ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC vs.
Revision 1.316 by root, Fri Sep 18 21:02:12 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
168#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
169# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
170#endif 232#endif
171 233
172#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 236#endif
175 237
176#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
177# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
178#endif 244#endif
179 245
180#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
182#endif 248#endif
235# else 301# else
236# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
237# endif 303# endif
238#endif 304#endif
239 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
240#ifndef EV_USE_4HEAP 324#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 325# define EV_USE_4HEAP !EV_MINIMAL
242#endif 326#endif
243 327
244#ifndef EV_HEAP_CACHE_AT 328#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
246#endif 344#endif
247 345
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 347
250#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 365# include <sys/select.h>
268# endif 366# endif
269#endif 367#endif
270 368
271#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
272# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
273#endif 378#endif
274 379
275#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 381# include <winsock.h>
277#endif 382#endif
278 383
279#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
282# ifdef __cplusplus 397# ifdef __cplusplus
283extern "C" { 398extern "C" {
284# endif 399# endif
285int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus 401# ifdef __cplusplus
287} 402}
288# endif 403# endif
289#endif 404#endif
290 405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
291/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
292 442
293/* 443/*
294 * This is used to avoid floating point rounding problems. 444 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 445 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 446 * to ensure progress, time-wise, even when rounding
300 */ 450 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 452
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 455
307#if __GNUC__ >= 4 456#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
310#else 459#else
323# define inline_speed static noinline 472# define inline_speed static noinline
324#else 473#else
325# define inline_speed static inline 474# define inline_speed static inline
326#endif 475#endif
327 476
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
330 484
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
333 487
334typedef ev_watcher *W; 488typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
337 491
338#define ev_active(w) ((W)(w))->active 492#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 493#define ev_at(w) ((WT)(w))->at
340 494
341#if EV_USE_MONOTONIC 495#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 513#endif
346 514
347#ifdef _WIN32 515#ifdef _WIN32
348# include "ev_win32.c" 516# include "ev_win32.c"
349#endif 517#endif
357{ 525{
358 syserr_cb = cb; 526 syserr_cb = cb;
359} 527}
360 528
361static void noinline 529static void noinline
362syserr (const char *msg) 530ev_syserr (const char *msg)
363{ 531{
364 if (!msg) 532 if (!msg)
365 msg = "(libev) system error"; 533 msg = "(libev) system error";
366 534
367 if (syserr_cb) 535 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
415 583
416/*****************************************************************************/ 584/*****************************************************************************/
417 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
418typedef struct 590typedef struct
419{ 591{
420 WL head; 592 WL head;
421 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
423#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 601 SOCKET handle;
425#endif 602#endif
426} ANFD; 603} ANFD;
427 604
605/* stores the pending event set for a given watcher */
428typedef struct 606typedef struct
429{ 607{
430 W w; 608 W w;
431 int events; 609 int events; /* the pending event set for the given watcher */
432} ANPENDING; 610} ANPENDING;
433 611
434#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 613/* hash table entry per inotify-id */
436typedef struct 614typedef struct
439} ANFS; 617} ANFS;
440#endif 618#endif
441 619
442/* Heap Entry */ 620/* Heap Entry */
443#if EV_HEAP_CACHE_AT 621#if EV_HEAP_CACHE_AT
622 /* a heap element */
444 typedef struct { 623 typedef struct {
445 ev_tstamp at; 624 ev_tstamp at;
446 WT w; 625 WT w;
447 } ANHE; 626 } ANHE;
448 627
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 628 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 629 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 631#else
632 /* a heap element */
453 typedef WT ANHE; 633 typedef WT ANHE;
454 634
455 #define ANHE_w(he) (he) 635 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 636 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 637 #define ANHE_at_cache(he)
458#endif 638#endif
459 639
460#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
461 641
462 struct ev_loop 642 struct ev_loop
481 661
482 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
483 663
484#endif 664#endif
485 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
486/*****************************************************************************/ 678/*****************************************************************************/
487 679
680#ifndef EV_HAVE_EV_TIME
488ev_tstamp 681ev_tstamp
489ev_time (void) 682ev_time (void)
490{ 683{
491#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
492 struct timespec ts; 687 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 690 }
691#endif
692
496 struct timeval tv; 693 struct timeval tv;
497 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 696}
697#endif
501 698
502ev_tstamp inline_size 699inline_size ev_tstamp
503get_clock (void) 700get_clock (void)
504{ 701{
505#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
507 { 704 {
540 struct timeval tv; 737 struct timeval tv;
541 738
542 tv.tv_sec = (time_t)delay; 739 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
545 select (0, 0, 0, 0, &tv); 745 select (0, 0, 0, 0, &tv);
546#endif 746#endif
547 } 747 }
548} 748}
549 749
550/*****************************************************************************/ 750/*****************************************************************************/
551 751
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 753
554int inline_size 754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
555array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
556{ 758{
557 int ncur = cur + 1; 759 int ncur = cur + 1;
558 760
559 do 761 do
576array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
577{ 779{
578 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
580} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 786
582#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
584 { \ 789 { \
585 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 803 }
599#endif 804#endif
600 805
601#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 808
604/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
605 816
606void noinline 817void noinline
607ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
608{ 819{
609 W w_ = (W)w; 820 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
620 } 831 }
621} 832}
622 833
623void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 851{
626 int i; 852 int i;
627 853
628 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
630} 856}
631 857
632/*****************************************************************************/ 858/*****************************************************************************/
633 859
634void inline_size 860inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
649{ 862{
650 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
651 ev_io *w; 864 ev_io *w;
652 865
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 870 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
659 } 872 }
660} 873}
661 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
662void 886void
663ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 888{
665 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
667} 891}
668 892
669void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
670fd_reify (EV_P) 896fd_reify (EV_P)
671{ 897{
672 int i; 898 int i;
673 899
674 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 909 events |= (unsigned char)w->events;
684 910
685#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
686 if (events) 912 if (events)
687 { 913 {
688 unsigned long argp; 914 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 917 }
696#endif 918#endif
697 919
698 { 920 {
699 unsigned char o_events = anfd->events; 921 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 922 unsigned char o_reify = anfd->reify;
701 923
702 anfd->reify = 0; 924 anfd->reify = 0;
703 anfd->events = events; 925 anfd->events = events;
704 926
705 if (o_events != events || o_reify & EV_IOFDSET) 927 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 928 backend_modify (EV_A_ fd, o_events, events);
707 } 929 }
708 } 930 }
709 931
710 fdchangecnt = 0; 932 fdchangecnt = 0;
711} 933}
712 934
713void inline_size 935/* something about the given fd changed */
936inline_size void
714fd_change (EV_P_ int fd, int flags) 937fd_change (EV_P_ int fd, int flags)
715{ 938{
716 unsigned char reify = anfds [fd].reify; 939 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 940 anfds [fd].reify |= flags;
718 941
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
724 } 947 }
725} 948}
726 949
727void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
728fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
729{ 953{
730 ev_io *w; 954 ev_io *w;
731 955
732 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 960 }
737} 961}
738 962
739int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
740fd_valid (int fd) 965fd_valid (int fd)
741{ 966{
742#ifdef _WIN32 967#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
744#else 969#else
752{ 977{
753 int fd; 978 int fd;
754 979
755 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 981 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
759} 984}
760 985
761/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 987static void noinline
766 991
767 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 993 if (anfds [fd].events)
769 { 994 {
770 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
771 return; 996 break;
772 } 997 }
773} 998}
774 999
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1001static void noinline
780 1005
781 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1007 if (anfds [fd].events)
783 { 1008 {
784 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1012 }
787} 1013}
788 1014
789/*****************************************************************************/ 1015/*****************************************************************************/
790 1016
803#if EV_USE_4HEAP 1029#if EV_USE_4HEAP
804 1030
805#define DHEAP 4 1031#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0) 1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808 1034#define UPHEAP_DONE(p,k) ((p) == (k))
809/* towards the root */
810void inline_speed
811upheap (ANHE *heap, int k)
812{
813 ANHE he = heap [k];
814
815 for (;;)
816 {
817 int p = HPARENT (k);
818
819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
820 break;
821
822 heap [k] = heap [p];
823 ev_active (ANHE_w (heap [k])) = k;
824 k = p;
825 }
826
827 heap [k] = he;
828 ev_active (ANHE_w (he)) = k;
829}
830 1035
831/* away from the root */ 1036/* away from the root */
832void inline_speed 1037inline_speed void
833downheap (ANHE *heap, int N, int k) 1038downheap (ANHE *heap, int N, int k)
834{ 1039{
835 ANHE he = heap [k]; 1040 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0; 1041 ANHE *E = heap + N + HEAP0;
837 1042
838 for (;;) 1043 for (;;)
839 { 1044 {
840 ev_tstamp minat; 1045 ev_tstamp minat;
841 ANHE *minpos; 1046 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
843 1048
844 // find minimum child 1049 /* find minimum child */
845 if (expect_true (pos + DHEAP - 1 < E)) 1050 if (expect_true (pos + DHEAP - 1 < E))
846 { 1051 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 1075
871 heap [k] = he; 1076 heap [k] = he;
872 ev_active (ANHE_w (he)) = k; 1077 ev_active (ANHE_w (he)) = k;
873} 1078}
874 1079
875#else // 4HEAP 1080#else /* 4HEAP */
876 1081
877#define HEAP0 1 1082#define HEAP0 1
878#define HPARENT(k) ((k) >> 1) 1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
879 1085
880/* towards the root */ 1086/* away from the root */
881void inline_speed 1087inline_speed void
882upheap (ANHE *heap, int k) 1088downheap (ANHE *heap, int N, int k)
883{ 1089{
884 ANHE he = heap [k]; 1090 ANHE he = heap [k];
885 1091
886 for (;;) 1092 for (;;)
887 { 1093 {
888 int p = HPARENT (k); 1094 int c = k << 1;
889 1095
890 /* maybe we could use a dummy element at heap [0]? */ 1096 if (c >= N + HEAP0)
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break; 1097 break;
893 1098
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
917 ? 1 : 0; 1100 ? 1 : 0;
918 1101
919 if (ANHE_at (he) <= ANHE_at (heap [c])) 1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
920 break; 1103 break;
921 1104
928 heap [k] = he; 1111 heap [k] = he;
929 ev_active (ANHE_w (he)) = k; 1112 ev_active (ANHE_w (he)) = k;
930} 1113}
931#endif 1114#endif
932 1115
933void inline_size 1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
1129 heap [k] = heap [p];
1130 ev_active (ANHE_w (heap [k])) = k;
1131 k = p;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138/* move an element suitably so it is in a correct place */
1139inline_size void
934adjustheap (ANHE *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
935{ 1141{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k])) 1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
937 upheap (heap, k); 1143 upheap (heap, k);
938 else 1144 else
939 downheap (heap, N, k); 1145 downheap (heap, N, k);
940} 1146}
941 1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
1158}
1159
942/*****************************************************************************/ 1160/*****************************************************************************/
943 1161
1162/* associate signal watchers to a signal signal */
944typedef struct 1163typedef struct
945{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
946 WL head; 1169 WL head;
947 EV_ATOMIC_T gotsig;
948} ANSIG; 1170} ANSIG;
949 1171
950static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
951static int signalmax;
952
953static EV_ATOMIC_T gotsig;
954
955void inline_size
956signals_init (ANSIG *base, int count)
957{
958 while (count--)
959 {
960 base->head = 0;
961 base->gotsig = 0;
962
963 ++base;
964 }
965}
966 1173
967/*****************************************************************************/ 1174/*****************************************************************************/
968 1175
969void inline_speed 1176/* used to prepare libev internal fd's */
1177/* this is not fork-safe */
1178inline_speed void
970fd_intern (int fd) 1179fd_intern (int fd)
971{ 1180{
972#ifdef _WIN32 1181#ifdef _WIN32
973 int arg = 1; 1182 unsigned long arg = 1;
974 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
975#else 1184#else
976 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
977 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
978#endif 1187#endif
979} 1188}
980 1189
981static void noinline 1190static void noinline
982evpipe_init (EV_P) 1191evpipe_init (EV_P)
983{ 1192{
984 if (!ev_is_active (&pipeev)) 1193 if (!ev_is_active (&pipe_w))
985 { 1194 {
986#if EV_USE_EVENTFD 1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
987 if ((evfd = eventfd (0, 0)) >= 0) 1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
988 { 1201 {
989 evpipe [0] = -1; 1202 evpipe [0] = -1;
990 fd_intern (evfd); 1203 fd_intern (evfd); /* doing it twice doesn't hurt */
991 ev_io_set (&pipeev, evfd, EV_READ); 1204 ev_io_set (&pipe_w, evfd, EV_READ);
992 } 1205 }
993 else 1206 else
994#endif 1207#endif
995 { 1208 {
996 while (pipe (evpipe)) 1209 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe"); 1210 ev_syserr ("(libev) error creating signal/async pipe");
998 1211
999 fd_intern (evpipe [0]); 1212 fd_intern (evpipe [0]);
1000 fd_intern (evpipe [1]); 1213 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ); 1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1002 } 1215 }
1003 1216
1004 ev_io_start (EV_A_ &pipeev); 1217 ev_io_start (EV_A_ &pipe_w);
1005 ev_unref (EV_A); /* watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 } 1219 }
1007} 1220}
1008 1221
1009void inline_size 1222inline_size void
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{ 1224{
1012 if (!*flag) 1225 if (!*flag)
1013 { 1226 {
1014 int old_errno = errno; /* save errno because write might clobber it */ 1227 int old_errno = errno; /* save errno because write might clobber it */
1027 1240
1028 errno = old_errno; 1241 errno = old_errno;
1029 } 1242 }
1030} 1243}
1031 1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1032static void 1247static void
1033pipecb (EV_P_ ev_io *iow, int revents) 1248pipecb (EV_P_ ev_io *iow, int revents)
1034{ 1249{
1250 int i;
1251
1035#if EV_USE_EVENTFD 1252#if EV_USE_EVENTFD
1036 if (evfd >= 0) 1253 if (evfd >= 0)
1037 { 1254 {
1038 uint64_t counter; 1255 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t)); 1256 read (evfd, &counter, sizeof (uint64_t));
1043 { 1260 {
1044 char dummy; 1261 char dummy;
1045 read (evpipe [0], &dummy, 1); 1262 read (evpipe [0], &dummy, 1);
1046 } 1263 }
1047 1264
1048 if (gotsig && ev_is_default_loop (EV_A)) 1265 if (sig_pending)
1049 { 1266 {
1050 int signum; 1267 sig_pending = 0;
1051 gotsig = 0;
1052 1268
1053 for (signum = signalmax; signum--; ) 1269 for (i = EV_NSIG - 1; i--; )
1054 if (signals [signum].gotsig) 1270 if (expect_false (signals [i].pending))
1055 ev_feed_signal_event (EV_A_ signum + 1); 1271 ev_feed_signal_event (EV_A_ i + 1);
1056 } 1272 }
1057 1273
1058#if EV_ASYNC_ENABLE 1274#if EV_ASYNC_ENABLE
1059 if (gotasync) 1275 if (async_pending)
1060 { 1276 {
1061 int i; 1277 async_pending = 0;
1062 gotasync = 0;
1063 1278
1064 for (i = asynccnt; i--; ) 1279 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent) 1280 if (asyncs [i]->sent)
1066 { 1281 {
1067 asyncs [i]->sent = 0; 1282 asyncs [i]->sent = 0;
1075 1290
1076static void 1291static void
1077ev_sighandler (int signum) 1292ev_sighandler (int signum)
1078{ 1293{
1079#if EV_MULTIPLICITY 1294#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct; 1295 EV_P = signals [signum - 1].loop;
1081#endif 1296#endif
1082 1297
1083#if _WIN32 1298#if _WIN32
1084 signal (signum, ev_sighandler); 1299 signal (signum, ev_sighandler);
1085#endif 1300#endif
1086 1301
1087 signals [signum - 1].gotsig = 1; 1302 signals [signum - 1].pending = 1;
1088 evpipe_write (EV_A_ &gotsig); 1303 evpipe_write (EV_A_ &sig_pending);
1089} 1304}
1090 1305
1091void noinline 1306void noinline
1092ev_feed_signal_event (EV_P_ int signum) 1307ev_feed_signal_event (EV_P_ int signum)
1093{ 1308{
1094 WL w; 1309 WL w;
1095 1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1096#if EV_MULTIPLICITY 1316#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1317 /* it is permissible to try to feed a signal to the wrong loop */
1098#endif 1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1099 1319
1100 --signum; 1320 if (expect_false (signals [signum].loop != EV_A))
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return; 1321 return;
1322#endif
1104 1323
1105 signals [signum].gotsig = 0; 1324 signals [signum].pending = 0;
1106 1325
1107 for (w = signals [signum].head; w; w = w->next) 1326 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109} 1328}
1110 1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1111/*****************************************************************************/ 1350/*****************************************************************************/
1112 1351
1113static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
1114 1353
1115#ifndef _WIN32 1354#ifndef _WIN32
1118 1357
1119#ifndef WIFCONTINUED 1358#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0 1359# define WIFCONTINUED(status) 0
1121#endif 1360#endif
1122 1361
1123void inline_speed 1362/* handle a single child status event */
1363inline_speed void
1124child_reap (EV_P_ int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
1125{ 1365{
1126 ev_child *w; 1366 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1128 1368
1141 1381
1142#ifndef WCONTINUED 1382#ifndef WCONTINUED
1143# define WCONTINUED 0 1383# define WCONTINUED 0
1144#endif 1384#endif
1145 1385
1386/* called on sigchld etc., calls waitpid */
1146static void 1387static void
1147childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
1148{ 1389{
1149 int pid, status; 1390 int pid, status;
1150 1391
1231 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
1232 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1233 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
1234#endif 1475#endif
1235#ifdef __APPLE__ 1476#ifdef __APPLE__
1236 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
1237 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1238#endif 1480#endif
1239 1481
1240 return flags; 1482 return flags;
1241} 1483}
1242 1484
1256ev_backend (EV_P) 1498ev_backend (EV_P)
1257{ 1499{
1258 return backend; 1500 return backend;
1259} 1501}
1260 1502
1503#if EV_MINIMAL < 2
1261unsigned int 1504unsigned int
1262ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
1263{ 1506{
1264 return loop_count; 1507 return loop_count;
1265} 1508}
1266 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1267void 1516void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{ 1518{
1270 io_blocktime = interval; 1519 io_blocktime = interval;
1271} 1520}
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{ 1524{
1276 timeout_blocktime = interval; 1525 timeout_blocktime = interval;
1277} 1526}
1278 1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1279static void noinline 1553static void noinline
1280loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
1281{ 1555{
1282 if (!backend) 1556 if (!backend)
1283 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
1284#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1285 { 1570 {
1286 struct timespec ts; 1571 struct timespec ts;
1572
1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1288 have_monotonic = 1; 1574 have_monotonic = 1;
1289 } 1575 }
1290#endif 1576#endif
1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1291 1588
1292 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1590 mn_now = get_clock ();
1294 now_floor = mn_now; 1591 now_floor = mn_now;
1295 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1296 1596
1297 io_blocktime = 0.; 1597 io_blocktime = 0.;
1298 timeout_blocktime = 0.; 1598 timeout_blocktime = 0.;
1299 backend = 0; 1599 backend = 0;
1300 backend_fd = -1; 1600 backend_fd = -1;
1301 gotasync = 0; 1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1302#if EV_USE_INOTIFY 1605#if EV_USE_INOTIFY
1303 fs_fd = -2; 1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1304#endif 1607#endif
1305 1608#if EV_USE_SIGNALFD
1306 /* pid check not overridable via env */ 1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1307#ifndef _WIN32
1308 if (flags & EVFLAG_FORKCHECK)
1309 curpid = getpid ();
1310#endif 1610#endif
1311
1312 if (!(flags & EVFLAG_NOENV)
1313 && !enable_secure ()
1314 && getenv ("LIBEV_FLAGS"))
1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1316 1611
1317 if (!(flags & 0x0000ffffU)) 1612 if (!(flags & 0x0000ffffU))
1318 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
1319 1614
1320#if EV_USE_PORT 1615#if EV_USE_PORT
1331#endif 1626#endif
1332#if EV_USE_SELECT 1627#if EV_USE_SELECT
1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1334#endif 1629#endif
1335 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1336 ev_init (&pipeev, pipecb); 1633 ev_init (&pipe_w, pipecb);
1337 ev_set_priority (&pipeev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1338 } 1635 }
1339} 1636}
1340 1637
1638/* free up a loop structure */
1341static void noinline 1639static void noinline
1342loop_destroy (EV_P) 1640loop_destroy (EV_P)
1343{ 1641{
1344 int i; 1642 int i;
1345 1643
1346 if (ev_is_active (&pipeev)) 1644 if (ev_is_active (&pipe_w))
1347 { 1645 {
1348 ev_ref (EV_A); /* signal watcher */ 1646 /*ev_ref (EV_A);*/
1349 ev_io_stop (EV_A_ &pipeev); 1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1350 1648
1351#if EV_USE_EVENTFD 1649#if EV_USE_EVENTFD
1352 if (evfd >= 0) 1650 if (evfd >= 0)
1353 close (evfd); 1651 close (evfd);
1354#endif 1652#endif
1355 1653
1356 if (evpipe [0] >= 0) 1654 if (evpipe [0] >= 0)
1357 { 1655 {
1358 close (evpipe [0]); 1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1359 close (evpipe [1]); 1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1360 } 1658 }
1361 } 1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 {
1664 /*ev_ref (EV_A);*/
1665 /*ev_io_stop (EV_A_ &sigfd_w);*/
1666
1667 close (sigfd);
1668 }
1669#endif
1362 1670
1363#if EV_USE_INOTIFY 1671#if EV_USE_INOTIFY
1364 if (fs_fd >= 0) 1672 if (fs_fd >= 0)
1365 close (fs_fd); 1673 close (fs_fd);
1366#endif 1674#endif
1390#if EV_IDLE_ENABLE 1698#if EV_IDLE_ENABLE
1391 array_free (idle, [i]); 1699 array_free (idle, [i]);
1392#endif 1700#endif
1393 } 1701 }
1394 1702
1395 ev_free (anfds); anfdmax = 0; 1703 ev_free (anfds); anfds = 0; anfdmax = 0;
1396 1704
1397 /* have to use the microsoft-never-gets-it-right macro */ 1705 /* have to use the microsoft-never-gets-it-right macro */
1706 array_free (rfeed, EMPTY);
1398 array_free (fdchange, EMPTY); 1707 array_free (fdchange, EMPTY);
1399 array_free (timer, EMPTY); 1708 array_free (timer, EMPTY);
1400#if EV_PERIODIC_ENABLE 1709#if EV_PERIODIC_ENABLE
1401 array_free (periodic, EMPTY); 1710 array_free (periodic, EMPTY);
1402#endif 1711#endif
1411 1720
1412 backend = 0; 1721 backend = 0;
1413} 1722}
1414 1723
1415#if EV_USE_INOTIFY 1724#if EV_USE_INOTIFY
1416void inline_size infy_fork (EV_P); 1725inline_size void infy_fork (EV_P);
1417#endif 1726#endif
1418 1727
1419void inline_size 1728inline_size void
1420loop_fork (EV_P) 1729loop_fork (EV_P)
1421{ 1730{
1422#if EV_USE_PORT 1731#if EV_USE_PORT
1423 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1732 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1424#endif 1733#endif
1430#endif 1739#endif
1431#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1432 infy_fork (EV_A); 1741 infy_fork (EV_A);
1433#endif 1742#endif
1434 1743
1435 if (ev_is_active (&pipeev)) 1744 if (ev_is_active (&pipe_w))
1436 { 1745 {
1437 /* this "locks" the handlers against writing to the pipe */ 1746 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */ 1747 /* while we modify the fd vars */
1439 gotsig = 1; 1748 sig_pending = 1;
1440#if EV_ASYNC_ENABLE 1749#if EV_ASYNC_ENABLE
1441 gotasync = 1; 1750 async_pending = 1;
1442#endif 1751#endif
1443 1752
1444 ev_ref (EV_A); 1753 ev_ref (EV_A);
1445 ev_io_stop (EV_A_ &pipeev); 1754 ev_io_stop (EV_A_ &pipe_w);
1446 1755
1447#if EV_USE_EVENTFD 1756#if EV_USE_EVENTFD
1448 if (evfd >= 0) 1757 if (evfd >= 0)
1449 close (evfd); 1758 close (evfd);
1450#endif 1759#endif
1451 1760
1452 if (evpipe [0] >= 0) 1761 if (evpipe [0] >= 0)
1453 { 1762 {
1454 close (evpipe [0]); 1763 EV_WIN32_CLOSE_FD (evpipe [0]);
1455 close (evpipe [1]); 1764 EV_WIN32_CLOSE_FD (evpipe [1]);
1456 } 1765 }
1457 1766
1458 evpipe_init (EV_A); 1767 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */ 1768 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ); 1769 pipecb (EV_A_ &pipe_w, EV_READ);
1461 } 1770 }
1462 1771
1463 postfork = 0; 1772 postfork = 0;
1464} 1773}
1465 1774
1466#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1776
1467struct ev_loop * 1777struct ev_loop *
1468ev_loop_new (unsigned int flags) 1778ev_loop_new (unsigned int flags)
1469{ 1779{
1470 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1780 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1471 1781
1472 memset (loop, 0, sizeof (struct ev_loop)); 1782 memset (EV_A, 0, sizeof (struct ev_loop));
1473
1474 loop_init (EV_A_ flags); 1783 loop_init (EV_A_ flags);
1475 1784
1476 if (ev_backend (EV_A)) 1785 if (ev_backend (EV_A))
1477 return loop; 1786 return EV_A;
1478 1787
1479 return 0; 1788 return 0;
1480} 1789}
1481 1790
1482void 1791void
1488 1797
1489void 1798void
1490ev_loop_fork (EV_P) 1799ev_loop_fork (EV_P)
1491{ 1800{
1492 postfork = 1; /* must be in line with ev_default_fork */ 1801 postfork = 1; /* must be in line with ev_default_fork */
1802}
1803#endif /* multiplicity */
1804
1805#if EV_VERIFY
1806static void noinline
1807verify_watcher (EV_P_ W w)
1808{
1809 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1810
1811 if (w->pending)
1812 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1813}
1814
1815static void noinline
1816verify_heap (EV_P_ ANHE *heap, int N)
1817{
1818 int i;
1819
1820 for (i = HEAP0; i < N + HEAP0; ++i)
1821 {
1822 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1823 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1824 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1825
1826 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1827 }
1828}
1829
1830static void noinline
1831array_verify (EV_P_ W *ws, int cnt)
1832{
1833 while (cnt--)
1834 {
1835 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1836 verify_watcher (EV_A_ ws [cnt]);
1837 }
1838}
1839#endif
1840
1841#if EV_MINIMAL < 2
1842void
1843ev_loop_verify (EV_P)
1844{
1845#if EV_VERIFY
1846 int i;
1847 WL w;
1848
1849 assert (activecnt >= -1);
1850
1851 assert (fdchangemax >= fdchangecnt);
1852 for (i = 0; i < fdchangecnt; ++i)
1853 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1854
1855 assert (anfdmax >= 0);
1856 for (i = 0; i < anfdmax; ++i)
1857 for (w = anfds [i].head; w; w = w->next)
1858 {
1859 verify_watcher (EV_A_ (W)w);
1860 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1861 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1862 }
1863
1864 assert (timermax >= timercnt);
1865 verify_heap (EV_A_ timers, timercnt);
1866
1867#if EV_PERIODIC_ENABLE
1868 assert (periodicmax >= periodiccnt);
1869 verify_heap (EV_A_ periodics, periodiccnt);
1870#endif
1871
1872 for (i = NUMPRI; i--; )
1873 {
1874 assert (pendingmax [i] >= pendingcnt [i]);
1875#if EV_IDLE_ENABLE
1876 assert (idleall >= 0);
1877 assert (idlemax [i] >= idlecnt [i]);
1878 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1879#endif
1880 }
1881
1882#if EV_FORK_ENABLE
1883 assert (forkmax >= forkcnt);
1884 array_verify (EV_A_ (W *)forks, forkcnt);
1885#endif
1886
1887#if EV_ASYNC_ENABLE
1888 assert (asyncmax >= asynccnt);
1889 array_verify (EV_A_ (W *)asyncs, asynccnt);
1890#endif
1891
1892 assert (preparemax >= preparecnt);
1893 array_verify (EV_A_ (W *)prepares, preparecnt);
1894
1895 assert (checkmax >= checkcnt);
1896 array_verify (EV_A_ (W *)checks, checkcnt);
1897
1898# if 0
1899 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1900 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1901# endif
1902#endif
1493} 1903}
1494#endif 1904#endif
1495 1905
1496#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1497struct ev_loop * 1907struct ev_loop *
1502#endif 1912#endif
1503{ 1913{
1504 if (!ev_default_loop_ptr) 1914 if (!ev_default_loop_ptr)
1505 { 1915 {
1506#if EV_MULTIPLICITY 1916#if EV_MULTIPLICITY
1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1917 EV_P = ev_default_loop_ptr = &default_loop_struct;
1508#else 1918#else
1509 ev_default_loop_ptr = 1; 1919 ev_default_loop_ptr = 1;
1510#endif 1920#endif
1511 1921
1512 loop_init (EV_A_ flags); 1922 loop_init (EV_A_ flags);
1529 1939
1530void 1940void
1531ev_default_destroy (void) 1941ev_default_destroy (void)
1532{ 1942{
1533#if EV_MULTIPLICITY 1943#if EV_MULTIPLICITY
1534 struct ev_loop *loop = ev_default_loop_ptr; 1944 EV_P = ev_default_loop_ptr;
1535#endif 1945#endif
1946
1947 ev_default_loop_ptr = 0;
1536 1948
1537#ifndef _WIN32 1949#ifndef _WIN32
1538 ev_ref (EV_A); /* child watcher */ 1950 ev_ref (EV_A); /* child watcher */
1539 ev_signal_stop (EV_A_ &childev); 1951 ev_signal_stop (EV_A_ &childev);
1540#endif 1952#endif
1544 1956
1545void 1957void
1546ev_default_fork (void) 1958ev_default_fork (void)
1547{ 1959{
1548#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
1549 struct ev_loop *loop = ev_default_loop_ptr; 1961 EV_P = ev_default_loop_ptr;
1550#endif 1962#endif
1551 1963
1552 if (backend)
1553 postfork = 1; /* must be in line with ev_loop_fork */ 1964 postfork = 1; /* must be in line with ev_loop_fork */
1554} 1965}
1555 1966
1556/*****************************************************************************/ 1967/*****************************************************************************/
1557 1968
1558void 1969void
1559ev_invoke (EV_P_ void *w, int revents) 1970ev_invoke (EV_P_ void *w, int revents)
1560{ 1971{
1561 EV_CB_INVOKE ((W)w, revents); 1972 EV_CB_INVOKE ((W)w, revents);
1562} 1973}
1563 1974
1564void inline_speed 1975unsigned int
1565call_pending (EV_P) 1976ev_pending_count (EV_P)
1977{
1978 int pri;
1979 unsigned int count = 0;
1980
1981 for (pri = NUMPRI; pri--; )
1982 count += pendingcnt [pri];
1983
1984 return count;
1985}
1986
1987void noinline
1988ev_invoke_pending (EV_P)
1566{ 1989{
1567 int pri; 1990 int pri;
1568 1991
1569 for (pri = NUMPRI; pri--; ) 1992 for (pri = NUMPRI; pri--; )
1570 while (pendingcnt [pri]) 1993 while (pendingcnt [pri])
1571 { 1994 {
1572 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1995 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1573 1996
1574 if (expect_true (p->w))
1575 {
1576 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1997 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1998 /* ^ this is no longer true, as pending_w could be here */
1577 1999
1578 p->w->pending = 0; 2000 p->w->pending = 0;
1579 EV_CB_INVOKE (p->w, p->events); 2001 EV_CB_INVOKE (p->w, p->events);
1580 } 2002 EV_FREQUENT_CHECK;
1581 } 2003 }
1582} 2004}
1583 2005
1584#if EV_IDLE_ENABLE 2006#if EV_IDLE_ENABLE
1585void inline_size 2007/* make idle watchers pending. this handles the "call-idle */
2008/* only when higher priorities are idle" logic */
2009inline_size void
1586idle_reify (EV_P) 2010idle_reify (EV_P)
1587{ 2011{
1588 if (expect_false (idleall)) 2012 if (expect_false (idleall))
1589 { 2013 {
1590 int pri; 2014 int pri;
1602 } 2026 }
1603 } 2027 }
1604} 2028}
1605#endif 2029#endif
1606 2030
1607void inline_size 2031/* make timers pending */
2032inline_size void
1608timers_reify (EV_P) 2033timers_reify (EV_P)
1609{ 2034{
2035 EV_FREQUENT_CHECK;
2036
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2037 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 { 2038 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2039 do
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 { 2040 {
2041 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2042
2043 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2044
2045 /* first reschedule or stop timer */
2046 if (w->repeat)
2047 {
1619 ev_at (w) += w->repeat; 2048 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now) 2049 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now; 2050 ev_at (w) = mn_now;
1622 2051
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2052 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624 2053
1625 ANHE_at_set (timers [HEAP0]); 2054 ANHE_at_cache (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0); 2055 downheap (timers, timercnt, HEAP0);
2056 }
2057 else
2058 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2059
2060 EV_FREQUENT_CHECK;
2061 feed_reverse (EV_A_ (W)w);
1627 } 2062 }
1628 else 2063 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630 2064
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2065 feed_reverse_done (EV_A_ EV_TIMEOUT);
1632 } 2066 }
1633} 2067}
1634 2068
1635#if EV_PERIODIC_ENABLE 2069#if EV_PERIODIC_ENABLE
1636void inline_size 2070/* make periodics pending */
2071inline_size void
1637periodics_reify (EV_P) 2072periodics_reify (EV_P)
1638{ 2073{
2074 EV_FREQUENT_CHECK;
2075
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2076 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 { 2077 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2078 int feed_count = 0;
1642 2079
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2080 do
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 { 2081 {
2082 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2083
2084 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2085
2086 /* first reschedule or stop timer */
2087 if (w->reschedule_cb)
2088 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649 2090
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2091 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651 2092
1652 ANHE_at_set (periodics [HEAP0]); 2093 ANHE_at_cache (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0); 2094 downheap (periodics, periodiccnt, HEAP0);
2095 }
2096 else if (w->interval)
2097 {
2098 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2099 /* if next trigger time is not sufficiently in the future, put it there */
2100 /* this might happen because of floating point inexactness */
2101 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2102 {
2103 ev_at (w) += w->interval;
2104
2105 /* if interval is unreasonably low we might still have a time in the past */
2106 /* so correct this. this will make the periodic very inexact, but the user */
2107 /* has effectively asked to get triggered more often than possible */
2108 if (ev_at (w) < ev_rt_now)
2109 ev_at (w) = ev_rt_now;
2110 }
2111
2112 ANHE_at_cache (periodics [HEAP0]);
2113 downheap (periodics, periodiccnt, HEAP0);
2114 }
2115 else
2116 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2117
2118 EV_FREQUENT_CHECK;
2119 feed_reverse (EV_A_ (W)w);
1654 } 2120 }
1655 else if (w->interval) 2121 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663 2122
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2123 feed_reverse_done (EV_A_ EV_PERIODIC);
1678 } 2124 }
1679} 2125}
1680 2126
2127/* simply recalculate all periodics */
2128/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1681static void noinline 2129static void noinline
1682periodics_reschedule (EV_P) 2130periodics_reschedule (EV_P)
1683{ 2131{
1684 int i; 2132 int i;
1685 2133
1691 if (w->reschedule_cb) 2139 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2140 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval) 2141 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 2143
1696 ANHE_at_set (periodics [i]); 2144 ANHE_at_cache (periodics [i]);
1697 } 2145 }
1698 2146
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2147 reheap (periodics, periodiccnt);
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2148}
2149#endif
2150
2151/* adjust all timers by a given offset */
2152static void noinline
2153timers_reschedule (EV_P_ ev_tstamp adjust)
2154{
2155 int i;
2156
1701 for (i = 0; i < periodiccnt; ++i) 2157 for (i = 0; i < timercnt; ++i)
1702 upheap (periodics, i + HEAP0); 2158 {
2159 ANHE *he = timers + i + HEAP0;
2160 ANHE_w (*he)->at += adjust;
2161 ANHE_at_cache (*he);
2162 }
1703} 2163}
1704#endif
1705 2164
1706void inline_speed 2165/* fetch new monotonic and realtime times from the kernel */
2166/* also detetc if there was a timejump, and act accordingly */
2167inline_speed void
1707time_update (EV_P_ ev_tstamp max_block) 2168time_update (EV_P_ ev_tstamp max_block)
1708{ 2169{
1709 int i;
1710
1711#if EV_USE_MONOTONIC 2170#if EV_USE_MONOTONIC
1712 if (expect_true (have_monotonic)) 2171 if (expect_true (have_monotonic))
1713 { 2172 {
2173 int i;
1714 ev_tstamp odiff = rtmn_diff; 2174 ev_tstamp odiff = rtmn_diff;
1715 2175
1716 mn_now = get_clock (); 2176 mn_now = get_clock ();
1717 2177
1718 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2178 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1744 ev_rt_now = ev_time (); 2204 ev_rt_now = ev_time ();
1745 mn_now = get_clock (); 2205 mn_now = get_clock ();
1746 now_floor = mn_now; 2206 now_floor = mn_now;
1747 } 2207 }
1748 2208
2209 /* no timer adjustment, as the monotonic clock doesn't jump */
2210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1749# if EV_PERIODIC_ENABLE 2211# if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2212 periodics_reschedule (EV_A);
1751# endif 2213# endif
1752 /* no timer adjustment, as the monotonic clock doesn't jump */
1753 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1754 } 2214 }
1755 else 2215 else
1756#endif 2216#endif
1757 { 2217 {
1758 ev_rt_now = ev_time (); 2218 ev_rt_now = ev_time ();
1759 2219
1760 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2220 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1761 { 2221 {
2222 /* adjust timers. this is easy, as the offset is the same for all of them */
2223 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1762#if EV_PERIODIC_ENABLE 2224#if EV_PERIODIC_ENABLE
1763 periodics_reschedule (EV_A); 2225 periodics_reschedule (EV_A);
1764#endif 2226#endif
1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1772 } 2227 }
1773 2228
1774 mn_now = ev_rt_now; 2229 mn_now = ev_rt_now;
1775 } 2230 }
1776} 2231}
1777 2232
1778void 2233void
1779ev_ref (EV_P)
1780{
1781 ++activecnt;
1782}
1783
1784void
1785ev_unref (EV_P)
1786{
1787 --activecnt;
1788}
1789
1790static int loop_done;
1791
1792void
1793ev_loop (EV_P_ int flags) 2234ev_loop (EV_P_ int flags)
1794{ 2235{
2236#if EV_MINIMAL < 2
2237 ++loop_depth;
2238#endif
2239
2240 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2241
1795 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
1796 2243
1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2244 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1798 2245
1799 do 2246 do
1800 { 2247 {
2248#if EV_VERIFY >= 2
2249 ev_loop_verify (EV_A);
2250#endif
2251
1801#ifndef _WIN32 2252#ifndef _WIN32
1802 if (expect_false (curpid)) /* penalise the forking check even more */ 2253 if (expect_false (curpid)) /* penalise the forking check even more */
1803 if (expect_false (getpid () != curpid)) 2254 if (expect_false (getpid () != curpid))
1804 { 2255 {
1805 curpid = getpid (); 2256 curpid = getpid ();
1811 /* we might have forked, so queue fork handlers */ 2262 /* we might have forked, so queue fork handlers */
1812 if (expect_false (postfork)) 2263 if (expect_false (postfork))
1813 if (forkcnt) 2264 if (forkcnt)
1814 { 2265 {
1815 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2266 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1816 call_pending (EV_A); 2267 EV_INVOKE_PENDING;
1817 } 2268 }
1818#endif 2269#endif
1819 2270
1820 /* queue prepare watchers (and execute them) */ 2271 /* queue prepare watchers (and execute them) */
1821 if (expect_false (preparecnt)) 2272 if (expect_false (preparecnt))
1822 { 2273 {
1823 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2274 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1824 call_pending (EV_A); 2275 EV_INVOKE_PENDING;
1825 } 2276 }
1826 2277
1827 if (expect_false (!activecnt)) 2278 if (expect_false (loop_done))
1828 break; 2279 break;
1829 2280
1830 /* we might have forked, so reify kernel state if necessary */ 2281 /* we might have forked, so reify kernel state if necessary */
1831 if (expect_false (postfork)) 2282 if (expect_false (postfork))
1832 loop_fork (EV_A); 2283 loop_fork (EV_A);
1839 ev_tstamp waittime = 0.; 2290 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.; 2291 ev_tstamp sleeptime = 0.;
1841 2292
1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2293 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1843 { 2294 {
2295 /* remember old timestamp for io_blocktime calculation */
2296 ev_tstamp prev_mn_now = mn_now;
2297
1844 /* update time to cancel out callback processing overhead */ 2298 /* update time to cancel out callback processing overhead */
1845 time_update (EV_A_ 1e100); 2299 time_update (EV_A_ 1e100);
1846 2300
1847 waittime = MAX_BLOCKTIME; 2301 waittime = MAX_BLOCKTIME;
1848 2302
1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2312 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1859 if (waittime > to) waittime = to; 2313 if (waittime > to) waittime = to;
1860 } 2314 }
1861#endif 2315#endif
1862 2316
2317 /* don't let timeouts decrease the waittime below timeout_blocktime */
1863 if (expect_false (waittime < timeout_blocktime)) 2318 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime; 2319 waittime = timeout_blocktime;
1865 2320
1866 sleeptime = waittime - backend_fudge; 2321 /* extra check because io_blocktime is commonly 0 */
1867
1868 if (expect_true (sleeptime > io_blocktime)) 2322 if (expect_false (io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 { 2323 {
2324 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2325
2326 if (sleeptime > waittime - backend_fudge)
2327 sleeptime = waittime - backend_fudge;
2328
2329 if (expect_true (sleeptime > 0.))
2330 {
1873 ev_sleep (sleeptime); 2331 ev_sleep (sleeptime);
1874 waittime -= sleeptime; 2332 waittime -= sleeptime;
2333 }
1875 } 2334 }
1876 } 2335 }
1877 2336
2337#if EV_MINIMAL < 2
1878 ++loop_count; 2338 ++loop_count;
2339#endif
2340 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1879 backend_poll (EV_A_ waittime); 2341 backend_poll (EV_A_ waittime);
2342 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1880 2343
1881 /* update ev_rt_now, do magic */ 2344 /* update ev_rt_now, do magic */
1882 time_update (EV_A_ waittime + sleeptime); 2345 time_update (EV_A_ waittime + sleeptime);
1883 } 2346 }
1884 2347
1895 2358
1896 /* queue check watchers, to be executed first */ 2359 /* queue check watchers, to be executed first */
1897 if (expect_false (checkcnt)) 2360 if (expect_false (checkcnt))
1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1899 2362
1900 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1901 } 2364 }
1902 while (expect_true ( 2365 while (expect_true (
1903 activecnt 2366 activecnt
1904 && !loop_done 2367 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2368 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 )); 2369 ));
1907 2370
1908 if (loop_done == EVUNLOOP_ONE) 2371 if (loop_done == EVUNLOOP_ONE)
1909 loop_done = EVUNLOOP_CANCEL; 2372 loop_done = EVUNLOOP_CANCEL;
2373
2374#if EV_MINIMAL < 2
2375 --loop_depth;
2376#endif
1910} 2377}
1911 2378
1912void 2379void
1913ev_unloop (EV_P_ int how) 2380ev_unloop (EV_P_ int how)
1914{ 2381{
1915 loop_done = how; 2382 loop_done = how;
1916} 2383}
1917 2384
2385void
2386ev_ref (EV_P)
2387{
2388 ++activecnt;
2389}
2390
2391void
2392ev_unref (EV_P)
2393{
2394 --activecnt;
2395}
2396
2397void
2398ev_now_update (EV_P)
2399{
2400 time_update (EV_A_ 1e100);
2401}
2402
2403void
2404ev_suspend (EV_P)
2405{
2406 ev_now_update (EV_A);
2407}
2408
2409void
2410ev_resume (EV_P)
2411{
2412 ev_tstamp mn_prev = mn_now;
2413
2414 ev_now_update (EV_A);
2415 timers_reschedule (EV_A_ mn_now - mn_prev);
2416#if EV_PERIODIC_ENABLE
2417 /* TODO: really do this? */
2418 periodics_reschedule (EV_A);
2419#endif
2420}
2421
1918/*****************************************************************************/ 2422/*****************************************************************************/
2423/* singly-linked list management, used when the expected list length is short */
1919 2424
1920void inline_size 2425inline_size void
1921wlist_add (WL *head, WL elem) 2426wlist_add (WL *head, WL elem)
1922{ 2427{
1923 elem->next = *head; 2428 elem->next = *head;
1924 *head = elem; 2429 *head = elem;
1925} 2430}
1926 2431
1927void inline_size 2432inline_size void
1928wlist_del (WL *head, WL elem) 2433wlist_del (WL *head, WL elem)
1929{ 2434{
1930 while (*head) 2435 while (*head)
1931 { 2436 {
1932 if (*head == elem) 2437 if (expect_true (*head == elem))
1933 { 2438 {
1934 *head = elem->next; 2439 *head = elem->next;
1935 return; 2440 break;
1936 } 2441 }
1937 2442
1938 head = &(*head)->next; 2443 head = &(*head)->next;
1939 } 2444 }
1940} 2445}
1941 2446
1942void inline_speed 2447/* internal, faster, version of ev_clear_pending */
2448inline_speed void
1943clear_pending (EV_P_ W w) 2449clear_pending (EV_P_ W w)
1944{ 2450{
1945 if (w->pending) 2451 if (w->pending)
1946 { 2452 {
1947 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2453 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1948 w->pending = 0; 2454 w->pending = 0;
1949 } 2455 }
1950} 2456}
1951 2457
1952int 2458int
1956 int pending = w_->pending; 2462 int pending = w_->pending;
1957 2463
1958 if (expect_true (pending)) 2464 if (expect_true (pending))
1959 { 2465 {
1960 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2466 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2467 p->w = (W)&pending_w;
1961 w_->pending = 0; 2468 w_->pending = 0;
1962 p->w = 0;
1963 return p->events; 2469 return p->events;
1964 } 2470 }
1965 else 2471 else
1966 return 0; 2472 return 0;
1967} 2473}
1968 2474
1969void inline_size 2475inline_size void
1970pri_adjust (EV_P_ W w) 2476pri_adjust (EV_P_ W w)
1971{ 2477{
1972 int pri = w->priority; 2478 int pri = ev_priority (w);
1973 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2479 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1974 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2480 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1975 w->priority = pri; 2481 ev_set_priority (w, pri);
1976} 2482}
1977 2483
1978void inline_speed 2484inline_speed void
1979ev_start (EV_P_ W w, int active) 2485ev_start (EV_P_ W w, int active)
1980{ 2486{
1981 pri_adjust (EV_A_ w); 2487 pri_adjust (EV_A_ w);
1982 w->active = active; 2488 w->active = active;
1983 ev_ref (EV_A); 2489 ev_ref (EV_A);
1984} 2490}
1985 2491
1986void inline_size 2492inline_size void
1987ev_stop (EV_P_ W w) 2493ev_stop (EV_P_ W w)
1988{ 2494{
1989 ev_unref (EV_A); 2495 ev_unref (EV_A);
1990 w->active = 0; 2496 w->active = 0;
1991} 2497}
1998 int fd = w->fd; 2504 int fd = w->fd;
1999 2505
2000 if (expect_false (ev_is_active (w))) 2506 if (expect_false (ev_is_active (w)))
2001 return; 2507 return;
2002 2508
2003 assert (("ev_io_start called with negative fd", fd >= 0)); 2509 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2510 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2511
2512 EV_FREQUENT_CHECK;
2004 2513
2005 ev_start (EV_A_ (W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2515 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2007 wlist_add (&anfds[fd].head, (WL)w); 2516 wlist_add (&anfds[fd].head, (WL)w);
2008 2517
2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2518 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2010 w->events &= ~EV_IOFDSET; 2519 w->events &= ~EV__IOFDSET;
2520
2521 EV_FREQUENT_CHECK;
2011} 2522}
2012 2523
2013void noinline 2524void noinline
2014ev_io_stop (EV_P_ ev_io *w) 2525ev_io_stop (EV_P_ ev_io *w)
2015{ 2526{
2016 clear_pending (EV_A_ (W)w); 2527 clear_pending (EV_A_ (W)w);
2017 if (expect_false (!ev_is_active (w))) 2528 if (expect_false (!ev_is_active (w)))
2018 return; 2529 return;
2019 2530
2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2531 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2532
2533 EV_FREQUENT_CHECK;
2021 2534
2022 wlist_del (&anfds[w->fd].head, (WL)w); 2535 wlist_del (&anfds[w->fd].head, (WL)w);
2023 ev_stop (EV_A_ (W)w); 2536 ev_stop (EV_A_ (W)w);
2024 2537
2025 fd_change (EV_A_ w->fd, 1); 2538 fd_change (EV_A_ w->fd, 1);
2539
2540 EV_FREQUENT_CHECK;
2026} 2541}
2027 2542
2028void noinline 2543void noinline
2029ev_timer_start (EV_P_ ev_timer *w) 2544ev_timer_start (EV_P_ ev_timer *w)
2030{ 2545{
2031 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
2032 return; 2547 return;
2033 2548
2034 ev_at (w) += mn_now; 2549 ev_at (w) += mn_now;
2035 2550
2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2551 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2037 2552
2553 EV_FREQUENT_CHECK;
2554
2555 ++timercnt;
2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2556 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2557 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2040 ANHE_w (timers [ev_active (w)]) = (WT)w; 2558 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]); 2559 ANHE_at_cache (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w)); 2560 upheap (timers, ev_active (w));
2043 2561
2562 EV_FREQUENT_CHECK;
2563
2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2564 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2045} 2565}
2046 2566
2047void noinline 2567void noinline
2048ev_timer_stop (EV_P_ ev_timer *w) 2568ev_timer_stop (EV_P_ ev_timer *w)
2049{ 2569{
2050 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
2051 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
2052 return; 2572 return;
2053 2573
2574 EV_FREQUENT_CHECK;
2575
2054 { 2576 {
2055 int active = ev_active (w); 2577 int active = ev_active (w);
2056 2578
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2579 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058 2580
2581 --timercnt;
2582
2059 if (expect_true (active < timercnt + HEAP0 - 1)) 2583 if (expect_true (active < timercnt + HEAP0))
2060 { 2584 {
2061 timers [active] = timers [timercnt + HEAP0 - 1]; 2585 timers [active] = timers [timercnt + HEAP0];
2062 adjustheap (timers, timercnt, active); 2586 adjustheap (timers, timercnt, active);
2063 } 2587 }
2064
2065 --timercnt;
2066 } 2588 }
2589
2590 EV_FREQUENT_CHECK;
2067 2591
2068 ev_at (w) -= mn_now; 2592 ev_at (w) -= mn_now;
2069 2593
2070 ev_stop (EV_A_ (W)w); 2594 ev_stop (EV_A_ (W)w);
2071} 2595}
2072 2596
2073void noinline 2597void noinline
2074ev_timer_again (EV_P_ ev_timer *w) 2598ev_timer_again (EV_P_ ev_timer *w)
2075{ 2599{
2600 EV_FREQUENT_CHECK;
2601
2076 if (ev_is_active (w)) 2602 if (ev_is_active (w))
2077 { 2603 {
2078 if (w->repeat) 2604 if (w->repeat)
2079 { 2605 {
2080 ev_at (w) = mn_now + w->repeat; 2606 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]); 2607 ANHE_at_cache (timers [ev_active (w)]);
2082 adjustheap (timers, timercnt, ev_active (w)); 2608 adjustheap (timers, timercnt, ev_active (w));
2083 } 2609 }
2084 else 2610 else
2085 ev_timer_stop (EV_A_ w); 2611 ev_timer_stop (EV_A_ w);
2086 } 2612 }
2087 else if (w->repeat) 2613 else if (w->repeat)
2088 { 2614 {
2089 ev_at (w) = w->repeat; 2615 ev_at (w) = w->repeat;
2090 ev_timer_start (EV_A_ w); 2616 ev_timer_start (EV_A_ w);
2091 } 2617 }
2618
2619 EV_FREQUENT_CHECK;
2620}
2621
2622ev_tstamp
2623ev_timer_remaining (EV_P_ ev_timer *w)
2624{
2625 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2092} 2626}
2093 2627
2094#if EV_PERIODIC_ENABLE 2628#if EV_PERIODIC_ENABLE
2095void noinline 2629void noinline
2096ev_periodic_start (EV_P_ ev_periodic *w) 2630ev_periodic_start (EV_P_ ev_periodic *w)
2100 2634
2101 if (w->reschedule_cb) 2635 if (w->reschedule_cb)
2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2636 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2103 else if (w->interval) 2637 else if (w->interval)
2104 { 2638 {
2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2639 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2106 /* this formula differs from the one in periodic_reify because we do not always round up */ 2640 /* this formula differs from the one in periodic_reify because we do not always round up */
2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2641 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2108 } 2642 }
2109 else 2643 else
2110 ev_at (w) = w->offset; 2644 ev_at (w) = w->offset;
2111 2645
2646 EV_FREQUENT_CHECK;
2647
2648 ++periodiccnt;
2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2649 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2650 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2114 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2651 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2115 ANHE_at_set (periodics [ev_active (w)]); 2652 ANHE_at_cache (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w)); 2653 upheap (periodics, ev_active (w));
2117 2654
2655 EV_FREQUENT_CHECK;
2656
2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2657 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2119} 2658}
2120 2659
2121void noinline 2660void noinline
2122ev_periodic_stop (EV_P_ ev_periodic *w) 2661ev_periodic_stop (EV_P_ ev_periodic *w)
2123{ 2662{
2124 clear_pending (EV_A_ (W)w); 2663 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2664 if (expect_false (!ev_is_active (w)))
2126 return; 2665 return;
2127 2666
2667 EV_FREQUENT_CHECK;
2668
2128 { 2669 {
2129 int active = ev_active (w); 2670 int active = ev_active (w);
2130 2671
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2672 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132 2673
2674 --periodiccnt;
2675
2133 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2676 if (expect_true (active < periodiccnt + HEAP0))
2134 { 2677 {
2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2678 periodics [active] = periodics [periodiccnt + HEAP0];
2136 adjustheap (periodics, periodiccnt, active); 2679 adjustheap (periodics, periodiccnt, active);
2137 } 2680 }
2138
2139 --periodiccnt;
2140 } 2681 }
2682
2683 EV_FREQUENT_CHECK;
2141 2684
2142 ev_stop (EV_A_ (W)w); 2685 ev_stop (EV_A_ (W)w);
2143} 2686}
2144 2687
2145void noinline 2688void noinline
2156#endif 2699#endif
2157 2700
2158void noinline 2701void noinline
2159ev_signal_start (EV_P_ ev_signal *w) 2702ev_signal_start (EV_P_ ev_signal *w)
2160{ 2703{
2161#if EV_MULTIPLICITY
2162 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2163#endif
2164 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
2165 return; 2705 return;
2166 2706
2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2707 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2168 2708
2169 evpipe_init (EV_A); 2709#if EV_MULTIPLICITY
2710 assert (("libev: a signal must not be attached to two different loops",
2711 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2170 2712
2713 signals [w->signum - 1].loop = EV_A;
2714#endif
2715
2716 EV_FREQUENT_CHECK;
2717
2718#if EV_USE_SIGNALFD
2719 if (sigfd == -2)
2171 { 2720 {
2172#ifndef _WIN32 2721 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2173 sigset_t full, prev; 2722 if (sigfd < 0 && errno == EINVAL)
2174 sigfillset (&full); 2723 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177 2724
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2725 if (sigfd >= 0)
2726 {
2727 fd_intern (sigfd); /* doing it twice will not hurt */
2179 2728
2180#ifndef _WIN32 2729 sigemptyset (&sigfd_set);
2181 sigprocmask (SIG_SETMASK, &prev, 0); 2730
2182#endif 2731 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2732 ev_set_priority (&sigfd_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &sigfd_w);
2734 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2735 }
2183 } 2736 }
2737
2738 if (sigfd >= 0)
2739 {
2740 /* TODO: check .head */
2741 sigaddset (&sigfd_set, w->signum);
2742 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2743
2744 signalfd (sigfd, &sigfd_set, 0);
2745 }
2746#endif
2184 2747
2185 ev_start (EV_A_ (W)w, 1); 2748 ev_start (EV_A_ (W)w, 1);
2186 wlist_add (&signals [w->signum - 1].head, (WL)w); 2749 wlist_add (&signals [w->signum - 1].head, (WL)w);
2187 2750
2188 if (!((WL)w)->next) 2751 if (!((WL)w)->next)
2752# if EV_USE_SIGNALFD
2753 if (sigfd < 0) /*TODO*/
2754# endif
2189 { 2755 {
2190#if _WIN32 2756# if _WIN32
2191 signal (w->signum, ev_sighandler); 2757 signal (w->signum, ev_sighandler);
2192#else 2758# else
2193 struct sigaction sa; 2759 struct sigaction sa;
2760
2761 evpipe_init (EV_A);
2762
2194 sa.sa_handler = ev_sighandler; 2763 sa.sa_handler = ev_sighandler;
2195 sigfillset (&sa.sa_mask); 2764 sigfillset (&sa.sa_mask);
2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2765 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2197 sigaction (w->signum, &sa, 0); 2766 sigaction (w->signum, &sa, 0);
2767
2768 sigemptyset (&sa.sa_mask);
2769 sigaddset (&sa.sa_mask, w->signum);
2770 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2198#endif 2771#endif
2199 } 2772 }
2773
2774 EV_FREQUENT_CHECK;
2200} 2775}
2201 2776
2202void noinline 2777void noinline
2203ev_signal_stop (EV_P_ ev_signal *w) 2778ev_signal_stop (EV_P_ ev_signal *w)
2204{ 2779{
2205 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2207 return; 2782 return;
2208 2783
2784 EV_FREQUENT_CHECK;
2785
2209 wlist_del (&signals [w->signum - 1].head, (WL)w); 2786 wlist_del (&signals [w->signum - 1].head, (WL)w);
2210 ev_stop (EV_A_ (W)w); 2787 ev_stop (EV_A_ (W)w);
2211 2788
2212 if (!signals [w->signum - 1].head) 2789 if (!signals [w->signum - 1].head)
2790 {
2791#if EV_MULTIPLICITY
2792 signals [w->signum - 1].loop = 0; /* unattach from signal */
2793#endif
2794#if EV_USE_SIGNALFD
2795 if (sigfd >= 0)
2796 {
2797 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2798 sigdelset (&sigfd_set, w->signum);
2799 signalfd (sigfd, &sigfd_set, 0);
2800 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2801 /*TODO: maybe unblock signal? */
2802 }
2803 else
2804#endif
2213 signal (w->signum, SIG_DFL); 2805 signal (w->signum, SIG_DFL);
2806 }
2807
2808 EV_FREQUENT_CHECK;
2214} 2809}
2215 2810
2216void 2811void
2217ev_child_start (EV_P_ ev_child *w) 2812ev_child_start (EV_P_ ev_child *w)
2218{ 2813{
2219#if EV_MULTIPLICITY 2814#if EV_MULTIPLICITY
2220 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2815 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2221#endif 2816#endif
2222 if (expect_false (ev_is_active (w))) 2817 if (expect_false (ev_is_active (w)))
2223 return; 2818 return;
2224 2819
2820 EV_FREQUENT_CHECK;
2821
2225 ev_start (EV_A_ (W)w, 1); 2822 ev_start (EV_A_ (W)w, 1);
2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2824
2825 EV_FREQUENT_CHECK;
2227} 2826}
2228 2827
2229void 2828void
2230ev_child_stop (EV_P_ ev_child *w) 2829ev_child_stop (EV_P_ ev_child *w)
2231{ 2830{
2232 clear_pending (EV_A_ (W)w); 2831 clear_pending (EV_A_ (W)w);
2233 if (expect_false (!ev_is_active (w))) 2832 if (expect_false (!ev_is_active (w)))
2234 return; 2833 return;
2235 2834
2835 EV_FREQUENT_CHECK;
2836
2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2837 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2237 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
2238} 2841}
2239 2842
2240#if EV_STAT_ENABLE 2843#if EV_STAT_ENABLE
2241 2844
2242# ifdef _WIN32 2845# ifdef _WIN32
2243# undef lstat 2846# undef lstat
2244# define lstat(a,b) _stati64 (a,b) 2847# define lstat(a,b) _stati64 (a,b)
2245# endif 2848# endif
2246 2849
2247#define DEF_STAT_INTERVAL 5.0074891 2850#define DEF_STAT_INTERVAL 5.0074891
2851#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2248#define MIN_STAT_INTERVAL 0.1074891 2852#define MIN_STAT_INTERVAL 0.1074891
2249 2853
2250static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2854static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2251 2855
2252#if EV_USE_INOTIFY 2856#if EV_USE_INOTIFY
2253# define EV_INOTIFY_BUFSIZE 8192 2857# define EV_INOTIFY_BUFSIZE 8192
2257{ 2861{
2258 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2862 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2259 2863
2260 if (w->wd < 0) 2864 if (w->wd < 0)
2261 { 2865 {
2866 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2867 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2263 2868
2264 /* monitor some parent directory for speedup hints */ 2869 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2870 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2266 /* but an efficiency issue only */ 2871 /* but an efficiency issue only */
2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2872 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2268 { 2873 {
2269 char path [4096]; 2874 char path [4096];
2270 strcpy (path, w->path); 2875 strcpy (path, w->path);
2274 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2879 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2275 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2880 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2276 2881
2277 char *pend = strrchr (path, '/'); 2882 char *pend = strrchr (path, '/');
2278 2883
2279 if (!pend) 2884 if (!pend || pend == path)
2280 break; /* whoops, no '/', complain to your admin */ 2885 break;
2281 2886
2282 *pend = 0; 2887 *pend = 0;
2283 w->wd = inotify_add_watch (fs_fd, path, mask); 2888 w->wd = inotify_add_watch (fs_fd, path, mask);
2284 } 2889 }
2285 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2890 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2286 } 2891 }
2287 } 2892 }
2288 else
2289 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2290 2893
2291 if (w->wd >= 0) 2894 if (w->wd >= 0)
2895 {
2896 struct statfs sfs;
2897
2292 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2898 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem it known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (fs_2625 && !statfs (w->path, &sfs))
2905 if (sfs.f_type == 0x1373 /* devfs */
2906 || sfs.f_type == 0xEF53 /* ext2/3 */
2907 || sfs.f_type == 0x3153464a /* jfs */
2908 || sfs.f_type == 0x52654973 /* reiser3 */
2909 || sfs.f_type == 0x01021994 /* tempfs */
2910 || sfs.f_type == 0x58465342 /* xfs */)
2911 return;
2912
2913 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2914 ev_timer_again (EV_A_ &w->timer);
2915 }
2293} 2916}
2294 2917
2295static void noinline 2918static void noinline
2296infy_del (EV_P_ ev_stat *w) 2919infy_del (EV_P_ ev_stat *w)
2297{ 2920{
2311 2934
2312static void noinline 2935static void noinline
2313infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2936infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2314{ 2937{
2315 if (slot < 0) 2938 if (slot < 0)
2316 /* overflow, need to check for all hahs slots */ 2939 /* overflow, need to check for all hash slots */
2317 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2940 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2318 infy_wd (EV_A_ slot, wd, ev); 2941 infy_wd (EV_A_ slot, wd, ev);
2319 else 2942 else
2320 { 2943 {
2321 WL w_; 2944 WL w_;
2327 2950
2328 if (w->wd == wd || wd == -1) 2951 if (w->wd == wd || wd == -1)
2329 { 2952 {
2330 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2953 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2331 { 2954 {
2955 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2332 w->wd = -1; 2956 w->wd = -1;
2333 infy_add (EV_A_ w); /* re-add, no matter what */ 2957 infy_add (EV_A_ w); /* re-add, no matter what */
2334 } 2958 }
2335 2959
2336 stat_timer_cb (EV_A_ &w->timer, 0); 2960 stat_timer_cb (EV_A_ &w->timer, 0);
2349 2973
2350 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2974 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2351 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2975 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2352} 2976}
2353 2977
2354void inline_size 2978inline_size void
2979check_2625 (EV_P)
2980{
2981 /* kernels < 2.6.25 are borked
2982 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2983 */
2984 struct utsname buf;
2985 int major, minor, micro;
2986
2987 if (uname (&buf))
2988 return;
2989
2990 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2991 return;
2992
2993 if (major < 2
2994 || (major == 2 && minor < 6)
2995 || (major == 2 && minor == 6 && micro < 25))
2996 return;
2997
2998 fs_2625 = 1;
2999}
3000
3001inline_size int
3002infy_newfd (void)
3003{
3004#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3005 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3006 if (fd >= 0)
3007 return fd;
3008#endif
3009 return inotify_init ();
3010}
3011
3012inline_size void
2355infy_init (EV_P) 3013infy_init (EV_P)
2356{ 3014{
2357 if (fs_fd != -2) 3015 if (fs_fd != -2)
2358 return; 3016 return;
2359 3017
3018 fs_fd = -1;
3019
3020 check_2625 (EV_A);
3021
2360 fs_fd = inotify_init (); 3022 fs_fd = infy_newfd ();
2361 3023
2362 if (fs_fd >= 0) 3024 if (fs_fd >= 0)
2363 { 3025 {
3026 fd_intern (fs_fd);
2364 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3027 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2365 ev_set_priority (&fs_w, EV_MAXPRI); 3028 ev_set_priority (&fs_w, EV_MAXPRI);
2366 ev_io_start (EV_A_ &fs_w); 3029 ev_io_start (EV_A_ &fs_w);
2367 } 3030 }
2368} 3031}
2369 3032
2370void inline_size 3033inline_size void
2371infy_fork (EV_P) 3034infy_fork (EV_P)
2372{ 3035{
2373 int slot; 3036 int slot;
2374 3037
2375 if (fs_fd < 0) 3038 if (fs_fd < 0)
2376 return; 3039 return;
2377 3040
3041 ev_io_stop (EV_A_ &fs_w);
2378 close (fs_fd); 3042 close (fs_fd);
2379 fs_fd = inotify_init (); 3043 fs_fd = infy_newfd ();
3044
3045 if (fs_fd >= 0)
3046 {
3047 fd_intern (fs_fd);
3048 ev_io_set (&fs_w, fs_fd, EV_READ);
3049 ev_io_start (EV_A_ &fs_w);
3050 }
2380 3051
2381 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2382 { 3053 {
2383 WL w_ = fs_hash [slot].head; 3054 WL w_ = fs_hash [slot].head;
2384 fs_hash [slot].head = 0; 3055 fs_hash [slot].head = 0;
2391 w->wd = -1; 3062 w->wd = -1;
2392 3063
2393 if (fs_fd >= 0) 3064 if (fs_fd >= 0)
2394 infy_add (EV_A_ w); /* re-add, no matter what */ 3065 infy_add (EV_A_ w); /* re-add, no matter what */
2395 else 3066 else
2396 ev_timer_start (EV_A_ &w->timer); 3067 ev_timer_again (EV_A_ &w->timer);
2397 } 3068 }
2398
2399 } 3069 }
2400} 3070}
2401 3071
3072#endif
3073
3074#ifdef _WIN32
3075# define EV_LSTAT(p,b) _stati64 (p, b)
3076#else
3077# define EV_LSTAT(p,b) lstat (p, b)
2402#endif 3078#endif
2403 3079
2404void 3080void
2405ev_stat_stat (EV_P_ ev_stat *w) 3081ev_stat_stat (EV_P_ ev_stat *w)
2406{ 3082{
2433 || w->prev.st_atime != w->attr.st_atime 3109 || w->prev.st_atime != w->attr.st_atime
2434 || w->prev.st_mtime != w->attr.st_mtime 3110 || w->prev.st_mtime != w->attr.st_mtime
2435 || w->prev.st_ctime != w->attr.st_ctime 3111 || w->prev.st_ctime != w->attr.st_ctime
2436 ) { 3112 ) {
2437 #if EV_USE_INOTIFY 3113 #if EV_USE_INOTIFY
3114 if (fs_fd >= 0)
3115 {
2438 infy_del (EV_A_ w); 3116 infy_del (EV_A_ w);
2439 infy_add (EV_A_ w); 3117 infy_add (EV_A_ w);
2440 ev_stat_stat (EV_A_ w); /* avoid race... */ 3118 ev_stat_stat (EV_A_ w); /* avoid race... */
3119 }
2441 #endif 3120 #endif
2442 3121
2443 ev_feed_event (EV_A_ w, EV_STAT); 3122 ev_feed_event (EV_A_ w, EV_STAT);
2444 } 3123 }
2445} 3124}
2448ev_stat_start (EV_P_ ev_stat *w) 3127ev_stat_start (EV_P_ ev_stat *w)
2449{ 3128{
2450 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2451 return; 3130 return;
2452 3131
2453 /* since we use memcmp, we need to clear any padding data etc. */
2454 memset (&w->prev, 0, sizeof (ev_statdata));
2455 memset (&w->attr, 0, sizeof (ev_statdata));
2456
2457 ev_stat_stat (EV_A_ w); 3132 ev_stat_stat (EV_A_ w);
2458 3133
3134 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2459 if (w->interval < MIN_STAT_INTERVAL) 3135 w->interval = MIN_STAT_INTERVAL;
2460 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2461 3136
2462 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3137 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2463 ev_set_priority (&w->timer, ev_priority (w)); 3138 ev_set_priority (&w->timer, ev_priority (w));
2464 3139
2465#if EV_USE_INOTIFY 3140#if EV_USE_INOTIFY
2466 infy_init (EV_A); 3141 infy_init (EV_A);
2467 3142
2468 if (fs_fd >= 0) 3143 if (fs_fd >= 0)
2469 infy_add (EV_A_ w); 3144 infy_add (EV_A_ w);
2470 else 3145 else
2471#endif 3146#endif
2472 ev_timer_start (EV_A_ &w->timer); 3147 ev_timer_again (EV_A_ &w->timer);
2473 3148
2474 ev_start (EV_A_ (W)w, 1); 3149 ev_start (EV_A_ (W)w, 1);
3150
3151 EV_FREQUENT_CHECK;
2475} 3152}
2476 3153
2477void 3154void
2478ev_stat_stop (EV_P_ ev_stat *w) 3155ev_stat_stop (EV_P_ ev_stat *w)
2479{ 3156{
2480 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2482 return; 3159 return;
2483 3160
3161 EV_FREQUENT_CHECK;
3162
2484#if EV_USE_INOTIFY 3163#if EV_USE_INOTIFY
2485 infy_del (EV_A_ w); 3164 infy_del (EV_A_ w);
2486#endif 3165#endif
2487 ev_timer_stop (EV_A_ &w->timer); 3166 ev_timer_stop (EV_A_ &w->timer);
2488 3167
2489 ev_stop (EV_A_ (W)w); 3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
2490} 3171}
2491#endif 3172#endif
2492 3173
2493#if EV_IDLE_ENABLE 3174#if EV_IDLE_ENABLE
2494void 3175void
2496{ 3177{
2497 if (expect_false (ev_is_active (w))) 3178 if (expect_false (ev_is_active (w)))
2498 return; 3179 return;
2499 3180
2500 pri_adjust (EV_A_ (W)w); 3181 pri_adjust (EV_A_ (W)w);
3182
3183 EV_FREQUENT_CHECK;
2501 3184
2502 { 3185 {
2503 int active = ++idlecnt [ABSPRI (w)]; 3186 int active = ++idlecnt [ABSPRI (w)];
2504 3187
2505 ++idleall; 3188 ++idleall;
2506 ev_start (EV_A_ (W)w, active); 3189 ev_start (EV_A_ (W)w, active);
2507 3190
2508 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3191 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2509 idles [ABSPRI (w)][active - 1] = w; 3192 idles [ABSPRI (w)][active - 1] = w;
2510 } 3193 }
3194
3195 EV_FREQUENT_CHECK;
2511} 3196}
2512 3197
2513void 3198void
2514ev_idle_stop (EV_P_ ev_idle *w) 3199ev_idle_stop (EV_P_ ev_idle *w)
2515{ 3200{
2516 clear_pending (EV_A_ (W)w); 3201 clear_pending (EV_A_ (W)w);
2517 if (expect_false (!ev_is_active (w))) 3202 if (expect_false (!ev_is_active (w)))
2518 return; 3203 return;
2519 3204
3205 EV_FREQUENT_CHECK;
3206
2520 { 3207 {
2521 int active = ev_active (w); 3208 int active = ev_active (w);
2522 3209
2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3210 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2524 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3211 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2525 3212
2526 ev_stop (EV_A_ (W)w); 3213 ev_stop (EV_A_ (W)w);
2527 --idleall; 3214 --idleall;
2528 } 3215 }
3216
3217 EV_FREQUENT_CHECK;
2529} 3218}
2530#endif 3219#endif
2531 3220
2532void 3221void
2533ev_prepare_start (EV_P_ ev_prepare *w) 3222ev_prepare_start (EV_P_ ev_prepare *w)
2534{ 3223{
2535 if (expect_false (ev_is_active (w))) 3224 if (expect_false (ev_is_active (w)))
2536 return; 3225 return;
3226
3227 EV_FREQUENT_CHECK;
2537 3228
2538 ev_start (EV_A_ (W)w, ++preparecnt); 3229 ev_start (EV_A_ (W)w, ++preparecnt);
2539 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3230 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2540 prepares [preparecnt - 1] = w; 3231 prepares [preparecnt - 1] = w;
3232
3233 EV_FREQUENT_CHECK;
2541} 3234}
2542 3235
2543void 3236void
2544ev_prepare_stop (EV_P_ ev_prepare *w) 3237ev_prepare_stop (EV_P_ ev_prepare *w)
2545{ 3238{
2546 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2548 return; 3241 return;
2549 3242
3243 EV_FREQUENT_CHECK;
3244
2550 { 3245 {
2551 int active = ev_active (w); 3246 int active = ev_active (w);
2552 3247
2553 prepares [active - 1] = prepares [--preparecnt]; 3248 prepares [active - 1] = prepares [--preparecnt];
2554 ev_active (prepares [active - 1]) = active; 3249 ev_active (prepares [active - 1]) = active;
2555 } 3250 }
2556 3251
2557 ev_stop (EV_A_ (W)w); 3252 ev_stop (EV_A_ (W)w);
3253
3254 EV_FREQUENT_CHECK;
2558} 3255}
2559 3256
2560void 3257void
2561ev_check_start (EV_P_ ev_check *w) 3258ev_check_start (EV_P_ ev_check *w)
2562{ 3259{
2563 if (expect_false (ev_is_active (w))) 3260 if (expect_false (ev_is_active (w)))
2564 return; 3261 return;
3262
3263 EV_FREQUENT_CHECK;
2565 3264
2566 ev_start (EV_A_ (W)w, ++checkcnt); 3265 ev_start (EV_A_ (W)w, ++checkcnt);
2567 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3266 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2568 checks [checkcnt - 1] = w; 3267 checks [checkcnt - 1] = w;
3268
3269 EV_FREQUENT_CHECK;
2569} 3270}
2570 3271
2571void 3272void
2572ev_check_stop (EV_P_ ev_check *w) 3273ev_check_stop (EV_P_ ev_check *w)
2573{ 3274{
2574 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2575 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2576 return; 3277 return;
2577 3278
3279 EV_FREQUENT_CHECK;
3280
2578 { 3281 {
2579 int active = ev_active (w); 3282 int active = ev_active (w);
2580 3283
2581 checks [active - 1] = checks [--checkcnt]; 3284 checks [active - 1] = checks [--checkcnt];
2582 ev_active (checks [active - 1]) = active; 3285 ev_active (checks [active - 1]) = active;
2583 } 3286 }
2584 3287
2585 ev_stop (EV_A_ (W)w); 3288 ev_stop (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2586} 3291}
2587 3292
2588#if EV_EMBED_ENABLE 3293#if EV_EMBED_ENABLE
2589void noinline 3294void noinline
2590ev_embed_sweep (EV_P_ ev_embed *w) 3295ev_embed_sweep (EV_P_ ev_embed *w)
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3312embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{ 3313{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610 3315
2611 { 3316 {
2612 struct ev_loop *loop = w->other; 3317 EV_P = w->other;
2613 3318
2614 while (fdchangecnt) 3319 while (fdchangecnt)
2615 { 3320 {
2616 fd_reify (EV_A); 3321 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 } 3323 }
2619 } 3324 }
2620} 3325}
2621 3326
3327static void
3328embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329{
3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331
3332 ev_embed_stop (EV_A_ w);
3333
3334 {
3335 EV_P = w->other;
3336
3337 ev_loop_fork (EV_A);
3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 }
3340
3341 ev_embed_start (EV_A_ w);
3342}
3343
2622#if 0 3344#if 0
2623static void 3345static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3346embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{ 3347{
2626 ev_idle_stop (EV_A_ idle); 3348 ev_idle_stop (EV_A_ idle);
2632{ 3354{
2633 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2634 return; 3356 return;
2635 3357
2636 { 3358 {
2637 struct ev_loop *loop = w->other; 3359 EV_P = w->other;
2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2640 } 3362 }
3363
3364 EV_FREQUENT_CHECK;
2641 3365
2642 ev_set_priority (&w->io, ev_priority (w)); 3366 ev_set_priority (&w->io, ev_priority (w));
2643 ev_io_start (EV_A_ &w->io); 3367 ev_io_start (EV_A_ &w->io);
2644 3368
2645 ev_prepare_init (&w->prepare, embed_prepare_cb); 3369 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI); 3370 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare); 3371 ev_prepare_start (EV_A_ &w->prepare);
2648 3372
3373 ev_fork_init (&w->fork, embed_fork_cb);
3374 ev_fork_start (EV_A_ &w->fork);
3375
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3376 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2650 3377
2651 ev_start (EV_A_ (W)w, 1); 3378 ev_start (EV_A_ (W)w, 1);
3379
3380 EV_FREQUENT_CHECK;
2652} 3381}
2653 3382
2654void 3383void
2655ev_embed_stop (EV_P_ ev_embed *w) 3384ev_embed_stop (EV_P_ ev_embed *w)
2656{ 3385{
2657 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2658 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2659 return; 3388 return;
2660 3389
3390 EV_FREQUENT_CHECK;
3391
2661 ev_io_stop (EV_A_ &w->io); 3392 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare); 3393 ev_prepare_stop (EV_A_ &w->prepare);
3394 ev_fork_stop (EV_A_ &w->fork);
2663 3395
2664 ev_stop (EV_A_ (W)w); 3396 EV_FREQUENT_CHECK;
2665} 3397}
2666#endif 3398#endif
2667 3399
2668#if EV_FORK_ENABLE 3400#if EV_FORK_ENABLE
2669void 3401void
2670ev_fork_start (EV_P_ ev_fork *w) 3402ev_fork_start (EV_P_ ev_fork *w)
2671{ 3403{
2672 if (expect_false (ev_is_active (w))) 3404 if (expect_false (ev_is_active (w)))
2673 return; 3405 return;
3406
3407 EV_FREQUENT_CHECK;
2674 3408
2675 ev_start (EV_A_ (W)w, ++forkcnt); 3409 ev_start (EV_A_ (W)w, ++forkcnt);
2676 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3410 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2677 forks [forkcnt - 1] = w; 3411 forks [forkcnt - 1] = w;
3412
3413 EV_FREQUENT_CHECK;
2678} 3414}
2679 3415
2680void 3416void
2681ev_fork_stop (EV_P_ ev_fork *w) 3417ev_fork_stop (EV_P_ ev_fork *w)
2682{ 3418{
2683 clear_pending (EV_A_ (W)w); 3419 clear_pending (EV_A_ (W)w);
2684 if (expect_false (!ev_is_active (w))) 3420 if (expect_false (!ev_is_active (w)))
2685 return; 3421 return;
2686 3422
3423 EV_FREQUENT_CHECK;
3424
2687 { 3425 {
2688 int active = ev_active (w); 3426 int active = ev_active (w);
2689 3427
2690 forks [active - 1] = forks [--forkcnt]; 3428 forks [active - 1] = forks [--forkcnt];
2691 ev_active (forks [active - 1]) = active; 3429 ev_active (forks [active - 1]) = active;
2692 } 3430 }
2693 3431
2694 ev_stop (EV_A_ (W)w); 3432 ev_stop (EV_A_ (W)w);
3433
3434 EV_FREQUENT_CHECK;
2695} 3435}
2696#endif 3436#endif
2697 3437
2698#if EV_ASYNC_ENABLE 3438#if EV_ASYNC_ENABLE
2699void 3439void
2701{ 3441{
2702 if (expect_false (ev_is_active (w))) 3442 if (expect_false (ev_is_active (w)))
2703 return; 3443 return;
2704 3444
2705 evpipe_init (EV_A); 3445 evpipe_init (EV_A);
3446
3447 EV_FREQUENT_CHECK;
2706 3448
2707 ev_start (EV_A_ (W)w, ++asynccnt); 3449 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3450 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w; 3451 asyncs [asynccnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
2710} 3454}
2711 3455
2712void 3456void
2713ev_async_stop (EV_P_ ev_async *w) 3457ev_async_stop (EV_P_ ev_async *w)
2714{ 3458{
2715 clear_pending (EV_A_ (W)w); 3459 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w))) 3460 if (expect_false (!ev_is_active (w)))
2717 return; 3461 return;
2718 3462
3463 EV_FREQUENT_CHECK;
3464
2719 { 3465 {
2720 int active = ev_active (w); 3466 int active = ev_active (w);
2721 3467
2722 asyncs [active - 1] = asyncs [--asynccnt]; 3468 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active; 3469 ev_active (asyncs [active - 1]) = active;
2724 } 3470 }
2725 3471
2726 ev_stop (EV_A_ (W)w); 3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
2727} 3475}
2728 3476
2729void 3477void
2730ev_async_send (EV_P_ ev_async *w) 3478ev_async_send (EV_P_ ev_async *w)
2731{ 3479{
2732 w->sent = 1; 3480 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync); 3481 evpipe_write (EV_A_ &async_pending);
2734} 3482}
2735#endif 3483#endif
2736 3484
2737/*****************************************************************************/ 3485/*****************************************************************************/
2738 3486
2748once_cb (EV_P_ struct ev_once *once, int revents) 3496once_cb (EV_P_ struct ev_once *once, int revents)
2749{ 3497{
2750 void (*cb)(int revents, void *arg) = once->cb; 3498 void (*cb)(int revents, void *arg) = once->cb;
2751 void *arg = once->arg; 3499 void *arg = once->arg;
2752 3500
2753 ev_io_stop (EV_A_ &once->io); 3501 ev_io_stop (EV_A_ &once->io);
2754 ev_timer_stop (EV_A_ &once->to); 3502 ev_timer_stop (EV_A_ &once->to);
2755 ev_free (once); 3503 ev_free (once);
2756 3504
2757 cb (revents, arg); 3505 cb (revents, arg);
2758} 3506}
2759 3507
2760static void 3508static void
2761once_cb_io (EV_P_ ev_io *w, int revents) 3509once_cb_io (EV_P_ ev_io *w, int revents)
2762{ 3510{
2763 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3511 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512
3513 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2764} 3514}
2765 3515
2766static void 3516static void
2767once_cb_to (EV_P_ ev_timer *w, int revents) 3517once_cb_to (EV_P_ ev_timer *w, int revents)
2768{ 3518{
2769 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3519 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520
3521 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2770} 3522}
2771 3523
2772void 3524void
2773ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3525ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2774{ 3526{
2796 ev_timer_set (&once->to, timeout, 0.); 3548 ev_timer_set (&once->to, timeout, 0.);
2797 ev_timer_start (EV_A_ &once->to); 3549 ev_timer_start (EV_A_ &once->to);
2798 } 3550 }
2799} 3551}
2800 3552
3553/*****************************************************************************/
3554
3555#if EV_WALK_ENABLE
3556void
3557ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558{
3559 int i, j;
3560 ev_watcher_list *wl, *wn;
3561
3562 if (types & (EV_IO | EV_EMBED))
3563 for (i = 0; i < anfdmax; ++i)
3564 for (wl = anfds [i].head; wl; )
3565 {
3566 wn = wl->next;
3567
3568#if EV_EMBED_ENABLE
3569 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570 {
3571 if (types & EV_EMBED)
3572 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573 }
3574 else
3575#endif
3576#if EV_USE_INOTIFY
3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3578 ;
3579 else
3580#endif
3581 if ((ev_io *)wl != &pipe_w)
3582 if (types & EV_IO)
3583 cb (EV_A_ EV_IO, wl);
3584
3585 wl = wn;
3586 }
3587
3588 if (types & (EV_TIMER | EV_STAT))
3589 for (i = timercnt + HEAP0; i-- > HEAP0; )
3590#if EV_STAT_ENABLE
3591 /*TODO: timer is not always active*/
3592 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3593 {
3594 if (types & EV_STAT)
3595 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3596 }
3597 else
3598#endif
3599 if (types & EV_TIMER)
3600 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601
3602#if EV_PERIODIC_ENABLE
3603 if (types & EV_PERIODIC)
3604 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606#endif
3607
3608#if EV_IDLE_ENABLE
3609 if (types & EV_IDLE)
3610 for (j = NUMPRI; i--; )
3611 for (i = idlecnt [j]; i--; )
3612 cb (EV_A_ EV_IDLE, idles [j][i]);
3613#endif
3614
3615#if EV_FORK_ENABLE
3616 if (types & EV_FORK)
3617 for (i = forkcnt; i--; )
3618 if (ev_cb (forks [i]) != embed_fork_cb)
3619 cb (EV_A_ EV_FORK, forks [i]);
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623 if (types & EV_ASYNC)
3624 for (i = asynccnt; i--; )
3625 cb (EV_A_ EV_ASYNC, asyncs [i]);
3626#endif
3627
3628 if (types & EV_PREPARE)
3629 for (i = preparecnt; i--; )
3630#if EV_EMBED_ENABLE
3631 if (ev_cb (prepares [i]) != embed_prepare_cb)
3632#endif
3633 cb (EV_A_ EV_PREPARE, prepares [i]);
3634
3635 if (types & EV_CHECK)
3636 for (i = checkcnt; i--; )
3637 cb (EV_A_ EV_CHECK, checks [i]);
3638
3639 if (types & EV_SIGNAL)
3640 for (i = 0; i < EV_NSIG - 1; ++i)
3641 for (wl = signals [i].head; wl; )
3642 {
3643 wn = wl->next;
3644 cb (EV_A_ EV_SIGNAL, wl);
3645 wl = wn;
3646 }
3647
3648 if (types & EV_CHILD)
3649 for (i = EV_PID_HASHSIZE; i--; )
3650 for (wl = childs [i]; wl; )
3651 {
3652 wn = wl->next;
3653 cb (EV_A_ EV_CHILD, wl);
3654 wl = wn;
3655 }
3656/* EV_STAT 0x00001000 /* stat data changed */
3657/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3658}
3659#endif
3660
2801#if EV_MULTIPLICITY 3661#if EV_MULTIPLICITY
2802 #include "ev_wrap.h" 3662 #include "ev_wrap.h"
2803#endif 3663#endif
2804 3664
2805#ifdef __cplusplus 3665#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines