ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.233 by root, Tue May 6 23:34:16 2008 UTC vs.
Revision 1.317 by root, Sat Nov 14 00:15:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
168#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
169# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
170#endif 232#endif
171 233
172#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 236#endif
175 237
176#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
177# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
178#endif 244#endif
179 245
180#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
182#endif 248#endif
235# else 301# else
236# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
237# endif 303# endif
238#endif 304#endif
239 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 347
242#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 365# include <sys/select.h>
260# endif 366# endif
261#endif 367#endif
262 368
263#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
264# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
265#endif 378#endif
266 379
267#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 381# include <winsock.h>
269#endif 382#endif
270 383
271#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
274# ifdef __cplusplus 397# ifdef __cplusplus
275extern "C" { 398extern "C" {
276# endif 399# endif
277int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus 401# ifdef __cplusplus
279} 402}
280# endif 403# endif
281#endif 404#endif
282 405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
283/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
284 442
285/* 443/*
286 * This is used to avoid floating point rounding problems. 444 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 445 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 446 * to ensure progress, time-wise, even when rounding
292 */ 450 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 452
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 455
299#if __GNUC__ >= 4 456#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
302#else 459#else
315# define inline_speed static noinline 472# define inline_speed static noinline
316#else 473#else
317# define inline_speed static inline 474# define inline_speed static inline
318#endif 475#endif
319 476
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
322 484
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
325 487
326typedef ev_watcher *W; 488typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
329 491
330#define ev_active(w) ((W)(w))->active 492#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 493#define ev_at(w) ((WT)(w))->at
332 494
333#if EV_USE_MONOTONIC 495#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 513#endif
338 514
339#ifdef _WIN32 515#ifdef _WIN32
340# include "ev_win32.c" 516# include "ev_win32.c"
341#endif 517#endif
349{ 525{
350 syserr_cb = cb; 526 syserr_cb = cb;
351} 527}
352 528
353static void noinline 529static void noinline
354syserr (const char *msg) 530ev_syserr (const char *msg)
355{ 531{
356 if (!msg) 532 if (!msg)
357 msg = "(libev) system error"; 533 msg = "(libev) system error";
358 534
359 if (syserr_cb) 535 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
407 583
408/*****************************************************************************/ 584/*****************************************************************************/
409 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
410typedef struct 590typedef struct
411{ 591{
412 WL head; 592 WL head;
413 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
415#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 601 SOCKET handle;
417#endif 602#endif
418} ANFD; 603} ANFD;
419 604
605/* stores the pending event set for a given watcher */
420typedef struct 606typedef struct
421{ 607{
422 W w; 608 W w;
423 int events; 609 int events; /* the pending event set for the given watcher */
424} ANPENDING; 610} ANPENDING;
425 611
426#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
613/* hash table entry per inotify-id */
427typedef struct 614typedef struct
428{ 615{
429 WL head; 616 WL head;
430} ANFS; 617} ANFS;
618#endif
619
620/* Heap Entry */
621#if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631#else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
431#endif 638#endif
432 639
433#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
434 641
435 struct ev_loop 642 struct ev_loop
454 661
455 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
456 663
457#endif 664#endif
458 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
459/*****************************************************************************/ 678/*****************************************************************************/
460 679
680#ifndef EV_HAVE_EV_TIME
461ev_tstamp 681ev_tstamp
462ev_time (void) 682ev_time (void)
463{ 683{
464#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
465 struct timespec ts; 687 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 690 }
691#endif
692
469 struct timeval tv; 693 struct timeval tv;
470 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 696}
697#endif
474 698
475ev_tstamp inline_size 699inline_size ev_tstamp
476get_clock (void) 700get_clock (void)
477{ 701{
478#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
480 { 704 {
513 struct timeval tv; 737 struct timeval tv;
514 738
515 tv.tv_sec = (time_t)delay; 739 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
518 select (0, 0, 0, 0, &tv); 745 select (0, 0, 0, 0, &tv);
519#endif 746#endif
520 } 747 }
521} 748}
522 749
523/*****************************************************************************/ 750/*****************************************************************************/
524 751
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526 753
527int inline_size 754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
528array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
529{ 758{
530 int ncur = cur + 1; 759 int ncur = cur + 1;
531 760
532 do 761 do
549array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
550{ 779{
551 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
553} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
554 786
555#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
556 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
557 { \ 789 { \
558 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
571 } 803 }
572#endif 804#endif
573 805
574#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
576 808
577/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
578 816
579void noinline 817void noinline
580ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
581{ 819{
582 W w_ = (W)w; 820 W w_ = (W)w;
591 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
593 } 831 }
594} 832}
595 833
596void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
597queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
598{ 851{
599 int i; 852 int i;
600 853
601 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
603} 856}
604 857
605/*****************************************************************************/ 858/*****************************************************************************/
606 859
607void inline_size 860inline_speed void
608anfds_init (ANFD *base, int count)
609{
610 while (count--)
611 {
612 base->head = 0;
613 base->events = EV_NONE;
614 base->reify = 0;
615
616 ++base;
617 }
618}
619
620void inline_speed
621fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
622{ 862{
623 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
624 ev_io *w; 864 ev_io *w;
625 865
626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
630 if (ev) 870 if (ev)
631 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
632 } 872 }
633} 873}
634 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
635void 886void
636ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
637{ 888{
638 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
639 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
640} 891}
641 892
642void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
643fd_reify (EV_P) 896fd_reify (EV_P)
644{ 897{
645 int i; 898 int i;
646 899
647 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
656 events |= (unsigned char)w->events; 909 events |= (unsigned char)w->events;
657 910
658#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
659 if (events) 912 if (events)
660 { 913 {
661 unsigned long argp; 914 unsigned long arg;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
668 } 917 }
669#endif 918#endif
670 919
671 { 920 {
672 unsigned char o_events = anfd->events; 921 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify; 922 unsigned char o_reify = anfd->reify;
674 923
675 anfd->reify = 0; 924 anfd->reify = 0;
676 anfd->events = events; 925 anfd->events = events;
677 926
678 if (o_events != events || o_reify & EV_IOFDSET) 927 if (o_events != events || o_reify & EV__IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events); 928 backend_modify (EV_A_ fd, o_events, events);
680 } 929 }
681 } 930 }
682 931
683 fdchangecnt = 0; 932 fdchangecnt = 0;
684} 933}
685 934
686void inline_size 935/* something about the given fd changed */
936inline_size void
687fd_change (EV_P_ int fd, int flags) 937fd_change (EV_P_ int fd, int flags)
688{ 938{
689 unsigned char reify = anfds [fd].reify; 939 unsigned char reify = anfds [fd].reify;
690 anfds [fd].reify |= flags; 940 anfds [fd].reify |= flags;
691 941
695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
696 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
697 } 947 }
698} 948}
699 949
700void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
701fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
702{ 953{
703 ev_io *w; 954 ev_io *w;
704 955
705 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
707 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
709 } 960 }
710} 961}
711 962
712int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
713fd_valid (int fd) 965fd_valid (int fd)
714{ 966{
715#ifdef _WIN32 967#ifdef _WIN32
716 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
717#else 969#else
725{ 977{
726 int fd; 978 int fd;
727 979
728 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
729 if (anfds [fd].events) 981 if (anfds [fd].events)
730 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
731 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
732} 984}
733 985
734/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
735static void noinline 987static void noinline
739 991
740 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
741 if (anfds [fd].events) 993 if (anfds [fd].events)
742 { 994 {
743 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
744 return; 996 break;
745 } 997 }
746} 998}
747 999
748/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
749static void noinline 1001static void noinline
753 1005
754 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
755 if (anfds [fd].events) 1007 if (anfds [fd].events)
756 { 1008 {
757 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
758 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
759 } 1012 }
760} 1013}
761 1014
762/*****************************************************************************/ 1015/*****************************************************************************/
763 1016
1017/*
1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1020 * the branching factor of the d-tree.
1021 */
1022
1023/*
1024 * at the moment we allow libev the luxury of two heaps,
1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1026 * which is more cache-efficient.
1027 * the difference is about 5% with 50000+ watchers.
1028 */
1029#if EV_USE_4HEAP
1030
1031#define DHEAP 4
1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034#define UPHEAP_DONE(p,k) ((p) == (k))
1035
1036/* away from the root */
1037inline_speed void
1038downheap (ANHE *heap, int N, int k)
1039{
1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
1042
1043 for (;;)
1044 {
1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1048
1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
1051 {
1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
1065 break;
1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078}
1079
1080#else /* 4HEAP */
1081
1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
1105 heap [k] = heap [c];
1106 ev_active (ANHE_w (heap [k])) = k;
1107
1108 k = c;
1109 }
1110
1111 heap [k] = he;
1112 ev_active (ANHE_w (he)) = k;
1113}
1114#endif
1115
764/* towards the root */ 1116/* towards the root */
765void inline_speed 1117inline_speed void
766upheap (WT *heap, int k) 1118upheap (ANHE *heap, int k)
767{ 1119{
768 WT w = heap [k]; 1120 ANHE he = heap [k];
769 1121
770 for (;;) 1122 for (;;)
771 { 1123 {
772 int p = k >> 1; 1124 int p = HPARENT (k);
773 1125
774 /* maybe we could use a dummy element at heap [0]? */ 1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
775 if (!p || heap [p]->at <= w->at)
776 break; 1127 break;
777 1128
778 heap [k] = heap [p]; 1129 heap [k] = heap [p];
779 ev_active (heap [k]) = k; 1130 ev_active (ANHE_w (heap [k])) = k;
780 k = p; 1131 k = p;
781 } 1132 }
782 1133
783 heap [k] = w; 1134 heap [k] = he;
784 ev_active (heap [k]) = k; 1135 ev_active (ANHE_w (he)) = k;
785} 1136}
786 1137
787/* away from the root */ 1138/* move an element suitably so it is in a correct place */
788void inline_speed 1139inline_size void
789downheap (WT *heap, int N, int k)
790{
791 WT w = heap [k];
792
793 for (;;)
794 {
795 int c = k << 1;
796
797 if (c > N)
798 break;
799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
806 heap [k] = heap [c];
807 ev_active (heap [k]) = k;
808
809 k = c;
810 }
811
812 heap [k] = w;
813 ev_active (heap [k]) = k;
814}
815
816void inline_size
817adjustheap (WT *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
818{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
819 upheap (heap, k); 1143 upheap (heap, k);
1144 else
820 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
821} 1158}
822 1159
823/*****************************************************************************/ 1160/*****************************************************************************/
824 1161
1162/* associate signal watchers to a signal signal */
825typedef struct 1163typedef struct
826{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
827 WL head; 1169 WL head;
828 EV_ATOMIC_T gotsig;
829} ANSIG; 1170} ANSIG;
830 1171
831static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
832static int signalmax;
833
834static EV_ATOMIC_T gotsig;
835
836void inline_size
837signals_init (ANSIG *base, int count)
838{
839 while (count--)
840 {
841 base->head = 0;
842 base->gotsig = 0;
843
844 ++base;
845 }
846}
847 1173
848/*****************************************************************************/ 1174/*****************************************************************************/
849 1175
850void inline_speed 1176/* used to prepare libev internal fd's */
1177/* this is not fork-safe */
1178inline_speed void
851fd_intern (int fd) 1179fd_intern (int fd)
852{ 1180{
853#ifdef _WIN32 1181#ifdef _WIN32
854 int arg = 1; 1182 unsigned long arg = 1;
855 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
856#else 1184#else
857 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
858 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
859#endif 1187#endif
860} 1188}
861 1189
862static void noinline 1190static void noinline
863evpipe_init (EV_P) 1191evpipe_init (EV_P)
864{ 1192{
865 if (!ev_is_active (&pipeev)) 1193 if (!ev_is_active (&pipe_w))
866 { 1194 {
867#if EV_USE_EVENTFD 1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
868 if ((evfd = eventfd (0, 0)) >= 0) 1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
869 { 1201 {
870 evpipe [0] = -1; 1202 evpipe [0] = -1;
871 fd_intern (evfd); 1203 fd_intern (evfd); /* doing it twice doesn't hurt */
872 ev_io_set (&pipeev, evfd, EV_READ); 1204 ev_io_set (&pipe_w, evfd, EV_READ);
873 } 1205 }
874 else 1206 else
875#endif 1207#endif
876 { 1208 {
877 while (pipe (evpipe)) 1209 while (pipe (evpipe))
878 syserr ("(libev) error creating signal/async pipe"); 1210 ev_syserr ("(libev) error creating signal/async pipe");
879 1211
880 fd_intern (evpipe [0]); 1212 fd_intern (evpipe [0]);
881 fd_intern (evpipe [1]); 1213 fd_intern (evpipe [1]);
882 ev_io_set (&pipeev, evpipe [0], EV_READ); 1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
883 } 1215 }
884 1216
885 ev_io_start (EV_A_ &pipeev); 1217 ev_io_start (EV_A_ &pipe_w);
886 ev_unref (EV_A); /* watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
887 } 1219 }
888} 1220}
889 1221
890void inline_size 1222inline_size void
891evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
892{ 1224{
893 if (!*flag) 1225 if (!*flag)
894 { 1226 {
895 int old_errno = errno; /* save errno because write might clobber it */ 1227 int old_errno = errno; /* save errno because write might clobber it */
908 1240
909 errno = old_errno; 1241 errno = old_errno;
910 } 1242 }
911} 1243}
912 1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
913static void 1247static void
914pipecb (EV_P_ ev_io *iow, int revents) 1248pipecb (EV_P_ ev_io *iow, int revents)
915{ 1249{
1250 int i;
1251
916#if EV_USE_EVENTFD 1252#if EV_USE_EVENTFD
917 if (evfd >= 0) 1253 if (evfd >= 0)
918 { 1254 {
919 uint64_t counter; 1255 uint64_t counter;
920 read (evfd, &counter, sizeof (uint64_t)); 1256 read (evfd, &counter, sizeof (uint64_t));
924 { 1260 {
925 char dummy; 1261 char dummy;
926 read (evpipe [0], &dummy, 1); 1262 read (evpipe [0], &dummy, 1);
927 } 1263 }
928 1264
929 if (gotsig && ev_is_default_loop (EV_A)) 1265 if (sig_pending)
930 { 1266 {
931 int signum; 1267 sig_pending = 0;
932 gotsig = 0;
933 1268
934 for (signum = signalmax; signum--; ) 1269 for (i = EV_NSIG - 1; i--; )
935 if (signals [signum].gotsig) 1270 if (expect_false (signals [i].pending))
936 ev_feed_signal_event (EV_A_ signum + 1); 1271 ev_feed_signal_event (EV_A_ i + 1);
937 } 1272 }
938 1273
939#if EV_ASYNC_ENABLE 1274#if EV_ASYNC_ENABLE
940 if (gotasync) 1275 if (async_pending)
941 { 1276 {
942 int i; 1277 async_pending = 0;
943 gotasync = 0;
944 1278
945 for (i = asynccnt; i--; ) 1279 for (i = asynccnt; i--; )
946 if (asyncs [i]->sent) 1280 if (asyncs [i]->sent)
947 { 1281 {
948 asyncs [i]->sent = 0; 1282 asyncs [i]->sent = 0;
956 1290
957static void 1291static void
958ev_sighandler (int signum) 1292ev_sighandler (int signum)
959{ 1293{
960#if EV_MULTIPLICITY 1294#if EV_MULTIPLICITY
961 struct ev_loop *loop = &default_loop_struct; 1295 EV_P = signals [signum - 1].loop;
962#endif 1296#endif
963 1297
964#if _WIN32 1298#if _WIN32
965 signal (signum, ev_sighandler); 1299 signal (signum, ev_sighandler);
966#endif 1300#endif
967 1301
968 signals [signum - 1].gotsig = 1; 1302 signals [signum - 1].pending = 1;
969 evpipe_write (EV_A_ &gotsig); 1303 evpipe_write (EV_A_ &sig_pending);
970} 1304}
971 1305
972void noinline 1306void noinline
973ev_feed_signal_event (EV_P_ int signum) 1307ev_feed_signal_event (EV_P_ int signum)
974{ 1308{
975 WL w; 1309 WL w;
976 1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
977#if EV_MULTIPLICITY 1316#if EV_MULTIPLICITY
978 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1317 /* it is permissible to try to feed a signal to the wrong loop */
979#endif 1318 /* or, likely more useful, feeding a signal nobody is waiting for */
980 1319
981 --signum; 1320 if (expect_false (signals [signum].loop != EV_A))
982
983 if (signum < 0 || signum >= signalmax)
984 return; 1321 return;
1322#endif
985 1323
986 signals [signum].gotsig = 0; 1324 signals [signum].pending = 0;
987 1325
988 for (w = signals [signum].head; w; w = w->next) 1326 for (w = signals [signum].head; w; w = w->next)
989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
990} 1328}
991 1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
992/*****************************************************************************/ 1350/*****************************************************************************/
993 1351
994static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
995 1353
996#ifndef _WIN32 1354#ifndef _WIN32
999 1357
1000#ifndef WIFCONTINUED 1358#ifndef WIFCONTINUED
1001# define WIFCONTINUED(status) 0 1359# define WIFCONTINUED(status) 0
1002#endif 1360#endif
1003 1361
1004void inline_speed 1362/* handle a single child status event */
1363inline_speed void
1005child_reap (EV_P_ int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
1006{ 1365{
1007 ev_child *w; 1366 ev_child *w;
1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1009 1368
1022 1381
1023#ifndef WCONTINUED 1382#ifndef WCONTINUED
1024# define WCONTINUED 0 1383# define WCONTINUED 0
1025#endif 1384#endif
1026 1385
1386/* called on sigchld etc., calls waitpid */
1027static void 1387static void
1028childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
1029{ 1389{
1030 int pid, status; 1390 int pid, status;
1031 1391
1112 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
1113 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1114 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
1115#endif 1475#endif
1116#ifdef __APPLE__ 1476#ifdef __APPLE__
1117 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
1118 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1119#endif 1480#endif
1120 1481
1121 return flags; 1482 return flags;
1122} 1483}
1123 1484
1137ev_backend (EV_P) 1498ev_backend (EV_P)
1138{ 1499{
1139 return backend; 1500 return backend;
1140} 1501}
1141 1502
1503#if EV_MINIMAL < 2
1142unsigned int 1504unsigned int
1143ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
1144{ 1506{
1145 return loop_count; 1507 return loop_count;
1146} 1508}
1147 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1148void 1516void
1149ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1150{ 1518{
1151 io_blocktime = interval; 1519 io_blocktime = interval;
1152} 1520}
1155ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1156{ 1524{
1157 timeout_blocktime = interval; 1525 timeout_blocktime = interval;
1158} 1526}
1159 1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1160static void noinline 1553static void noinline
1161loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
1162{ 1555{
1163 if (!backend) 1556 if (!backend)
1164 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
1165#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1166 { 1570 {
1167 struct timespec ts; 1571 struct timespec ts;
1572
1168 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1169 have_monotonic = 1; 1574 have_monotonic = 1;
1170 } 1575 }
1171#endif 1576#endif
1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1172 1588
1173 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1174 mn_now = get_clock (); 1590 mn_now = get_clock ();
1175 now_floor = mn_now; 1591 now_floor = mn_now;
1176 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1177 1596
1178 io_blocktime = 0.; 1597 io_blocktime = 0.;
1179 timeout_blocktime = 0.; 1598 timeout_blocktime = 0.;
1180 backend = 0; 1599 backend = 0;
1181 backend_fd = -1; 1600 backend_fd = -1;
1182 gotasync = 0; 1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1183#if EV_USE_INOTIFY 1605#if EV_USE_INOTIFY
1184 fs_fd = -2; 1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1185#endif 1607#endif
1186 1608#if EV_USE_SIGNALFD
1187 /* pid check not overridable via env */ 1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1188#ifndef _WIN32
1189 if (flags & EVFLAG_FORKCHECK)
1190 curpid = getpid ();
1191#endif 1610#endif
1192
1193 if (!(flags & EVFLAG_NOENV)
1194 && !enable_secure ()
1195 && getenv ("LIBEV_FLAGS"))
1196 flags = atoi (getenv ("LIBEV_FLAGS"));
1197 1611
1198 if (!(flags & 0x0000ffffU)) 1612 if (!(flags & 0x0000ffffU))
1199 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
1200 1614
1201#if EV_USE_PORT 1615#if EV_USE_PORT
1212#endif 1626#endif
1213#if EV_USE_SELECT 1627#if EV_USE_SELECT
1214 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1215#endif 1629#endif
1216 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1217 ev_init (&pipeev, pipecb); 1633 ev_init (&pipe_w, pipecb);
1218 ev_set_priority (&pipeev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1219 } 1635 }
1220} 1636}
1221 1637
1638/* free up a loop structure */
1222static void noinline 1639static void noinline
1223loop_destroy (EV_P) 1640loop_destroy (EV_P)
1224{ 1641{
1225 int i; 1642 int i;
1226 1643
1227 if (ev_is_active (&pipeev)) 1644 if (ev_is_active (&pipe_w))
1228 { 1645 {
1229 ev_ref (EV_A); /* signal watcher */ 1646 /*ev_ref (EV_A);*/
1230 ev_io_stop (EV_A_ &pipeev); 1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1231 1648
1232#if EV_USE_EVENTFD 1649#if EV_USE_EVENTFD
1233 if (evfd >= 0) 1650 if (evfd >= 0)
1234 close (evfd); 1651 close (evfd);
1235#endif 1652#endif
1236 1653
1237 if (evpipe [0] >= 0) 1654 if (evpipe [0] >= 0)
1238 { 1655 {
1239 close (evpipe [0]); 1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1240 close (evpipe [1]); 1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1241 } 1658 }
1242 } 1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 close (sigfd);
1664#endif
1243 1665
1244#if EV_USE_INOTIFY 1666#if EV_USE_INOTIFY
1245 if (fs_fd >= 0) 1667 if (fs_fd >= 0)
1246 close (fs_fd); 1668 close (fs_fd);
1247#endif 1669#endif
1271#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1272 array_free (idle, [i]); 1694 array_free (idle, [i]);
1273#endif 1695#endif
1274 } 1696 }
1275 1697
1276 ev_free (anfds); anfdmax = 0; 1698 ev_free (anfds); anfds = 0; anfdmax = 0;
1277 1699
1278 /* have to use the microsoft-never-gets-it-right macro */ 1700 /* have to use the microsoft-never-gets-it-right macro */
1701 array_free (rfeed, EMPTY);
1279 array_free (fdchange, EMPTY); 1702 array_free (fdchange, EMPTY);
1280 array_free (timer, EMPTY); 1703 array_free (timer, EMPTY);
1281#if EV_PERIODIC_ENABLE 1704#if EV_PERIODIC_ENABLE
1282 array_free (periodic, EMPTY); 1705 array_free (periodic, EMPTY);
1283#endif 1706#endif
1292 1715
1293 backend = 0; 1716 backend = 0;
1294} 1717}
1295 1718
1296#if EV_USE_INOTIFY 1719#if EV_USE_INOTIFY
1297void inline_size infy_fork (EV_P); 1720inline_size void infy_fork (EV_P);
1298#endif 1721#endif
1299 1722
1300void inline_size 1723inline_size void
1301loop_fork (EV_P) 1724loop_fork (EV_P)
1302{ 1725{
1303#if EV_USE_PORT 1726#if EV_USE_PORT
1304 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1305#endif 1728#endif
1311#endif 1734#endif
1312#if EV_USE_INOTIFY 1735#if EV_USE_INOTIFY
1313 infy_fork (EV_A); 1736 infy_fork (EV_A);
1314#endif 1737#endif
1315 1738
1316 if (ev_is_active (&pipeev)) 1739 if (ev_is_active (&pipe_w))
1317 { 1740 {
1318 /* this "locks" the handlers against writing to the pipe */ 1741 /* this "locks" the handlers against writing to the pipe */
1319 /* while we modify the fd vars */ 1742 /* while we modify the fd vars */
1320 gotsig = 1; 1743 sig_pending = 1;
1321#if EV_ASYNC_ENABLE 1744#if EV_ASYNC_ENABLE
1322 gotasync = 1; 1745 async_pending = 1;
1323#endif 1746#endif
1324 1747
1325 ev_ref (EV_A); 1748 ev_ref (EV_A);
1326 ev_io_stop (EV_A_ &pipeev); 1749 ev_io_stop (EV_A_ &pipe_w);
1327 1750
1328#if EV_USE_EVENTFD 1751#if EV_USE_EVENTFD
1329 if (evfd >= 0) 1752 if (evfd >= 0)
1330 close (evfd); 1753 close (evfd);
1331#endif 1754#endif
1332 1755
1333 if (evpipe [0] >= 0) 1756 if (evpipe [0] >= 0)
1334 { 1757 {
1335 close (evpipe [0]); 1758 EV_WIN32_CLOSE_FD (evpipe [0]);
1336 close (evpipe [1]); 1759 EV_WIN32_CLOSE_FD (evpipe [1]);
1337 } 1760 }
1338 1761
1339 evpipe_init (EV_A); 1762 evpipe_init (EV_A);
1340 /* now iterate over everything, in case we missed something */ 1763 /* now iterate over everything, in case we missed something */
1341 pipecb (EV_A_ &pipeev, EV_READ); 1764 pipecb (EV_A_ &pipe_w, EV_READ);
1342 } 1765 }
1343 1766
1344 postfork = 0; 1767 postfork = 0;
1345} 1768}
1346 1769
1347#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1771
1348struct ev_loop * 1772struct ev_loop *
1349ev_loop_new (unsigned int flags) 1773ev_loop_new (unsigned int flags)
1350{ 1774{
1351 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1352 1776
1353 memset (loop, 0, sizeof (struct ev_loop)); 1777 memset (EV_A, 0, sizeof (struct ev_loop));
1354
1355 loop_init (EV_A_ flags); 1778 loop_init (EV_A_ flags);
1356 1779
1357 if (ev_backend (EV_A)) 1780 if (ev_backend (EV_A))
1358 return loop; 1781 return EV_A;
1359 1782
1360 return 0; 1783 return 0;
1361} 1784}
1362 1785
1363void 1786void
1370void 1793void
1371ev_loop_fork (EV_P) 1794ev_loop_fork (EV_P)
1372{ 1795{
1373 postfork = 1; /* must be in line with ev_default_fork */ 1796 postfork = 1; /* must be in line with ev_default_fork */
1374} 1797}
1798#endif /* multiplicity */
1375 1799
1800#if EV_VERIFY
1801static void noinline
1802verify_watcher (EV_P_ W w)
1803{
1804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1805
1806 if (w->pending)
1807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1808}
1809
1810static void noinline
1811verify_heap (EV_P_ ANHE *heap, int N)
1812{
1813 int i;
1814
1815 for (i = HEAP0; i < N + HEAP0; ++i)
1816 {
1817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1820
1821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1822 }
1823}
1824
1825static void noinline
1826array_verify (EV_P_ W *ws, int cnt)
1827{
1828 while (cnt--)
1829 {
1830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1831 verify_watcher (EV_A_ ws [cnt]);
1832 }
1833}
1834#endif
1835
1836#if EV_MINIMAL < 2
1837void
1838ev_loop_verify (EV_P)
1839{
1840#if EV_VERIFY
1841 int i;
1842 WL w;
1843
1844 assert (activecnt >= -1);
1845
1846 assert (fdchangemax >= fdchangecnt);
1847 for (i = 0; i < fdchangecnt; ++i)
1848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1849
1850 assert (anfdmax >= 0);
1851 for (i = 0; i < anfdmax; ++i)
1852 for (w = anfds [i].head; w; w = w->next)
1853 {
1854 verify_watcher (EV_A_ (W)w);
1855 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1856 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1857 }
1858
1859 assert (timermax >= timercnt);
1860 verify_heap (EV_A_ timers, timercnt);
1861
1862#if EV_PERIODIC_ENABLE
1863 assert (periodicmax >= periodiccnt);
1864 verify_heap (EV_A_ periodics, periodiccnt);
1865#endif
1866
1867 for (i = NUMPRI; i--; )
1868 {
1869 assert (pendingmax [i] >= pendingcnt [i]);
1870#if EV_IDLE_ENABLE
1871 assert (idleall >= 0);
1872 assert (idlemax [i] >= idlecnt [i]);
1873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1874#endif
1875 }
1876
1877#if EV_FORK_ENABLE
1878 assert (forkmax >= forkcnt);
1879 array_verify (EV_A_ (W *)forks, forkcnt);
1880#endif
1881
1882#if EV_ASYNC_ENABLE
1883 assert (asyncmax >= asynccnt);
1884 array_verify (EV_A_ (W *)asyncs, asynccnt);
1885#endif
1886
1887 assert (preparemax >= preparecnt);
1888 array_verify (EV_A_ (W *)prepares, preparecnt);
1889
1890 assert (checkmax >= checkcnt);
1891 array_verify (EV_A_ (W *)checks, checkcnt);
1892
1893# if 0
1894 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1895 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1896# endif
1897#endif
1898}
1376#endif 1899#endif
1377 1900
1378#if EV_MULTIPLICITY 1901#if EV_MULTIPLICITY
1379struct ev_loop * 1902struct ev_loop *
1380ev_default_loop_init (unsigned int flags) 1903ev_default_loop_init (unsigned int flags)
1384#endif 1907#endif
1385{ 1908{
1386 if (!ev_default_loop_ptr) 1909 if (!ev_default_loop_ptr)
1387 { 1910 {
1388#if EV_MULTIPLICITY 1911#if EV_MULTIPLICITY
1389 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1912 EV_P = ev_default_loop_ptr = &default_loop_struct;
1390#else 1913#else
1391 ev_default_loop_ptr = 1; 1914 ev_default_loop_ptr = 1;
1392#endif 1915#endif
1393 1916
1394 loop_init (EV_A_ flags); 1917 loop_init (EV_A_ flags);
1411 1934
1412void 1935void
1413ev_default_destroy (void) 1936ev_default_destroy (void)
1414{ 1937{
1415#if EV_MULTIPLICITY 1938#if EV_MULTIPLICITY
1416 struct ev_loop *loop = ev_default_loop_ptr; 1939 EV_P = ev_default_loop_ptr;
1417#endif 1940#endif
1941
1942 ev_default_loop_ptr = 0;
1418 1943
1419#ifndef _WIN32 1944#ifndef _WIN32
1420 ev_ref (EV_A); /* child watcher */ 1945 ev_ref (EV_A); /* child watcher */
1421 ev_signal_stop (EV_A_ &childev); 1946 ev_signal_stop (EV_A_ &childev);
1422#endif 1947#endif
1426 1951
1427void 1952void
1428ev_default_fork (void) 1953ev_default_fork (void)
1429{ 1954{
1430#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1431 struct ev_loop *loop = ev_default_loop_ptr; 1956 EV_P = ev_default_loop_ptr;
1432#endif 1957#endif
1433 1958
1434 if (backend)
1435 postfork = 1; /* must be in line with ev_loop_fork */ 1959 postfork = 1; /* must be in line with ev_loop_fork */
1436} 1960}
1437 1961
1438/*****************************************************************************/ 1962/*****************************************************************************/
1439 1963
1440void 1964void
1441ev_invoke (EV_P_ void *w, int revents) 1965ev_invoke (EV_P_ void *w, int revents)
1442{ 1966{
1443 EV_CB_INVOKE ((W)w, revents); 1967 EV_CB_INVOKE ((W)w, revents);
1444} 1968}
1445 1969
1446void inline_speed 1970unsigned int
1447call_pending (EV_P) 1971ev_pending_count (EV_P)
1972{
1973 int pri;
1974 unsigned int count = 0;
1975
1976 for (pri = NUMPRI; pri--; )
1977 count += pendingcnt [pri];
1978
1979 return count;
1980}
1981
1982void noinline
1983ev_invoke_pending (EV_P)
1448{ 1984{
1449 int pri; 1985 int pri;
1450 1986
1451 for (pri = NUMPRI; pri--; ) 1987 for (pri = NUMPRI; pri--; )
1452 while (pendingcnt [pri]) 1988 while (pendingcnt [pri])
1453 { 1989 {
1454 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1990 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1455 1991
1456 if (expect_true (p->w))
1457 {
1458 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1992 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1993 /* ^ this is no longer true, as pending_w could be here */
1459 1994
1460 p->w->pending = 0; 1995 p->w->pending = 0;
1461 EV_CB_INVOKE (p->w, p->events); 1996 EV_CB_INVOKE (p->w, p->events);
1462 } 1997 EV_FREQUENT_CHECK;
1463 } 1998 }
1464} 1999}
1465 2000
1466void inline_size
1467timers_reify (EV_P)
1468{
1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1470 {
1471 ev_timer *w = (ev_timer *)timers [1];
1472
1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1474
1475 /* first reschedule or stop timer */
1476 if (w->repeat)
1477 {
1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1479
1480 ev_at (w) += w->repeat;
1481 if (ev_at (w) < mn_now)
1482 ev_at (w) = mn_now;
1483
1484 downheap (timers, timercnt, 1);
1485 }
1486 else
1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1490 }
1491}
1492
1493#if EV_PERIODIC_ENABLE
1494void inline_size
1495periodics_reify (EV_P)
1496{
1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1498 {
1499 ev_periodic *w = (ev_periodic *)periodics [1];
1500
1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1502
1503 /* first reschedule or stop timer */
1504 if (w->reschedule_cb)
1505 {
1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1508 downheap (periodics, periodiccnt, 1);
1509 }
1510 else if (w->interval)
1511 {
1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1515 downheap (periodics, periodiccnt, 1);
1516 }
1517 else
1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1519
1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1521 }
1522}
1523
1524static void noinline
1525periodics_reschedule (EV_P)
1526{
1527 int i;
1528
1529 /* adjust periodics after time jump */
1530 for (i = 1; i <= periodiccnt; ++i)
1531 {
1532 ev_periodic *w = (ev_periodic *)periodics [i];
1533
1534 if (w->reschedule_cb)
1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1536 else if (w->interval)
1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1538 }
1539
1540 /* now rebuild the heap */
1541 for (i = periodiccnt >> 1; i--; )
1542 downheap (periodics, periodiccnt, i);
1543}
1544#endif
1545
1546#if EV_IDLE_ENABLE 2001#if EV_IDLE_ENABLE
1547void inline_size 2002/* make idle watchers pending. this handles the "call-idle */
2003/* only when higher priorities are idle" logic */
2004inline_size void
1548idle_reify (EV_P) 2005idle_reify (EV_P)
1549{ 2006{
1550 if (expect_false (idleall)) 2007 if (expect_false (idleall))
1551 { 2008 {
1552 int pri; 2009 int pri;
1564 } 2021 }
1565 } 2022 }
1566} 2023}
1567#endif 2024#endif
1568 2025
1569void inline_speed 2026/* make timers pending */
2027inline_size void
2028timers_reify (EV_P)
2029{
2030 EV_FREQUENT_CHECK;
2031
2032 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2033 {
2034 do
2035 {
2036 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037
2038 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039
2040 /* first reschedule or stop timer */
2041 if (w->repeat)
2042 {
2043 ev_at (w) += w->repeat;
2044 if (ev_at (w) < mn_now)
2045 ev_at (w) = mn_now;
2046
2047 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2048
2049 ANHE_at_cache (timers [HEAP0]);
2050 downheap (timers, timercnt, HEAP0);
2051 }
2052 else
2053 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054
2055 EV_FREQUENT_CHECK;
2056 feed_reverse (EV_A_ (W)w);
2057 }
2058 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2059
2060 feed_reverse_done (EV_A_ EV_TIMEOUT);
2061 }
2062}
2063
2064#if EV_PERIODIC_ENABLE
2065/* make periodics pending */
2066inline_size void
2067periodics_reify (EV_P)
2068{
2069 EV_FREQUENT_CHECK;
2070
2071 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2072 {
2073 int feed_count = 0;
2074
2075 do
2076 {
2077 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->reschedule_cb)
2083 {
2084 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2085
2086 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else if (w->interval)
2092 {
2093 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094 /* if next trigger time is not sufficiently in the future, put it there */
2095 /* this might happen because of floating point inexactness */
2096 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097 {
2098 ev_at (w) += w->interval;
2099
2100 /* if interval is unreasonably low we might still have a time in the past */
2101 /* so correct this. this will make the periodic very inexact, but the user */
2102 /* has effectively asked to get triggered more often than possible */
2103 if (ev_at (w) < ev_rt_now)
2104 ev_at (w) = ev_rt_now;
2105 }
2106
2107 ANHE_at_cache (periodics [HEAP0]);
2108 downheap (periodics, periodiccnt, HEAP0);
2109 }
2110 else
2111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112
2113 EV_FREQUENT_CHECK;
2114 feed_reverse (EV_A_ (W)w);
2115 }
2116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2117
2118 feed_reverse_done (EV_A_ EV_PERIODIC);
2119 }
2120}
2121
2122/* simply recalculate all periodics */
2123/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2124static void noinline
2125periodics_reschedule (EV_P)
2126{
2127 int i;
2128
2129 /* adjust periodics after time jump */
2130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2131 {
2132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2133
2134 if (w->reschedule_cb)
2135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2136 else if (w->interval)
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138
2139 ANHE_at_cache (periodics [i]);
2140 }
2141
2142 reheap (periodics, periodiccnt);
2143}
2144#endif
2145
2146/* adjust all timers by a given offset */
2147static void noinline
2148timers_reschedule (EV_P_ ev_tstamp adjust)
2149{
2150 int i;
2151
2152 for (i = 0; i < timercnt; ++i)
2153 {
2154 ANHE *he = timers + i + HEAP0;
2155 ANHE_w (*he)->at += adjust;
2156 ANHE_at_cache (*he);
2157 }
2158}
2159
2160/* fetch new monotonic and realtime times from the kernel */
2161/* also detetc if there was a timejump, and act accordingly */
2162inline_speed void
1570time_update (EV_P_ ev_tstamp max_block) 2163time_update (EV_P_ ev_tstamp max_block)
1571{ 2164{
1572 int i;
1573
1574#if EV_USE_MONOTONIC 2165#if EV_USE_MONOTONIC
1575 if (expect_true (have_monotonic)) 2166 if (expect_true (have_monotonic))
1576 { 2167 {
2168 int i;
1577 ev_tstamp odiff = rtmn_diff; 2169 ev_tstamp odiff = rtmn_diff;
1578 2170
1579 mn_now = get_clock (); 2171 mn_now = get_clock ();
1580 2172
1581 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1599 */ 2191 */
1600 for (i = 4; --i; ) 2192 for (i = 4; --i; )
1601 { 2193 {
1602 rtmn_diff = ev_rt_now - mn_now; 2194 rtmn_diff = ev_rt_now - mn_now;
1603 2195
1604 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2196 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1605 return; /* all is well */ 2197 return; /* all is well */
1606 2198
1607 ev_rt_now = ev_time (); 2199 ev_rt_now = ev_time ();
1608 mn_now = get_clock (); 2200 mn_now = get_clock ();
1609 now_floor = mn_now; 2201 now_floor = mn_now;
1610 } 2202 }
1611 2203
2204 /* no timer adjustment, as the monotonic clock doesn't jump */
2205 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1612# if EV_PERIODIC_ENABLE 2206# if EV_PERIODIC_ENABLE
1613 periodics_reschedule (EV_A); 2207 periodics_reschedule (EV_A);
1614# endif 2208# endif
1615 /* no timer adjustment, as the monotonic clock doesn't jump */
1616 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1617 } 2209 }
1618 else 2210 else
1619#endif 2211#endif
1620 { 2212 {
1621 ev_rt_now = ev_time (); 2213 ev_rt_now = ev_time ();
1622 2214
1623 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2215 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1624 { 2216 {
2217 /* adjust timers. this is easy, as the offset is the same for all of them */
2218 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1625#if EV_PERIODIC_ENABLE 2219#if EV_PERIODIC_ENABLE
1626 periodics_reschedule (EV_A); 2220 periodics_reschedule (EV_A);
1627#endif 2221#endif
1628 /* adjust timers. this is easy, as the offset is the same for all of them */
1629 for (i = 1; i <= timercnt; ++i)
1630 ev_at (timers [i]) += ev_rt_now - mn_now;
1631 } 2222 }
1632 2223
1633 mn_now = ev_rt_now; 2224 mn_now = ev_rt_now;
1634 } 2225 }
1635} 2226}
1636 2227
1637void 2228void
1638ev_ref (EV_P)
1639{
1640 ++activecnt;
1641}
1642
1643void
1644ev_unref (EV_P)
1645{
1646 --activecnt;
1647}
1648
1649static int loop_done;
1650
1651void
1652ev_loop (EV_P_ int flags) 2229ev_loop (EV_P_ int flags)
1653{ 2230{
2231#if EV_MINIMAL < 2
2232 ++loop_depth;
2233#endif
2234
2235 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236
1654 loop_done = EVUNLOOP_CANCEL; 2237 loop_done = EVUNLOOP_CANCEL;
1655 2238
1656 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2239 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1657 2240
1658 do 2241 do
1659 { 2242 {
2243#if EV_VERIFY >= 2
2244 ev_loop_verify (EV_A);
2245#endif
2246
1660#ifndef _WIN32 2247#ifndef _WIN32
1661 if (expect_false (curpid)) /* penalise the forking check even more */ 2248 if (expect_false (curpid)) /* penalise the forking check even more */
1662 if (expect_false (getpid () != curpid)) 2249 if (expect_false (getpid () != curpid))
1663 { 2250 {
1664 curpid = getpid (); 2251 curpid = getpid ();
1670 /* we might have forked, so queue fork handlers */ 2257 /* we might have forked, so queue fork handlers */
1671 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1672 if (forkcnt) 2259 if (forkcnt)
1673 { 2260 {
1674 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2261 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1675 call_pending (EV_A); 2262 EV_INVOKE_PENDING;
1676 } 2263 }
1677#endif 2264#endif
1678 2265
1679 /* queue prepare watchers (and execute them) */ 2266 /* queue prepare watchers (and execute them) */
1680 if (expect_false (preparecnt)) 2267 if (expect_false (preparecnt))
1681 { 2268 {
1682 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1683 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1684 } 2271 }
1685 2272
1686 if (expect_false (!activecnt)) 2273 if (expect_false (loop_done))
1687 break; 2274 break;
1688 2275
1689 /* we might have forked, so reify kernel state if necessary */ 2276 /* we might have forked, so reify kernel state if necessary */
1690 if (expect_false (postfork)) 2277 if (expect_false (postfork))
1691 loop_fork (EV_A); 2278 loop_fork (EV_A);
1698 ev_tstamp waittime = 0.; 2285 ev_tstamp waittime = 0.;
1699 ev_tstamp sleeptime = 0.; 2286 ev_tstamp sleeptime = 0.;
1700 2287
1701 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2288 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1702 { 2289 {
2290 /* remember old timestamp for io_blocktime calculation */
2291 ev_tstamp prev_mn_now = mn_now;
2292
1703 /* update time to cancel out callback processing overhead */ 2293 /* update time to cancel out callback processing overhead */
1704 time_update (EV_A_ 1e100); 2294 time_update (EV_A_ 1e100);
1705 2295
1706 waittime = MAX_BLOCKTIME; 2296 waittime = MAX_BLOCKTIME;
1707 2297
1708 if (timercnt) 2298 if (timercnt)
1709 { 2299 {
1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2300 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1711 if (waittime > to) waittime = to; 2301 if (waittime > to) waittime = to;
1712 } 2302 }
1713 2303
1714#if EV_PERIODIC_ENABLE 2304#if EV_PERIODIC_ENABLE
1715 if (periodiccnt) 2305 if (periodiccnt)
1716 { 2306 {
1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1718 if (waittime > to) waittime = to; 2308 if (waittime > to) waittime = to;
1719 } 2309 }
1720#endif 2310#endif
1721 2311
2312 /* don't let timeouts decrease the waittime below timeout_blocktime */
1722 if (expect_false (waittime < timeout_blocktime)) 2313 if (expect_false (waittime < timeout_blocktime))
1723 waittime = timeout_blocktime; 2314 waittime = timeout_blocktime;
1724 2315
1725 sleeptime = waittime - backend_fudge; 2316 /* extra check because io_blocktime is commonly 0 */
1726
1727 if (expect_true (sleeptime > io_blocktime)) 2317 if (expect_false (io_blocktime))
1728 sleeptime = io_blocktime;
1729
1730 if (sleeptime)
1731 { 2318 {
2319 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320
2321 if (sleeptime > waittime - backend_fudge)
2322 sleeptime = waittime - backend_fudge;
2323
2324 if (expect_true (sleeptime > 0.))
2325 {
1732 ev_sleep (sleeptime); 2326 ev_sleep (sleeptime);
1733 waittime -= sleeptime; 2327 waittime -= sleeptime;
2328 }
1734 } 2329 }
1735 } 2330 }
1736 2331
2332#if EV_MINIMAL < 2
1737 ++loop_count; 2333 ++loop_count;
2334#endif
2335 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1738 backend_poll (EV_A_ waittime); 2336 backend_poll (EV_A_ waittime);
2337 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1739 2338
1740 /* update ev_rt_now, do magic */ 2339 /* update ev_rt_now, do magic */
1741 time_update (EV_A_ waittime + sleeptime); 2340 time_update (EV_A_ waittime + sleeptime);
1742 } 2341 }
1743 2342
1754 2353
1755 /* queue check watchers, to be executed first */ 2354 /* queue check watchers, to be executed first */
1756 if (expect_false (checkcnt)) 2355 if (expect_false (checkcnt))
1757 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2356 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1758 2357
1759 call_pending (EV_A); 2358 EV_INVOKE_PENDING;
1760 } 2359 }
1761 while (expect_true ( 2360 while (expect_true (
1762 activecnt 2361 activecnt
1763 && !loop_done 2362 && !loop_done
1764 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2363 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1765 )); 2364 ));
1766 2365
1767 if (loop_done == EVUNLOOP_ONE) 2366 if (loop_done == EVUNLOOP_ONE)
1768 loop_done = EVUNLOOP_CANCEL; 2367 loop_done = EVUNLOOP_CANCEL;
2368
2369#if EV_MINIMAL < 2
2370 --loop_depth;
2371#endif
1769} 2372}
1770 2373
1771void 2374void
1772ev_unloop (EV_P_ int how) 2375ev_unloop (EV_P_ int how)
1773{ 2376{
1774 loop_done = how; 2377 loop_done = how;
1775} 2378}
1776 2379
2380void
2381ev_ref (EV_P)
2382{
2383 ++activecnt;
2384}
2385
2386void
2387ev_unref (EV_P)
2388{
2389 --activecnt;
2390}
2391
2392void
2393ev_now_update (EV_P)
2394{
2395 time_update (EV_A_ 1e100);
2396}
2397
2398void
2399ev_suspend (EV_P)
2400{
2401 ev_now_update (EV_A);
2402}
2403
2404void
2405ev_resume (EV_P)
2406{
2407 ev_tstamp mn_prev = mn_now;
2408
2409 ev_now_update (EV_A);
2410 timers_reschedule (EV_A_ mn_now - mn_prev);
2411#if EV_PERIODIC_ENABLE
2412 /* TODO: really do this? */
2413 periodics_reschedule (EV_A);
2414#endif
2415}
2416
1777/*****************************************************************************/ 2417/*****************************************************************************/
2418/* singly-linked list management, used when the expected list length is short */
1778 2419
1779void inline_size 2420inline_size void
1780wlist_add (WL *head, WL elem) 2421wlist_add (WL *head, WL elem)
1781{ 2422{
1782 elem->next = *head; 2423 elem->next = *head;
1783 *head = elem; 2424 *head = elem;
1784} 2425}
1785 2426
1786void inline_size 2427inline_size void
1787wlist_del (WL *head, WL elem) 2428wlist_del (WL *head, WL elem)
1788{ 2429{
1789 while (*head) 2430 while (*head)
1790 { 2431 {
1791 if (*head == elem) 2432 if (expect_true (*head == elem))
1792 { 2433 {
1793 *head = elem->next; 2434 *head = elem->next;
1794 return; 2435 break;
1795 } 2436 }
1796 2437
1797 head = &(*head)->next; 2438 head = &(*head)->next;
1798 } 2439 }
1799} 2440}
1800 2441
1801void inline_speed 2442/* internal, faster, version of ev_clear_pending */
2443inline_speed void
1802clear_pending (EV_P_ W w) 2444clear_pending (EV_P_ W w)
1803{ 2445{
1804 if (w->pending) 2446 if (w->pending)
1805 { 2447 {
1806 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2448 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1807 w->pending = 0; 2449 w->pending = 0;
1808 } 2450 }
1809} 2451}
1810 2452
1811int 2453int
1815 int pending = w_->pending; 2457 int pending = w_->pending;
1816 2458
1817 if (expect_true (pending)) 2459 if (expect_true (pending))
1818 { 2460 {
1819 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2461 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 p->w = (W)&pending_w;
1820 w_->pending = 0; 2463 w_->pending = 0;
1821 p->w = 0;
1822 return p->events; 2464 return p->events;
1823 } 2465 }
1824 else 2466 else
1825 return 0; 2467 return 0;
1826} 2468}
1827 2469
1828void inline_size 2470inline_size void
1829pri_adjust (EV_P_ W w) 2471pri_adjust (EV_P_ W w)
1830{ 2472{
1831 int pri = w->priority; 2473 int pri = ev_priority (w);
1832 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2474 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1833 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2475 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1834 w->priority = pri; 2476 ev_set_priority (w, pri);
1835} 2477}
1836 2478
1837void inline_speed 2479inline_speed void
1838ev_start (EV_P_ W w, int active) 2480ev_start (EV_P_ W w, int active)
1839{ 2481{
1840 pri_adjust (EV_A_ w); 2482 pri_adjust (EV_A_ w);
1841 w->active = active; 2483 w->active = active;
1842 ev_ref (EV_A); 2484 ev_ref (EV_A);
1843} 2485}
1844 2486
1845void inline_size 2487inline_size void
1846ev_stop (EV_P_ W w) 2488ev_stop (EV_P_ W w)
1847{ 2489{
1848 ev_unref (EV_A); 2490 ev_unref (EV_A);
1849 w->active = 0; 2491 w->active = 0;
1850} 2492}
1857 int fd = w->fd; 2499 int fd = w->fd;
1858 2500
1859 if (expect_false (ev_is_active (w))) 2501 if (expect_false (ev_is_active (w)))
1860 return; 2502 return;
1861 2503
1862 assert (("ev_io_start called with negative fd", fd >= 0)); 2504 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2505 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2506
2507 EV_FREQUENT_CHECK;
1863 2508
1864 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
1865 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2510 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1866 wlist_add (&anfds[fd].head, (WL)w); 2511 wlist_add (&anfds[fd].head, (WL)w);
1867 2512
1868 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2513 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1869 w->events &= ~EV_IOFDSET; 2514 w->events &= ~EV__IOFDSET;
2515
2516 EV_FREQUENT_CHECK;
1870} 2517}
1871 2518
1872void noinline 2519void noinline
1873ev_io_stop (EV_P_ ev_io *w) 2520ev_io_stop (EV_P_ ev_io *w)
1874{ 2521{
1875 clear_pending (EV_A_ (W)w); 2522 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2523 if (expect_false (!ev_is_active (w)))
1877 return; 2524 return;
1878 2525
1879 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2526 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2527
2528 EV_FREQUENT_CHECK;
1880 2529
1881 wlist_del (&anfds[w->fd].head, (WL)w); 2530 wlist_del (&anfds[w->fd].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2531 ev_stop (EV_A_ (W)w);
1883 2532
1884 fd_change (EV_A_ w->fd, 1); 2533 fd_change (EV_A_ w->fd, 1);
2534
2535 EV_FREQUENT_CHECK;
1885} 2536}
1886 2537
1887void noinline 2538void noinline
1888ev_timer_start (EV_P_ ev_timer *w) 2539ev_timer_start (EV_P_ ev_timer *w)
1889{ 2540{
1890 if (expect_false (ev_is_active (w))) 2541 if (expect_false (ev_is_active (w)))
1891 return; 2542 return;
1892 2543
1893 ev_at (w) += mn_now; 2544 ev_at (w) += mn_now;
1894 2545
1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2546 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1896 2547
2548 EV_FREQUENT_CHECK;
2549
2550 ++timercnt;
1897 ev_start (EV_A_ (W)w, ++timercnt); 2551 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2552 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1899 timers [timercnt] = (WT)w; 2553 ANHE_w (timers [ev_active (w)]) = (WT)w;
2554 ANHE_at_cache (timers [ev_active (w)]);
1900 upheap (timers, timercnt); 2555 upheap (timers, ev_active (w));
1901 2556
2557 EV_FREQUENT_CHECK;
2558
1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2559 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1903} 2560}
1904 2561
1905void noinline 2562void noinline
1906ev_timer_stop (EV_P_ ev_timer *w) 2563ev_timer_stop (EV_P_ ev_timer *w)
1907{ 2564{
1908 clear_pending (EV_A_ (W)w); 2565 clear_pending (EV_A_ (W)w);
1909 if (expect_false (!ev_is_active (w))) 2566 if (expect_false (!ev_is_active (w)))
1910 return; 2567 return;
1911 2568
2569 EV_FREQUENT_CHECK;
2570
1912 { 2571 {
1913 int active = ev_active (w); 2572 int active = ev_active (w);
1914 2573
1915 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2574 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1916 2575
2576 --timercnt;
2577
1917 if (expect_true (active < timercnt)) 2578 if (expect_true (active < timercnt + HEAP0))
1918 { 2579 {
1919 timers [active] = timers [timercnt]; 2580 timers [active] = timers [timercnt + HEAP0];
1920 adjustheap (timers, timercnt, active); 2581 adjustheap (timers, timercnt, active);
1921 } 2582 }
1922
1923 --timercnt;
1924 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
1925 2586
1926 ev_at (w) -= mn_now; 2587 ev_at (w) -= mn_now;
1927 2588
1928 ev_stop (EV_A_ (W)w); 2589 ev_stop (EV_A_ (W)w);
1929} 2590}
1930 2591
1931void noinline 2592void noinline
1932ev_timer_again (EV_P_ ev_timer *w) 2593ev_timer_again (EV_P_ ev_timer *w)
1933{ 2594{
2595 EV_FREQUENT_CHECK;
2596
1934 if (ev_is_active (w)) 2597 if (ev_is_active (w))
1935 { 2598 {
1936 if (w->repeat) 2599 if (w->repeat)
1937 { 2600 {
1938 ev_at (w) = mn_now + w->repeat; 2601 ev_at (w) = mn_now + w->repeat;
2602 ANHE_at_cache (timers [ev_active (w)]);
1939 adjustheap (timers, timercnt, ev_active (w)); 2603 adjustheap (timers, timercnt, ev_active (w));
1940 } 2604 }
1941 else 2605 else
1942 ev_timer_stop (EV_A_ w); 2606 ev_timer_stop (EV_A_ w);
1943 } 2607 }
1944 else if (w->repeat) 2608 else if (w->repeat)
1945 { 2609 {
1946 ev_at (w) = w->repeat; 2610 ev_at (w) = w->repeat;
1947 ev_timer_start (EV_A_ w); 2611 ev_timer_start (EV_A_ w);
1948 } 2612 }
2613
2614 EV_FREQUENT_CHECK;
2615}
2616
2617ev_tstamp
2618ev_timer_remaining (EV_P_ ev_timer *w)
2619{
2620 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1949} 2621}
1950 2622
1951#if EV_PERIODIC_ENABLE 2623#if EV_PERIODIC_ENABLE
1952void noinline 2624void noinline
1953ev_periodic_start (EV_P_ ev_periodic *w) 2625ev_periodic_start (EV_P_ ev_periodic *w)
1957 2629
1958 if (w->reschedule_cb) 2630 if (w->reschedule_cb)
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2631 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960 else if (w->interval) 2632 else if (w->interval)
1961 { 2633 {
1962 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2634 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1963 /* this formula differs from the one in periodic_reify because we do not always round up */ 2635 /* this formula differs from the one in periodic_reify because we do not always round up */
1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2636 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1965 } 2637 }
1966 else 2638 else
1967 ev_at (w) = w->offset; 2639 ev_at (w) = w->offset;
1968 2640
2641 EV_FREQUENT_CHECK;
2642
2643 ++periodiccnt;
1969 ev_start (EV_A_ (W)w, ++periodiccnt); 2644 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2645 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1971 periodics [periodiccnt] = (WT)w; 2646 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1972 upheap (periodics, periodiccnt); 2647 ANHE_at_cache (periodics [ev_active (w)]);
2648 upheap (periodics, ev_active (w));
1973 2649
2650 EV_FREQUENT_CHECK;
2651
1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2652 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1975} 2653}
1976 2654
1977void noinline 2655void noinline
1978ev_periodic_stop (EV_P_ ev_periodic *w) 2656ev_periodic_stop (EV_P_ ev_periodic *w)
1979{ 2657{
1980 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
1981 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
1982 return; 2660 return;
1983 2661
2662 EV_FREQUENT_CHECK;
2663
1984 { 2664 {
1985 int active = ev_active (w); 2665 int active = ev_active (w);
1986 2666
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2667 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1988 2668
2669 --periodiccnt;
2670
1989 if (expect_true (active < periodiccnt)) 2671 if (expect_true (active < periodiccnt + HEAP0))
1990 { 2672 {
1991 periodics [active] = periodics [periodiccnt]; 2673 periodics [active] = periodics [periodiccnt + HEAP0];
1992 adjustheap (periodics, periodiccnt, active); 2674 adjustheap (periodics, periodiccnt, active);
1993 } 2675 }
1994
1995 --periodiccnt;
1996 } 2676 }
2677
2678 EV_FREQUENT_CHECK;
1997 2679
1998 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
1999} 2681}
2000 2682
2001void noinline 2683void noinline
2012#endif 2694#endif
2013 2695
2014void noinline 2696void noinline
2015ev_signal_start (EV_P_ ev_signal *w) 2697ev_signal_start (EV_P_ ev_signal *w)
2016{ 2698{
2017#if EV_MULTIPLICITY
2018 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2019#endif
2020 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
2021 return; 2700 return;
2022 2701
2023 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2702 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2024 2703
2025 evpipe_init (EV_A); 2704#if EV_MULTIPLICITY
2705 assert (("libev: a signal must not be attached to two different loops",
2706 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2026 2707
2708 signals [w->signum - 1].loop = EV_A;
2709#endif
2710
2711 EV_FREQUENT_CHECK;
2712
2713#if EV_USE_SIGNALFD
2714 if (sigfd == -2)
2027 { 2715 {
2028#ifndef _WIN32 2716 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2029 sigset_t full, prev; 2717 if (sigfd < 0 && errno == EINVAL)
2030 sigfillset (&full); 2718 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2031 sigprocmask (SIG_SETMASK, &full, &prev);
2032#endif
2033 2719
2034 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2720 if (sigfd >= 0)
2721 {
2722 fd_intern (sigfd); /* doing it twice will not hurt */
2035 2723
2036#ifndef _WIN32 2724 sigemptyset (&sigfd_set);
2037 sigprocmask (SIG_SETMASK, &prev, 0); 2725
2038#endif 2726 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727 ev_set_priority (&sigfd_w, EV_MAXPRI);
2728 ev_io_start (EV_A_ &sigfd_w);
2729 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730 }
2039 } 2731 }
2732
2733 if (sigfd >= 0)
2734 {
2735 /* TODO: check .head */
2736 sigaddset (&sigfd_set, w->signum);
2737 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738
2739 signalfd (sigfd, &sigfd_set, 0);
2740 }
2741#endif
2040 2742
2041 ev_start (EV_A_ (W)w, 1); 2743 ev_start (EV_A_ (W)w, 1);
2042 wlist_add (&signals [w->signum - 1].head, (WL)w); 2744 wlist_add (&signals [w->signum - 1].head, (WL)w);
2043 2745
2044 if (!((WL)w)->next) 2746 if (!((WL)w)->next)
2747# if EV_USE_SIGNALFD
2748 if (sigfd < 0) /*TODO*/
2749# endif
2045 { 2750 {
2046#if _WIN32 2751# if _WIN32
2752 evpipe_init (EV_A);
2753
2047 signal (w->signum, ev_sighandler); 2754 signal (w->signum, ev_sighandler);
2048#else 2755# else
2049 struct sigaction sa; 2756 struct sigaction sa;
2757
2758 evpipe_init (EV_A);
2759
2050 sa.sa_handler = ev_sighandler; 2760 sa.sa_handler = ev_sighandler;
2051 sigfillset (&sa.sa_mask); 2761 sigfillset (&sa.sa_mask);
2052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2053 sigaction (w->signum, &sa, 0); 2763 sigaction (w->signum, &sa, 0);
2764
2765 sigemptyset (&sa.sa_mask);
2766 sigaddset (&sa.sa_mask, w->signum);
2767 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2054#endif 2768#endif
2055 } 2769 }
2770
2771 EV_FREQUENT_CHECK;
2056} 2772}
2057 2773
2058void noinline 2774void noinline
2059ev_signal_stop (EV_P_ ev_signal *w) 2775ev_signal_stop (EV_P_ ev_signal *w)
2060{ 2776{
2061 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2062 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2063 return; 2779 return;
2064 2780
2781 EV_FREQUENT_CHECK;
2782
2065 wlist_del (&signals [w->signum - 1].head, (WL)w); 2783 wlist_del (&signals [w->signum - 1].head, (WL)w);
2066 ev_stop (EV_A_ (W)w); 2784 ev_stop (EV_A_ (W)w);
2067 2785
2068 if (!signals [w->signum - 1].head) 2786 if (!signals [w->signum - 1].head)
2787 {
2788#if EV_MULTIPLICITY
2789 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790#endif
2791#if EV_USE_SIGNALFD
2792 if (sigfd >= 0)
2793 {
2794 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795 sigdelset (&sigfd_set, w->signum);
2796 signalfd (sigfd, &sigfd_set, 0);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798 /*TODO: maybe unblock signal? */
2799 }
2800 else
2801#endif
2069 signal (w->signum, SIG_DFL); 2802 signal (w->signum, SIG_DFL);
2803 }
2804
2805 EV_FREQUENT_CHECK;
2070} 2806}
2071 2807
2072void 2808void
2073ev_child_start (EV_P_ ev_child *w) 2809ev_child_start (EV_P_ ev_child *w)
2074{ 2810{
2075#if EV_MULTIPLICITY 2811#if EV_MULTIPLICITY
2076 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2812 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2077#endif 2813#endif
2078 if (expect_false (ev_is_active (w))) 2814 if (expect_false (ev_is_active (w)))
2079 return; 2815 return;
2080 2816
2817 EV_FREQUENT_CHECK;
2818
2081 ev_start (EV_A_ (W)w, 1); 2819 ev_start (EV_A_ (W)w, 1);
2082 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2821
2822 EV_FREQUENT_CHECK;
2083} 2823}
2084 2824
2085void 2825void
2086ev_child_stop (EV_P_ ev_child *w) 2826ev_child_stop (EV_P_ ev_child *w)
2087{ 2827{
2088 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2089 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2090 return; 2830 return;
2091 2831
2832 EV_FREQUENT_CHECK;
2833
2092 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2834 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2093 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2094} 2838}
2095 2839
2096#if EV_STAT_ENABLE 2840#if EV_STAT_ENABLE
2097 2841
2098# ifdef _WIN32 2842# ifdef _WIN32
2099# undef lstat 2843# undef lstat
2100# define lstat(a,b) _stati64 (a,b) 2844# define lstat(a,b) _stati64 (a,b)
2101# endif 2845# endif
2102 2846
2103#define DEF_STAT_INTERVAL 5.0074891 2847#define DEF_STAT_INTERVAL 5.0074891
2848#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2104#define MIN_STAT_INTERVAL 0.1074891 2849#define MIN_STAT_INTERVAL 0.1074891
2105 2850
2106static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2851static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2107 2852
2108#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2109# define EV_INOTIFY_BUFSIZE 8192 2854# define EV_INOTIFY_BUFSIZE 8192
2113{ 2858{
2114 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2859 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2115 2860
2116 if (w->wd < 0) 2861 if (w->wd < 0)
2117 { 2862 {
2863 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2118 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2864 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2119 2865
2120 /* monitor some parent directory for speedup hints */ 2866 /* monitor some parent directory for speedup hints */
2121 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2867 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2122 /* but an efficiency issue only */ 2868 /* but an efficiency issue only */
2123 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2869 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2124 { 2870 {
2125 char path [4096]; 2871 char path [4096];
2126 strcpy (path, w->path); 2872 strcpy (path, w->path);
2130 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2876 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2131 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2877 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2132 2878
2133 char *pend = strrchr (path, '/'); 2879 char *pend = strrchr (path, '/');
2134 2880
2135 if (!pend) 2881 if (!pend || pend == path)
2136 break; /* whoops, no '/', complain to your admin */ 2882 break;
2137 2883
2138 *pend = 0; 2884 *pend = 0;
2139 w->wd = inotify_add_watch (fs_fd, path, mask); 2885 w->wd = inotify_add_watch (fs_fd, path, mask);
2140 } 2886 }
2141 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2887 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2142 } 2888 }
2143 } 2889 }
2144 else
2145 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2146 2890
2147 if (w->wd >= 0) 2891 if (w->wd >= 0)
2892 {
2893 struct statfs sfs;
2894
2148 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2895 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2896
2897 /* now local changes will be tracked by inotify, but remote changes won't */
2898 /* unless the filesystem is known to be local, we therefore still poll */
2899 /* also do poll on <2.6.25, but with normal frequency */
2900
2901 if (fs_2625 && !statfs (w->path, &sfs))
2902 if (sfs.f_type == 0x1373 /* devfs */
2903 || sfs.f_type == 0xEF53 /* ext2/3 */
2904 || sfs.f_type == 0x3153464a /* jfs */
2905 || sfs.f_type == 0x52654973 /* reiser3 */
2906 || sfs.f_type == 0x01021994 /* tempfs */
2907 || sfs.f_type == 0x58465342 /* xfs */)
2908 return;
2909
2910 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2911 ev_timer_again (EV_A_ &w->timer);
2912 }
2149} 2913}
2150 2914
2151static void noinline 2915static void noinline
2152infy_del (EV_P_ ev_stat *w) 2916infy_del (EV_P_ ev_stat *w)
2153{ 2917{
2167 2931
2168static void noinline 2932static void noinline
2169infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2933infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2170{ 2934{
2171 if (slot < 0) 2935 if (slot < 0)
2172 /* overflow, need to check for all hahs slots */ 2936 /* overflow, need to check for all hash slots */
2173 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2937 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2174 infy_wd (EV_A_ slot, wd, ev); 2938 infy_wd (EV_A_ slot, wd, ev);
2175 else 2939 else
2176 { 2940 {
2177 WL w_; 2941 WL w_;
2183 2947
2184 if (w->wd == wd || wd == -1) 2948 if (w->wd == wd || wd == -1)
2185 { 2949 {
2186 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2950 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2187 { 2951 {
2952 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2188 w->wd = -1; 2953 w->wd = -1;
2189 infy_add (EV_A_ w); /* re-add, no matter what */ 2954 infy_add (EV_A_ w); /* re-add, no matter what */
2190 } 2955 }
2191 2956
2192 stat_timer_cb (EV_A_ &w->timer, 0); 2957 stat_timer_cb (EV_A_ &w->timer, 0);
2205 2970
2206 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2971 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2207 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2972 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2208} 2973}
2209 2974
2210void inline_size 2975inline_size void
2976check_2625 (EV_P)
2977{
2978 /* kernels < 2.6.25 are borked
2979 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2980 */
2981 struct utsname buf;
2982 int major, minor, micro;
2983
2984 if (uname (&buf))
2985 return;
2986
2987 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2988 return;
2989
2990 if (major < 2
2991 || (major == 2 && minor < 6)
2992 || (major == 2 && minor == 6 && micro < 25))
2993 return;
2994
2995 fs_2625 = 1;
2996}
2997
2998inline_size int
2999infy_newfd (void)
3000{
3001#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3002 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3003 if (fd >= 0)
3004 return fd;
3005#endif
3006 return inotify_init ();
3007}
3008
3009inline_size void
2211infy_init (EV_P) 3010infy_init (EV_P)
2212{ 3011{
2213 if (fs_fd != -2) 3012 if (fs_fd != -2)
2214 return; 3013 return;
2215 3014
3015 fs_fd = -1;
3016
3017 check_2625 (EV_A);
3018
2216 fs_fd = inotify_init (); 3019 fs_fd = infy_newfd ();
2217 3020
2218 if (fs_fd >= 0) 3021 if (fs_fd >= 0)
2219 { 3022 {
3023 fd_intern (fs_fd);
2220 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3024 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2221 ev_set_priority (&fs_w, EV_MAXPRI); 3025 ev_set_priority (&fs_w, EV_MAXPRI);
2222 ev_io_start (EV_A_ &fs_w); 3026 ev_io_start (EV_A_ &fs_w);
3027 ev_unref (EV_A);
2223 } 3028 }
2224} 3029}
2225 3030
2226void inline_size 3031inline_size void
2227infy_fork (EV_P) 3032infy_fork (EV_P)
2228{ 3033{
2229 int slot; 3034 int slot;
2230 3035
2231 if (fs_fd < 0) 3036 if (fs_fd < 0)
2232 return; 3037 return;
2233 3038
3039 ev_ref (EV_A);
3040 ev_io_stop (EV_A_ &fs_w);
2234 close (fs_fd); 3041 close (fs_fd);
2235 fs_fd = inotify_init (); 3042 fs_fd = infy_newfd ();
3043
3044 if (fs_fd >= 0)
3045 {
3046 fd_intern (fs_fd);
3047 ev_io_set (&fs_w, fs_fd, EV_READ);
3048 ev_io_start (EV_A_ &fs_w);
3049 ev_unref (EV_A);
3050 }
2236 3051
2237 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2238 { 3053 {
2239 WL w_ = fs_hash [slot].head; 3054 WL w_ = fs_hash [slot].head;
2240 fs_hash [slot].head = 0; 3055 fs_hash [slot].head = 0;
2247 w->wd = -1; 3062 w->wd = -1;
2248 3063
2249 if (fs_fd >= 0) 3064 if (fs_fd >= 0)
2250 infy_add (EV_A_ w); /* re-add, no matter what */ 3065 infy_add (EV_A_ w); /* re-add, no matter what */
2251 else 3066 else
2252 ev_timer_start (EV_A_ &w->timer); 3067 ev_timer_again (EV_A_ &w->timer);
2253 } 3068 }
2254
2255 } 3069 }
2256} 3070}
2257 3071
3072#endif
3073
3074#ifdef _WIN32
3075# define EV_LSTAT(p,b) _stati64 (p, b)
3076#else
3077# define EV_LSTAT(p,b) lstat (p, b)
2258#endif 3078#endif
2259 3079
2260void 3080void
2261ev_stat_stat (EV_P_ ev_stat *w) 3081ev_stat_stat (EV_P_ ev_stat *w)
2262{ 3082{
2289 || w->prev.st_atime != w->attr.st_atime 3109 || w->prev.st_atime != w->attr.st_atime
2290 || w->prev.st_mtime != w->attr.st_mtime 3110 || w->prev.st_mtime != w->attr.st_mtime
2291 || w->prev.st_ctime != w->attr.st_ctime 3111 || w->prev.st_ctime != w->attr.st_ctime
2292 ) { 3112 ) {
2293 #if EV_USE_INOTIFY 3113 #if EV_USE_INOTIFY
3114 if (fs_fd >= 0)
3115 {
2294 infy_del (EV_A_ w); 3116 infy_del (EV_A_ w);
2295 infy_add (EV_A_ w); 3117 infy_add (EV_A_ w);
2296 ev_stat_stat (EV_A_ w); /* avoid race... */ 3118 ev_stat_stat (EV_A_ w); /* avoid race... */
3119 }
2297 #endif 3120 #endif
2298 3121
2299 ev_feed_event (EV_A_ w, EV_STAT); 3122 ev_feed_event (EV_A_ w, EV_STAT);
2300 } 3123 }
2301} 3124}
2304ev_stat_start (EV_P_ ev_stat *w) 3127ev_stat_start (EV_P_ ev_stat *w)
2305{ 3128{
2306 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2307 return; 3130 return;
2308 3131
2309 /* since we use memcmp, we need to clear any padding data etc. */
2310 memset (&w->prev, 0, sizeof (ev_statdata));
2311 memset (&w->attr, 0, sizeof (ev_statdata));
2312
2313 ev_stat_stat (EV_A_ w); 3132 ev_stat_stat (EV_A_ w);
2314 3133
3134 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2315 if (w->interval < MIN_STAT_INTERVAL) 3135 w->interval = MIN_STAT_INTERVAL;
2316 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2317 3136
2318 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3137 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2319 ev_set_priority (&w->timer, ev_priority (w)); 3138 ev_set_priority (&w->timer, ev_priority (w));
2320 3139
2321#if EV_USE_INOTIFY 3140#if EV_USE_INOTIFY
2322 infy_init (EV_A); 3141 infy_init (EV_A);
2323 3142
2324 if (fs_fd >= 0) 3143 if (fs_fd >= 0)
2325 infy_add (EV_A_ w); 3144 infy_add (EV_A_ w);
2326 else 3145 else
2327#endif 3146#endif
2328 ev_timer_start (EV_A_ &w->timer); 3147 ev_timer_again (EV_A_ &w->timer);
2329 3148
2330 ev_start (EV_A_ (W)w, 1); 3149 ev_start (EV_A_ (W)w, 1);
3150
3151 EV_FREQUENT_CHECK;
2331} 3152}
2332 3153
2333void 3154void
2334ev_stat_stop (EV_P_ ev_stat *w) 3155ev_stat_stop (EV_P_ ev_stat *w)
2335{ 3156{
2336 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2337 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2338 return; 3159 return;
2339 3160
3161 EV_FREQUENT_CHECK;
3162
2340#if EV_USE_INOTIFY 3163#if EV_USE_INOTIFY
2341 infy_del (EV_A_ w); 3164 infy_del (EV_A_ w);
2342#endif 3165#endif
2343 ev_timer_stop (EV_A_ &w->timer); 3166 ev_timer_stop (EV_A_ &w->timer);
2344 3167
2345 ev_stop (EV_A_ (W)w); 3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
2346} 3171}
2347#endif 3172#endif
2348 3173
2349#if EV_IDLE_ENABLE 3174#if EV_IDLE_ENABLE
2350void 3175void
2352{ 3177{
2353 if (expect_false (ev_is_active (w))) 3178 if (expect_false (ev_is_active (w)))
2354 return; 3179 return;
2355 3180
2356 pri_adjust (EV_A_ (W)w); 3181 pri_adjust (EV_A_ (W)w);
3182
3183 EV_FREQUENT_CHECK;
2357 3184
2358 { 3185 {
2359 int active = ++idlecnt [ABSPRI (w)]; 3186 int active = ++idlecnt [ABSPRI (w)];
2360 3187
2361 ++idleall; 3188 ++idleall;
2362 ev_start (EV_A_ (W)w, active); 3189 ev_start (EV_A_ (W)w, active);
2363 3190
2364 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3191 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2365 idles [ABSPRI (w)][active - 1] = w; 3192 idles [ABSPRI (w)][active - 1] = w;
2366 } 3193 }
3194
3195 EV_FREQUENT_CHECK;
2367} 3196}
2368 3197
2369void 3198void
2370ev_idle_stop (EV_P_ ev_idle *w) 3199ev_idle_stop (EV_P_ ev_idle *w)
2371{ 3200{
2372 clear_pending (EV_A_ (W)w); 3201 clear_pending (EV_A_ (W)w);
2373 if (expect_false (!ev_is_active (w))) 3202 if (expect_false (!ev_is_active (w)))
2374 return; 3203 return;
2375 3204
3205 EV_FREQUENT_CHECK;
3206
2376 { 3207 {
2377 int active = ev_active (w); 3208 int active = ev_active (w);
2378 3209
2379 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3210 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2380 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3211 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2381 3212
2382 ev_stop (EV_A_ (W)w); 3213 ev_stop (EV_A_ (W)w);
2383 --idleall; 3214 --idleall;
2384 } 3215 }
3216
3217 EV_FREQUENT_CHECK;
2385} 3218}
2386#endif 3219#endif
2387 3220
2388void 3221void
2389ev_prepare_start (EV_P_ ev_prepare *w) 3222ev_prepare_start (EV_P_ ev_prepare *w)
2390{ 3223{
2391 if (expect_false (ev_is_active (w))) 3224 if (expect_false (ev_is_active (w)))
2392 return; 3225 return;
3226
3227 EV_FREQUENT_CHECK;
2393 3228
2394 ev_start (EV_A_ (W)w, ++preparecnt); 3229 ev_start (EV_A_ (W)w, ++preparecnt);
2395 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3230 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2396 prepares [preparecnt - 1] = w; 3231 prepares [preparecnt - 1] = w;
3232
3233 EV_FREQUENT_CHECK;
2397} 3234}
2398 3235
2399void 3236void
2400ev_prepare_stop (EV_P_ ev_prepare *w) 3237ev_prepare_stop (EV_P_ ev_prepare *w)
2401{ 3238{
2402 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2403 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2404 return; 3241 return;
2405 3242
3243 EV_FREQUENT_CHECK;
3244
2406 { 3245 {
2407 int active = ev_active (w); 3246 int active = ev_active (w);
2408 3247
2409 prepares [active - 1] = prepares [--preparecnt]; 3248 prepares [active - 1] = prepares [--preparecnt];
2410 ev_active (prepares [active - 1]) = active; 3249 ev_active (prepares [active - 1]) = active;
2411 } 3250 }
2412 3251
2413 ev_stop (EV_A_ (W)w); 3252 ev_stop (EV_A_ (W)w);
3253
3254 EV_FREQUENT_CHECK;
2414} 3255}
2415 3256
2416void 3257void
2417ev_check_start (EV_P_ ev_check *w) 3258ev_check_start (EV_P_ ev_check *w)
2418{ 3259{
2419 if (expect_false (ev_is_active (w))) 3260 if (expect_false (ev_is_active (w)))
2420 return; 3261 return;
3262
3263 EV_FREQUENT_CHECK;
2421 3264
2422 ev_start (EV_A_ (W)w, ++checkcnt); 3265 ev_start (EV_A_ (W)w, ++checkcnt);
2423 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3266 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2424 checks [checkcnt - 1] = w; 3267 checks [checkcnt - 1] = w;
3268
3269 EV_FREQUENT_CHECK;
2425} 3270}
2426 3271
2427void 3272void
2428ev_check_stop (EV_P_ ev_check *w) 3273ev_check_stop (EV_P_ ev_check *w)
2429{ 3274{
2430 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2431 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2432 return; 3277 return;
2433 3278
3279 EV_FREQUENT_CHECK;
3280
2434 { 3281 {
2435 int active = ev_active (w); 3282 int active = ev_active (w);
2436 3283
2437 checks [active - 1] = checks [--checkcnt]; 3284 checks [active - 1] = checks [--checkcnt];
2438 ev_active (checks [active - 1]) = active; 3285 ev_active (checks [active - 1]) = active;
2439 } 3286 }
2440 3287
2441 ev_stop (EV_A_ (W)w); 3288 ev_stop (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2442} 3291}
2443 3292
2444#if EV_EMBED_ENABLE 3293#if EV_EMBED_ENABLE
2445void noinline 3294void noinline
2446ev_embed_sweep (EV_P_ ev_embed *w) 3295ev_embed_sweep (EV_P_ ev_embed *w)
2463embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3312embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2464{ 3313{
2465 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2466 3315
2467 { 3316 {
2468 struct ev_loop *loop = w->other; 3317 EV_P = w->other;
2469 3318
2470 while (fdchangecnt) 3319 while (fdchangecnt)
2471 { 3320 {
2472 fd_reify (EV_A); 3321 fd_reify (EV_A);
2473 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2474 } 3323 }
2475 } 3324 }
2476} 3325}
2477 3326
3327static void
3328embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329{
3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331
3332 ev_embed_stop (EV_A_ w);
3333
3334 {
3335 EV_P = w->other;
3336
3337 ev_loop_fork (EV_A);
3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 }
3340
3341 ev_embed_start (EV_A_ w);
3342}
3343
2478#if 0 3344#if 0
2479static void 3345static void
2480embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3346embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2481{ 3347{
2482 ev_idle_stop (EV_A_ idle); 3348 ev_idle_stop (EV_A_ idle);
2488{ 3354{
2489 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2490 return; 3356 return;
2491 3357
2492 { 3358 {
2493 struct ev_loop *loop = w->other; 3359 EV_P = w->other;
2494 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2496 } 3362 }
3363
3364 EV_FREQUENT_CHECK;
2497 3365
2498 ev_set_priority (&w->io, ev_priority (w)); 3366 ev_set_priority (&w->io, ev_priority (w));
2499 ev_io_start (EV_A_ &w->io); 3367 ev_io_start (EV_A_ &w->io);
2500 3368
2501 ev_prepare_init (&w->prepare, embed_prepare_cb); 3369 ev_prepare_init (&w->prepare, embed_prepare_cb);
2502 ev_set_priority (&w->prepare, EV_MINPRI); 3370 ev_set_priority (&w->prepare, EV_MINPRI);
2503 ev_prepare_start (EV_A_ &w->prepare); 3371 ev_prepare_start (EV_A_ &w->prepare);
2504 3372
3373 ev_fork_init (&w->fork, embed_fork_cb);
3374 ev_fork_start (EV_A_ &w->fork);
3375
2505 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3376 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2506 3377
2507 ev_start (EV_A_ (W)w, 1); 3378 ev_start (EV_A_ (W)w, 1);
3379
3380 EV_FREQUENT_CHECK;
2508} 3381}
2509 3382
2510void 3383void
2511ev_embed_stop (EV_P_ ev_embed *w) 3384ev_embed_stop (EV_P_ ev_embed *w)
2512{ 3385{
2513 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2515 return; 3388 return;
2516 3389
3390 EV_FREQUENT_CHECK;
3391
2517 ev_io_stop (EV_A_ &w->io); 3392 ev_io_stop (EV_A_ &w->io);
2518 ev_prepare_stop (EV_A_ &w->prepare); 3393 ev_prepare_stop (EV_A_ &w->prepare);
3394 ev_fork_stop (EV_A_ &w->fork);
2519 3395
2520 ev_stop (EV_A_ (W)w); 3396 EV_FREQUENT_CHECK;
2521} 3397}
2522#endif 3398#endif
2523 3399
2524#if EV_FORK_ENABLE 3400#if EV_FORK_ENABLE
2525void 3401void
2526ev_fork_start (EV_P_ ev_fork *w) 3402ev_fork_start (EV_P_ ev_fork *w)
2527{ 3403{
2528 if (expect_false (ev_is_active (w))) 3404 if (expect_false (ev_is_active (w)))
2529 return; 3405 return;
3406
3407 EV_FREQUENT_CHECK;
2530 3408
2531 ev_start (EV_A_ (W)w, ++forkcnt); 3409 ev_start (EV_A_ (W)w, ++forkcnt);
2532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3410 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2533 forks [forkcnt - 1] = w; 3411 forks [forkcnt - 1] = w;
3412
3413 EV_FREQUENT_CHECK;
2534} 3414}
2535 3415
2536void 3416void
2537ev_fork_stop (EV_P_ ev_fork *w) 3417ev_fork_stop (EV_P_ ev_fork *w)
2538{ 3418{
2539 clear_pending (EV_A_ (W)w); 3419 clear_pending (EV_A_ (W)w);
2540 if (expect_false (!ev_is_active (w))) 3420 if (expect_false (!ev_is_active (w)))
2541 return; 3421 return;
2542 3422
3423 EV_FREQUENT_CHECK;
3424
2543 { 3425 {
2544 int active = ev_active (w); 3426 int active = ev_active (w);
2545 3427
2546 forks [active - 1] = forks [--forkcnt]; 3428 forks [active - 1] = forks [--forkcnt];
2547 ev_active (forks [active - 1]) = active; 3429 ev_active (forks [active - 1]) = active;
2548 } 3430 }
2549 3431
2550 ev_stop (EV_A_ (W)w); 3432 ev_stop (EV_A_ (W)w);
3433
3434 EV_FREQUENT_CHECK;
2551} 3435}
2552#endif 3436#endif
2553 3437
2554#if EV_ASYNC_ENABLE 3438#if EV_ASYNC_ENABLE
2555void 3439void
2557{ 3441{
2558 if (expect_false (ev_is_active (w))) 3442 if (expect_false (ev_is_active (w)))
2559 return; 3443 return;
2560 3444
2561 evpipe_init (EV_A); 3445 evpipe_init (EV_A);
3446
3447 EV_FREQUENT_CHECK;
2562 3448
2563 ev_start (EV_A_ (W)w, ++asynccnt); 3449 ev_start (EV_A_ (W)w, ++asynccnt);
2564 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3450 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2565 asyncs [asynccnt - 1] = w; 3451 asyncs [asynccnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
2566} 3454}
2567 3455
2568void 3456void
2569ev_async_stop (EV_P_ ev_async *w) 3457ev_async_stop (EV_P_ ev_async *w)
2570{ 3458{
2571 clear_pending (EV_A_ (W)w); 3459 clear_pending (EV_A_ (W)w);
2572 if (expect_false (!ev_is_active (w))) 3460 if (expect_false (!ev_is_active (w)))
2573 return; 3461 return;
2574 3462
3463 EV_FREQUENT_CHECK;
3464
2575 { 3465 {
2576 int active = ev_active (w); 3466 int active = ev_active (w);
2577 3467
2578 asyncs [active - 1] = asyncs [--asynccnt]; 3468 asyncs [active - 1] = asyncs [--asynccnt];
2579 ev_active (asyncs [active - 1]) = active; 3469 ev_active (asyncs [active - 1]) = active;
2580 } 3470 }
2581 3471
2582 ev_stop (EV_A_ (W)w); 3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
2583} 3475}
2584 3476
2585void 3477void
2586ev_async_send (EV_P_ ev_async *w) 3478ev_async_send (EV_P_ ev_async *w)
2587{ 3479{
2588 w->sent = 1; 3480 w->sent = 1;
2589 evpipe_write (EV_A_ &gotasync); 3481 evpipe_write (EV_A_ &async_pending);
2590} 3482}
2591#endif 3483#endif
2592 3484
2593/*****************************************************************************/ 3485/*****************************************************************************/
2594 3486
2604once_cb (EV_P_ struct ev_once *once, int revents) 3496once_cb (EV_P_ struct ev_once *once, int revents)
2605{ 3497{
2606 void (*cb)(int revents, void *arg) = once->cb; 3498 void (*cb)(int revents, void *arg) = once->cb;
2607 void *arg = once->arg; 3499 void *arg = once->arg;
2608 3500
2609 ev_io_stop (EV_A_ &once->io); 3501 ev_io_stop (EV_A_ &once->io);
2610 ev_timer_stop (EV_A_ &once->to); 3502 ev_timer_stop (EV_A_ &once->to);
2611 ev_free (once); 3503 ev_free (once);
2612 3504
2613 cb (revents, arg); 3505 cb (revents, arg);
2614} 3506}
2615 3507
2616static void 3508static void
2617once_cb_io (EV_P_ ev_io *w, int revents) 3509once_cb_io (EV_P_ ev_io *w, int revents)
2618{ 3510{
2619 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3511 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512
3513 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2620} 3514}
2621 3515
2622static void 3516static void
2623once_cb_to (EV_P_ ev_timer *w, int revents) 3517once_cb_to (EV_P_ ev_timer *w, int revents)
2624{ 3518{
2625 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3519 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520
3521 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2626} 3522}
2627 3523
2628void 3524void
2629ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3525ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2630{ 3526{
2652 ev_timer_set (&once->to, timeout, 0.); 3548 ev_timer_set (&once->to, timeout, 0.);
2653 ev_timer_start (EV_A_ &once->to); 3549 ev_timer_start (EV_A_ &once->to);
2654 } 3550 }
2655} 3551}
2656 3552
3553/*****************************************************************************/
3554
3555#if EV_WALK_ENABLE
3556void
3557ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558{
3559 int i, j;
3560 ev_watcher_list *wl, *wn;
3561
3562 if (types & (EV_IO | EV_EMBED))
3563 for (i = 0; i < anfdmax; ++i)
3564 for (wl = anfds [i].head; wl; )
3565 {
3566 wn = wl->next;
3567
3568#if EV_EMBED_ENABLE
3569 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570 {
3571 if (types & EV_EMBED)
3572 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573 }
3574 else
3575#endif
3576#if EV_USE_INOTIFY
3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3578 ;
3579 else
3580#endif
3581 if ((ev_io *)wl != &pipe_w)
3582 if (types & EV_IO)
3583 cb (EV_A_ EV_IO, wl);
3584
3585 wl = wn;
3586 }
3587
3588 if (types & (EV_TIMER | EV_STAT))
3589 for (i = timercnt + HEAP0; i-- > HEAP0; )
3590#if EV_STAT_ENABLE
3591 /*TODO: timer is not always active*/
3592 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3593 {
3594 if (types & EV_STAT)
3595 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3596 }
3597 else
3598#endif
3599 if (types & EV_TIMER)
3600 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601
3602#if EV_PERIODIC_ENABLE
3603 if (types & EV_PERIODIC)
3604 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606#endif
3607
3608#if EV_IDLE_ENABLE
3609 if (types & EV_IDLE)
3610 for (j = NUMPRI; i--; )
3611 for (i = idlecnt [j]; i--; )
3612 cb (EV_A_ EV_IDLE, idles [j][i]);
3613#endif
3614
3615#if EV_FORK_ENABLE
3616 if (types & EV_FORK)
3617 for (i = forkcnt; i--; )
3618 if (ev_cb (forks [i]) != embed_fork_cb)
3619 cb (EV_A_ EV_FORK, forks [i]);
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623 if (types & EV_ASYNC)
3624 for (i = asynccnt; i--; )
3625 cb (EV_A_ EV_ASYNC, asyncs [i]);
3626#endif
3627
3628 if (types & EV_PREPARE)
3629 for (i = preparecnt; i--; )
3630#if EV_EMBED_ENABLE
3631 if (ev_cb (prepares [i]) != embed_prepare_cb)
3632#endif
3633 cb (EV_A_ EV_PREPARE, prepares [i]);
3634
3635 if (types & EV_CHECK)
3636 for (i = checkcnt; i--; )
3637 cb (EV_A_ EV_CHECK, checks [i]);
3638
3639 if (types & EV_SIGNAL)
3640 for (i = 0; i < EV_NSIG - 1; ++i)
3641 for (wl = signals [i].head; wl; )
3642 {
3643 wn = wl->next;
3644 cb (EV_A_ EV_SIGNAL, wl);
3645 wl = wn;
3646 }
3647
3648 if (types & EV_CHILD)
3649 for (i = EV_PID_HASHSIZE; i--; )
3650 for (wl = childs [i]; wl; )
3651 {
3652 wn = wl->next;
3653 cb (EV_A_ EV_CHILD, wl);
3654 wl = wn;
3655 }
3656/* EV_STAT 0x00001000 /* stat data changed */
3657/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3658}
3659#endif
3660
2657#if EV_MULTIPLICITY 3661#if EV_MULTIPLICITY
2658 #include "ev_wrap.h" 3662 #include "ev_wrap.h"
2659#endif 3663#endif
2660 3664
2661#ifdef __cplusplus 3665#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines