
667 ev_now = ev_time ();
668
669 if (flags & EVLOOP_NONBLOCK || idlecnt)
670 block = 0.;
671 else
672 {
673 block = MAX_BLOCKTIME;
674
675 if (timercnt)
676 {
677 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge;
678 if (block > to) block = to;
679 }
680
681 if (periodiccnt)
682 {
683 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
684 if (block > to) block = to;
685 }
686
687 if (block < 0.) block = 0.;
688 }
689
690 method_poll (block);
691
692 /* update ev_now, do magic */
693 time_update ();
694
695 /* queue pending timers and reschedule them */
696 timers_reify (); /* relative timers called last */
697 periodics_reify (); /* absolute timers called first */
698
699 /* queue idle watchers unless io or timers are pending */
700 if (!pendingcnt)
701 queue_events ((W *)idles, idlecnt, EV_IDLE);
702
703 /* queue check watchers, to be executed first */
704 if (checkcnt)
705 queue_events ((W *)checks, checkcnt, EV_CHECK);
706
707 call_pending ();
708 } 3340 }
709 while (!ev_loop_done);
710 3341
711 if (ev_loop_done != 2) 3342 ev_embed_start (EV_A_ w);
712 ev_loop_done = 0;
713} 3343}
3344
3345#if 0
3346static void
3347embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3348{
3349 ev_idle_stop (EV_A_ idle);
3350}
3351#endif
3352
3353void
3354ev_embed_start (EV_P_ ev_embed *w)
3355{
3356 if (expect_false (ev_is_active (w)))
3357 return;
3358
3359 {
3360 EV_P = w->other;
3361 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3362 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3363 }
3364
3365 EV_FREQUENT_CHECK;
3366
3367 ev_set_priority (&w->io, ev_priority (w));
3368 ev_io_start (EV_A_ &w->io);
3369
3370 ev_prepare_init (&w->prepare, embed_prepare_cb);
3371 ev_set_priority (&w->prepare, EV_MINPRI);
3372 ev_prepare_start (EV_A_ &w->prepare);
3373
3374 ev_fork_init (&w->fork, embed_fork_cb);
3375 ev_fork_start (EV_A_ &w->fork);
3376
3377 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3378
3379 ev_start (EV_A_ (W)w, 1);
3380
3381 EV_FREQUENT_CHECK;
3382}
3383
3384void
3385ev_embed_stop (EV_P_ ev_embed *w)
3386{
3387 clear_pending (EV_A_ (W)w);
3388 if (expect_false (!ev_is_active (w)))
3389 return;
3390
3391 EV_FREQUENT_CHECK;
3392
3393 ev_io_stop (EV_A_ &w->io);
3394 ev_prepare_stop (EV_A_ &w->prepare);
3395 ev_fork_stop (EV_A_ &w->fork);
3396
3397 EV_FREQUENT_CHECK;
3398}
3399#endif
3400
3401#if EV_FORK_ENABLE
3402void
3403ev_fork_start (EV_P_ ev_fork *w)
3404{
3405 if (expect_false (ev_is_active (w)))
3406 return;
3407
3408 EV_FREQUENT_CHECK;
3409
3410 ev_start (EV_A_ (W)w, ++forkcnt);
3411 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3412 forks [forkcnt - 1] = w;
3413
3414 EV_FREQUENT_CHECK;
3415}
3416
3417void
3418ev_fork_stop (EV_P_ ev_fork *w)
3419{
3420 clear_pending (EV_A_ (W)w);
3421 if (expect_false (!ev_is_active (w)))
3422 return;
3423
3424 EV_FREQUENT_CHECK;
3425
3426 {
3427 int active = ev_active (w);
3428
3429 forks [active - 1] = forks [--forkcnt];
3430 ev_active (forks [active - 1]) = active;
3431 }
3432
3433 ev_stop (EV_A_ (W)w);
3434
3435 EV_FREQUENT_CHECK;
3436}
3437#endif
3438
3439#if EV_ASYNC_ENABLE
3440void
3441ev_async_start (EV_P_ ev_async *w)
3442{
3443 if (expect_false (ev_is_active (w)))
3444 return;
3445
3446 evpipe_init (EV_A);
3447
3448 EV_FREQUENT_CHECK;
3449
3450 ev_start (EV_A_ (W)w, ++asynccnt);
3451 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3452 asyncs [asynccnt - 1] = w;
3453
3454 EV_FREQUENT_CHECK;
3455}
3456
3457void
3458ev_async_stop (EV_P_ ev_async *w)
3459{
3460 clear_pending (EV_A_ (W)w);
3461 if (expect_false (!ev_is_active (w)))
3462 return;
3463
3464 EV_FREQUENT_CHECK;
3465
3466 {
3467 int active = ev_active (w);
3468
3469 asyncs [active - 1] = asyncs [--asynccnt];
3470 ev_active (asyncs [active - 1]) = active;
3471 }
3472
3473 ev_stop (EV_A_ (W)w);
3474
3475 EV_FREQUENT_CHECK;
3476}
3477
3478void
3479ev_async_send (EV_P_ ev_async *w)
3480{
3481 w->sent = 1;
3482 evpipe_write (EV_A_ &async_pending);
3483}
3484#endif
714 3485
715/*****************************************************************************/ 3486/*****************************************************************************/
716 3487
717static void
718wlist_add (WL *head, WL elem)
719{
720 elem->next = *head;
721 *head = elem;
722}
723
724static void
725wlist_del (WL *head, WL elem)
726{
727 while (*head)
728 {
729 if (*head == elem)
730 {
731 *head = elem->next;
732 return;
733 }
734
735 head = &(*head)->next;
736 }
737}
738
739static void
740ev_clear_pending (W w)
741{
742 if (w->pending)
743 {
744 pendings [w->pending - 1].w = 0;
745 w->pending = 0;
746 }
747}
748
749static void
750ev_start (W w, int active)
751{
752 w->active = active;
753}
754
755static void
756ev_stop (W w)
757{
758 w->active = 0;
759}
760
761/*****************************************************************************/
762
763void
764ev_io_start (struct ev_io *w)
765{
766 if (ev_is_active (w))
767 return;
768
769 int fd = w->fd;
770
771 assert (("ev_io_start called with negative fd", fd >= 0));
772
773 ev_start ((W)w, 1);
774 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
775 wlist_add ((WL *)&anfds[fd].head, (WL)w);
776
777 fd_change (fd);
778}
779
780void
781ev_io_stop (struct ev_io *w)
782{
783 ev_clear_pending ((W)w);
784 if (!ev_is_active (w))
785 return;
786
787 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
788 ev_stop ((W)w);
789
790 fd_change (w->fd);
791}
792
793void
794ev_timer_start (struct ev_timer *w)
795{
796 if (ev_is_active (w))
797 return;
798
799 w->at += now;
800
801 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
802
803 ev_start ((W)w, ++timercnt);
804 array_needsize (timers, timermax, timercnt, );
805 timers [timercnt - 1] = w;
806 upheap ((WT *)timers, timercnt - 1);
807}
808
809void
810ev_timer_stop (struct ev_timer *w)
811{
812 ev_clear_pending ((W)w);
813 if (!ev_is_active (w))
814 return;
815
816 if (w->active < timercnt--)
817 {
818 timers [w->active - 1] = timers [timercnt];
819 downheap ((WT *)timers, timercnt, w->active - 1);
820 }
821
822 w->at = w->repeat;
823
824 ev_stop ((W)w);
825}
826
827void
828ev_timer_again (struct ev_timer *w)
829{
830 if (ev_is_active (w))
831 {
832 if (w->repeat)
833 {
834 w->at = now + w->repeat;
835 downheap ((WT *)timers, timercnt, w->active - 1);
836 }
837 else
838 ev_timer_stop (w);
839 }
840 else if (w->repeat)
841 ev_timer_start (w);
842}
843
844void
845ev_periodic_start (struct ev_periodic *w)
846{
847 if (ev_is_active (w))
848 return;
849
850 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
851
852 /* this formula differs from the one in periodic_reify because we do not always round up */
853 if (w->interval)
854 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
855
856 ev_start ((W)w, ++periodiccnt);
857 array_needsize (periodics, periodicmax, periodiccnt, );
858 periodics [periodiccnt - 1] = w;
859 upheap ((WT *)periodics, periodiccnt - 1);
860}
861
862void
863ev_periodic_stop (struct ev_periodic *w)
864{
865 ev_clear_pending ((W)w);
866 if (!ev_is_active (w))
867 return;
868
869 if (w->active < periodiccnt--)
870 {
871 periodics [w->active - 1] = periodics [periodiccnt];
872 downheap ((WT *)periodics, periodiccnt, w->active - 1);
873 }
874
875 ev_stop ((W)w);
876}
877
878void
879ev_signal_start (struct ev_signal *w)
880{
881 if (ev_is_active (w))
882 return;
883
884 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
885
886 ev_start ((W)w, 1);
887 array_needsize (signals, signalmax, w->signum, signals_init);
888 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
889
890 if (!w->next)
891 {
892 struct sigaction sa;
893 sa.sa_handler = sighandler;
894 sigfillset (&sa.sa_mask);
895 sa.sa_flags = 0;
896 sigaction (w->signum, &sa, 0);
897 }
898}
899
900void
901ev_signal_stop (struct ev_signal *w)
902{
903 ev_clear_pending ((W)w);
904 if (!ev_is_active (w))
905 return;
906
907 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
908 ev_stop ((W)w);
909
910 if (!signals [w->signum - 1].head)
911 signal (w->signum, SIG_DFL);
912}
913
914void
915ev_idle_start (struct ev_idle *w)
916{
917 if (ev_is_active (w))
918 return;
919
920 ev_start ((W)w, ++idlecnt);
921 array_needsize (idles, idlemax, idlecnt, );
922 idles [idlecnt - 1] = w;
923}
924
925void
926ev_idle_stop (struct ev_idle *w)
927{
928 ev_clear_pending ((W)w);
929 if (ev_is_active (w))
930 return;
931
932 idles [w->active - 1] = idles [--idlecnt];
933 ev_stop ((W)w);
934}
935
936void
937ev_prepare_start (struct ev_prepare *w)
938{
939 if (ev_is_active (w))
940 return;
941
942 ev_start ((W)w, ++preparecnt);
943 array_needsize (prepares, preparemax, preparecnt, );
944 prepares [preparecnt - 1] = w;
945}
946
947void
948ev_prepare_stop (struct ev_prepare *w)
949{
950 ev_clear_pending ((W)w);
951 if (ev_is_active (w))
952 return;
953
954 prepares [w->active - 1] = prepares [--preparecnt];
955 ev_stop ((W)w);
956}
957
958void
959ev_check_start (struct ev_check *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 ev_start ((W)w, ++checkcnt);
965 array_needsize (checks, checkmax, checkcnt, );
966 checks [checkcnt - 1] = w;
967}
968
969void
970ev_check_stop (struct ev_check *w)
971{
972 ev_clear_pending ((W)w);
973 if (ev_is_active (w))
974 return;
975
976 checks [w->active - 1] = checks [--checkcnt];
977 ev_stop ((W)w);
978}
979
980void
981ev_child_start (struct ev_child *w)
982{
983 if (ev_is_active (w))
984 return;
985
986 ev_start ((W)w, 1);
987 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
988}
989
990void
991ev_child_stop (struct ev_child *w)
992{
993 ev_clear_pending ((W)w);
994 if (ev_is_active (w))
995 return;
996
997 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
998 ev_stop ((W)w);
999}
1000
1001/*****************************************************************************/
1002
1003struct ev_once 3488struct ev_once
1004{ 3489{
1005 struct ev_io io; 3490 ev_io io;
1006 struct ev_timer to; 3491 ev_timer to;
1007 void (*cb)(int revents, void *arg); 3492 void (*cb)(int revents, void *arg);
1008 void *arg; 3493 void *arg;
1009}; 3494};
1010 3495
1011static void 3496static void
1012once_cb (struct ev_once *once, int revents) 3497once_cb (EV_P_ struct ev_once *once, int revents)
1013{ 3498{
1014 void (*cb)(int revents, void *arg) = once->cb; 3499 void (*cb)(int revents, void *arg) = once->cb;
1015 void *arg = once->arg; 3500 void *arg = once->arg;
1016 3501
1017 ev_io_stop (&once->io); 3502 ev_io_stop (EV_A_ &once->io);
1018 ev_timer_stop (&once->to); 3503 ev_timer_stop (EV_A_ &once->to);
1019 free (once); 3504 ev_free (once);
1020 3505
1021 cb (revents, arg); 3506 cb (revents, arg);
1022} 3507}
1023 3508
1024static void 3509static void
1025once_cb_io (struct ev_io *w, int revents) 3510once_cb_io (EV_P_ ev_io *w, int revents)
1026{ 3511{
1027 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3512 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3513
3514 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1028} 3515}
1029 3516
1030static void 3517static void
1031once_cb_to (struct ev_timer *w, int revents) 3518once_cb_to (EV_P_ ev_timer *w, int revents)
1032{ 3519{
1033 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3520 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1034}
1035 3521
3522 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3523}
3524
1036void 3525void
1037ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3526ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1038{ 3527{
1039 struct ev_once *once = malloc (sizeof (struct ev_once)); 3528 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1040 3529
1041 if (!once) 3530 if (expect_false (!once))
3531 {
1042 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3532 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1043 else 3533 return;
1044 { 3534 }
3535
1045 once->cb = cb; 3536 once->cb = cb;
1046 once->arg = arg; 3537 once->arg = arg;
1047 3538
1048 ev_watcher_init (&once->io, once_cb_io); 3539 ev_init (&once->io, once_cb_io);
1049 if (fd >= 0) 3540 if (fd >= 0)
3541 {
3542 ev_io_set (&once->io, fd, events);
3543 ev_io_start (EV_A_ &once->io);
3544 }
3545
3546 ev_init (&once->to, once_cb_to);
3547 if (timeout >= 0.)
3548 {
3549 ev_timer_set (&once->to, timeout, 0.);
3550 ev_timer_start (EV_A_ &once->to);
3551 }
3552}
3553
3554/*****************************************************************************/
3555
3556#if EV_WALK_ENABLE
3557void
3558ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3559{
3560 int i, j;
3561 ev_watcher_list *wl, *wn;
3562
3563 if (types & (EV_IO | EV_EMBED))
3564 for (i = 0; i < anfdmax; ++i)
3565 for (wl = anfds [i].head; wl; )
1050 { 3566 {
1051 ev_io_set (&once->io, fd, events); 3567 wn = wl->next;
1052 ev_io_start (&once->io); 3568
3569#if EV_EMBED_ENABLE
3570 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3571 {
3572 if (types & EV_EMBED)
3573 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3574 }
3575 else
3576#endif
3577#if EV_USE_INOTIFY
3578 if (ev_cb ((ev_io *)wl) == infy_cb)
3579 ;
3580 else
3581#endif
3582 if ((ev_io *)wl != &pipe_w)
3583 if (types & EV_IO)
3584 cb (EV_A_ EV_IO, wl);
3585
3586 wl = wn;
1053 } 3587 }
1054 3588
1055 ev_watcher_init (&once->to, once_cb_to); 3589 if (types & (EV_TIMER | EV_STAT))
1056 if (timeout >= 0.) 3590 for (i = timercnt + HEAP0; i-- > HEAP0; )
3591#if EV_STAT_ENABLE
3592 /*TODO: timer is not always active*/
3593 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1057 { 3594 {
1058 ev_timer_set (&once->to, timeout, 0.); 3595 if (types & EV_STAT)
1059 ev_timer_start (&once->to); 3596 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1060 } 3597 }
1061 } 3598 else
1062} 3599#endif
3600 if (types & EV_TIMER)
3601 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1063 3602
1064/*****************************************************************************/ 3603#if EV_PERIODIC_ENABLE
3604 if (types & EV_PERIODIC)
3605 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3606 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3607#endif
1065 3608
1066#if 0 3609#if EV_IDLE_ENABLE
3610 if (types & EV_IDLE)
3611 for (j = NUMPRI; i--; )
3612 for (i = idlecnt [j]; i--; )
3613 cb (EV_A_ EV_IDLE, idles [j][i]);
3614#endif
1067 3615
1068struct ev_io wio; 3616#if EV_FORK_ENABLE
3617 if (types & EV_FORK)
3618 for (i = forkcnt; i--; )
3619 if (ev_cb (forks [i]) != embed_fork_cb)
3620 cb (EV_A_ EV_FORK, forks [i]);
3621#endif
1069 3622
1070static void 3623#if EV_ASYNC_ENABLE
1071sin_cb (struct ev_io *w, int revents) 3624 if (types & EV_ASYNC)
1072{ 3625 for (i = asynccnt; i--; )
1073 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3626 cb (EV_A_ EV_ASYNC, asyncs [i]);
1074} 3627#endif
1075 3628
1076static void 3629 if (types & EV_PREPARE)
1077ocb (struct ev_timer *w, int revents) 3630 for (i = preparecnt; i--; )
1078{ 3631#if EV_EMBED_ENABLE
1079 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3632 if (ev_cb (prepares [i]) != embed_prepare_cb)
1080 ev_timer_stop (w); 3633#endif
1081 ev_timer_start (w); 3634 cb (EV_A_ EV_PREPARE, prepares [i]);
1082}
1083 3635
1084static void 3636 if (types & EV_CHECK)
1085scb (struct ev_signal *w, int revents) 3637 for (i = checkcnt; i--; )
1086{ 3638 cb (EV_A_ EV_CHECK, checks [i]);
1087 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1088 ev_io_stop (&wio);
1089 ev_io_start (&wio);
1090}
1091 3639
1092static void 3640 if (types & EV_SIGNAL)
1093gcb (struct ev_signal *w, int revents)
1094{
1095 fprintf (stderr, "generic %x\n", revents);
1096
1097}
1098
1099int main (void)
1100{
1101 ev_init (0);
1102
1103 ev_io_init (&wio, sin_cb, 0, EV_READ);
1104 ev_io_start (&wio);
1105
1106 struct ev_timer t[10000];
1107
1108#if 0
1109 int i;
1110 for (i = 0; i < 10000; ++i) 3641 for (i = 0; i < EV_NSIG - 1; ++i)
1111 { 3642 for (wl = signals [i].head; wl; )
1112 struct ev_timer *w = t + i; 3643 {
1113 ev_watcher_init (w, ocb, i); 3644 wn = wl->next;
1114 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3645 cb (EV_A_ EV_SIGNAL, wl);
1115 ev_timer_start (w); 3646 wl = wn;
1116 if (drand48 () < 0.5) 3647 }
1117 ev_timer_stop (w);
1118 }
1119#endif
1120 3648
1121 struct ev_timer t1; 3649 if (types & EV_CHILD)
1122 ev_timer_init (&t1, ocb, 5, 10); 3650 for (i = EV_PID_HASHSIZE; i--; )
1123 ev_timer_start (&t1); 3651 for (wl = childs [i]; wl; )
1124 3652 {
1125 struct ev_signal sig; 3653 wn = wl->next;
1126 ev_signal_init (&sig, scb, SIGQUIT); 3654 cb (EV_A_ EV_CHILD, wl);
1127 ev_signal_start (&sig); 3655 wl = wn;
1128 3656 }
1129 struct ev_check cw; 3657/* EV_STAT 0x00001000 /* stat data changed */
1130 ev_check_init (&cw, gcb); 3658/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1131 ev_check_start (&cw);
1132
1133 struct ev_idle iw;
1134 ev_idle_init (&iw, gcb);
1135 ev_idle_start (&iw);
1136
1137 ev_loop (0);
1138
1139 return 0;
1140} 3659}
1141
1142#endif 3660#endif
1143 3661
3662#if EV_MULTIPLICITY
3663 #include "ev_wrap.h"
3664#endif
1144 3665
3666#ifdef __cplusplus
3667}
3668#endif
1145 3669
1146

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines