ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC vs.
Revision 1.318 by root, Tue Nov 17 00:22:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
94# else 125# else
95# define EV_USE_PORT 0 126# define EV_USE_PORT 0
96# endif 127# endif
97# endif 128# endif
98 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
99#endif 154#endif
100 155
101#include <math.h> 156#include <math.h>
102#include <stdlib.h> 157#include <stdlib.h>
103#include <fcntl.h> 158#include <fcntl.h>
110#include <sys/types.h> 165#include <sys/types.h>
111#include <time.h> 166#include <time.h>
112 167
113#include <signal.h> 168#include <signal.h>
114 169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
115#ifndef _WIN32 176#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 177# include <sys/time.h>
118# include <sys/wait.h> 178# include <sys/wait.h>
179# include <unistd.h>
119#else 180#else
181# include <io.h>
120# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 183# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
124# endif 186# endif
125#endif 187#endif
126 188
127/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
128 225
129#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
130# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
131#endif 232#endif
132 233
133#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
135#endif 244#endif
136 245
137#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
139#endif 248#endif
145# define EV_USE_POLL 1 254# define EV_USE_POLL 1
146# endif 255# endif
147#endif 256#endif
148 257
149#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
150# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
151#endif 264#endif
152 265
153#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
155#endif 268#endif
156 269
157#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 271# define EV_USE_PORT 0
159#endif 272#endif
160 273
161/**/ 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
279# endif
280#endif
281
282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 347
163#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
166#endif 351#endif
168#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
171#endif 356#endif
172 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
173#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 381# include <winsock.h>
175#endif 382#endif
176 383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
177/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
442
443/*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 452
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
183 455
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 456#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 458# define noinline __attribute__ ((noinline))
193#else 459#else
194# define expect(expr,value) (expr) 460# define expect(expr,value) (expr)
195# define inline static 461# define noinline
462# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
463# define inline
464# endif
196#endif 465#endif
197 466
198#define expect_false(expr) expect ((expr) != 0, 0) 467#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 468#define expect_true(expr) expect ((expr) != 0, 1)
469#define inline_size static inline
200 470
471#if EV_MINIMAL
472# define inline_speed static noinline
473#else
474# define inline_speed static inline
475#endif
476
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
203 484
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
206 487
207typedef struct ev_watcher *W; 488typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 489typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
210 491
492#define ev_active(w) ((W)(w))->active
493#define ev_at(w) ((WT)(w))->at
494
495#if EV_USE_REALTIME
496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
513#endif
212 514
213#ifdef _WIN32 515#ifdef _WIN32
214# include "ev_win32.c" 516# include "ev_win32.c"
215#endif 517#endif
216 518
217/*****************************************************************************/ 519/*****************************************************************************/
218 520
219static void (*syserr_cb)(const char *msg); 521static void (*syserr_cb)(const char *msg);
220 522
523void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 524ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 525{
223 syserr_cb = cb; 526 syserr_cb = cb;
224} 527}
225 528
226static void 529static void noinline
227syserr (const char *msg) 530ev_syserr (const char *msg)
228{ 531{
229 if (!msg) 532 if (!msg)
230 msg = "(libev) system error"; 533 msg = "(libev) system error";
231 534
232 if (syserr_cb) 535 if (syserr_cb)
236 perror (msg); 539 perror (msg);
237 abort (); 540 abort ();
238 } 541 }
239} 542}
240 543
544static void *
545ev_realloc_emul (void *ptr, long size)
546{
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557}
558
241static void *(*alloc)(void *ptr, long size); 559static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 560
561void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 562ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 563{
245 alloc = cb; 564 alloc = cb;
246} 565}
247 566
248static void * 567inline_speed void *
249ev_realloc (void *ptr, long size) 568ev_realloc (void *ptr, long size)
250{ 569{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 570 ptr = alloc (ptr, size);
252 571
253 if (!ptr && size) 572 if (!ptr && size)
254 { 573 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 575 abort ();
262#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
263#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
264 583
265/*****************************************************************************/ 584/*****************************************************************************/
266 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
267typedef struct 590typedef struct
268{ 591{
269 WL head; 592 WL head;
270 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
271 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
272#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle; 601 SOCKET handle;
274#endif 602#endif
275} ANFD; 603} ANFD;
276 604
605/* stores the pending event set for a given watcher */
277typedef struct 606typedef struct
278{ 607{
279 W w; 608 W w;
280 int events; 609 int events; /* the pending event set for the given watcher */
281} ANPENDING; 610} ANPENDING;
611
612#if EV_USE_INOTIFY
613/* hash table entry per inotify-id */
614typedef struct
615{
616 WL head;
617} ANFS;
618#endif
619
620/* Heap Entry */
621#if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631#else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
638#endif
282 639
283#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
284 641
285 struct ev_loop 642 struct ev_loop
286 { 643 {
304 661
305 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
306 663
307#endif 664#endif
308 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
309/*****************************************************************************/ 678/*****************************************************************************/
310 679
680#ifndef EV_HAVE_EV_TIME
311ev_tstamp 681ev_tstamp
312ev_time (void) 682ev_time (void)
313{ 683{
314#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
315 struct timespec ts; 687 struct timespec ts;
316 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
317 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
318#else 690 }
691#endif
692
319 struct timeval tv; 693 struct timeval tv;
320 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif
323} 696}
697#endif
324 698
325inline ev_tstamp 699inline_size ev_tstamp
326get_clock (void) 700get_clock (void)
327{ 701{
328#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
330 { 704 {
343{ 717{
344 return ev_rt_now; 718 return ev_rt_now;
345} 719}
346#endif 720#endif
347 721
348#define array_roundsize(type,n) (((n) | 4) & ~3) 722void
723ev_sleep (ev_tstamp delay)
724{
725 if (delay > 0.)
726 {
727#if EV_USE_NANOSLEEP
728 struct timespec ts;
729
730 ts.tv_sec = (time_t)delay;
731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
732
733 nanosleep (&ts, 0);
734#elif defined(_WIN32)
735 Sleep ((unsigned long)(delay * 1e3));
736#else
737 struct timeval tv;
738
739 tv.tv_sec = (time_t)delay;
740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
745 select (0, 0, 0, 0, &tv);
746#endif
747 }
748}
749
750/*****************************************************************************/
751
752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753
754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
757array_nextsize (int elem, int cur, int cnt)
758{
759 int ncur = cur + 1;
760
761 do
762 ncur <<= 1;
763 while (cnt > ncur);
764
765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
767 {
768 ncur *= elem;
769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
770 ncur = ncur - sizeof (void *) * 4;
771 ncur /= elem;
772 }
773
774 return ncur;
775}
776
777static noinline void *
778array_realloc (int elem, void *base, int *cur, int cnt)
779{
780 *cur = array_nextsize (elem, *cur, cnt);
781 return ev_realloc (base, elem * *cur);
782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
349 786
350#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 788 if (expect_false ((cnt) > (cur))) \
352 { \ 789 { \
353 int newcnt = cur; \ 790 int ocur_ = (cur); \
354 do \ 791 (base) = (type *)array_realloc \
355 { \ 792 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 793 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 794 }
364 795
796#if 0
365#define array_slim(type,stem) \ 797#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 798 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 799 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 800 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 801 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 803 }
804#endif
372 805
373#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
375 808
376/*****************************************************************************/ 809/*****************************************************************************/
377 810
378static void 811/* dummy callback for pending events */
379anfds_init (ANFD *base, int count) 812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
380{ 814{
381 while (count--)
382 {
383 base->head = 0;
384 base->events = EV_NONE;
385 base->reify = 0;
386
387 ++base;
388 }
389} 815}
390 816
391void 817void noinline
392ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
393{ 819{
394 W w_ = (W)w; 820 W w_ = (W)w;
821 int pri = ABSPRI (w_);
395 822
396 if (expect_false (w_->pending)) 823 if (expect_false (w_->pending))
824 pendings [pri][w_->pending - 1].events |= revents;
825 else
397 { 826 {
827 w_->pending = ++pendingcnt [pri];
828 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
829 pendings [pri][w_->pending - 1].w = w_;
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 830 pendings [pri][w_->pending - 1].events = revents;
399 return;
400 } 831 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409} 832}
410 833
411static void 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
412queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
413{ 851{
414 int i; 852 int i;
415 853
416 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
418} 856}
419 857
858/*****************************************************************************/
859
420inline void 860inline_speed void
421fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
422{ 862{
423 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 864 ev_io *w;
425 865
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 867 {
428 int ev = w->events & revents; 868 int ev = w->events & revents;
429 869
430 if (ev) 870 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
432 } 872 }
433} 873}
434 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
435void 886void
436ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 888{
889 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
439} 891}
440 892
441/*****************************************************************************/ 893/* make sure the external fd watch events are in-sync */
442 894/* with the kernel/libev internal state */
443inline void 895inline_size void
444fd_reify (EV_P) 896fd_reify (EV_P)
445{ 897{
446 int i; 898 int i;
447 899
448 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
449 { 901 {
450 int fd = fdchanges [i]; 902 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 903 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 904 ev_io *w;
453 905
454 int events = 0; 906 unsigned char events = 0;
455 907
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 909 events |= (unsigned char)w->events;
458 910
459#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
460 if (events) 912 if (events)
461 { 913 {
462 unsigned long argp; 914 unsigned long arg;
463 anfd->handle = _get_osfhandle (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
465 } 917 }
466#endif 918#endif
467 919
920 {
921 unsigned char o_events = anfd->events;
922 unsigned char o_reify = anfd->reify;
923
468 anfd->reify = 0; 924 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 925 anfd->events = events;
926
927 if (o_events != events || o_reify & EV__IOFDSET)
928 backend_modify (EV_A_ fd, o_events, events);
929 }
472 } 930 }
473 931
474 fdchangecnt = 0; 932 fdchangecnt = 0;
475} 933}
476 934
477static void 935/* something about the given fd changed */
936inline_size void
478fd_change (EV_P_ int fd) 937fd_change (EV_P_ int fd, int flags)
479{ 938{
480 if (expect_false (anfds [fd].reify)) 939 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 940 anfds [fd].reify |= flags;
484 941
942 if (expect_true (!reify))
943 {
485 ++fdchangecnt; 944 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
947 }
488} 948}
489 949
490static void 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
491fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
492{ 953{
493 struct ev_io *w; 954 ev_io *w;
494 955
495 while ((w = (struct ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
496 { 957 {
497 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 960 }
500} 961}
501 962
963/* check whether the given fd is atcually valid, for error recovery */
502inline int 964inline_size int
503fd_valid (int fd) 965fd_valid (int fd)
504{ 966{
505#ifdef _WIN32 967#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
507#else 969#else
508 return fcntl (fd, F_GETFD) != -1; 970 return fcntl (fd, F_GETFD) != -1;
509#endif 971#endif
510} 972}
511 973
512/* called on EBADF to verify fds */ 974/* called on EBADF to verify fds */
513static void 975static void noinline
514fd_ebadf (EV_P) 976fd_ebadf (EV_P)
515{ 977{
516 int fd; 978 int fd;
517 979
518 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 981 if (anfds [fd].events)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
521 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
522} 984}
523 985
524/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 987static void noinline
526fd_enomem (EV_P) 988fd_enomem (EV_P)
527{ 989{
528 int fd; 990 int fd;
529 991
530 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
531 if (anfds [fd].events) 993 if (anfds [fd].events)
532 { 994 {
533 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
534 return; 996 break;
535 } 997 }
536} 998}
537 999
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 1001static void noinline
540fd_rearm_all (EV_P) 1002fd_rearm_all (EV_P)
541{ 1003{
542 int fd; 1004 int fd;
543 1005
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 1007 if (anfds [fd].events)
547 { 1008 {
548 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 1010 anfds [fd].emask = 0;
1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
550 } 1012 }
551} 1013}
552 1014
553/*****************************************************************************/ 1015/*****************************************************************************/
554 1016
555static void 1017/*
556upheap (WT *heap, int k) 1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
557{ 1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
558 WT w = heap [k]; 1020 * the branching factor of the d-tree.
1021 */
559 1022
560 while (k && heap [k >> 1]->at > w->at) 1023/*
561 { 1024 * at the moment we allow libev the luxury of two heaps,
562 heap [k] = heap [k >> 1]; 1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
563 ((W)heap [k])->active = k + 1; 1026 * which is more cache-efficient.
564 k >>= 1; 1027 * the difference is about 5% with 50000+ watchers.
565 } 1028 */
1029#if EV_USE_4HEAP
566 1030
567 heap [k] = w; 1031#define DHEAP 4
568 ((W)heap [k])->active = k + 1; 1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034#define UPHEAP_DONE(p,k) ((p) == (k))
569 1035
570} 1036/* away from the root */
571 1037inline_speed void
572static void
573downheap (WT *heap, int N, int k) 1038downheap (ANHE *heap, int N, int k)
574{ 1039{
575 WT w = heap [k]; 1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
576 1042
577 while (k < (N >> 1)) 1043 for (;;)
578 { 1044 {
579 int j = k << 1; 1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
580 1048
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
582 ++j; 1051 {
583 1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
584 if (w->at <= heap [j]->at) 1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
585 break; 1065 break;
586 1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078}
1079
1080#else /* 4HEAP */
1081
1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
587 heap [k] = heap [j]; 1105 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 1106 ev_active (ANHE_w (heap [k])) = k;
1107
589 k = j; 1108 k = c;
590 } 1109 }
591 1110
592 heap [k] = w; 1111 heap [k] = he;
593 ((W)heap [k])->active = k + 1; 1112 ev_active (ANHE_w (he)) = k;
594} 1113}
1114#endif
595 1115
1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
1129 heap [k] = heap [p];
1130 ev_active (ANHE_w (heap [k])) = k;
1131 k = p;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138/* move an element suitably so it is in a correct place */
596inline void 1139inline_size void
597adjustheap (WT *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
598{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
599 upheap (heap, k); 1143 upheap (heap, k);
1144 else
600 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
601} 1158}
602 1159
603/*****************************************************************************/ 1160/*****************************************************************************/
604 1161
1162/* associate signal watchers to a signal signal */
605typedef struct 1163typedef struct
606{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
607 WL head; 1169 WL head;
608 sig_atomic_t volatile gotsig;
609} ANSIG; 1170} ANSIG;
610 1171
611static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
612static int signalmax;
613 1173
614static int sigpipe [2]; 1174/*****************************************************************************/
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 1175
618static void 1176/* used to prepare libev internal fd's */
619signals_init (ANSIG *base, int count) 1177/* this is not fork-safe */
620{ 1178inline_speed void
621 while (count--)
622 {
623 base->head = 0;
624 base->gotsig = 0;
625
626 ++base;
627 }
628}
629
630static void
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636
637 signals [signum - 1].gotsig = 1;
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 1179fd_intern (int fd)
683{ 1180{
684#ifdef _WIN32 1181#ifdef _WIN32
685 int arg = 1; 1182 unsigned long arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687#else 1184#else
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 1187#endif
691} 1188}
692 1189
1190static void noinline
1191evpipe_init (EV_P)
1192{
1193 if (!ev_is_active (&pipe_w))
1194 {
1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207#endif
1208 {
1209 while (pipe (evpipe))
1210 ev_syserr ("(libev) error creating signal/async pipe");
1211
1212 fd_intern (evpipe [0]);
1213 fd_intern (evpipe [1]);
1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
1216
1217 ev_io_start (EV_A_ &pipe_w);
1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 }
1220}
1221
1222inline_size void
1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224{
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
1228
1229 *flag = 1;
1230
1231#if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238#endif
1239 write (evpipe [1], &old_errno, 1);
1240
1241 errno = old_errno;
1242 }
1243}
1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
693static void 1247static void
694siginit (EV_P) 1248pipecb (EV_P_ ev_io *iow, int revents)
695{ 1249{
696 fd_intern (sigpipe [0]); 1250 int i;
697 fd_intern (sigpipe [1]);
698 1251
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 1252#if EV_USE_EVENTFD
700 ev_io_start (EV_A_ &sigev); 1253 if (evfd >= 0)
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1254 {
1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 {
1261 char dummy;
1262 read (evpipe [0], &dummy, 1);
1263 }
1264
1265 if (sig_pending)
1266 {
1267 sig_pending = 0;
1268
1269 for (i = EV_NSIG - 1; i--; )
1270 if (expect_false (signals [i].pending))
1271 ev_feed_signal_event (EV_A_ i + 1);
1272 }
1273
1274#if EV_ASYNC_ENABLE
1275 if (async_pending)
1276 {
1277 async_pending = 0;
1278
1279 for (i = asynccnt; i--; )
1280 if (asyncs [i]->sent)
1281 {
1282 asyncs [i]->sent = 0;
1283 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284 }
1285 }
1286#endif
702} 1287}
703 1288
704/*****************************************************************************/ 1289/*****************************************************************************/
705 1290
706static struct ev_child *childs [PID_HASHSIZE]; 1291static void
1292ev_sighandler (int signum)
1293{
1294#if EV_MULTIPLICITY
1295 EV_P = signals [signum - 1].loop;
1296#endif
1297
1298#if _WIN32
1299 signal (signum, ev_sighandler);
1300#endif
1301
1302 signals [signum - 1].pending = 1;
1303 evpipe_write (EV_A_ &sig_pending);
1304}
1305
1306void noinline
1307ev_feed_signal_event (EV_P_ int signum)
1308{
1309 WL w;
1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1316#if EV_MULTIPLICITY
1317 /* it is permissible to try to feed a signal to the wrong loop */
1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1319
1320 if (expect_false (signals [signum].loop != EV_A))
1321 return;
1322#endif
1323
1324 signals [signum].pending = 0;
1325
1326 for (w = signals [signum].head; w; w = w->next)
1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328}
1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1350/*****************************************************************************/
1351
1352static WL childs [EV_PID_HASHSIZE];
707 1353
708#ifndef _WIN32 1354#ifndef _WIN32
709 1355
710static struct ev_signal childev; 1356static ev_signal childev;
1357
1358#ifndef WIFCONTINUED
1359# define WIFCONTINUED(status) 0
1360#endif
1361
1362/* handle a single child status event */
1363inline_speed void
1364child_reap (EV_P_ int chain, int pid, int status)
1365{
1366 ev_child *w;
1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1368
1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 {
1371 if ((w->pid == pid || !w->pid)
1372 && (!traced || (w->flags & 1)))
1373 {
1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1375 w->rpid = pid;
1376 w->rstatus = status;
1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1378 }
1379 }
1380}
711 1381
712#ifndef WCONTINUED 1382#ifndef WCONTINUED
713# define WCONTINUED 0 1383# define WCONTINUED 0
714#endif 1384#endif
715 1385
1386/* called on sigchld etc., calls waitpid */
716static void 1387static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
733{ 1389{
734 int pid, status; 1390 int pid, status;
735 1391
1392 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1393 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1394 if (!WCONTINUED
1395 || errno != EINVAL
1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1397 return;
1398
738 /* make sure we are called again until all childs have been reaped */ 1399 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1400 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1402
742 child_reap (EV_A_ sw, pid, pid, status); 1403 child_reap (EV_A_ pid, pid, status);
1404 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1406}
746 1407
747#endif 1408#endif
748 1409
749/*****************************************************************************/ 1410/*****************************************************************************/
775{ 1436{
776 return EV_VERSION_MINOR; 1437 return EV_VERSION_MINOR;
777} 1438}
778 1439
779/* return true if we are running with elevated privileges and should ignore env variables */ 1440/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1441int inline_size
781enable_secure (void) 1442enable_secure (void)
782{ 1443{
783#ifdef _WIN32 1444#ifdef _WIN32
784 return 0; 1445 return 0;
785#else 1446#else
811 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
812 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
813 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
814#endif 1475#endif
815#ifdef __APPLE__ 1476#ifdef __APPLE__
816 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
817 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
818#endif 1480#endif
819 1481
820 return flags; 1482 return flags;
821} 1483}
822 1484
823unsigned int 1485unsigned int
824ev_embeddable_backends (void) 1486ev_embeddable_backends (void)
825{ 1487{
826 return EVBACKEND_EPOLL 1488 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1489
828 | EVBACKEND_PORT; 1490 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1491 /* please fix it and tell me how to detect the fix */
1492 flags &= ~EVBACKEND_EPOLL;
1493
1494 return flags;
829} 1495}
830 1496
831unsigned int 1497unsigned int
832ev_backend (EV_P) 1498ev_backend (EV_P)
833{ 1499{
834 return backend; 1500 return backend;
835} 1501}
836 1502
837static void 1503#if EV_MINIMAL < 2
1504unsigned int
1505ev_loop_count (EV_P)
1506{
1507 return loop_count;
1508}
1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1516void
1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1518{
1519 io_blocktime = interval;
1520}
1521
1522void
1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1524{
1525 timeout_blocktime = interval;
1526}
1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1553static void noinline
838loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
839{ 1555{
840 if (!backend) 1556 if (!backend)
841 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
842#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
843 { 1570 {
844 struct timespec ts; 1571 struct timespec ts;
1572
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1574 have_monotonic = 1;
847 } 1575 }
848#endif 1576#endif
849 1577
850 ev_rt_now = ev_time (); 1578 /* pid check not overridable via env */
851 mn_now = get_clock (); 1579#ifndef _WIN32
852 now_floor = mn_now; 1580 if (flags & EVFLAG_FORKCHECK)
853 rtmn_diff = ev_rt_now - mn_now; 1581 curpid = getpid ();
1582#endif
854 1583
855 if (!(flags & EVFLAG_NOENV) 1584 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1585 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1586 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1587 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1588
1589 ev_rt_now = ev_time ();
1590 mn_now = get_clock ();
1591 now_floor = mn_now;
1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1596
1597 io_blocktime = 0.;
1598 timeout_blocktime = 0.;
1599 backend = 0;
1600 backend_fd = -1;
1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1605#if EV_USE_INOTIFY
1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607#endif
1608#if EV_USE_SIGNALFD
1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610#endif
1611
860 if (!(flags & 0x0000ffffUL)) 1612 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
862 1614
863 backend = 0;
864#if EV_USE_PORT 1615#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1617#endif
867#if EV_USE_KQUEUE 1618#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1619 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1626#endif
876#if EV_USE_SELECT 1627#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1629#endif
879 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
880 ev_init (&sigev, sigcb); 1633 ev_init (&pipe_w, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
882 } 1635 }
883} 1636}
884 1637
885static void 1638/* free up a loop structure */
1639static void noinline
886loop_destroy (EV_P) 1640loop_destroy (EV_P)
887{ 1641{
888 int i; 1642 int i;
1643
1644 if (ev_is_active (&pipe_w))
1645 {
1646 /*ev_ref (EV_A);*/
1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1648
1649#if EV_USE_EVENTFD
1650 if (evfd >= 0)
1651 close (evfd);
1652#endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 close (sigfd);
1664#endif
1665
1666#if EV_USE_INOTIFY
1667 if (fs_fd >= 0)
1668 close (fs_fd);
1669#endif
1670
1671 if (backend_fd >= 0)
1672 close (backend_fd);
889 1673
890#if EV_USE_PORT 1674#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1675 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1676#endif
893#if EV_USE_KQUEUE 1677#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1686#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1687 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1688#endif
905 1689
906 for (i = NUMPRI; i--; ) 1690 for (i = NUMPRI; i--; )
1691 {
907 array_free (pending, [i]); 1692 array_free (pending, [i]);
1693#if EV_IDLE_ENABLE
1694 array_free (idle, [i]);
1695#endif
1696 }
1697
1698 ev_free (anfds); anfds = 0; anfdmax = 0;
908 1699
909 /* have to use the microsoft-never-gets-it-right macro */ 1700 /* have to use the microsoft-never-gets-it-right macro */
1701 array_free (rfeed, EMPTY);
910 array_free (fdchange, EMPTY0); 1702 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1703 array_free (timer, EMPTY);
912#if EV_PERIODICS 1704#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1705 array_free (periodic, EMPTY);
914#endif 1706#endif
1707#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1708 array_free (fork, EMPTY);
1709#endif
916 array_free (prepare, EMPTY0); 1710 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1711 array_free (check, EMPTY);
1712#if EV_ASYNC_ENABLE
1713 array_free (async, EMPTY);
1714#endif
918 1715
919 backend = 0; 1716 backend = 0;
920} 1717}
921 1718
922static void 1719#if EV_USE_INOTIFY
1720inline_size void infy_fork (EV_P);
1721#endif
1722
1723inline_size void
923loop_fork (EV_P) 1724loop_fork (EV_P)
924{ 1725{
925#if EV_USE_PORT 1726#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1728#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1730 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1731#endif
931#if EV_USE_EPOLL 1732#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1733 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1734#endif
1735#if EV_USE_INOTIFY
1736 infy_fork (EV_A);
1737#endif
934 1738
935 if (ev_is_active (&sigev)) 1739 if (ev_is_active (&pipe_w))
936 { 1740 {
937 /* default loop */ 1741 /* this "locks" the handlers against writing to the pipe */
1742 /* while we modify the fd vars */
1743 sig_pending = 1;
1744#if EV_ASYNC_ENABLE
1745 async_pending = 1;
1746#endif
938 1747
939 ev_ref (EV_A); 1748 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1749 ev_io_stop (EV_A_ &pipe_w);
941 close (sigpipe [0]);
942 close (sigpipe [1]);
943 1750
944 while (pipe (sigpipe)) 1751#if EV_USE_EVENTFD
945 syserr ("(libev) error creating pipe"); 1752 if (evfd >= 0)
1753 close (evfd);
1754#endif
946 1755
1756 if (evpipe [0] >= 0)
1757 {
1758 EV_WIN32_CLOSE_FD (evpipe [0]);
1759 EV_WIN32_CLOSE_FD (evpipe [1]);
1760 }
1761
947 siginit (EV_A); 1762 evpipe_init (EV_A);
1763 /* now iterate over everything, in case we missed something */
1764 pipecb (EV_A_ &pipe_w, EV_READ);
948 } 1765 }
949 1766
950 postfork = 0; 1767 postfork = 0;
951} 1768}
952 1769
953#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1771
954struct ev_loop * 1772struct ev_loop *
955ev_loop_new (unsigned int flags) 1773ev_loop_new (unsigned int flags)
956{ 1774{
957 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
958 1776
959 memset (loop, 0, sizeof (struct ev_loop)); 1777 memset (EV_A, 0, sizeof (struct ev_loop));
960
961 loop_init (EV_A_ flags); 1778 loop_init (EV_A_ flags);
962 1779
963 if (ev_backend (EV_A)) 1780 if (ev_backend (EV_A))
964 return loop; 1781 return EV_A;
965 1782
966 return 0; 1783 return 0;
967} 1784}
968 1785
969void 1786void
974} 1791}
975 1792
976void 1793void
977ev_loop_fork (EV_P) 1794ev_loop_fork (EV_P)
978{ 1795{
979 postfork = 1; 1796 postfork = 1; /* must be in line with ev_default_fork */
980} 1797}
1798#endif /* multiplicity */
981 1799
1800#if EV_VERIFY
1801static void noinline
1802verify_watcher (EV_P_ W w)
1803{
1804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1805
1806 if (w->pending)
1807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1808}
1809
1810static void noinline
1811verify_heap (EV_P_ ANHE *heap, int N)
1812{
1813 int i;
1814
1815 for (i = HEAP0; i < N + HEAP0; ++i)
1816 {
1817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1820
1821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1822 }
1823}
1824
1825static void noinline
1826array_verify (EV_P_ W *ws, int cnt)
1827{
1828 while (cnt--)
1829 {
1830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1831 verify_watcher (EV_A_ ws [cnt]);
1832 }
1833}
1834#endif
1835
1836#if EV_MINIMAL < 2
1837void
1838ev_loop_verify (EV_P)
1839{
1840#if EV_VERIFY
1841 int i;
1842 WL w;
1843
1844 assert (activecnt >= -1);
1845
1846 assert (fdchangemax >= fdchangecnt);
1847 for (i = 0; i < fdchangecnt; ++i)
1848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1849
1850 assert (anfdmax >= 0);
1851 for (i = 0; i < anfdmax; ++i)
1852 for (w = anfds [i].head; w; w = w->next)
1853 {
1854 verify_watcher (EV_A_ (W)w);
1855 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1856 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1857 }
1858
1859 assert (timermax >= timercnt);
1860 verify_heap (EV_A_ timers, timercnt);
1861
1862#if EV_PERIODIC_ENABLE
1863 assert (periodicmax >= periodiccnt);
1864 verify_heap (EV_A_ periodics, periodiccnt);
1865#endif
1866
1867 for (i = NUMPRI; i--; )
1868 {
1869 assert (pendingmax [i] >= pendingcnt [i]);
1870#if EV_IDLE_ENABLE
1871 assert (idleall >= 0);
1872 assert (idlemax [i] >= idlecnt [i]);
1873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1874#endif
1875 }
1876
1877#if EV_FORK_ENABLE
1878 assert (forkmax >= forkcnt);
1879 array_verify (EV_A_ (W *)forks, forkcnt);
1880#endif
1881
1882#if EV_ASYNC_ENABLE
1883 assert (asyncmax >= asynccnt);
1884 array_verify (EV_A_ (W *)asyncs, asynccnt);
1885#endif
1886
1887 assert (preparemax >= preparecnt);
1888 array_verify (EV_A_ (W *)prepares, preparecnt);
1889
1890 assert (checkmax >= checkcnt);
1891 array_verify (EV_A_ (W *)checks, checkcnt);
1892
1893# if 0
1894 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1895 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1896# endif
1897#endif
1898}
982#endif 1899#endif
983 1900
984#if EV_MULTIPLICITY 1901#if EV_MULTIPLICITY
985struct ev_loop * 1902struct ev_loop *
986ev_default_loop_init (unsigned int flags) 1903ev_default_loop_init (unsigned int flags)
987#else 1904#else
988int 1905int
989ev_default_loop (unsigned int flags) 1906ev_default_loop (unsigned int flags)
990#endif 1907#endif
991{ 1908{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1909 if (!ev_default_loop_ptr)
997 { 1910 {
998#if EV_MULTIPLICITY 1911#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1912 EV_P = ev_default_loop_ptr = &default_loop_struct;
1000#else 1913#else
1001 ev_default_loop_ptr = 1; 1914 ev_default_loop_ptr = 1;
1002#endif 1915#endif
1003 1916
1004 loop_init (EV_A_ flags); 1917 loop_init (EV_A_ flags);
1005 1918
1006 if (ev_backend (EV_A)) 1919 if (ev_backend (EV_A))
1007 { 1920 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1921#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1922 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1923 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1924 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1925 ev_unref (EV_A); /* child watcher should not keep loop alive */
1023 1934
1024void 1935void
1025ev_default_destroy (void) 1936ev_default_destroy (void)
1026{ 1937{
1027#if EV_MULTIPLICITY 1938#if EV_MULTIPLICITY
1028 struct ev_loop *loop = ev_default_loop_ptr; 1939 EV_P = ev_default_loop_ptr;
1029#endif 1940#endif
1941
1942 ev_default_loop_ptr = 0;
1030 1943
1031#ifndef _WIN32 1944#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1945 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1946 ev_signal_stop (EV_A_ &childev);
1034#endif 1947#endif
1035 1948
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1949 loop_destroy (EV_A);
1043} 1950}
1044 1951
1045void 1952void
1046ev_default_fork (void) 1953ev_default_fork (void)
1047{ 1954{
1048#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1956 EV_P = ev_default_loop_ptr;
1050#endif 1957#endif
1051 1958
1052 if (backend) 1959 postfork = 1; /* must be in line with ev_loop_fork */
1053 postfork = 1;
1054} 1960}
1055 1961
1056/*****************************************************************************/ 1962/*****************************************************************************/
1057 1963
1058static int 1964void
1059any_pending (EV_P) 1965ev_invoke (EV_P_ void *w, int revents)
1966{
1967 EV_CB_INVOKE ((W)w, revents);
1968}
1969
1970unsigned int
1971ev_pending_count (EV_P)
1060{ 1972{
1061 int pri; 1973 int pri;
1974 unsigned int count = 0;
1062 1975
1063 for (pri = NUMPRI; pri--; ) 1976 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri]) 1977 count += pendingcnt [pri];
1065 return 1;
1066 1978
1067 return 0; 1979 return count;
1068} 1980}
1069 1981
1070inline void 1982void noinline
1071call_pending (EV_P) 1983ev_invoke_pending (EV_P)
1072{ 1984{
1073 int pri; 1985 int pri;
1074 1986
1075 for (pri = NUMPRI; pri--; ) 1987 for (pri = NUMPRI; pri--; )
1076 while (pendingcnt [pri]) 1988 while (pendingcnt [pri])
1077 { 1989 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1990 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1991
1080 if (expect_true (p->w)) 1992 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1081 { 1993 /* ^ this is no longer true, as pending_w could be here */
1994
1082 p->w->pending = 0; 1995 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1996 EV_CB_INVOKE (p->w, p->events);
1084 } 1997 EV_FREQUENT_CHECK;
1085 } 1998 }
1086} 1999}
1087 2000
2001#if EV_IDLE_ENABLE
2002/* make idle watchers pending. this handles the "call-idle */
2003/* only when higher priorities are idle" logic */
1088inline void 2004inline_size void
2005idle_reify (EV_P)
2006{
2007 if (expect_false (idleall))
2008 {
2009 int pri;
2010
2011 for (pri = NUMPRI; pri--; )
2012 {
2013 if (pendingcnt [pri])
2014 break;
2015
2016 if (idlecnt [pri])
2017 {
2018 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2019 break;
2020 }
2021 }
2022 }
2023}
2024#endif
2025
2026/* make timers pending */
2027inline_size void
1089timers_reify (EV_P) 2028timers_reify (EV_P)
1090{ 2029{
2030 EV_FREQUENT_CHECK;
2031
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 2032 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1092 { 2033 {
1093 struct ev_timer *w = timers [0]; 2034 do
1094
1095 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1096
1097 /* first reschedule or stop timer */
1098 if (w->repeat)
1099 { 2035 {
2036 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037
2038 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039
2040 /* first reschedule or stop timer */
2041 if (w->repeat)
2042 {
2043 ev_at (w) += w->repeat;
2044 if (ev_at (w) < mn_now)
2045 ev_at (w) = mn_now;
2046
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2047 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 2048
1102 ((WT)w)->at += w->repeat; 2049 ANHE_at_cache (timers [HEAP0]);
1103 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now;
1105
1106 downheap ((WT *)timers, timercnt, 0); 2050 downheap (timers, timercnt, HEAP0);
2051 }
2052 else
2053 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054
2055 EV_FREQUENT_CHECK;
2056 feed_reverse (EV_A_ (W)w);
1107 } 2057 }
1108 else 2058 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 2059
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2060 feed_reverse_done (EV_A_ EV_TIMEOUT);
1112 } 2061 }
1113} 2062}
1114 2063
1115#if EV_PERIODICS 2064#if EV_PERIODIC_ENABLE
2065/* make periodics pending */
1116inline void 2066inline_size void
1117periodics_reify (EV_P) 2067periodics_reify (EV_P)
1118{ 2068{
2069 EV_FREQUENT_CHECK;
2070
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2071 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1120 { 2072 {
1121 struct ev_periodic *w = periodics [0]; 2073 int feed_count = 0;
1122 2074
2075 do
2076 {
2077 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2079 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 2080
1125 /* first reschedule or stop timer */ 2081 /* first reschedule or stop timer */
2082 if (w->reschedule_cb)
2083 {
2084 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2085
2086 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else if (w->interval)
2092 {
2093 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094 /* if next trigger time is not sufficiently in the future, put it there */
2095 /* this might happen because of floating point inexactness */
2096 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097 {
2098 ev_at (w) += w->interval;
2099
2100 /* if interval is unreasonably low we might still have a time in the past */
2101 /* so correct this. this will make the periodic very inexact, but the user */
2102 /* has effectively asked to get triggered more often than possible */
2103 if (ev_at (w) < ev_rt_now)
2104 ev_at (w) = ev_rt_now;
2105 }
2106
2107 ANHE_at_cache (periodics [HEAP0]);
2108 downheap (periodics, periodiccnt, HEAP0);
2109 }
2110 else
2111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112
2113 EV_FREQUENT_CHECK;
2114 feed_reverse (EV_A_ (W)w);
2115 }
2116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2117
2118 feed_reverse_done (EV_A_ EV_PERIODIC);
2119 }
2120}
2121
2122/* simply recalculate all periodics */
2123/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2124static void noinline
2125periodics_reschedule (EV_P)
2126{
2127 int i;
2128
2129 /* adjust periodics after time jump */
2130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2131 {
2132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2133
1126 if (w->reschedule_cb) 2134 if (w->reschedule_cb)
2135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2136 else if (w->interval)
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138
2139 ANHE_at_cache (periodics [i]);
2140 }
2141
2142 reheap (periodics, periodiccnt);
2143}
2144#endif
2145
2146/* adjust all timers by a given offset */
2147static void noinline
2148timers_reschedule (EV_P_ ev_tstamp adjust)
2149{
2150 int i;
2151
2152 for (i = 0; i < timercnt; ++i)
2153 {
2154 ANHE *he = timers + i + HEAP0;
2155 ANHE_w (*he)->at += adjust;
2156 ANHE_at_cache (*he);
2157 }
2158}
2159
2160/* fetch new monotonic and realtime times from the kernel */
2161/* also detetc if there was a timejump, and act accordingly */
2162inline_speed void
2163time_update (EV_P_ ev_tstamp max_block)
2164{
2165#if EV_USE_MONOTONIC
2166 if (expect_true (have_monotonic))
2167 {
2168 int i;
2169 ev_tstamp odiff = rtmn_diff;
2170
2171 mn_now = get_clock ();
2172
2173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2174 /* interpolate in the meantime */
2175 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1127 { 2176 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2177 ev_rt_now = rtmn_diff + mn_now;
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2178 return;
1130 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 2179 }
1132 else if (w->interval)
1133 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0);
1137 }
1138 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 2180
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 }
1143}
1144
1145static void
1146periodics_reschedule (EV_P)
1147{
1148 int i;
1149
1150 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i)
1152 {
1153 struct ev_periodic *w = periodics [i];
1154
1155 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1159 }
1160
1161 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i);
1164}
1165#endif
1166
1167inline int
1168time_update_monotonic (EV_P)
1169{
1170 mn_now = get_clock ();
1171
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 {
1174 ev_rt_now = rtmn_diff + mn_now;
1175 return 0;
1176 }
1177 else
1178 {
1179 now_floor = mn_now; 2181 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 2182 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 2183
1185inline void 2184 /* loop a few times, before making important decisions.
1186time_update (EV_P) 2185 * on the choice of "4": one iteration isn't enough,
1187{ 2186 * in case we get preempted during the calls to
1188 int i; 2187 * ev_time and get_clock. a second call is almost guaranteed
1189 2188 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 2189 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 2190 * in the unlikely event of having been preempted here.
1192 { 2191 */
1193 if (time_update_monotonic (EV_A)) 2192 for (i = 4; --i; )
1194 { 2193 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 2194 rtmn_diff = ev_rt_now - mn_now;
1200 2195
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2196 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1202 return; /* all is well */ 2197 return; /* all is well */
1203 2198
1204 ev_rt_now = ev_time (); 2199 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 2200 mn_now = get_clock ();
1206 now_floor = mn_now; 2201 now_floor = mn_now;
1207 } 2202 }
1208 2203
2204 /* no timer adjustment, as the monotonic clock doesn't jump */
2205 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1209# if EV_PERIODICS 2206# if EV_PERIODIC_ENABLE
2207 periodics_reschedule (EV_A);
2208# endif
2209 }
2210 else
2211#endif
2212 {
2213 ev_rt_now = ev_time ();
2214
2215 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2216 {
2217 /* adjust timers. this is easy, as the offset is the same for all of them */
2218 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2219#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 2220 periodics_reschedule (EV_A);
1211# endif 2221#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 } 2222 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 2223
1232 mn_now = ev_rt_now; 2224 mn_now = ev_rt_now;
1233 } 2225 }
1234} 2226}
1235 2227
1236void 2228void
1237ev_ref (EV_P)
1238{
1239 ++activecnt;
1240}
1241
1242void
1243ev_unref (EV_P)
1244{
1245 --activecnt;
1246}
1247
1248static int loop_done;
1249
1250void
1251ev_loop (EV_P_ int flags) 2229ev_loop (EV_P_ int flags)
1252{ 2230{
1253 double block; 2231#if EV_MINIMAL < 2
1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2232 ++loop_depth;
2233#endif
1255 2234
1256 while (activecnt) 2235 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236
2237 loop_done = EVUNLOOP_CANCEL;
2238
2239 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2240
2241 do
1257 { 2242 {
2243#if EV_VERIFY >= 2
2244 ev_loop_verify (EV_A);
2245#endif
2246
2247#ifndef _WIN32
2248 if (expect_false (curpid)) /* penalise the forking check even more */
2249 if (expect_false (getpid () != curpid))
2250 {
2251 curpid = getpid ();
2252 postfork = 1;
2253 }
2254#endif
2255
2256#if EV_FORK_ENABLE
2257 /* we might have forked, so queue fork handlers */
2258 if (expect_false (postfork))
2259 if (forkcnt)
2260 {
2261 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2262 EV_INVOKE_PENDING;
2263 }
2264#endif
2265
1258 /* queue check watchers (and execute them) */ 2266 /* queue prepare watchers (and execute them) */
1259 if (expect_false (preparecnt)) 2267 if (expect_false (preparecnt))
1260 { 2268 {
1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1262 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1263 } 2271 }
2272
2273 if (expect_false (loop_done))
2274 break;
1264 2275
1265 /* we might have forked, so reify kernel state if necessary */ 2276 /* we might have forked, so reify kernel state if necessary */
1266 if (expect_false (postfork)) 2277 if (expect_false (postfork))
1267 loop_fork (EV_A); 2278 loop_fork (EV_A);
1268 2279
1269 /* update fd-related kernel structures */ 2280 /* update fd-related kernel structures */
1270 fd_reify (EV_A); 2281 fd_reify (EV_A);
1271 2282
1272 /* calculate blocking time */ 2283 /* calculate blocking time */
2284 {
2285 ev_tstamp waittime = 0.;
2286 ev_tstamp sleeptime = 0.;
1273 2287
1274 /* we only need this for !monotonic clock or timers, but as we basically 2288 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1275 always have timers, we just calculate it always */
1276#if EV_USE_MONOTONIC
1277 if (expect_true (have_monotonic))
1278 time_update_monotonic (EV_A);
1279 else
1280#endif
1281 { 2289 {
1282 ev_rt_now = ev_time (); 2290 /* remember old timestamp for io_blocktime calculation */
1283 mn_now = ev_rt_now; 2291 ev_tstamp prev_mn_now = mn_now;
1284 }
1285 2292
1286 if (flags & EVLOOP_NONBLOCK || idlecnt) 2293 /* update time to cancel out callback processing overhead */
1287 block = 0.; 2294 time_update (EV_A_ 1e100);
1288 else 2295
1289 {
1290 block = MAX_BLOCKTIME; 2296 waittime = MAX_BLOCKTIME;
1291 2297
1292 if (timercnt) 2298 if (timercnt)
1293 { 2299 {
1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2300 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1295 if (block > to) block = to; 2301 if (waittime > to) waittime = to;
1296 } 2302 }
1297 2303
1298#if EV_PERIODICS 2304#if EV_PERIODIC_ENABLE
1299 if (periodiccnt) 2305 if (periodiccnt)
1300 { 2306 {
1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1302 if (block > to) block = to; 2308 if (waittime > to) waittime = to;
1303 } 2309 }
1304#endif 2310#endif
1305 2311
1306 if (expect_false (block < 0.)) block = 0.; 2312 /* don't let timeouts decrease the waittime below timeout_blocktime */
2313 if (expect_false (waittime < timeout_blocktime))
2314 waittime = timeout_blocktime;
2315
2316 /* extra check because io_blocktime is commonly 0 */
2317 if (expect_false (io_blocktime))
2318 {
2319 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320
2321 if (sleeptime > waittime - backend_fudge)
2322 sleeptime = waittime - backend_fudge;
2323
2324 if (expect_true (sleeptime > 0.))
2325 {
2326 ev_sleep (sleeptime);
2327 waittime -= sleeptime;
2328 }
2329 }
1307 } 2330 }
1308 2331
2332#if EV_MINIMAL < 2
2333 ++loop_count;
2334#endif
2335 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1309 backend_poll (EV_A_ block); 2336 backend_poll (EV_A_ waittime);
2337 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1310 2338
1311 /* update ev_rt_now, do magic */ 2339 /* update ev_rt_now, do magic */
1312 time_update (EV_A); 2340 time_update (EV_A_ waittime + sleeptime);
2341 }
1313 2342
1314 /* queue pending timers and reschedule them */ 2343 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */ 2344 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS 2345#if EV_PERIODIC_ENABLE
1317 periodics_reify (EV_A); /* absolute timers called first */ 2346 periodics_reify (EV_A); /* absolute timers called first */
1318#endif 2347#endif
1319 2348
2349#if EV_IDLE_ENABLE
1320 /* queue idle watchers unless io or timers are pending */ 2350 /* queue idle watchers unless other events are pending */
1321 if (idlecnt && !any_pending (EV_A)) 2351 idle_reify (EV_A);
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2352#endif
1323 2353
1324 /* queue check watchers, to be executed first */ 2354 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt)) 2355 if (expect_false (checkcnt))
1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2356 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1327 2357
1328 call_pending (EV_A); 2358 EV_INVOKE_PENDING;
1329
1330 if (expect_false (loop_done))
1331 break;
1332 } 2359 }
2360 while (expect_true (
2361 activecnt
2362 && !loop_done
2363 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2364 ));
1333 2365
1334 if (loop_done != 2) 2366 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = 0; 2367 loop_done = EVUNLOOP_CANCEL;
2368
2369#if EV_MINIMAL < 2
2370 --loop_depth;
2371#endif
1336} 2372}
1337 2373
1338void 2374void
1339ev_unloop (EV_P_ int how) 2375ev_unloop (EV_P_ int how)
1340{ 2376{
1341 loop_done = how; 2377 loop_done = how;
1342} 2378}
1343 2379
2380void
2381ev_ref (EV_P)
2382{
2383 ++activecnt;
2384}
2385
2386void
2387ev_unref (EV_P)
2388{
2389 --activecnt;
2390}
2391
2392void
2393ev_now_update (EV_P)
2394{
2395 time_update (EV_A_ 1e100);
2396}
2397
2398void
2399ev_suspend (EV_P)
2400{
2401 ev_now_update (EV_A);
2402}
2403
2404void
2405ev_resume (EV_P)
2406{
2407 ev_tstamp mn_prev = mn_now;
2408
2409 ev_now_update (EV_A);
2410 timers_reschedule (EV_A_ mn_now - mn_prev);
2411#if EV_PERIODIC_ENABLE
2412 /* TODO: really do this? */
2413 periodics_reschedule (EV_A);
2414#endif
2415}
2416
1344/*****************************************************************************/ 2417/*****************************************************************************/
2418/* singly-linked list management, used when the expected list length is short */
1345 2419
1346inline void 2420inline_size void
1347wlist_add (WL *head, WL elem) 2421wlist_add (WL *head, WL elem)
1348{ 2422{
1349 elem->next = *head; 2423 elem->next = *head;
1350 *head = elem; 2424 *head = elem;
1351} 2425}
1352 2426
1353inline void 2427inline_size void
1354wlist_del (WL *head, WL elem) 2428wlist_del (WL *head, WL elem)
1355{ 2429{
1356 while (*head) 2430 while (*head)
1357 { 2431 {
1358 if (*head == elem) 2432 if (expect_true (*head == elem))
1359 { 2433 {
1360 *head = elem->next; 2434 *head = elem->next;
1361 return; 2435 break;
1362 } 2436 }
1363 2437
1364 head = &(*head)->next; 2438 head = &(*head)->next;
1365 } 2439 }
1366} 2440}
1367 2441
2442/* internal, faster, version of ev_clear_pending */
1368inline void 2443inline_speed void
1369ev_clear_pending (EV_P_ W w) 2444clear_pending (EV_P_ W w)
1370{ 2445{
1371 if (w->pending) 2446 if (w->pending)
1372 { 2447 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2448 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1374 w->pending = 0; 2449 w->pending = 0;
1375 } 2450 }
1376} 2451}
1377 2452
2453int
2454ev_clear_pending (EV_P_ void *w)
2455{
2456 W w_ = (W)w;
2457 int pending = w_->pending;
2458
2459 if (expect_true (pending))
2460 {
2461 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 p->w = (W)&pending_w;
2463 w_->pending = 0;
2464 return p->events;
2465 }
2466 else
2467 return 0;
2468}
2469
1378inline void 2470inline_size void
2471pri_adjust (EV_P_ W w)
2472{
2473 int pri = ev_priority (w);
2474 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2475 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2476 ev_set_priority (w, pri);
2477}
2478
2479inline_speed void
1379ev_start (EV_P_ W w, int active) 2480ev_start (EV_P_ W w, int active)
1380{ 2481{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2482 pri_adjust (EV_A_ w);
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383
1384 w->active = active; 2483 w->active = active;
1385 ev_ref (EV_A); 2484 ev_ref (EV_A);
1386} 2485}
1387 2486
1388inline void 2487inline_size void
1389ev_stop (EV_P_ W w) 2488ev_stop (EV_P_ W w)
1390{ 2489{
1391 ev_unref (EV_A); 2490 ev_unref (EV_A);
1392 w->active = 0; 2491 w->active = 0;
1393} 2492}
1394 2493
1395/*****************************************************************************/ 2494/*****************************************************************************/
1396 2495
1397void 2496void noinline
1398ev_io_start (EV_P_ struct ev_io *w) 2497ev_io_start (EV_P_ ev_io *w)
1399{ 2498{
1400 int fd = w->fd; 2499 int fd = w->fd;
1401 2500
1402 if (expect_false (ev_is_active (w))) 2501 if (expect_false (ev_is_active (w)))
1403 return; 2502 return;
1404 2503
1405 assert (("ev_io_start called with negative fd", fd >= 0)); 2504 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2505 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2506
2507 EV_FREQUENT_CHECK;
1406 2508
1407 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
1408 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2510 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1409 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2511 wlist_add (&anfds[fd].head, (WL)w);
1410 2512
1411 fd_change (EV_A_ fd); 2513 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1412} 2514 w->events &= ~EV__IOFDSET;
1413 2515
1414void 2516 EV_FREQUENT_CHECK;
2517}
2518
2519void noinline
1415ev_io_stop (EV_P_ struct ev_io *w) 2520ev_io_stop (EV_P_ ev_io *w)
1416{ 2521{
1417 ev_clear_pending (EV_A_ (W)w); 2522 clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w))) 2523 if (expect_false (!ev_is_active (w)))
1419 return; 2524 return;
1420 2525
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2526 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1422 2527
2528 EV_FREQUENT_CHECK;
2529
1423 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2530 wlist_del (&anfds[w->fd].head, (WL)w);
1424 ev_stop (EV_A_ (W)w); 2531 ev_stop (EV_A_ (W)w);
1425 2532
1426 fd_change (EV_A_ w->fd); 2533 fd_change (EV_A_ w->fd, 1);
1427}
1428 2534
1429void 2535 EV_FREQUENT_CHECK;
2536}
2537
2538void noinline
1430ev_timer_start (EV_P_ struct ev_timer *w) 2539ev_timer_start (EV_P_ ev_timer *w)
1431{ 2540{
1432 if (expect_false (ev_is_active (w))) 2541 if (expect_false (ev_is_active (w)))
1433 return; 2542 return;
1434 2543
1435 ((WT)w)->at += mn_now; 2544 ev_at (w) += mn_now;
1436 2545
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2546 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438 2547
2548 EV_FREQUENT_CHECK;
2549
2550 ++timercnt;
1439 ev_start (EV_A_ (W)w, ++timercnt); 2551 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2552 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1441 timers [timercnt - 1] = w; 2553 ANHE_w (timers [ev_active (w)]) = (WT)w;
1442 upheap ((WT *)timers, timercnt - 1); 2554 ANHE_at_cache (timers [ev_active (w)]);
2555 upheap (timers, ev_active (w));
1443 2556
2557 EV_FREQUENT_CHECK;
2558
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2559 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1445} 2560}
1446 2561
1447void 2562void noinline
1448ev_timer_stop (EV_P_ struct ev_timer *w) 2563ev_timer_stop (EV_P_ ev_timer *w)
1449{ 2564{
1450 ev_clear_pending (EV_A_ (W)w); 2565 clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w))) 2566 if (expect_false (!ev_is_active (w)))
1452 return; 2567 return;
1453 2568
2569 EV_FREQUENT_CHECK;
2570
2571 {
2572 int active = ev_active (w);
2573
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2574 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1455 2575
2576 --timercnt;
2577
1456 if (expect_true (((W)w)->active < timercnt--)) 2578 if (expect_true (active < timercnt + HEAP0))
1457 { 2579 {
1458 timers [((W)w)->active - 1] = timers [timercnt]; 2580 timers [active] = timers [timercnt + HEAP0];
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2581 adjustheap (timers, timercnt, active);
1460 } 2582 }
2583 }
1461 2584
1462 ((WT)w)->at -= mn_now; 2585 EV_FREQUENT_CHECK;
2586
2587 ev_at (w) -= mn_now;
1463 2588
1464 ev_stop (EV_A_ (W)w); 2589 ev_stop (EV_A_ (W)w);
1465} 2590}
1466 2591
1467void 2592void noinline
1468ev_timer_again (EV_P_ struct ev_timer *w) 2593ev_timer_again (EV_P_ ev_timer *w)
1469{ 2594{
2595 EV_FREQUENT_CHECK;
2596
1470 if (ev_is_active (w)) 2597 if (ev_is_active (w))
1471 { 2598 {
1472 if (w->repeat) 2599 if (w->repeat)
1473 { 2600 {
1474 ((WT)w)->at = mn_now + w->repeat; 2601 ev_at (w) = mn_now + w->repeat;
2602 ANHE_at_cache (timers [ev_active (w)]);
1475 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2603 adjustheap (timers, timercnt, ev_active (w));
1476 } 2604 }
1477 else 2605 else
1478 ev_timer_stop (EV_A_ w); 2606 ev_timer_stop (EV_A_ w);
1479 } 2607 }
1480 else if (w->repeat) 2608 else if (w->repeat)
1481 { 2609 {
1482 w->at = w->repeat; 2610 ev_at (w) = w->repeat;
1483 ev_timer_start (EV_A_ w); 2611 ev_timer_start (EV_A_ w);
1484 } 2612 }
1485}
1486 2613
2614 EV_FREQUENT_CHECK;
2615}
2616
2617ev_tstamp
2618ev_timer_remaining (EV_P_ ev_timer *w)
2619{
2620 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2621}
2622
1487#if EV_PERIODICS 2623#if EV_PERIODIC_ENABLE
1488void 2624void noinline
1489ev_periodic_start (EV_P_ struct ev_periodic *w) 2625ev_periodic_start (EV_P_ ev_periodic *w)
1490{ 2626{
1491 if (expect_false (ev_is_active (w))) 2627 if (expect_false (ev_is_active (w)))
1492 return; 2628 return;
1493 2629
1494 if (w->reschedule_cb) 2630 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2631 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval) 2632 else if (w->interval)
1497 { 2633 {
1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2634 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 2635 /* this formula differs from the one in periodic_reify because we do not always round up */
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2636 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1501 } 2637 }
2638 else
2639 ev_at (w) = w->offset;
1502 2640
2641 EV_FREQUENT_CHECK;
2642
2643 ++periodiccnt;
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 2644 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2645 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1505 periodics [periodiccnt - 1] = w; 2646 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 2647 ANHE_at_cache (periodics [ev_active (w)]);
2648 upheap (periodics, ev_active (w));
1507 2649
2650 EV_FREQUENT_CHECK;
2651
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2652 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1509} 2653}
1510 2654
1511void 2655void noinline
1512ev_periodic_stop (EV_P_ struct ev_periodic *w) 2656ev_periodic_stop (EV_P_ ev_periodic *w)
1513{ 2657{
1514 ev_clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
1516 return; 2660 return;
1517 2661
2662 EV_FREQUENT_CHECK;
2663
2664 {
2665 int active = ev_active (w);
2666
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2667 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1519 2668
2669 --periodiccnt;
2670
1520 if (expect_true (((W)w)->active < periodiccnt--)) 2671 if (expect_true (active < periodiccnt + HEAP0))
1521 { 2672 {
1522 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2673 periodics [active] = periodics [periodiccnt + HEAP0];
1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2674 adjustheap (periodics, periodiccnt, active);
1524 } 2675 }
2676 }
2677
2678 EV_FREQUENT_CHECK;
1525 2679
1526 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
1527} 2681}
1528 2682
1529void 2683void noinline
1530ev_periodic_again (EV_P_ struct ev_periodic *w) 2684ev_periodic_again (EV_P_ ev_periodic *w)
1531{ 2685{
1532 /* TODO: use adjustheap and recalculation */ 2686 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 2687 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 2688 ev_periodic_start (EV_A_ w);
1535} 2689}
1536#endif 2690#endif
1537 2691
1538void 2692#ifndef SA_RESTART
1539ev_idle_start (EV_P_ struct ev_idle *w) 2693# define SA_RESTART 0
2694#endif
2695
2696void noinline
2697ev_signal_start (EV_P_ ev_signal *w)
1540{ 2698{
1541 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
1542 return; 2700 return;
1543 2701
2702 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2703
2704#if EV_MULTIPLICITY
2705 assert (("libev: a signal must not be attached to two different loops",
2706 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2707
2708 signals [w->signum - 1].loop = EV_A;
2709#endif
2710
2711 EV_FREQUENT_CHECK;
2712
2713#if EV_USE_SIGNALFD
2714 if (sigfd == -2)
2715 {
2716 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2717 if (sigfd < 0 && errno == EINVAL)
2718 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2719
2720 if (sigfd >= 0)
2721 {
2722 fd_intern (sigfd); /* doing it twice will not hurt */
2723
2724 sigemptyset (&sigfd_set);
2725
2726 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727 ev_set_priority (&sigfd_w, EV_MAXPRI);
2728 ev_io_start (EV_A_ &sigfd_w);
2729 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730 }
2731 }
2732
2733 if (sigfd >= 0)
2734 {
2735 /* TODO: check .head */
2736 sigaddset (&sigfd_set, w->signum);
2737 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738
2739 signalfd (sigfd, &sigfd_set, 0);
2740 }
2741#endif
2742
1544 ev_start (EV_A_ (W)w, ++idlecnt); 2743 ev_start (EV_A_ (W)w, 1);
1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2744 wlist_add (&signals [w->signum - 1].head, (WL)w);
1546 idles [idlecnt - 1] = w;
1547}
1548 2745
1549void 2746 if (!((WL)w)->next)
1550ev_idle_stop (EV_P_ struct ev_idle *w) 2747# if EV_USE_SIGNALFD
2748 if (sigfd < 0) /*TODO*/
2749# endif
2750 {
2751# if _WIN32
2752 evpipe_init (EV_A);
2753
2754 signal (w->signum, ev_sighandler);
2755# else
2756 struct sigaction sa;
2757
2758 evpipe_init (EV_A);
2759
2760 sa.sa_handler = ev_sighandler;
2761 sigfillset (&sa.sa_mask);
2762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2763 sigaction (w->signum, &sa, 0);
2764
2765 sigemptyset (&sa.sa_mask);
2766 sigaddset (&sa.sa_mask, w->signum);
2767 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2768#endif
2769 }
2770
2771 EV_FREQUENT_CHECK;
2772}
2773
2774void noinline
2775ev_signal_stop (EV_P_ ev_signal *w)
1551{ 2776{
1552 ev_clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
1554 return; 2779 return;
1555 2780
1556 idles [((W)w)->active - 1] = idles [--idlecnt]; 2781 EV_FREQUENT_CHECK;
2782
2783 wlist_del (&signals [w->signum - 1].head, (WL)w);
1557 ev_stop (EV_A_ (W)w); 2784 ev_stop (EV_A_ (W)w);
1558}
1559 2785
2786 if (!signals [w->signum - 1].head)
2787 {
2788#if EV_MULTIPLICITY
2789 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790#endif
2791#if EV_USE_SIGNALFD
2792 if (sigfd >= 0)
2793 {
2794 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795 sigdelset (&sigfd_set, w->signum);
2796 signalfd (sigfd, &sigfd_set, 0);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798 /*TODO: maybe unblock signal? */
2799 }
2800 else
2801#endif
2802 signal (w->signum, SIG_DFL);
2803 }
2804
2805 EV_FREQUENT_CHECK;
2806}
2807
1560void 2808void
1561ev_prepare_start (EV_P_ struct ev_prepare *w) 2809ev_child_start (EV_P_ ev_child *w)
1562{ 2810{
2811#if EV_MULTIPLICITY
2812 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2813#endif
1563 if (expect_false (ev_is_active (w))) 2814 if (expect_false (ev_is_active (w)))
1564 return; 2815 return;
1565 2816
2817 EV_FREQUENT_CHECK;
2818
1566 ev_start (EV_A_ (W)w, ++preparecnt); 2819 ev_start (EV_A_ (W)w, 1);
1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1568 prepares [preparecnt - 1] = w;
1569}
1570 2821
2822 EV_FREQUENT_CHECK;
2823}
2824
1571void 2825void
1572ev_prepare_stop (EV_P_ struct ev_prepare *w) 2826ev_child_stop (EV_P_ ev_child *w)
1573{ 2827{
1574 ev_clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
1576 return; 2830 return;
1577 2831
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2832 EV_FREQUENT_CHECK;
2833
2834 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1579 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
1580}
1581 2836
2837 EV_FREQUENT_CHECK;
2838}
2839
2840#if EV_STAT_ENABLE
2841
2842# ifdef _WIN32
2843# undef lstat
2844# define lstat(a,b) _stati64 (a,b)
2845# endif
2846
2847#define DEF_STAT_INTERVAL 5.0074891
2848#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2849#define MIN_STAT_INTERVAL 0.1074891
2850
2851static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2852
2853#if EV_USE_INOTIFY
2854# define EV_INOTIFY_BUFSIZE 8192
2855
2856static void noinline
2857infy_add (EV_P_ ev_stat *w)
2858{
2859 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2860
2861 if (w->wd >= 0)
2862 {
2863 struct statfs sfs;
2864
2865 /* now local changes will be tracked by inotify, but remote changes won't */
2866 /* unless the filesystem is known to be local, we therefore still poll */
2867 /* also do poll on <2.6.25, but with normal frequency */
2868
2869 if (!fs_2625)
2870 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2871 else if (!statfs (w->path, &sfs)
2872 && (sfs.f_type == 0x1373 /* devfs */
2873 || sfs.f_type == 0xEF53 /* ext2/3 */
2874 || sfs.f_type == 0x3153464a /* jfs */
2875 || sfs.f_type == 0x52654973 /* reiser3 */
2876 || sfs.f_type == 0x01021994 /* tempfs */
2877 || sfs.f_type == 0x58465342 /* xfs */))
2878 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2879 else
2880 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2881 }
2882 else
2883 {
2884 /* can't use inotify, continue to stat */
2885 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2886
2887 /* if path is not there, monitor some parent directory for speedup hints */
2888 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2889 /* but an efficiency issue only */
2890 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2891 {
2892 char path [4096];
2893 strcpy (path, w->path);
2894
2895 do
2896 {
2897 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2898 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2899
2900 char *pend = strrchr (path, '/');
2901
2902 if (!pend || pend == path)
2903 break;
2904
2905 *pend = 0;
2906 w->wd = inotify_add_watch (fs_fd, path, mask);
2907 }
2908 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2909 }
2910 }
2911
2912 if (w->wd >= 0)
2913 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2914
2915 /* now re-arm timer, if required */
2916 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2917 ev_timer_again (EV_A_ &w->timer);
2918 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2919}
2920
2921static void noinline
2922infy_del (EV_P_ ev_stat *w)
2923{
2924 int slot;
2925 int wd = w->wd;
2926
2927 if (wd < 0)
2928 return;
2929
2930 w->wd = -2;
2931 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2932 wlist_del (&fs_hash [slot].head, (WL)w);
2933
2934 /* remove this watcher, if others are watching it, they will rearm */
2935 inotify_rm_watch (fs_fd, wd);
2936}
2937
2938static void noinline
2939infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2940{
2941 if (slot < 0)
2942 /* overflow, need to check for all hash slots */
2943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2944 infy_wd (EV_A_ slot, wd, ev);
2945 else
2946 {
2947 WL w_;
2948
2949 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2950 {
2951 ev_stat *w = (ev_stat *)w_;
2952 w_ = w_->next; /* lets us remove this watcher and all before it */
2953
2954 if (w->wd == wd || wd == -1)
2955 {
2956 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2957 {
2958 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2959 w->wd = -1;
2960 infy_add (EV_A_ w); /* re-add, no matter what */
2961 }
2962
2963 stat_timer_cb (EV_A_ &w->timer, 0);
2964 }
2965 }
2966 }
2967}
2968
2969static void
2970infy_cb (EV_P_ ev_io *w, int revents)
2971{
2972 char buf [EV_INOTIFY_BUFSIZE];
2973 struct inotify_event *ev = (struct inotify_event *)buf;
2974 int ofs;
2975 int len = read (fs_fd, buf, sizeof (buf));
2976
2977 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2978 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2979}
2980
2981inline_size void
2982check_2625 (EV_P)
2983{
2984 /* kernels < 2.6.25 are borked
2985 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2986 */
2987 struct utsname buf;
2988 int major, minor, micro;
2989
2990 if (uname (&buf))
2991 return;
2992
2993 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2994 return;
2995
2996 if (major < 2
2997 || (major == 2 && minor < 6)
2998 || (major == 2 && minor == 6 && micro < 25))
2999 return;
3000
3001 fs_2625 = 1;
3002}
3003
3004inline_size int
3005infy_newfd (void)
3006{
3007#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3008 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3009 if (fd >= 0)
3010 return fd;
3011#endif
3012 return inotify_init ();
3013}
3014
3015inline_size void
3016infy_init (EV_P)
3017{
3018 if (fs_fd != -2)
3019 return;
3020
3021 fs_fd = -1;
3022
3023 check_2625 (EV_A);
3024
3025 fs_fd = infy_newfd ();
3026
3027 if (fs_fd >= 0)
3028 {
3029 fd_intern (fs_fd);
3030 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3031 ev_set_priority (&fs_w, EV_MAXPRI);
3032 ev_io_start (EV_A_ &fs_w);
3033 ev_unref (EV_A);
3034 }
3035}
3036
3037inline_size void
3038infy_fork (EV_P)
3039{
3040 int slot;
3041
3042 if (fs_fd < 0)
3043 return;
3044
3045 ev_ref (EV_A);
3046 ev_io_stop (EV_A_ &fs_w);
3047 close (fs_fd);
3048 fs_fd = infy_newfd ();
3049
3050 if (fs_fd >= 0)
3051 {
3052 fd_intern (fs_fd);
3053 ev_io_set (&fs_w, fs_fd, EV_READ);
3054 ev_io_start (EV_A_ &fs_w);
3055 ev_unref (EV_A);
3056 }
3057
3058 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3059 {
3060 WL w_ = fs_hash [slot].head;
3061 fs_hash [slot].head = 0;
3062
3063 while (w_)
3064 {
3065 ev_stat *w = (ev_stat *)w_;
3066 w_ = w_->next; /* lets us add this watcher */
3067
3068 w->wd = -1;
3069
3070 if (fs_fd >= 0)
3071 infy_add (EV_A_ w); /* re-add, no matter what */
3072 else
3073 {
3074 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3075 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3076 ev_timer_again (EV_A_ &w->timer);
3077 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3078 }
3079 }
3080 }
3081}
3082
3083#endif
3084
3085#ifdef _WIN32
3086# define EV_LSTAT(p,b) _stati64 (p, b)
3087#else
3088# define EV_LSTAT(p,b) lstat (p, b)
3089#endif
3090
1582void 3091void
1583ev_check_start (EV_P_ struct ev_check *w) 3092ev_stat_stat (EV_P_ ev_stat *w)
3093{
3094 if (lstat (w->path, &w->attr) < 0)
3095 w->attr.st_nlink = 0;
3096 else if (!w->attr.st_nlink)
3097 w->attr.st_nlink = 1;
3098}
3099
3100static void noinline
3101stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3102{
3103 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3104
3105 /* we copy this here each the time so that */
3106 /* prev has the old value when the callback gets invoked */
3107 w->prev = w->attr;
3108 ev_stat_stat (EV_A_ w);
3109
3110 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3111 if (
3112 w->prev.st_dev != w->attr.st_dev
3113 || w->prev.st_ino != w->attr.st_ino
3114 || w->prev.st_mode != w->attr.st_mode
3115 || w->prev.st_nlink != w->attr.st_nlink
3116 || w->prev.st_uid != w->attr.st_uid
3117 || w->prev.st_gid != w->attr.st_gid
3118 || w->prev.st_rdev != w->attr.st_rdev
3119 || w->prev.st_size != w->attr.st_size
3120 || w->prev.st_atime != w->attr.st_atime
3121 || w->prev.st_mtime != w->attr.st_mtime
3122 || w->prev.st_ctime != w->attr.st_ctime
3123 ) {
3124 #if EV_USE_INOTIFY
3125 if (fs_fd >= 0)
3126 {
3127 infy_del (EV_A_ w);
3128 infy_add (EV_A_ w);
3129 ev_stat_stat (EV_A_ w); /* avoid race... */
3130 }
3131 #endif
3132
3133 ev_feed_event (EV_A_ w, EV_STAT);
3134 }
3135}
3136
3137void
3138ev_stat_start (EV_P_ ev_stat *w)
1584{ 3139{
1585 if (expect_false (ev_is_active (w))) 3140 if (expect_false (ev_is_active (w)))
1586 return; 3141 return;
1587 3142
3143 ev_stat_stat (EV_A_ w);
3144
3145 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3146 w->interval = MIN_STAT_INTERVAL;
3147
3148 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3149 ev_set_priority (&w->timer, ev_priority (w));
3150
3151#if EV_USE_INOTIFY
3152 infy_init (EV_A);
3153
3154 if (fs_fd >= 0)
3155 infy_add (EV_A_ w);
3156 else
3157#endif
3158 {
3159 ev_timer_again (EV_A_ &w->timer);
3160 ev_unref (EV_A);
3161 }
3162
1588 ev_start (EV_A_ (W)w, ++checkcnt); 3163 ev_start (EV_A_ (W)w, 1);
1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1590 checks [checkcnt - 1] = w;
1591}
1592 3164
3165 EV_FREQUENT_CHECK;
3166}
3167
1593void 3168void
1594ev_check_stop (EV_P_ struct ev_check *w) 3169ev_stat_stop (EV_P_ ev_stat *w)
1595{ 3170{
1596 ev_clear_pending (EV_A_ (W)w); 3171 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 3172 if (expect_false (!ev_is_active (w)))
1598 return; 3173 return;
1599 3174
1600 checks [((W)w)->active - 1] = checks [--checkcnt]; 3175 EV_FREQUENT_CHECK;
3176
3177#if EV_USE_INOTIFY
3178 infy_del (EV_A_ w);
3179#endif
3180
3181 if (ev_is_active (&w->timer))
3182 {
3183 ev_ref (EV_A);
3184 ev_timer_stop (EV_A_ &w->timer);
3185 }
3186
1601 ev_stop (EV_A_ (W)w); 3187 ev_stop (EV_A_ (W)w);
1602}
1603 3188
1604#ifndef SA_RESTART 3189 EV_FREQUENT_CHECK;
1605# define SA_RESTART 0 3190}
1606#endif 3191#endif
1607 3192
3193#if EV_IDLE_ENABLE
1608void 3194void
1609ev_signal_start (EV_P_ struct ev_signal *w) 3195ev_idle_start (EV_P_ ev_idle *w)
1610{ 3196{
1611#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1613#endif
1614 if (expect_false (ev_is_active (w))) 3197 if (expect_false (ev_is_active (w)))
1615 return; 3198 return;
1616 3199
1617 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3200 pri_adjust (EV_A_ (W)w);
1618 3201
3202 EV_FREQUENT_CHECK;
3203
3204 {
3205 int active = ++idlecnt [ABSPRI (w)];
3206
3207 ++idleall;
1619 ev_start (EV_A_ (W)w, 1); 3208 ev_start (EV_A_ (W)w, active);
1620 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1621 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1622 3209
1623 if (!((WL)w)->next) 3210 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1624 { 3211 idles [ABSPRI (w)][active - 1] = w;
1625#if _WIN32
1626 signal (w->signum, sighandler);
1627#else
1628 struct sigaction sa;
1629 sa.sa_handler = sighandler;
1630 sigfillset (&sa.sa_mask);
1631 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1632 sigaction (w->signum, &sa, 0);
1633#endif
1634 } 3212 }
1635}
1636 3213
3214 EV_FREQUENT_CHECK;
3215}
3216
1637void 3217void
1638ev_signal_stop (EV_P_ struct ev_signal *w) 3218ev_idle_stop (EV_P_ ev_idle *w)
1639{ 3219{
1640 ev_clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
1642 return; 3222 return;
1643 3223
1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3224 EV_FREQUENT_CHECK;
3225
3226 {
3227 int active = ev_active (w);
3228
3229 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3231
1645 ev_stop (EV_A_ (W)w); 3232 ev_stop (EV_A_ (W)w);
3233 --idleall;
3234 }
1646 3235
1647 if (!signals [w->signum - 1].head) 3236 EV_FREQUENT_CHECK;
1648 signal (w->signum, SIG_DFL);
1649} 3237}
1650
1651void
1652ev_child_start (EV_P_ struct ev_child *w)
1653{
1654#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif 3238#endif
3239
3240void
3241ev_prepare_start (EV_P_ ev_prepare *w)
3242{
1657 if (expect_false (ev_is_active (w))) 3243 if (expect_false (ev_is_active (w)))
1658 return; 3244 return;
1659 3245
3246 EV_FREQUENT_CHECK;
3247
1660 ev_start (EV_A_ (W)w, 1); 3248 ev_start (EV_A_ (W)w, ++preparecnt);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3249 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1662} 3250 prepares [preparecnt - 1] = w;
1663 3251
3252 EV_FREQUENT_CHECK;
3253}
3254
1664void 3255void
1665ev_child_stop (EV_P_ struct ev_child *w) 3256ev_prepare_stop (EV_P_ ev_prepare *w)
1666{ 3257{
1667 ev_clear_pending (EV_A_ (W)w); 3258 clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 3259 if (expect_false (!ev_is_active (w)))
1669 return; 3260 return;
1670 3261
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3262 EV_FREQUENT_CHECK;
3263
3264 {
3265 int active = ev_active (w);
3266
3267 prepares [active - 1] = prepares [--preparecnt];
3268 ev_active (prepares [active - 1]) = active;
3269 }
3270
1672 ev_stop (EV_A_ (W)w); 3271 ev_stop (EV_A_ (W)w);
1673}
1674 3272
1675#if EV_MULTIPLICITY 3273 EV_FREQUENT_CHECK;
1676static void
1677embed_cb (EV_P_ struct ev_io *io, int revents)
1678{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io));
1680
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1682 ev_loop (w->loop, EVLOOP_NONBLOCK);
1683} 3274}
1684 3275
1685void 3276void
1686ev_embed_start (EV_P_ struct ev_embed *w) 3277ev_check_start (EV_P_ ev_check *w)
1687{ 3278{
1688 if (expect_false (ev_is_active (w))) 3279 if (expect_false (ev_is_active (w)))
1689 return; 3280 return;
1690 3281
1691 { 3282 EV_FREQUENT_CHECK;
1692 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 }
1696 3283
1697 ev_io_start (EV_A_ &w->io);
1698 ev_start (EV_A_ (W)w, 1); 3284 ev_start (EV_A_ (W)w, ++checkcnt);
1699} 3285 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3286 checks [checkcnt - 1] = w;
1700 3287
3288 EV_FREQUENT_CHECK;
3289}
3290
1701void 3291void
1702ev_embed_stop (EV_P_ struct ev_embed *w) 3292ev_check_stop (EV_P_ ev_check *w)
1703{ 3293{
1704 ev_clear_pending (EV_A_ (W)w); 3294 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 3295 if (expect_false (!ev_is_active (w)))
1706 return; 3296 return;
1707 3297
1708 ev_io_stop (EV_A_ &w->io); 3298 EV_FREQUENT_CHECK;
3299
3300 {
3301 int active = ev_active (w);
3302
3303 checks [active - 1] = checks [--checkcnt];
3304 ev_active (checks [active - 1]) = active;
3305 }
3306
1709 ev_stop (EV_A_ (W)w); 3307 ev_stop (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
3310}
3311
3312#if EV_EMBED_ENABLE
3313void noinline
3314ev_embed_sweep (EV_P_ ev_embed *w)
3315{
3316 ev_loop (w->other, EVLOOP_NONBLOCK);
3317}
3318
3319static void
3320embed_io_cb (EV_P_ ev_io *io, int revents)
3321{
3322 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3323
3324 if (ev_cb (w))
3325 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3326 else
3327 ev_loop (w->other, EVLOOP_NONBLOCK);
3328}
3329
3330static void
3331embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3332{
3333 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3334
3335 {
3336 EV_P = w->other;
3337
3338 while (fdchangecnt)
3339 {
3340 fd_reify (EV_A);
3341 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3342 }
3343 }
3344}
3345
3346static void
3347embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3348{
3349 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3350
3351 ev_embed_stop (EV_A_ w);
3352
3353 {
3354 EV_P = w->other;
3355
3356 ev_loop_fork (EV_A);
3357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3358 }
3359
3360 ev_embed_start (EV_A_ w);
3361}
3362
3363#if 0
3364static void
3365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3366{
3367 ev_idle_stop (EV_A_ idle);
3368}
3369#endif
3370
3371void
3372ev_embed_start (EV_P_ ev_embed *w)
3373{
3374 if (expect_false (ev_is_active (w)))
3375 return;
3376
3377 {
3378 EV_P = w->other;
3379 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3381 }
3382
3383 EV_FREQUENT_CHECK;
3384
3385 ev_set_priority (&w->io, ev_priority (w));
3386 ev_io_start (EV_A_ &w->io);
3387
3388 ev_prepare_init (&w->prepare, embed_prepare_cb);
3389 ev_set_priority (&w->prepare, EV_MINPRI);
3390 ev_prepare_start (EV_A_ &w->prepare);
3391
3392 ev_fork_init (&w->fork, embed_fork_cb);
3393 ev_fork_start (EV_A_ &w->fork);
3394
3395 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3396
3397 ev_start (EV_A_ (W)w, 1);
3398
3399 EV_FREQUENT_CHECK;
3400}
3401
3402void
3403ev_embed_stop (EV_P_ ev_embed *w)
3404{
3405 clear_pending (EV_A_ (W)w);
3406 if (expect_false (!ev_is_active (w)))
3407 return;
3408
3409 EV_FREQUENT_CHECK;
3410
3411 ev_io_stop (EV_A_ &w->io);
3412 ev_prepare_stop (EV_A_ &w->prepare);
3413 ev_fork_stop (EV_A_ &w->fork);
3414
3415 EV_FREQUENT_CHECK;
3416}
3417#endif
3418
3419#if EV_FORK_ENABLE
3420void
3421ev_fork_start (EV_P_ ev_fork *w)
3422{
3423 if (expect_false (ev_is_active (w)))
3424 return;
3425
3426 EV_FREQUENT_CHECK;
3427
3428 ev_start (EV_A_ (W)w, ++forkcnt);
3429 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3430 forks [forkcnt - 1] = w;
3431
3432 EV_FREQUENT_CHECK;
3433}
3434
3435void
3436ev_fork_stop (EV_P_ ev_fork *w)
3437{
3438 clear_pending (EV_A_ (W)w);
3439 if (expect_false (!ev_is_active (w)))
3440 return;
3441
3442 EV_FREQUENT_CHECK;
3443
3444 {
3445 int active = ev_active (w);
3446
3447 forks [active - 1] = forks [--forkcnt];
3448 ev_active (forks [active - 1]) = active;
3449 }
3450
3451 ev_stop (EV_A_ (W)w);
3452
3453 EV_FREQUENT_CHECK;
3454}
3455#endif
3456
3457#if EV_ASYNC_ENABLE
3458void
3459ev_async_start (EV_P_ ev_async *w)
3460{
3461 if (expect_false (ev_is_active (w)))
3462 return;
3463
3464 evpipe_init (EV_A);
3465
3466 EV_FREQUENT_CHECK;
3467
3468 ev_start (EV_A_ (W)w, ++asynccnt);
3469 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3470 asyncs [asynccnt - 1] = w;
3471
3472 EV_FREQUENT_CHECK;
3473}
3474
3475void
3476ev_async_stop (EV_P_ ev_async *w)
3477{
3478 clear_pending (EV_A_ (W)w);
3479 if (expect_false (!ev_is_active (w)))
3480 return;
3481
3482 EV_FREQUENT_CHECK;
3483
3484 {
3485 int active = ev_active (w);
3486
3487 asyncs [active - 1] = asyncs [--asynccnt];
3488 ev_active (asyncs [active - 1]) = active;
3489 }
3490
3491 ev_stop (EV_A_ (W)w);
3492
3493 EV_FREQUENT_CHECK;
3494}
3495
3496void
3497ev_async_send (EV_P_ ev_async *w)
3498{
3499 w->sent = 1;
3500 evpipe_write (EV_A_ &async_pending);
1710} 3501}
1711#endif 3502#endif
1712 3503
1713/*****************************************************************************/ 3504/*****************************************************************************/
1714 3505
1715struct ev_once 3506struct ev_once
1716{ 3507{
1717 struct ev_io io; 3508 ev_io io;
1718 struct ev_timer to; 3509 ev_timer to;
1719 void (*cb)(int revents, void *arg); 3510 void (*cb)(int revents, void *arg);
1720 void *arg; 3511 void *arg;
1721}; 3512};
1722 3513
1723static void 3514static void
1724once_cb (EV_P_ struct ev_once *once, int revents) 3515once_cb (EV_P_ struct ev_once *once, int revents)
1725{ 3516{
1726 void (*cb)(int revents, void *arg) = once->cb; 3517 void (*cb)(int revents, void *arg) = once->cb;
1727 void *arg = once->arg; 3518 void *arg = once->arg;
1728 3519
1729 ev_io_stop (EV_A_ &once->io); 3520 ev_io_stop (EV_A_ &once->io);
1730 ev_timer_stop (EV_A_ &once->to); 3521 ev_timer_stop (EV_A_ &once->to);
1731 ev_free (once); 3522 ev_free (once);
1732 3523
1733 cb (revents, arg); 3524 cb (revents, arg);
1734} 3525}
1735 3526
1736static void 3527static void
1737once_cb_io (EV_P_ struct ev_io *w, int revents) 3528once_cb_io (EV_P_ ev_io *w, int revents)
1738{ 3529{
1739 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3530 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3531
3532 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1740} 3533}
1741 3534
1742static void 3535static void
1743once_cb_to (EV_P_ struct ev_timer *w, int revents) 3536once_cb_to (EV_P_ ev_timer *w, int revents)
1744{ 3537{
1745 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3538 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3539
3540 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1746} 3541}
1747 3542
1748void 3543void
1749ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3544ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1750{ 3545{
1772 ev_timer_set (&once->to, timeout, 0.); 3567 ev_timer_set (&once->to, timeout, 0.);
1773 ev_timer_start (EV_A_ &once->to); 3568 ev_timer_start (EV_A_ &once->to);
1774 } 3569 }
1775} 3570}
1776 3571
3572/*****************************************************************************/
3573
3574#if EV_WALK_ENABLE
3575void
3576ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3577{
3578 int i, j;
3579 ev_watcher_list *wl, *wn;
3580
3581 if (types & (EV_IO | EV_EMBED))
3582 for (i = 0; i < anfdmax; ++i)
3583 for (wl = anfds [i].head; wl; )
3584 {
3585 wn = wl->next;
3586
3587#if EV_EMBED_ENABLE
3588 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3589 {
3590 if (types & EV_EMBED)
3591 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3592 }
3593 else
3594#endif
3595#if EV_USE_INOTIFY
3596 if (ev_cb ((ev_io *)wl) == infy_cb)
3597 ;
3598 else
3599#endif
3600 if ((ev_io *)wl != &pipe_w)
3601 if (types & EV_IO)
3602 cb (EV_A_ EV_IO, wl);
3603
3604 wl = wn;
3605 }
3606
3607 if (types & (EV_TIMER | EV_STAT))
3608 for (i = timercnt + HEAP0; i-- > HEAP0; )
3609#if EV_STAT_ENABLE
3610 /*TODO: timer is not always active*/
3611 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3612 {
3613 if (types & EV_STAT)
3614 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3615 }
3616 else
3617#endif
3618 if (types & EV_TIMER)
3619 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3620
3621#if EV_PERIODIC_ENABLE
3622 if (types & EV_PERIODIC)
3623 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3624 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3625#endif
3626
3627#if EV_IDLE_ENABLE
3628 if (types & EV_IDLE)
3629 for (j = NUMPRI; i--; )
3630 for (i = idlecnt [j]; i--; )
3631 cb (EV_A_ EV_IDLE, idles [j][i]);
3632#endif
3633
3634#if EV_FORK_ENABLE
3635 if (types & EV_FORK)
3636 for (i = forkcnt; i--; )
3637 if (ev_cb (forks [i]) != embed_fork_cb)
3638 cb (EV_A_ EV_FORK, forks [i]);
3639#endif
3640
3641#if EV_ASYNC_ENABLE
3642 if (types & EV_ASYNC)
3643 for (i = asynccnt; i--; )
3644 cb (EV_A_ EV_ASYNC, asyncs [i]);
3645#endif
3646
3647 if (types & EV_PREPARE)
3648 for (i = preparecnt; i--; )
3649#if EV_EMBED_ENABLE
3650 if (ev_cb (prepares [i]) != embed_prepare_cb)
3651#endif
3652 cb (EV_A_ EV_PREPARE, prepares [i]);
3653
3654 if (types & EV_CHECK)
3655 for (i = checkcnt; i--; )
3656 cb (EV_A_ EV_CHECK, checks [i]);
3657
3658 if (types & EV_SIGNAL)
3659 for (i = 0; i < EV_NSIG - 1; ++i)
3660 for (wl = signals [i].head; wl; )
3661 {
3662 wn = wl->next;
3663 cb (EV_A_ EV_SIGNAL, wl);
3664 wl = wn;
3665 }
3666
3667 if (types & EV_CHILD)
3668 for (i = EV_PID_HASHSIZE; i--; )
3669 for (wl = childs [i]; wl; )
3670 {
3671 wn = wl->next;
3672 cb (EV_A_ EV_CHILD, wl);
3673 wl = wn;
3674 }
3675/* EV_STAT 0x00001000 /* stat data changed */
3676/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3677}
3678#endif
3679
3680#if EV_MULTIPLICITY
3681 #include "ev_wrap.h"
3682#endif
3683
1777#ifdef __cplusplus 3684#ifdef __cplusplus
1778} 3685}
1779#endif 3686#endif
1780 3687

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines