ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.245 by root, Wed May 21 00:26:01 2008 UTC vs.
Revision 1.318 by root, Tue Nov 17 00:22:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
168#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
169# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
170#endif 232#endif
171 233
172#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 236#endif
175 237
176#ifndef EV_USE_NANOSLEEP 238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
177# define EV_USE_NANOSLEEP 0 242# define EV_USE_NANOSLEEP 0
243# endif
178#endif 244#endif
179 245
180#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
182#endif 248#endif
235# else 301# else
236# define EV_USE_EVENTFD 0 302# define EV_USE_EVENTFD 0
237# endif 303# endif
238#endif 304#endif
239 305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
240#ifndef EV_USE_4HEAP 324#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL 325# define EV_USE_4HEAP !EV_MINIMAL
242#endif 326#endif
243 327
244#ifndef EV_HEAP_CACHE_AT 328#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL 329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
246#endif 344#endif
247 345
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249 347
250#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
267# include <sys/select.h> 365# include <sys/select.h>
268# endif 366# endif
269#endif 367#endif
270 368
271#if EV_USE_INOTIFY 369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
272# include <sys/inotify.h> 372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
273#endif 378#endif
274 379
275#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h> 381# include <winsock.h>
277#endif 382#endif
278 383
279#if EV_USE_EVENTFD 384#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h> 386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
282# ifdef __cplusplus 397# ifdef __cplusplus
283extern "C" { 398extern "C" {
284# endif 399# endif
285int eventfd (unsigned int initval, int flags); 400int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus 401# ifdef __cplusplus
287} 402}
288# endif 403# endif
289#endif 404#endif
290 405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
291/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
292 442
293/* 443/*
294 * This is used to avoid floating point rounding problems. 444 * This is used to avoid floating point rounding problems.
295 * It is added to ev_rt_now when scheduling periodics 445 * It is added to ev_rt_now when scheduling periodics
296 * to ensure progress, time-wise, even when rounding 446 * to ensure progress, time-wise, even when rounding
300 */ 450 */
301#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
302 452
303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
306 455
307#if __GNUC__ >= 4 456#if __GNUC__ >= 4
308# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
309# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
310#else 459#else
323# define inline_speed static noinline 472# define inline_speed static noinline
324#else 473#else
325# define inline_speed static inline 474# define inline_speed static inline
326#endif 475#endif
327 476
328#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
329#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
330 484
331#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
332#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
333 487
334typedef ev_watcher *W; 488typedef ev_watcher *W;
336typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
337 491
338#define ev_active(w) ((W)(w))->active 492#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at 493#define ev_at(w) ((WT)(w))->at
340 494
341#if EV_USE_MONOTONIC 495#if EV_USE_REALTIME
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */ 497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
345#endif 513#endif
346 514
347#ifdef _WIN32 515#ifdef _WIN32
348# include "ev_win32.c" 516# include "ev_win32.c"
349#endif 517#endif
357{ 525{
358 syserr_cb = cb; 526 syserr_cb = cb;
359} 527}
360 528
361static void noinline 529static void noinline
362syserr (const char *msg) 530ev_syserr (const char *msg)
363{ 531{
364 if (!msg) 532 if (!msg)
365 msg = "(libev) system error"; 533 msg = "(libev) system error";
366 534
367 if (syserr_cb) 535 if (syserr_cb)
413#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
414#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
415 583
416/*****************************************************************************/ 584/*****************************************************************************/
417 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
418typedef struct 590typedef struct
419{ 591{
420 WL head; 592 WL head;
421 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
422 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
423#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
424 SOCKET handle; 601 SOCKET handle;
425#endif 602#endif
426} ANFD; 603} ANFD;
427 604
605/* stores the pending event set for a given watcher */
428typedef struct 606typedef struct
429{ 607{
430 W w; 608 W w;
431 int events; 609 int events; /* the pending event set for the given watcher */
432} ANPENDING; 610} ANPENDING;
433 611
434#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */ 613/* hash table entry per inotify-id */
436typedef struct 614typedef struct
439} ANFS; 617} ANFS;
440#endif 618#endif
441 619
442/* Heap Entry */ 620/* Heap Entry */
443#if EV_HEAP_CACHE_AT 621#if EV_HEAP_CACHE_AT
622 /* a heap element */
444 typedef struct { 623 typedef struct {
445 ev_tstamp at; 624 ev_tstamp at;
446 WT w; 625 WT w;
447 } ANHE; 626 } ANHE;
448 627
449 #define ANHE_w(he) (he).w /* access watcher, read-write */ 628 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */ 629 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */ 630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
452#else 631#else
632 /* a heap element */
453 typedef WT ANHE; 633 typedef WT ANHE;
454 634
455 #define ANHE_w(he) (he) 635 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at 636 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he) 637 #define ANHE_at_cache(he)
458#endif 638#endif
459 639
460#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
461 641
462 struct ev_loop 642 struct ev_loop
481 661
482 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
483 663
484#endif 664#endif
485 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
486/*****************************************************************************/ 678/*****************************************************************************/
487 679
680#ifndef EV_HAVE_EV_TIME
488ev_tstamp 681ev_tstamp
489ev_time (void) 682ev_time (void)
490{ 683{
491#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
492 struct timespec ts; 687 struct timespec ts;
493 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
494 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
495#else 690 }
691#endif
692
496 struct timeval tv; 693 struct timeval tv;
497 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
498 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
499#endif
500} 696}
697#endif
501 698
502ev_tstamp inline_size 699inline_size ev_tstamp
503get_clock (void) 700get_clock (void)
504{ 701{
505#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
506 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
507 { 704 {
540 struct timeval tv; 737 struct timeval tv;
541 738
542 tv.tv_sec = (time_t)delay; 739 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544 741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
545 select (0, 0, 0, 0, &tv); 745 select (0, 0, 0, 0, &tv);
546#endif 746#endif
547 } 747 }
548} 748}
549 749
550/*****************************************************************************/ 750/*****************************************************************************/
551 751
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */ 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553 753
554int inline_size 754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
555array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
556{ 758{
557 int ncur = cur + 1; 759 int ncur = cur + 1;
558 760
559 do 761 do
576array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
577{ 779{
578 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
579 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
580} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
581 786
582#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
583 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
584 { \ 789 { \
585 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
597 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
598 } 803 }
599#endif 804#endif
600 805
601#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
602 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
603 808
604/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
605 816
606void noinline 817void noinline
607ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
608{ 819{
609 W w_ = (W)w; 820 W w_ = (W)w;
618 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
619 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
620 } 831 }
621} 832}
622 833
623void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
624queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
625{ 851{
626 int i; 852 int i;
627 853
628 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
629 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
630} 856}
631 857
632/*****************************************************************************/ 858/*****************************************************************************/
633 859
634void inline_size 860inline_speed void
635anfds_init (ANFD *base, int count)
636{
637 while (count--)
638 {
639 base->head = 0;
640 base->events = EV_NONE;
641 base->reify = 0;
642
643 ++base;
644 }
645}
646
647void inline_speed
648fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
649{ 862{
650 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
651 ev_io *w; 864 ev_io *w;
652 865
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
657 if (ev) 870 if (ev)
658 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
659 } 872 }
660} 873}
661 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
662void 886void
663ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
664{ 888{
665 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
666 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
667} 891}
668 892
669void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
670fd_reify (EV_P) 896fd_reify (EV_P)
671{ 897{
672 int i; 898 int i;
673 899
674 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
683 events |= (unsigned char)w->events; 909 events |= (unsigned char)w->events;
684 910
685#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
686 if (events) 912 if (events)
687 { 913 {
688 unsigned long argp; 914 unsigned long arg;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
692 anfd->handle = _get_osfhandle (fd);
693 #endif
694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
695 } 917 }
696#endif 918#endif
697 919
698 { 920 {
699 unsigned char o_events = anfd->events; 921 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify; 922 unsigned char o_reify = anfd->reify;
701 923
702 anfd->reify = 0; 924 anfd->reify = 0;
703 anfd->events = events; 925 anfd->events = events;
704 926
705 if (o_events != events || o_reify & EV_IOFDSET) 927 if (o_events != events || o_reify & EV__IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events); 928 backend_modify (EV_A_ fd, o_events, events);
707 } 929 }
708 } 930 }
709 931
710 fdchangecnt = 0; 932 fdchangecnt = 0;
711} 933}
712 934
713void inline_size 935/* something about the given fd changed */
936inline_size void
714fd_change (EV_P_ int fd, int flags) 937fd_change (EV_P_ int fd, int flags)
715{ 938{
716 unsigned char reify = anfds [fd].reify; 939 unsigned char reify = anfds [fd].reify;
717 anfds [fd].reify |= flags; 940 anfds [fd].reify |= flags;
718 941
722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
723 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
724 } 947 }
725} 948}
726 949
727void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
728fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
729{ 953{
730 ev_io *w; 954 ev_io *w;
731 955
732 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
734 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
735 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
736 } 960 }
737} 961}
738 962
739int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
740fd_valid (int fd) 965fd_valid (int fd)
741{ 966{
742#ifdef _WIN32 967#ifdef _WIN32
743 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
744#else 969#else
752{ 977{
753 int fd; 978 int fd;
754 979
755 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
756 if (anfds [fd].events) 981 if (anfds [fd].events)
757 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
758 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
759} 984}
760 985
761/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
762static void noinline 987static void noinline
766 991
767 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
768 if (anfds [fd].events) 993 if (anfds [fd].events)
769 { 994 {
770 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
771 return; 996 break;
772 } 997 }
773} 998}
774 999
775/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
776static void noinline 1001static void noinline
780 1005
781 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
782 if (anfds [fd].events) 1007 if (anfds [fd].events)
783 { 1008 {
784 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
785 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
786 } 1012 }
787} 1013}
788 1014
789/*****************************************************************************/ 1015/*****************************************************************************/
790 1016
802 */ 1028 */
803#if EV_USE_4HEAP 1029#if EV_USE_4HEAP
804 1030
805#define DHEAP 4 1031#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */ 1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807 1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808/* towards the root */ 1034#define UPHEAP_DONE(p,k) ((p) == (k))
809void inline_speed
810upheap (ANHE *heap, int k)
811{
812 ANHE he = heap [k];
813
814 for (;;)
815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
821 heap [k] = heap [p];
822 ev_active (ANHE_w (heap [k])) = k;
823 k = p;
824 }
825
826 ev_active (ANHE_w (he)) = k;
827 heap [k] = he;
828}
829 1035
830/* away from the root */ 1036/* away from the root */
831void inline_speed 1037inline_speed void
832downheap (ANHE *heap, int N, int k) 1038downheap (ANHE *heap, int N, int k)
833{ 1039{
834 ANHE he = heap [k]; 1040 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0; 1041 ANHE *E = heap + N + HEAP0;
836 1042
837 for (;;) 1043 for (;;)
838 { 1044 {
839 ev_tstamp minat; 1045 ev_tstamp minat;
840 ANHE *minpos; 1046 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0; 1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
842 1048
843 // find minimum child 1049 /* find minimum child */
844 if (expect_true (pos + DHEAP - 1 < E)) 1050 if (expect_true (pos + DHEAP - 1 < E))
845 { 1051 {
846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos)); 1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos)); 1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos)); 1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 break; 1065 break;
860 1066
861 if (ANHE_at (he) <= minat) 1067 if (ANHE_at (he) <= minat)
862 break; 1068 break;
863 1069
1070 heap [k] = *minpos;
864 ev_active (ANHE_w (*minpos)) = k; 1071 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866 1072
867 k = minpos - heap; 1073 k = minpos - heap;
868 } 1074 }
869 1075
1076 heap [k] = he;
870 ev_active (ANHE_w (he)) = k; 1077 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872} 1078}
873 1079
874#else // 4HEAP 1080#else /* 4HEAP */
875 1081
876#define HEAP0 1 1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
877 1085
878/* towards the root */ 1086/* away from the root */
879void inline_speed 1087inline_speed void
880upheap (ANHE *heap, int k) 1088downheap (ANHE *heap, int N, int k)
881{ 1089{
882 ANHE he = heap [k]; 1090 ANHE he = heap [k];
883 1091
884 for (;;) 1092 for (;;)
885 { 1093 {
886 int p = k >> 1; 1094 int c = k << 1;
887 1095
888 /* maybe we could use a dummy element at heap [0]? */ 1096 if (c >= N + HEAP0)
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break; 1097 break;
891 1098
892 heap [k] = heap [p];
893 ev_active (ANHE_w (heap [k])) = k;
894 k = p;
895 }
896
897 heap [k] = he;
898 ev_active (ANHE_w (heap [k])) = k;
899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1]) 1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0; 1100 ? 1 : 0;
916 1101
917 if (ANHE_at (he) <= ANHE_at (heap [c])) 1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break; 1103 break;
919 1104
926 heap [k] = he; 1111 heap [k] = he;
927 ev_active (ANHE_w (he)) = k; 1112 ev_active (ANHE_w (he)) = k;
928} 1113}
929#endif 1114#endif
930 1115
931void inline_size 1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
1129 heap [k] = heap [p];
1130 ev_active (ANHE_w (heap [k])) = k;
1131 k = p;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138/* move an element suitably so it is in a correct place */
1139inline_size void
932adjustheap (ANHE *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
933{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
934 upheap (heap, k); 1143 upheap (heap, k);
1144 else
935 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
936} 1158}
937 1159
938/*****************************************************************************/ 1160/*****************************************************************************/
939 1161
1162/* associate signal watchers to a signal signal */
940typedef struct 1163typedef struct
941{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
942 WL head; 1169 WL head;
943 EV_ATOMIC_T gotsig;
944} ANSIG; 1170} ANSIG;
945 1171
946static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
947static int signalmax;
948
949static EV_ATOMIC_T gotsig;
950
951void inline_size
952signals_init (ANSIG *base, int count)
953{
954 while (count--)
955 {
956 base->head = 0;
957 base->gotsig = 0;
958
959 ++base;
960 }
961}
962 1173
963/*****************************************************************************/ 1174/*****************************************************************************/
964 1175
965void inline_speed 1176/* used to prepare libev internal fd's */
1177/* this is not fork-safe */
1178inline_speed void
966fd_intern (int fd) 1179fd_intern (int fd)
967{ 1180{
968#ifdef _WIN32 1181#ifdef _WIN32
969 int arg = 1; 1182 unsigned long arg = 1;
970 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
971#else 1184#else
972 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
973 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
974#endif 1187#endif
975} 1188}
976 1189
977static void noinline 1190static void noinline
978evpipe_init (EV_P) 1191evpipe_init (EV_P)
979{ 1192{
980 if (!ev_is_active (&pipeev)) 1193 if (!ev_is_active (&pipe_w))
981 { 1194 {
982#if EV_USE_EVENTFD 1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
983 if ((evfd = eventfd (0, 0)) >= 0) 1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
984 { 1201 {
985 evpipe [0] = -1; 1202 evpipe [0] = -1;
986 fd_intern (evfd); 1203 fd_intern (evfd); /* doing it twice doesn't hurt */
987 ev_io_set (&pipeev, evfd, EV_READ); 1204 ev_io_set (&pipe_w, evfd, EV_READ);
988 } 1205 }
989 else 1206 else
990#endif 1207#endif
991 { 1208 {
992 while (pipe (evpipe)) 1209 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe"); 1210 ev_syserr ("(libev) error creating signal/async pipe");
994 1211
995 fd_intern (evpipe [0]); 1212 fd_intern (evpipe [0]);
996 fd_intern (evpipe [1]); 1213 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ); 1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
998 } 1215 }
999 1216
1000 ev_io_start (EV_A_ &pipeev); 1217 ev_io_start (EV_A_ &pipe_w);
1001 ev_unref (EV_A); /* watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 } 1219 }
1003} 1220}
1004 1221
1005void inline_size 1222inline_size void
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{ 1224{
1008 if (!*flag) 1225 if (!*flag)
1009 { 1226 {
1010 int old_errno = errno; /* save errno because write might clobber it */ 1227 int old_errno = errno; /* save errno because write might clobber it */
1023 1240
1024 errno = old_errno; 1241 errno = old_errno;
1025 } 1242 }
1026} 1243}
1027 1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1028static void 1247static void
1029pipecb (EV_P_ ev_io *iow, int revents) 1248pipecb (EV_P_ ev_io *iow, int revents)
1030{ 1249{
1250 int i;
1251
1031#if EV_USE_EVENTFD 1252#if EV_USE_EVENTFD
1032 if (evfd >= 0) 1253 if (evfd >= 0)
1033 { 1254 {
1034 uint64_t counter; 1255 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t)); 1256 read (evfd, &counter, sizeof (uint64_t));
1039 { 1260 {
1040 char dummy; 1261 char dummy;
1041 read (evpipe [0], &dummy, 1); 1262 read (evpipe [0], &dummy, 1);
1042 } 1263 }
1043 1264
1044 if (gotsig && ev_is_default_loop (EV_A)) 1265 if (sig_pending)
1045 { 1266 {
1046 int signum; 1267 sig_pending = 0;
1047 gotsig = 0;
1048 1268
1049 for (signum = signalmax; signum--; ) 1269 for (i = EV_NSIG - 1; i--; )
1050 if (signals [signum].gotsig) 1270 if (expect_false (signals [i].pending))
1051 ev_feed_signal_event (EV_A_ signum + 1); 1271 ev_feed_signal_event (EV_A_ i + 1);
1052 } 1272 }
1053 1273
1054#if EV_ASYNC_ENABLE 1274#if EV_ASYNC_ENABLE
1055 if (gotasync) 1275 if (async_pending)
1056 { 1276 {
1057 int i; 1277 async_pending = 0;
1058 gotasync = 0;
1059 1278
1060 for (i = asynccnt; i--; ) 1279 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent) 1280 if (asyncs [i]->sent)
1062 { 1281 {
1063 asyncs [i]->sent = 0; 1282 asyncs [i]->sent = 0;
1071 1290
1072static void 1291static void
1073ev_sighandler (int signum) 1292ev_sighandler (int signum)
1074{ 1293{
1075#if EV_MULTIPLICITY 1294#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct; 1295 EV_P = signals [signum - 1].loop;
1077#endif 1296#endif
1078 1297
1079#if _WIN32 1298#if _WIN32
1080 signal (signum, ev_sighandler); 1299 signal (signum, ev_sighandler);
1081#endif 1300#endif
1082 1301
1083 signals [signum - 1].gotsig = 1; 1302 signals [signum - 1].pending = 1;
1084 evpipe_write (EV_A_ &gotsig); 1303 evpipe_write (EV_A_ &sig_pending);
1085} 1304}
1086 1305
1087void noinline 1306void noinline
1088ev_feed_signal_event (EV_P_ int signum) 1307ev_feed_signal_event (EV_P_ int signum)
1089{ 1308{
1090 WL w; 1309 WL w;
1091 1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1092#if EV_MULTIPLICITY 1316#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1317 /* it is permissible to try to feed a signal to the wrong loop */
1094#endif 1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1095 1319
1096 --signum; 1320 if (expect_false (signals [signum].loop != EV_A))
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return; 1321 return;
1322#endif
1100 1323
1101 signals [signum].gotsig = 0; 1324 signals [signum].pending = 0;
1102 1325
1103 for (w = signals [signum].head; w; w = w->next) 1326 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105} 1328}
1106 1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1107/*****************************************************************************/ 1350/*****************************************************************************/
1108 1351
1109static WL childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
1110 1353
1111#ifndef _WIN32 1354#ifndef _WIN32
1114 1357
1115#ifndef WIFCONTINUED 1358#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0 1359# define WIFCONTINUED(status) 0
1117#endif 1360#endif
1118 1361
1119void inline_speed 1362/* handle a single child status event */
1363inline_speed void
1120child_reap (EV_P_ int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
1121{ 1365{
1122 ev_child *w; 1366 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1124 1368
1137 1381
1138#ifndef WCONTINUED 1382#ifndef WCONTINUED
1139# define WCONTINUED 0 1383# define WCONTINUED 0
1140#endif 1384#endif
1141 1385
1386/* called on sigchld etc., calls waitpid */
1142static void 1387static void
1143childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
1144{ 1389{
1145 int pid, status; 1390 int pid, status;
1146 1391
1227 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
1228 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1229 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
1230#endif 1475#endif
1231#ifdef __APPLE__ 1476#ifdef __APPLE__
1232 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
1233 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1234#endif 1480#endif
1235 1481
1236 return flags; 1482 return flags;
1237} 1483}
1238 1484
1252ev_backend (EV_P) 1498ev_backend (EV_P)
1253{ 1499{
1254 return backend; 1500 return backend;
1255} 1501}
1256 1502
1503#if EV_MINIMAL < 2
1257unsigned int 1504unsigned int
1258ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
1259{ 1506{
1260 return loop_count; 1507 return loop_count;
1261} 1508}
1262 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1263void 1516void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{ 1518{
1266 io_blocktime = interval; 1519 io_blocktime = interval;
1267} 1520}
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{ 1524{
1272 timeout_blocktime = interval; 1525 timeout_blocktime = interval;
1273} 1526}
1274 1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1275static void noinline 1553static void noinline
1276loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
1277{ 1555{
1278 if (!backend) 1556 if (!backend)
1279 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
1280#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1281 { 1570 {
1282 struct timespec ts; 1571 struct timespec ts;
1572
1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1284 have_monotonic = 1; 1574 have_monotonic = 1;
1285 } 1575 }
1286#endif 1576#endif
1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1287 1588
1288 ev_rt_now = ev_time (); 1589 ev_rt_now = ev_time ();
1289 mn_now = get_clock (); 1590 mn_now = get_clock ();
1290 now_floor = mn_now; 1591 now_floor = mn_now;
1291 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1292 1596
1293 io_blocktime = 0.; 1597 io_blocktime = 0.;
1294 timeout_blocktime = 0.; 1598 timeout_blocktime = 0.;
1295 backend = 0; 1599 backend = 0;
1296 backend_fd = -1; 1600 backend_fd = -1;
1297 gotasync = 0; 1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1298#if EV_USE_INOTIFY 1605#if EV_USE_INOTIFY
1299 fs_fd = -2; 1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1300#endif 1607#endif
1301 1608#if EV_USE_SIGNALFD
1302 /* pid check not overridable via env */ 1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1303#ifndef _WIN32
1304 if (flags & EVFLAG_FORKCHECK)
1305 curpid = getpid ();
1306#endif 1610#endif
1307
1308 if (!(flags & EVFLAG_NOENV)
1309 && !enable_secure ()
1310 && getenv ("LIBEV_FLAGS"))
1311 flags = atoi (getenv ("LIBEV_FLAGS"));
1312 1611
1313 if (!(flags & 0x0000ffffU)) 1612 if (!(flags & 0x0000ffffU))
1314 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
1315 1614
1316#if EV_USE_PORT 1615#if EV_USE_PORT
1327#endif 1626#endif
1328#if EV_USE_SELECT 1627#if EV_USE_SELECT
1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1330#endif 1629#endif
1331 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1332 ev_init (&pipeev, pipecb); 1633 ev_init (&pipe_w, pipecb);
1333 ev_set_priority (&pipeev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1334 } 1635 }
1335} 1636}
1336 1637
1638/* free up a loop structure */
1337static void noinline 1639static void noinline
1338loop_destroy (EV_P) 1640loop_destroy (EV_P)
1339{ 1641{
1340 int i; 1642 int i;
1341 1643
1342 if (ev_is_active (&pipeev)) 1644 if (ev_is_active (&pipe_w))
1343 { 1645 {
1344 ev_ref (EV_A); /* signal watcher */ 1646 /*ev_ref (EV_A);*/
1345 ev_io_stop (EV_A_ &pipeev); 1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1346 1648
1347#if EV_USE_EVENTFD 1649#if EV_USE_EVENTFD
1348 if (evfd >= 0) 1650 if (evfd >= 0)
1349 close (evfd); 1651 close (evfd);
1350#endif 1652#endif
1351 1653
1352 if (evpipe [0] >= 0) 1654 if (evpipe [0] >= 0)
1353 { 1655 {
1354 close (evpipe [0]); 1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1355 close (evpipe [1]); 1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1356 } 1658 }
1357 } 1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 close (sigfd);
1664#endif
1358 1665
1359#if EV_USE_INOTIFY 1666#if EV_USE_INOTIFY
1360 if (fs_fd >= 0) 1667 if (fs_fd >= 0)
1361 close (fs_fd); 1668 close (fs_fd);
1362#endif 1669#endif
1386#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1387 array_free (idle, [i]); 1694 array_free (idle, [i]);
1388#endif 1695#endif
1389 } 1696 }
1390 1697
1391 ev_free (anfds); anfdmax = 0; 1698 ev_free (anfds); anfds = 0; anfdmax = 0;
1392 1699
1393 /* have to use the microsoft-never-gets-it-right macro */ 1700 /* have to use the microsoft-never-gets-it-right macro */
1701 array_free (rfeed, EMPTY);
1394 array_free (fdchange, EMPTY); 1702 array_free (fdchange, EMPTY);
1395 array_free (timer, EMPTY); 1703 array_free (timer, EMPTY);
1396#if EV_PERIODIC_ENABLE 1704#if EV_PERIODIC_ENABLE
1397 array_free (periodic, EMPTY); 1705 array_free (periodic, EMPTY);
1398#endif 1706#endif
1407 1715
1408 backend = 0; 1716 backend = 0;
1409} 1717}
1410 1718
1411#if EV_USE_INOTIFY 1719#if EV_USE_INOTIFY
1412void inline_size infy_fork (EV_P); 1720inline_size void infy_fork (EV_P);
1413#endif 1721#endif
1414 1722
1415void inline_size 1723inline_size void
1416loop_fork (EV_P) 1724loop_fork (EV_P)
1417{ 1725{
1418#if EV_USE_PORT 1726#if EV_USE_PORT
1419 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1420#endif 1728#endif
1426#endif 1734#endif
1427#if EV_USE_INOTIFY 1735#if EV_USE_INOTIFY
1428 infy_fork (EV_A); 1736 infy_fork (EV_A);
1429#endif 1737#endif
1430 1738
1431 if (ev_is_active (&pipeev)) 1739 if (ev_is_active (&pipe_w))
1432 { 1740 {
1433 /* this "locks" the handlers against writing to the pipe */ 1741 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */ 1742 /* while we modify the fd vars */
1435 gotsig = 1; 1743 sig_pending = 1;
1436#if EV_ASYNC_ENABLE 1744#if EV_ASYNC_ENABLE
1437 gotasync = 1; 1745 async_pending = 1;
1438#endif 1746#endif
1439 1747
1440 ev_ref (EV_A); 1748 ev_ref (EV_A);
1441 ev_io_stop (EV_A_ &pipeev); 1749 ev_io_stop (EV_A_ &pipe_w);
1442 1750
1443#if EV_USE_EVENTFD 1751#if EV_USE_EVENTFD
1444 if (evfd >= 0) 1752 if (evfd >= 0)
1445 close (evfd); 1753 close (evfd);
1446#endif 1754#endif
1447 1755
1448 if (evpipe [0] >= 0) 1756 if (evpipe [0] >= 0)
1449 { 1757 {
1450 close (evpipe [0]); 1758 EV_WIN32_CLOSE_FD (evpipe [0]);
1451 close (evpipe [1]); 1759 EV_WIN32_CLOSE_FD (evpipe [1]);
1452 } 1760 }
1453 1761
1454 evpipe_init (EV_A); 1762 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */ 1763 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ); 1764 pipecb (EV_A_ &pipe_w, EV_READ);
1457 } 1765 }
1458 1766
1459 postfork = 0; 1767 postfork = 0;
1460} 1768}
1461 1769
1462#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1771
1463struct ev_loop * 1772struct ev_loop *
1464ev_loop_new (unsigned int flags) 1773ev_loop_new (unsigned int flags)
1465{ 1774{
1466 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1467 1776
1468 memset (loop, 0, sizeof (struct ev_loop)); 1777 memset (EV_A, 0, sizeof (struct ev_loop));
1469
1470 loop_init (EV_A_ flags); 1778 loop_init (EV_A_ flags);
1471 1779
1472 if (ev_backend (EV_A)) 1780 if (ev_backend (EV_A))
1473 return loop; 1781 return EV_A;
1474 1782
1475 return 0; 1783 return 0;
1476} 1784}
1477 1785
1478void 1786void
1484 1792
1485void 1793void
1486ev_loop_fork (EV_P) 1794ev_loop_fork (EV_P)
1487{ 1795{
1488 postfork = 1; /* must be in line with ev_default_fork */ 1796 postfork = 1; /* must be in line with ev_default_fork */
1797}
1798#endif /* multiplicity */
1799
1800#if EV_VERIFY
1801static void noinline
1802verify_watcher (EV_P_ W w)
1803{
1804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1805
1806 if (w->pending)
1807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1808}
1809
1810static void noinline
1811verify_heap (EV_P_ ANHE *heap, int N)
1812{
1813 int i;
1814
1815 for (i = HEAP0; i < N + HEAP0; ++i)
1816 {
1817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1820
1821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1822 }
1823}
1824
1825static void noinline
1826array_verify (EV_P_ W *ws, int cnt)
1827{
1828 while (cnt--)
1829 {
1830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1831 verify_watcher (EV_A_ ws [cnt]);
1832 }
1833}
1834#endif
1835
1836#if EV_MINIMAL < 2
1837void
1838ev_loop_verify (EV_P)
1839{
1840#if EV_VERIFY
1841 int i;
1842 WL w;
1843
1844 assert (activecnt >= -1);
1845
1846 assert (fdchangemax >= fdchangecnt);
1847 for (i = 0; i < fdchangecnt; ++i)
1848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1849
1850 assert (anfdmax >= 0);
1851 for (i = 0; i < anfdmax; ++i)
1852 for (w = anfds [i].head; w; w = w->next)
1853 {
1854 verify_watcher (EV_A_ (W)w);
1855 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1856 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1857 }
1858
1859 assert (timermax >= timercnt);
1860 verify_heap (EV_A_ timers, timercnt);
1861
1862#if EV_PERIODIC_ENABLE
1863 assert (periodicmax >= periodiccnt);
1864 verify_heap (EV_A_ periodics, periodiccnt);
1865#endif
1866
1867 for (i = NUMPRI; i--; )
1868 {
1869 assert (pendingmax [i] >= pendingcnt [i]);
1870#if EV_IDLE_ENABLE
1871 assert (idleall >= 0);
1872 assert (idlemax [i] >= idlecnt [i]);
1873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1874#endif
1875 }
1876
1877#if EV_FORK_ENABLE
1878 assert (forkmax >= forkcnt);
1879 array_verify (EV_A_ (W *)forks, forkcnt);
1880#endif
1881
1882#if EV_ASYNC_ENABLE
1883 assert (asyncmax >= asynccnt);
1884 array_verify (EV_A_ (W *)asyncs, asynccnt);
1885#endif
1886
1887 assert (preparemax >= preparecnt);
1888 array_verify (EV_A_ (W *)prepares, preparecnt);
1889
1890 assert (checkmax >= checkcnt);
1891 array_verify (EV_A_ (W *)checks, checkcnt);
1892
1893# if 0
1894 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1895 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1896# endif
1897#endif
1489} 1898}
1490#endif 1899#endif
1491 1900
1492#if EV_MULTIPLICITY 1901#if EV_MULTIPLICITY
1493struct ev_loop * 1902struct ev_loop *
1498#endif 1907#endif
1499{ 1908{
1500 if (!ev_default_loop_ptr) 1909 if (!ev_default_loop_ptr)
1501 { 1910 {
1502#if EV_MULTIPLICITY 1911#if EV_MULTIPLICITY
1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1912 EV_P = ev_default_loop_ptr = &default_loop_struct;
1504#else 1913#else
1505 ev_default_loop_ptr = 1; 1914 ev_default_loop_ptr = 1;
1506#endif 1915#endif
1507 1916
1508 loop_init (EV_A_ flags); 1917 loop_init (EV_A_ flags);
1525 1934
1526void 1935void
1527ev_default_destroy (void) 1936ev_default_destroy (void)
1528{ 1937{
1529#if EV_MULTIPLICITY 1938#if EV_MULTIPLICITY
1530 struct ev_loop *loop = ev_default_loop_ptr; 1939 EV_P = ev_default_loop_ptr;
1531#endif 1940#endif
1941
1942 ev_default_loop_ptr = 0;
1532 1943
1533#ifndef _WIN32 1944#ifndef _WIN32
1534 ev_ref (EV_A); /* child watcher */ 1945 ev_ref (EV_A); /* child watcher */
1535 ev_signal_stop (EV_A_ &childev); 1946 ev_signal_stop (EV_A_ &childev);
1536#endif 1947#endif
1540 1951
1541void 1952void
1542ev_default_fork (void) 1953ev_default_fork (void)
1543{ 1954{
1544#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1545 struct ev_loop *loop = ev_default_loop_ptr; 1956 EV_P = ev_default_loop_ptr;
1546#endif 1957#endif
1547 1958
1548 if (backend)
1549 postfork = 1; /* must be in line with ev_loop_fork */ 1959 postfork = 1; /* must be in line with ev_loop_fork */
1550} 1960}
1551 1961
1552/*****************************************************************************/ 1962/*****************************************************************************/
1553 1963
1554void 1964void
1555ev_invoke (EV_P_ void *w, int revents) 1965ev_invoke (EV_P_ void *w, int revents)
1556{ 1966{
1557 EV_CB_INVOKE ((W)w, revents); 1967 EV_CB_INVOKE ((W)w, revents);
1558} 1968}
1559 1969
1560void inline_speed 1970unsigned int
1561call_pending (EV_P) 1971ev_pending_count (EV_P)
1972{
1973 int pri;
1974 unsigned int count = 0;
1975
1976 for (pri = NUMPRI; pri--; )
1977 count += pendingcnt [pri];
1978
1979 return count;
1980}
1981
1982void noinline
1983ev_invoke_pending (EV_P)
1562{ 1984{
1563 int pri; 1985 int pri;
1564 1986
1565 for (pri = NUMPRI; pri--; ) 1987 for (pri = NUMPRI; pri--; )
1566 while (pendingcnt [pri]) 1988 while (pendingcnt [pri])
1567 { 1989 {
1568 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1990 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1569 1991
1570 if (expect_true (p->w))
1571 {
1572 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1992 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1993 /* ^ this is no longer true, as pending_w could be here */
1573 1994
1574 p->w->pending = 0; 1995 p->w->pending = 0;
1575 EV_CB_INVOKE (p->w, p->events); 1996 EV_CB_INVOKE (p->w, p->events);
1576 } 1997 EV_FREQUENT_CHECK;
1577 } 1998 }
1578} 1999}
1579 2000
1580#if EV_IDLE_ENABLE 2001#if EV_IDLE_ENABLE
1581void inline_size 2002/* make idle watchers pending. this handles the "call-idle */
2003/* only when higher priorities are idle" logic */
2004inline_size void
1582idle_reify (EV_P) 2005idle_reify (EV_P)
1583{ 2006{
1584 if (expect_false (idleall)) 2007 if (expect_false (idleall))
1585 { 2008 {
1586 int pri; 2009 int pri;
1598 } 2021 }
1599 } 2022 }
1600} 2023}
1601#endif 2024#endif
1602 2025
1603void inline_size 2026/* make timers pending */
2027inline_size void
1604timers_reify (EV_P) 2028timers_reify (EV_P)
1605{ 2029{
2030 EV_FREQUENT_CHECK;
2031
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now) 2032 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 { 2033 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]); 2034 do
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 { 2035 {
2036 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037
2038 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039
2040 /* first reschedule or stop timer */
2041 if (w->repeat)
2042 {
1615 ev_at (w) += w->repeat; 2043 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now) 2044 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now; 2045 ev_at (w) = mn_now;
1618 2046
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2047 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620 2048
1621 ANHE_at_set (timers [HEAP0]); 2049 ANHE_at_cache (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0); 2050 downheap (timers, timercnt, HEAP0);
2051 }
2052 else
2053 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054
2055 EV_FREQUENT_CHECK;
2056 feed_reverse (EV_A_ (W)w);
1623 } 2057 }
1624 else 2058 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626 2059
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2060 feed_reverse_done (EV_A_ EV_TIMEOUT);
1628 } 2061 }
1629} 2062}
1630 2063
1631#if EV_PERIODIC_ENABLE 2064#if EV_PERIODIC_ENABLE
1632void inline_size 2065/* make periodics pending */
2066inline_size void
1633periodics_reify (EV_P) 2067periodics_reify (EV_P)
1634{ 2068{
2069 EV_FREQUENT_CHECK;
2070
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now) 2071 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 { 2072 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]); 2073 int feed_count = 0;
1638 2074
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 2075 do
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 { 2076 {
2077 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->reschedule_cb)
2083 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2084 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645 2085
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now)); 2086 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647 2087
1648 ANHE_at_set (periodics [HEAP0]); 2088 ANHE_at_cache (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0); 2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else if (w->interval)
2092 {
2093 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094 /* if next trigger time is not sufficiently in the future, put it there */
2095 /* this might happen because of floating point inexactness */
2096 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097 {
2098 ev_at (w) += w->interval;
2099
2100 /* if interval is unreasonably low we might still have a time in the past */
2101 /* so correct this. this will make the periodic very inexact, but the user */
2102 /* has effectively asked to get triggered more often than possible */
2103 if (ev_at (w) < ev_rt_now)
2104 ev_at (w) = ev_rt_now;
2105 }
2106
2107 ANHE_at_cache (periodics [HEAP0]);
2108 downheap (periodics, periodiccnt, HEAP0);
2109 }
2110 else
2111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112
2113 EV_FREQUENT_CHECK;
2114 feed_reverse (EV_A_ (W)w);
1650 } 2115 }
1651 else if (w->interval) 2116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1655 2117
1656 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) >= ev_rt_now));
1657
1658 ANHE_at_set (periodics [HEAP0]);
1659 downheap (periodics, periodiccnt, HEAP0);
1660 }
1661 else
1662 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1663
1664 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2118 feed_reverse_done (EV_A_ EV_PERIODIC);
1665 } 2119 }
1666} 2120}
1667 2121
2122/* simply recalculate all periodics */
2123/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1668static void noinline 2124static void noinline
1669periodics_reschedule (EV_P) 2125periodics_reschedule (EV_P)
1670{ 2126{
1671 int i; 2127 int i;
1672 2128
1678 if (w->reschedule_cb) 2134 if (w->reschedule_cb)
1679 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1680 else if (w->interval) 2136 else if (w->interval)
1681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1682 2138
1683 ANHE_at_set (periodics [i]); 2139 ANHE_at_cache (periodics [i]);
1684 } 2140 }
1685 2141
1686 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */ 2142 reheap (periodics, periodiccnt);
1687 /* also, this is easy and corretc for both 2-heaps and 4-heaps */ 2143}
2144#endif
2145
2146/* adjust all timers by a given offset */
2147static void noinline
2148timers_reschedule (EV_P_ ev_tstamp adjust)
2149{
2150 int i;
2151
1688 for (i = 0; i < periodiccnt; ++i) 2152 for (i = 0; i < timercnt; ++i)
1689 upheap (periodics, i + HEAP0); 2153 {
2154 ANHE *he = timers + i + HEAP0;
2155 ANHE_w (*he)->at += adjust;
2156 ANHE_at_cache (*he);
2157 }
1690} 2158}
1691#endif
1692 2159
1693void inline_speed 2160/* fetch new monotonic and realtime times from the kernel */
2161/* also detetc if there was a timejump, and act accordingly */
2162inline_speed void
1694time_update (EV_P_ ev_tstamp max_block) 2163time_update (EV_P_ ev_tstamp max_block)
1695{ 2164{
1696 int i;
1697
1698#if EV_USE_MONOTONIC 2165#if EV_USE_MONOTONIC
1699 if (expect_true (have_monotonic)) 2166 if (expect_true (have_monotonic))
1700 { 2167 {
2168 int i;
1701 ev_tstamp odiff = rtmn_diff; 2169 ev_tstamp odiff = rtmn_diff;
1702 2170
1703 mn_now = get_clock (); 2171 mn_now = get_clock ();
1704 2172
1705 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1731 ev_rt_now = ev_time (); 2199 ev_rt_now = ev_time ();
1732 mn_now = get_clock (); 2200 mn_now = get_clock ();
1733 now_floor = mn_now; 2201 now_floor = mn_now;
1734 } 2202 }
1735 2203
2204 /* no timer adjustment, as the monotonic clock doesn't jump */
2205 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1736# if EV_PERIODIC_ENABLE 2206# if EV_PERIODIC_ENABLE
1737 periodics_reschedule (EV_A); 2207 periodics_reschedule (EV_A);
1738# endif 2208# endif
1739 /* no timer adjustment, as the monotonic clock doesn't jump */
1740 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1741 } 2209 }
1742 else 2210 else
1743#endif 2211#endif
1744 { 2212 {
1745 ev_rt_now = ev_time (); 2213 ev_rt_now = ev_time ();
1746 2214
1747 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2215 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1748 { 2216 {
2217 /* adjust timers. this is easy, as the offset is the same for all of them */
2218 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1749#if EV_PERIODIC_ENABLE 2219#if EV_PERIODIC_ENABLE
1750 periodics_reschedule (EV_A); 2220 periodics_reschedule (EV_A);
1751#endif 2221#endif
1752 /* adjust timers. this is easy, as the offset is the same for all of them */
1753 for (i = 0; i < timercnt; ++i)
1754 {
1755 ANHE *he = timers + i + HEAP0;
1756 ANHE_w (*he)->at += ev_rt_now - mn_now;
1757 ANHE_at_set (*he);
1758 }
1759 } 2222 }
1760 2223
1761 mn_now = ev_rt_now; 2224 mn_now = ev_rt_now;
1762 } 2225 }
1763} 2226}
1764 2227
1765void 2228void
1766ev_ref (EV_P)
1767{
1768 ++activecnt;
1769}
1770
1771void
1772ev_unref (EV_P)
1773{
1774 --activecnt;
1775}
1776
1777static int loop_done;
1778
1779void
1780ev_loop (EV_P_ int flags) 2229ev_loop (EV_P_ int flags)
1781{ 2230{
2231#if EV_MINIMAL < 2
2232 ++loop_depth;
2233#endif
2234
2235 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236
1782 loop_done = EVUNLOOP_CANCEL; 2237 loop_done = EVUNLOOP_CANCEL;
1783 2238
1784 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2239 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1785 2240
1786 do 2241 do
1787 { 2242 {
2243#if EV_VERIFY >= 2
2244 ev_loop_verify (EV_A);
2245#endif
2246
1788#ifndef _WIN32 2247#ifndef _WIN32
1789 if (expect_false (curpid)) /* penalise the forking check even more */ 2248 if (expect_false (curpid)) /* penalise the forking check even more */
1790 if (expect_false (getpid () != curpid)) 2249 if (expect_false (getpid () != curpid))
1791 { 2250 {
1792 curpid = getpid (); 2251 curpid = getpid ();
1798 /* we might have forked, so queue fork handlers */ 2257 /* we might have forked, so queue fork handlers */
1799 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1800 if (forkcnt) 2259 if (forkcnt)
1801 { 2260 {
1802 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2261 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1803 call_pending (EV_A); 2262 EV_INVOKE_PENDING;
1804 } 2263 }
1805#endif 2264#endif
1806 2265
1807 /* queue prepare watchers (and execute them) */ 2266 /* queue prepare watchers (and execute them) */
1808 if (expect_false (preparecnt)) 2267 if (expect_false (preparecnt))
1809 { 2268 {
1810 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1811 call_pending (EV_A); 2270 EV_INVOKE_PENDING;
1812 } 2271 }
1813 2272
1814 if (expect_false (!activecnt)) 2273 if (expect_false (loop_done))
1815 break; 2274 break;
1816 2275
1817 /* we might have forked, so reify kernel state if necessary */ 2276 /* we might have forked, so reify kernel state if necessary */
1818 if (expect_false (postfork)) 2277 if (expect_false (postfork))
1819 loop_fork (EV_A); 2278 loop_fork (EV_A);
1826 ev_tstamp waittime = 0.; 2285 ev_tstamp waittime = 0.;
1827 ev_tstamp sleeptime = 0.; 2286 ev_tstamp sleeptime = 0.;
1828 2287
1829 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2288 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1830 { 2289 {
2290 /* remember old timestamp for io_blocktime calculation */
2291 ev_tstamp prev_mn_now = mn_now;
2292
1831 /* update time to cancel out callback processing overhead */ 2293 /* update time to cancel out callback processing overhead */
1832 time_update (EV_A_ 1e100); 2294 time_update (EV_A_ 1e100);
1833 2295
1834 waittime = MAX_BLOCKTIME; 2296 waittime = MAX_BLOCKTIME;
1835 2297
1845 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge; 2307 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1846 if (waittime > to) waittime = to; 2308 if (waittime > to) waittime = to;
1847 } 2309 }
1848#endif 2310#endif
1849 2311
2312 /* don't let timeouts decrease the waittime below timeout_blocktime */
1850 if (expect_false (waittime < timeout_blocktime)) 2313 if (expect_false (waittime < timeout_blocktime))
1851 waittime = timeout_blocktime; 2314 waittime = timeout_blocktime;
1852 2315
1853 sleeptime = waittime - backend_fudge; 2316 /* extra check because io_blocktime is commonly 0 */
1854
1855 if (expect_true (sleeptime > io_blocktime)) 2317 if (expect_false (io_blocktime))
1856 sleeptime = io_blocktime;
1857
1858 if (sleeptime)
1859 { 2318 {
2319 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320
2321 if (sleeptime > waittime - backend_fudge)
2322 sleeptime = waittime - backend_fudge;
2323
2324 if (expect_true (sleeptime > 0.))
2325 {
1860 ev_sleep (sleeptime); 2326 ev_sleep (sleeptime);
1861 waittime -= sleeptime; 2327 waittime -= sleeptime;
2328 }
1862 } 2329 }
1863 } 2330 }
1864 2331
2332#if EV_MINIMAL < 2
1865 ++loop_count; 2333 ++loop_count;
2334#endif
2335 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1866 backend_poll (EV_A_ waittime); 2336 backend_poll (EV_A_ waittime);
2337 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1867 2338
1868 /* update ev_rt_now, do magic */ 2339 /* update ev_rt_now, do magic */
1869 time_update (EV_A_ waittime + sleeptime); 2340 time_update (EV_A_ waittime + sleeptime);
1870 } 2341 }
1871 2342
1882 2353
1883 /* queue check watchers, to be executed first */ 2354 /* queue check watchers, to be executed first */
1884 if (expect_false (checkcnt)) 2355 if (expect_false (checkcnt))
1885 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2356 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1886 2357
1887 call_pending (EV_A); 2358 EV_INVOKE_PENDING;
1888 } 2359 }
1889 while (expect_true ( 2360 while (expect_true (
1890 activecnt 2361 activecnt
1891 && !loop_done 2362 && !loop_done
1892 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2363 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1893 )); 2364 ));
1894 2365
1895 if (loop_done == EVUNLOOP_ONE) 2366 if (loop_done == EVUNLOOP_ONE)
1896 loop_done = EVUNLOOP_CANCEL; 2367 loop_done = EVUNLOOP_CANCEL;
2368
2369#if EV_MINIMAL < 2
2370 --loop_depth;
2371#endif
1897} 2372}
1898 2373
1899void 2374void
1900ev_unloop (EV_P_ int how) 2375ev_unloop (EV_P_ int how)
1901{ 2376{
1902 loop_done = how; 2377 loop_done = how;
1903} 2378}
1904 2379
2380void
2381ev_ref (EV_P)
2382{
2383 ++activecnt;
2384}
2385
2386void
2387ev_unref (EV_P)
2388{
2389 --activecnt;
2390}
2391
2392void
2393ev_now_update (EV_P)
2394{
2395 time_update (EV_A_ 1e100);
2396}
2397
2398void
2399ev_suspend (EV_P)
2400{
2401 ev_now_update (EV_A);
2402}
2403
2404void
2405ev_resume (EV_P)
2406{
2407 ev_tstamp mn_prev = mn_now;
2408
2409 ev_now_update (EV_A);
2410 timers_reschedule (EV_A_ mn_now - mn_prev);
2411#if EV_PERIODIC_ENABLE
2412 /* TODO: really do this? */
2413 periodics_reschedule (EV_A);
2414#endif
2415}
2416
1905/*****************************************************************************/ 2417/*****************************************************************************/
2418/* singly-linked list management, used when the expected list length is short */
1906 2419
1907void inline_size 2420inline_size void
1908wlist_add (WL *head, WL elem) 2421wlist_add (WL *head, WL elem)
1909{ 2422{
1910 elem->next = *head; 2423 elem->next = *head;
1911 *head = elem; 2424 *head = elem;
1912} 2425}
1913 2426
1914void inline_size 2427inline_size void
1915wlist_del (WL *head, WL elem) 2428wlist_del (WL *head, WL elem)
1916{ 2429{
1917 while (*head) 2430 while (*head)
1918 { 2431 {
1919 if (*head == elem) 2432 if (expect_true (*head == elem))
1920 { 2433 {
1921 *head = elem->next; 2434 *head = elem->next;
1922 return; 2435 break;
1923 } 2436 }
1924 2437
1925 head = &(*head)->next; 2438 head = &(*head)->next;
1926 } 2439 }
1927} 2440}
1928 2441
1929void inline_speed 2442/* internal, faster, version of ev_clear_pending */
2443inline_speed void
1930clear_pending (EV_P_ W w) 2444clear_pending (EV_P_ W w)
1931{ 2445{
1932 if (w->pending) 2446 if (w->pending)
1933 { 2447 {
1934 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2448 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1935 w->pending = 0; 2449 w->pending = 0;
1936 } 2450 }
1937} 2451}
1938 2452
1939int 2453int
1943 int pending = w_->pending; 2457 int pending = w_->pending;
1944 2458
1945 if (expect_true (pending)) 2459 if (expect_true (pending))
1946 { 2460 {
1947 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2461 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 p->w = (W)&pending_w;
1948 w_->pending = 0; 2463 w_->pending = 0;
1949 p->w = 0;
1950 return p->events; 2464 return p->events;
1951 } 2465 }
1952 else 2466 else
1953 return 0; 2467 return 0;
1954} 2468}
1955 2469
1956void inline_size 2470inline_size void
1957pri_adjust (EV_P_ W w) 2471pri_adjust (EV_P_ W w)
1958{ 2472{
1959 int pri = w->priority; 2473 int pri = ev_priority (w);
1960 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2474 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1961 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2475 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1962 w->priority = pri; 2476 ev_set_priority (w, pri);
1963} 2477}
1964 2478
1965void inline_speed 2479inline_speed void
1966ev_start (EV_P_ W w, int active) 2480ev_start (EV_P_ W w, int active)
1967{ 2481{
1968 pri_adjust (EV_A_ w); 2482 pri_adjust (EV_A_ w);
1969 w->active = active; 2483 w->active = active;
1970 ev_ref (EV_A); 2484 ev_ref (EV_A);
1971} 2485}
1972 2486
1973void inline_size 2487inline_size void
1974ev_stop (EV_P_ W w) 2488ev_stop (EV_P_ W w)
1975{ 2489{
1976 ev_unref (EV_A); 2490 ev_unref (EV_A);
1977 w->active = 0; 2491 w->active = 0;
1978} 2492}
1985 int fd = w->fd; 2499 int fd = w->fd;
1986 2500
1987 if (expect_false (ev_is_active (w))) 2501 if (expect_false (ev_is_active (w)))
1988 return; 2502 return;
1989 2503
1990 assert (("ev_io_start called with negative fd", fd >= 0)); 2504 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2505 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2506
2507 EV_FREQUENT_CHECK;
1991 2508
1992 ev_start (EV_A_ (W)w, 1); 2509 ev_start (EV_A_ (W)w, 1);
1993 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2510 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1994 wlist_add (&anfds[fd].head, (WL)w); 2511 wlist_add (&anfds[fd].head, (WL)w);
1995 2512
1996 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2513 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1997 w->events &= ~EV_IOFDSET; 2514 w->events &= ~EV__IOFDSET;
2515
2516 EV_FREQUENT_CHECK;
1998} 2517}
1999 2518
2000void noinline 2519void noinline
2001ev_io_stop (EV_P_ ev_io *w) 2520ev_io_stop (EV_P_ ev_io *w)
2002{ 2521{
2003 clear_pending (EV_A_ (W)w); 2522 clear_pending (EV_A_ (W)w);
2004 if (expect_false (!ev_is_active (w))) 2523 if (expect_false (!ev_is_active (w)))
2005 return; 2524 return;
2006 2525
2007 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2526 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2527
2528 EV_FREQUENT_CHECK;
2008 2529
2009 wlist_del (&anfds[w->fd].head, (WL)w); 2530 wlist_del (&anfds[w->fd].head, (WL)w);
2010 ev_stop (EV_A_ (W)w); 2531 ev_stop (EV_A_ (W)w);
2011 2532
2012 fd_change (EV_A_ w->fd, 1); 2533 fd_change (EV_A_ w->fd, 1);
2534
2535 EV_FREQUENT_CHECK;
2013} 2536}
2014 2537
2015void noinline 2538void noinline
2016ev_timer_start (EV_P_ ev_timer *w) 2539ev_timer_start (EV_P_ ev_timer *w)
2017{ 2540{
2018 if (expect_false (ev_is_active (w))) 2541 if (expect_false (ev_is_active (w)))
2019 return; 2542 return;
2020 2543
2021 ev_at (w) += mn_now; 2544 ev_at (w) += mn_now;
2022 2545
2023 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2546 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2024 2547
2548 EV_FREQUENT_CHECK;
2549
2550 ++timercnt;
2025 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1); 2551 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2026 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2); 2552 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2027 ANHE_w (timers [ev_active (w)]) = (WT)w; 2553 ANHE_w (timers [ev_active (w)]) = (WT)w;
2028 ANHE_at_set (timers [ev_active (w)]); 2554 ANHE_at_cache (timers [ev_active (w)]);
2029 upheap (timers, ev_active (w)); 2555 upheap (timers, ev_active (w));
2030 2556
2557 EV_FREQUENT_CHECK;
2558
2031 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/ 2559 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2032} 2560}
2033 2561
2034void noinline 2562void noinline
2035ev_timer_stop (EV_P_ ev_timer *w) 2563ev_timer_stop (EV_P_ ev_timer *w)
2036{ 2564{
2037 clear_pending (EV_A_ (W)w); 2565 clear_pending (EV_A_ (W)w);
2038 if (expect_false (!ev_is_active (w))) 2566 if (expect_false (!ev_is_active (w)))
2039 return; 2567 return;
2040 2568
2569 EV_FREQUENT_CHECK;
2570
2041 { 2571 {
2042 int active = ev_active (w); 2572 int active = ev_active (w);
2043 2573
2044 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w)); 2574 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2045 2575
2576 --timercnt;
2577
2046 if (expect_true (active < timercnt + HEAP0 - 1)) 2578 if (expect_true (active < timercnt + HEAP0))
2047 { 2579 {
2048 timers [active] = timers [timercnt + HEAP0 - 1]; 2580 timers [active] = timers [timercnt + HEAP0];
2049 adjustheap (timers, timercnt, active); 2581 adjustheap (timers, timercnt, active);
2050 } 2582 }
2051
2052 --timercnt;
2053 } 2583 }
2584
2585 EV_FREQUENT_CHECK;
2054 2586
2055 ev_at (w) -= mn_now; 2587 ev_at (w) -= mn_now;
2056 2588
2057 ev_stop (EV_A_ (W)w); 2589 ev_stop (EV_A_ (W)w);
2058} 2590}
2059 2591
2060void noinline 2592void noinline
2061ev_timer_again (EV_P_ ev_timer *w) 2593ev_timer_again (EV_P_ ev_timer *w)
2062{ 2594{
2595 EV_FREQUENT_CHECK;
2596
2063 if (ev_is_active (w)) 2597 if (ev_is_active (w))
2064 { 2598 {
2065 if (w->repeat) 2599 if (w->repeat)
2066 { 2600 {
2067 ev_at (w) = mn_now + w->repeat; 2601 ev_at (w) = mn_now + w->repeat;
2068 ANHE_at_set (timers [ev_active (w)]); 2602 ANHE_at_cache (timers [ev_active (w)]);
2069 adjustheap (timers, timercnt, ev_active (w)); 2603 adjustheap (timers, timercnt, ev_active (w));
2070 } 2604 }
2071 else 2605 else
2072 ev_timer_stop (EV_A_ w); 2606 ev_timer_stop (EV_A_ w);
2073 } 2607 }
2074 else if (w->repeat) 2608 else if (w->repeat)
2075 { 2609 {
2076 ev_at (w) = w->repeat; 2610 ev_at (w) = w->repeat;
2077 ev_timer_start (EV_A_ w); 2611 ev_timer_start (EV_A_ w);
2078 } 2612 }
2613
2614 EV_FREQUENT_CHECK;
2615}
2616
2617ev_tstamp
2618ev_timer_remaining (EV_P_ ev_timer *w)
2619{
2620 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2079} 2621}
2080 2622
2081#if EV_PERIODIC_ENABLE 2623#if EV_PERIODIC_ENABLE
2082void noinline 2624void noinline
2083ev_periodic_start (EV_P_ ev_periodic *w) 2625ev_periodic_start (EV_P_ ev_periodic *w)
2087 2629
2088 if (w->reschedule_cb) 2630 if (w->reschedule_cb)
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2631 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090 else if (w->interval) 2632 else if (w->interval)
2091 { 2633 {
2092 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2634 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2093 /* this formula differs from the one in periodic_reify because we do not always round up */ 2635 /* this formula differs from the one in periodic_reify because we do not always round up */
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2636 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 } 2637 }
2096 else 2638 else
2097 ev_at (w) = w->offset; 2639 ev_at (w) = w->offset;
2098 2640
2641 EV_FREQUENT_CHECK;
2642
2643 ++periodiccnt;
2099 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1); 2644 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2100 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2); 2645 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2101 ANHE_w (periodics [ev_active (w)]) = (WT)w; 2646 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2102 ANHE_at_set (periodics [ev_active (w)]); 2647 ANHE_at_cache (periodics [ev_active (w)]);
2103 upheap (periodics, ev_active (w)); 2648 upheap (periodics, ev_active (w));
2104 2649
2650 EV_FREQUENT_CHECK;
2651
2105 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/ 2652 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2106} 2653}
2107 2654
2108void noinline 2655void noinline
2109ev_periodic_stop (EV_P_ ev_periodic *w) 2656ev_periodic_stop (EV_P_ ev_periodic *w)
2110{ 2657{
2111 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2113 return; 2660 return;
2114 2661
2662 EV_FREQUENT_CHECK;
2663
2115 { 2664 {
2116 int active = ev_active (w); 2665 int active = ev_active (w);
2117 2666
2118 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w)); 2667 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2119 2668
2669 --periodiccnt;
2670
2120 if (expect_true (active < periodiccnt + HEAP0 - 1)) 2671 if (expect_true (active < periodiccnt + HEAP0))
2121 { 2672 {
2122 periodics [active] = periodics [periodiccnt + HEAP0 - 1]; 2673 periodics [active] = periodics [periodiccnt + HEAP0];
2123 adjustheap (periodics, periodiccnt, active); 2674 adjustheap (periodics, periodiccnt, active);
2124 } 2675 }
2125
2126 --periodiccnt;
2127 } 2676 }
2677
2678 EV_FREQUENT_CHECK;
2128 2679
2129 ev_stop (EV_A_ (W)w); 2680 ev_stop (EV_A_ (W)w);
2130} 2681}
2131 2682
2132void noinline 2683void noinline
2143#endif 2694#endif
2144 2695
2145void noinline 2696void noinline
2146ev_signal_start (EV_P_ ev_signal *w) 2697ev_signal_start (EV_P_ ev_signal *w)
2147{ 2698{
2148#if EV_MULTIPLICITY
2149 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2150#endif
2151 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
2152 return; 2700 return;
2153 2701
2154 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2702 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2155 2703
2156 evpipe_init (EV_A); 2704#if EV_MULTIPLICITY
2705 assert (("libev: a signal must not be attached to two different loops",
2706 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2157 2707
2708 signals [w->signum - 1].loop = EV_A;
2709#endif
2710
2711 EV_FREQUENT_CHECK;
2712
2713#if EV_USE_SIGNALFD
2714 if (sigfd == -2)
2158 { 2715 {
2159#ifndef _WIN32 2716 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2160 sigset_t full, prev; 2717 if (sigfd < 0 && errno == EINVAL)
2161 sigfillset (&full); 2718 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2162 sigprocmask (SIG_SETMASK, &full, &prev);
2163#endif
2164 2719
2165 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2720 if (sigfd >= 0)
2721 {
2722 fd_intern (sigfd); /* doing it twice will not hurt */
2166 2723
2167#ifndef _WIN32 2724 sigemptyset (&sigfd_set);
2168 sigprocmask (SIG_SETMASK, &prev, 0); 2725
2169#endif 2726 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727 ev_set_priority (&sigfd_w, EV_MAXPRI);
2728 ev_io_start (EV_A_ &sigfd_w);
2729 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730 }
2170 } 2731 }
2732
2733 if (sigfd >= 0)
2734 {
2735 /* TODO: check .head */
2736 sigaddset (&sigfd_set, w->signum);
2737 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738
2739 signalfd (sigfd, &sigfd_set, 0);
2740 }
2741#endif
2171 2742
2172 ev_start (EV_A_ (W)w, 1); 2743 ev_start (EV_A_ (W)w, 1);
2173 wlist_add (&signals [w->signum - 1].head, (WL)w); 2744 wlist_add (&signals [w->signum - 1].head, (WL)w);
2174 2745
2175 if (!((WL)w)->next) 2746 if (!((WL)w)->next)
2747# if EV_USE_SIGNALFD
2748 if (sigfd < 0) /*TODO*/
2749# endif
2176 { 2750 {
2177#if _WIN32 2751# if _WIN32
2752 evpipe_init (EV_A);
2753
2178 signal (w->signum, ev_sighandler); 2754 signal (w->signum, ev_sighandler);
2179#else 2755# else
2180 struct sigaction sa; 2756 struct sigaction sa;
2757
2758 evpipe_init (EV_A);
2759
2181 sa.sa_handler = ev_sighandler; 2760 sa.sa_handler = ev_sighandler;
2182 sigfillset (&sa.sa_mask); 2761 sigfillset (&sa.sa_mask);
2183 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2184 sigaction (w->signum, &sa, 0); 2763 sigaction (w->signum, &sa, 0);
2764
2765 sigemptyset (&sa.sa_mask);
2766 sigaddset (&sa.sa_mask, w->signum);
2767 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2185#endif 2768#endif
2186 } 2769 }
2770
2771 EV_FREQUENT_CHECK;
2187} 2772}
2188 2773
2189void noinline 2774void noinline
2190ev_signal_stop (EV_P_ ev_signal *w) 2775ev_signal_stop (EV_P_ ev_signal *w)
2191{ 2776{
2192 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2193 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2194 return; 2779 return;
2195 2780
2781 EV_FREQUENT_CHECK;
2782
2196 wlist_del (&signals [w->signum - 1].head, (WL)w); 2783 wlist_del (&signals [w->signum - 1].head, (WL)w);
2197 ev_stop (EV_A_ (W)w); 2784 ev_stop (EV_A_ (W)w);
2198 2785
2199 if (!signals [w->signum - 1].head) 2786 if (!signals [w->signum - 1].head)
2787 {
2788#if EV_MULTIPLICITY
2789 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790#endif
2791#if EV_USE_SIGNALFD
2792 if (sigfd >= 0)
2793 {
2794 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795 sigdelset (&sigfd_set, w->signum);
2796 signalfd (sigfd, &sigfd_set, 0);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798 /*TODO: maybe unblock signal? */
2799 }
2800 else
2801#endif
2200 signal (w->signum, SIG_DFL); 2802 signal (w->signum, SIG_DFL);
2803 }
2804
2805 EV_FREQUENT_CHECK;
2201} 2806}
2202 2807
2203void 2808void
2204ev_child_start (EV_P_ ev_child *w) 2809ev_child_start (EV_P_ ev_child *w)
2205{ 2810{
2206#if EV_MULTIPLICITY 2811#if EV_MULTIPLICITY
2207 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2812 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2208#endif 2813#endif
2209 if (expect_false (ev_is_active (w))) 2814 if (expect_false (ev_is_active (w)))
2210 return; 2815 return;
2211 2816
2817 EV_FREQUENT_CHECK;
2818
2212 ev_start (EV_A_ (W)w, 1); 2819 ev_start (EV_A_ (W)w, 1);
2213 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2821
2822 EV_FREQUENT_CHECK;
2214} 2823}
2215 2824
2216void 2825void
2217ev_child_stop (EV_P_ ev_child *w) 2826ev_child_stop (EV_P_ ev_child *w)
2218{ 2827{
2219 clear_pending (EV_A_ (W)w); 2828 clear_pending (EV_A_ (W)w);
2220 if (expect_false (!ev_is_active (w))) 2829 if (expect_false (!ev_is_active (w)))
2221 return; 2830 return;
2222 2831
2832 EV_FREQUENT_CHECK;
2833
2223 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2834 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2224 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2225} 2838}
2226 2839
2227#if EV_STAT_ENABLE 2840#if EV_STAT_ENABLE
2228 2841
2229# ifdef _WIN32 2842# ifdef _WIN32
2230# undef lstat 2843# undef lstat
2231# define lstat(a,b) _stati64 (a,b) 2844# define lstat(a,b) _stati64 (a,b)
2232# endif 2845# endif
2233 2846
2234#define DEF_STAT_INTERVAL 5.0074891 2847#define DEF_STAT_INTERVAL 5.0074891
2848#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2235#define MIN_STAT_INTERVAL 0.1074891 2849#define MIN_STAT_INTERVAL 0.1074891
2236 2850
2237static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2851static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2238 2852
2239#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2240# define EV_INOTIFY_BUFSIZE 8192 2854# define EV_INOTIFY_BUFSIZE 8192
2242static void noinline 2856static void noinline
2243infy_add (EV_P_ ev_stat *w) 2857infy_add (EV_P_ ev_stat *w)
2244{ 2858{
2245 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2859 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2246 2860
2247 if (w->wd < 0) 2861 if (w->wd >= 0)
2862 {
2863 struct statfs sfs;
2864
2865 /* now local changes will be tracked by inotify, but remote changes won't */
2866 /* unless the filesystem is known to be local, we therefore still poll */
2867 /* also do poll on <2.6.25, but with normal frequency */
2868
2869 if (!fs_2625)
2870 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2871 else if (!statfs (w->path, &sfs)
2872 && (sfs.f_type == 0x1373 /* devfs */
2873 || sfs.f_type == 0xEF53 /* ext2/3 */
2874 || sfs.f_type == 0x3153464a /* jfs */
2875 || sfs.f_type == 0x52654973 /* reiser3 */
2876 || sfs.f_type == 0x01021994 /* tempfs */
2877 || sfs.f_type == 0x58465342 /* xfs */))
2878 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2879 else
2880 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2248 { 2881 }
2249 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2882 else
2883 {
2884 /* can't use inotify, continue to stat */
2885 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2250 2886
2251 /* monitor some parent directory for speedup hints */ 2887 /* if path is not there, monitor some parent directory for speedup hints */
2252 /* note that exceeding the hardcoded limit is not a correctness issue, */ 2888 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2253 /* but an efficiency issue only */ 2889 /* but an efficiency issue only */
2254 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2890 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2255 { 2891 {
2256 char path [4096]; 2892 char path [4096];
2257 strcpy (path, w->path); 2893 strcpy (path, w->path);
2261 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2897 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2262 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2898 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2263 2899
2264 char *pend = strrchr (path, '/'); 2900 char *pend = strrchr (path, '/');
2265 2901
2266 if (!pend) 2902 if (!pend || pend == path)
2267 break; /* whoops, no '/', complain to your admin */ 2903 break;
2268 2904
2269 *pend = 0; 2905 *pend = 0;
2270 w->wd = inotify_add_watch (fs_fd, path, mask); 2906 w->wd = inotify_add_watch (fs_fd, path, mask);
2271 } 2907 }
2272 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2908 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2273 } 2909 }
2274 } 2910 }
2275 else
2276 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2277 2911
2278 if (w->wd >= 0) 2912 if (w->wd >= 0)
2279 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2913 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2914
2915 /* now re-arm timer, if required */
2916 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2917 ev_timer_again (EV_A_ &w->timer);
2918 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2280} 2919}
2281 2920
2282static void noinline 2921static void noinline
2283infy_del (EV_P_ ev_stat *w) 2922infy_del (EV_P_ ev_stat *w)
2284{ 2923{
2298 2937
2299static void noinline 2938static void noinline
2300infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2939infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2301{ 2940{
2302 if (slot < 0) 2941 if (slot < 0)
2303 /* overflow, need to check for all hahs slots */ 2942 /* overflow, need to check for all hash slots */
2304 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2305 infy_wd (EV_A_ slot, wd, ev); 2944 infy_wd (EV_A_ slot, wd, ev);
2306 else 2945 else
2307 { 2946 {
2308 WL w_; 2947 WL w_;
2314 2953
2315 if (w->wd == wd || wd == -1) 2954 if (w->wd == wd || wd == -1)
2316 { 2955 {
2317 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2956 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2318 { 2957 {
2958 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2319 w->wd = -1; 2959 w->wd = -1;
2320 infy_add (EV_A_ w); /* re-add, no matter what */ 2960 infy_add (EV_A_ w); /* re-add, no matter what */
2321 } 2961 }
2322 2962
2323 stat_timer_cb (EV_A_ &w->timer, 0); 2963 stat_timer_cb (EV_A_ &w->timer, 0);
2336 2976
2337 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2977 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2338 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2978 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2339} 2979}
2340 2980
2341void inline_size 2981inline_size void
2982check_2625 (EV_P)
2983{
2984 /* kernels < 2.6.25 are borked
2985 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2986 */
2987 struct utsname buf;
2988 int major, minor, micro;
2989
2990 if (uname (&buf))
2991 return;
2992
2993 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2994 return;
2995
2996 if (major < 2
2997 || (major == 2 && minor < 6)
2998 || (major == 2 && minor == 6 && micro < 25))
2999 return;
3000
3001 fs_2625 = 1;
3002}
3003
3004inline_size int
3005infy_newfd (void)
3006{
3007#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3008 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3009 if (fd >= 0)
3010 return fd;
3011#endif
3012 return inotify_init ();
3013}
3014
3015inline_size void
2342infy_init (EV_P) 3016infy_init (EV_P)
2343{ 3017{
2344 if (fs_fd != -2) 3018 if (fs_fd != -2)
2345 return; 3019 return;
2346 3020
3021 fs_fd = -1;
3022
3023 check_2625 (EV_A);
3024
2347 fs_fd = inotify_init (); 3025 fs_fd = infy_newfd ();
2348 3026
2349 if (fs_fd >= 0) 3027 if (fs_fd >= 0)
2350 { 3028 {
3029 fd_intern (fs_fd);
2351 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3030 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2352 ev_set_priority (&fs_w, EV_MAXPRI); 3031 ev_set_priority (&fs_w, EV_MAXPRI);
2353 ev_io_start (EV_A_ &fs_w); 3032 ev_io_start (EV_A_ &fs_w);
3033 ev_unref (EV_A);
2354 } 3034 }
2355} 3035}
2356 3036
2357void inline_size 3037inline_size void
2358infy_fork (EV_P) 3038infy_fork (EV_P)
2359{ 3039{
2360 int slot; 3040 int slot;
2361 3041
2362 if (fs_fd < 0) 3042 if (fs_fd < 0)
2363 return; 3043 return;
2364 3044
3045 ev_ref (EV_A);
3046 ev_io_stop (EV_A_ &fs_w);
2365 close (fs_fd); 3047 close (fs_fd);
2366 fs_fd = inotify_init (); 3048 fs_fd = infy_newfd ();
3049
3050 if (fs_fd >= 0)
3051 {
3052 fd_intern (fs_fd);
3053 ev_io_set (&fs_w, fs_fd, EV_READ);
3054 ev_io_start (EV_A_ &fs_w);
3055 ev_unref (EV_A);
3056 }
2367 3057
2368 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3058 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2369 { 3059 {
2370 WL w_ = fs_hash [slot].head; 3060 WL w_ = fs_hash [slot].head;
2371 fs_hash [slot].head = 0; 3061 fs_hash [slot].head = 0;
2378 w->wd = -1; 3068 w->wd = -1;
2379 3069
2380 if (fs_fd >= 0) 3070 if (fs_fd >= 0)
2381 infy_add (EV_A_ w); /* re-add, no matter what */ 3071 infy_add (EV_A_ w); /* re-add, no matter what */
2382 else 3072 else
3073 {
3074 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3075 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2383 ev_timer_start (EV_A_ &w->timer); 3076 ev_timer_again (EV_A_ &w->timer);
3077 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3078 }
2384 } 3079 }
2385
2386 } 3080 }
2387} 3081}
2388 3082
3083#endif
3084
3085#ifdef _WIN32
3086# define EV_LSTAT(p,b) _stati64 (p, b)
3087#else
3088# define EV_LSTAT(p,b) lstat (p, b)
2389#endif 3089#endif
2390 3090
2391void 3091void
2392ev_stat_stat (EV_P_ ev_stat *w) 3092ev_stat_stat (EV_P_ ev_stat *w)
2393{ 3093{
2420 || w->prev.st_atime != w->attr.st_atime 3120 || w->prev.st_atime != w->attr.st_atime
2421 || w->prev.st_mtime != w->attr.st_mtime 3121 || w->prev.st_mtime != w->attr.st_mtime
2422 || w->prev.st_ctime != w->attr.st_ctime 3122 || w->prev.st_ctime != w->attr.st_ctime
2423 ) { 3123 ) {
2424 #if EV_USE_INOTIFY 3124 #if EV_USE_INOTIFY
3125 if (fs_fd >= 0)
3126 {
2425 infy_del (EV_A_ w); 3127 infy_del (EV_A_ w);
2426 infy_add (EV_A_ w); 3128 infy_add (EV_A_ w);
2427 ev_stat_stat (EV_A_ w); /* avoid race... */ 3129 ev_stat_stat (EV_A_ w); /* avoid race... */
3130 }
2428 #endif 3131 #endif
2429 3132
2430 ev_feed_event (EV_A_ w, EV_STAT); 3133 ev_feed_event (EV_A_ w, EV_STAT);
2431 } 3134 }
2432} 3135}
2435ev_stat_start (EV_P_ ev_stat *w) 3138ev_stat_start (EV_P_ ev_stat *w)
2436{ 3139{
2437 if (expect_false (ev_is_active (w))) 3140 if (expect_false (ev_is_active (w)))
2438 return; 3141 return;
2439 3142
2440 /* since we use memcmp, we need to clear any padding data etc. */
2441 memset (&w->prev, 0, sizeof (ev_statdata));
2442 memset (&w->attr, 0, sizeof (ev_statdata));
2443
2444 ev_stat_stat (EV_A_ w); 3143 ev_stat_stat (EV_A_ w);
2445 3144
3145 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2446 if (w->interval < MIN_STAT_INTERVAL) 3146 w->interval = MIN_STAT_INTERVAL;
2447 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2448 3147
2449 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3148 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2450 ev_set_priority (&w->timer, ev_priority (w)); 3149 ev_set_priority (&w->timer, ev_priority (w));
2451 3150
2452#if EV_USE_INOTIFY 3151#if EV_USE_INOTIFY
2453 infy_init (EV_A); 3152 infy_init (EV_A);
2454 3153
2455 if (fs_fd >= 0) 3154 if (fs_fd >= 0)
2456 infy_add (EV_A_ w); 3155 infy_add (EV_A_ w);
2457 else 3156 else
2458#endif 3157#endif
3158 {
2459 ev_timer_start (EV_A_ &w->timer); 3159 ev_timer_again (EV_A_ &w->timer);
3160 ev_unref (EV_A);
3161 }
2460 3162
2461 ev_start (EV_A_ (W)w, 1); 3163 ev_start (EV_A_ (W)w, 1);
3164
3165 EV_FREQUENT_CHECK;
2462} 3166}
2463 3167
2464void 3168void
2465ev_stat_stop (EV_P_ ev_stat *w) 3169ev_stat_stop (EV_P_ ev_stat *w)
2466{ 3170{
2467 clear_pending (EV_A_ (W)w); 3171 clear_pending (EV_A_ (W)w);
2468 if (expect_false (!ev_is_active (w))) 3172 if (expect_false (!ev_is_active (w)))
2469 return; 3173 return;
2470 3174
3175 EV_FREQUENT_CHECK;
3176
2471#if EV_USE_INOTIFY 3177#if EV_USE_INOTIFY
2472 infy_del (EV_A_ w); 3178 infy_del (EV_A_ w);
2473#endif 3179#endif
3180
3181 if (ev_is_active (&w->timer))
3182 {
3183 ev_ref (EV_A);
2474 ev_timer_stop (EV_A_ &w->timer); 3184 ev_timer_stop (EV_A_ &w->timer);
3185 }
2475 3186
2476 ev_stop (EV_A_ (W)w); 3187 ev_stop (EV_A_ (W)w);
3188
3189 EV_FREQUENT_CHECK;
2477} 3190}
2478#endif 3191#endif
2479 3192
2480#if EV_IDLE_ENABLE 3193#if EV_IDLE_ENABLE
2481void 3194void
2483{ 3196{
2484 if (expect_false (ev_is_active (w))) 3197 if (expect_false (ev_is_active (w)))
2485 return; 3198 return;
2486 3199
2487 pri_adjust (EV_A_ (W)w); 3200 pri_adjust (EV_A_ (W)w);
3201
3202 EV_FREQUENT_CHECK;
2488 3203
2489 { 3204 {
2490 int active = ++idlecnt [ABSPRI (w)]; 3205 int active = ++idlecnt [ABSPRI (w)];
2491 3206
2492 ++idleall; 3207 ++idleall;
2493 ev_start (EV_A_ (W)w, active); 3208 ev_start (EV_A_ (W)w, active);
2494 3209
2495 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3210 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2496 idles [ABSPRI (w)][active - 1] = w; 3211 idles [ABSPRI (w)][active - 1] = w;
2497 } 3212 }
3213
3214 EV_FREQUENT_CHECK;
2498} 3215}
2499 3216
2500void 3217void
2501ev_idle_stop (EV_P_ ev_idle *w) 3218ev_idle_stop (EV_P_ ev_idle *w)
2502{ 3219{
2503 clear_pending (EV_A_ (W)w); 3220 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w))) 3221 if (expect_false (!ev_is_active (w)))
2505 return; 3222 return;
2506 3223
3224 EV_FREQUENT_CHECK;
3225
2507 { 3226 {
2508 int active = ev_active (w); 3227 int active = ev_active (w);
2509 3228
2510 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3229 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2511 ev_active (idles [ABSPRI (w)][active - 1]) = active; 3230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2512 3231
2513 ev_stop (EV_A_ (W)w); 3232 ev_stop (EV_A_ (W)w);
2514 --idleall; 3233 --idleall;
2515 } 3234 }
3235
3236 EV_FREQUENT_CHECK;
2516} 3237}
2517#endif 3238#endif
2518 3239
2519void 3240void
2520ev_prepare_start (EV_P_ ev_prepare *w) 3241ev_prepare_start (EV_P_ ev_prepare *w)
2521{ 3242{
2522 if (expect_false (ev_is_active (w))) 3243 if (expect_false (ev_is_active (w)))
2523 return; 3244 return;
3245
3246 EV_FREQUENT_CHECK;
2524 3247
2525 ev_start (EV_A_ (W)w, ++preparecnt); 3248 ev_start (EV_A_ (W)w, ++preparecnt);
2526 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3249 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2527 prepares [preparecnt - 1] = w; 3250 prepares [preparecnt - 1] = w;
3251
3252 EV_FREQUENT_CHECK;
2528} 3253}
2529 3254
2530void 3255void
2531ev_prepare_stop (EV_P_ ev_prepare *w) 3256ev_prepare_stop (EV_P_ ev_prepare *w)
2532{ 3257{
2533 clear_pending (EV_A_ (W)w); 3258 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 3259 if (expect_false (!ev_is_active (w)))
2535 return; 3260 return;
2536 3261
3262 EV_FREQUENT_CHECK;
3263
2537 { 3264 {
2538 int active = ev_active (w); 3265 int active = ev_active (w);
2539 3266
2540 prepares [active - 1] = prepares [--preparecnt]; 3267 prepares [active - 1] = prepares [--preparecnt];
2541 ev_active (prepares [active - 1]) = active; 3268 ev_active (prepares [active - 1]) = active;
2542 } 3269 }
2543 3270
2544 ev_stop (EV_A_ (W)w); 3271 ev_stop (EV_A_ (W)w);
3272
3273 EV_FREQUENT_CHECK;
2545} 3274}
2546 3275
2547void 3276void
2548ev_check_start (EV_P_ ev_check *w) 3277ev_check_start (EV_P_ ev_check *w)
2549{ 3278{
2550 if (expect_false (ev_is_active (w))) 3279 if (expect_false (ev_is_active (w)))
2551 return; 3280 return;
3281
3282 EV_FREQUENT_CHECK;
2552 3283
2553 ev_start (EV_A_ (W)w, ++checkcnt); 3284 ev_start (EV_A_ (W)w, ++checkcnt);
2554 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3285 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2555 checks [checkcnt - 1] = w; 3286 checks [checkcnt - 1] = w;
3287
3288 EV_FREQUENT_CHECK;
2556} 3289}
2557 3290
2558void 3291void
2559ev_check_stop (EV_P_ ev_check *w) 3292ev_check_stop (EV_P_ ev_check *w)
2560{ 3293{
2561 clear_pending (EV_A_ (W)w); 3294 clear_pending (EV_A_ (W)w);
2562 if (expect_false (!ev_is_active (w))) 3295 if (expect_false (!ev_is_active (w)))
2563 return; 3296 return;
2564 3297
3298 EV_FREQUENT_CHECK;
3299
2565 { 3300 {
2566 int active = ev_active (w); 3301 int active = ev_active (w);
2567 3302
2568 checks [active - 1] = checks [--checkcnt]; 3303 checks [active - 1] = checks [--checkcnt];
2569 ev_active (checks [active - 1]) = active; 3304 ev_active (checks [active - 1]) = active;
2570 } 3305 }
2571 3306
2572 ev_stop (EV_A_ (W)w); 3307 ev_stop (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
2573} 3310}
2574 3311
2575#if EV_EMBED_ENABLE 3312#if EV_EMBED_ENABLE
2576void noinline 3313void noinline
2577ev_embed_sweep (EV_P_ ev_embed *w) 3314ev_embed_sweep (EV_P_ ev_embed *w)
2594embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3331embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2595{ 3332{
2596 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3333 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2597 3334
2598 { 3335 {
2599 struct ev_loop *loop = w->other; 3336 EV_P = w->other;
2600 3337
2601 while (fdchangecnt) 3338 while (fdchangecnt)
2602 { 3339 {
2603 fd_reify (EV_A); 3340 fd_reify (EV_A);
2604 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3341 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2605 } 3342 }
2606 } 3343 }
2607} 3344}
2608 3345
3346static void
3347embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3348{
3349 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3350
3351 ev_embed_stop (EV_A_ w);
3352
3353 {
3354 EV_P = w->other;
3355
3356 ev_loop_fork (EV_A);
3357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3358 }
3359
3360 ev_embed_start (EV_A_ w);
3361}
3362
2609#if 0 3363#if 0
2610static void 3364static void
2611embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2612{ 3366{
2613 ev_idle_stop (EV_A_ idle); 3367 ev_idle_stop (EV_A_ idle);
2619{ 3373{
2620 if (expect_false (ev_is_active (w))) 3374 if (expect_false (ev_is_active (w)))
2621 return; 3375 return;
2622 3376
2623 { 3377 {
2624 struct ev_loop *loop = w->other; 3378 EV_P = w->other;
2625 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3379 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2626 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2627 } 3381 }
3382
3383 EV_FREQUENT_CHECK;
2628 3384
2629 ev_set_priority (&w->io, ev_priority (w)); 3385 ev_set_priority (&w->io, ev_priority (w));
2630 ev_io_start (EV_A_ &w->io); 3386 ev_io_start (EV_A_ &w->io);
2631 3387
2632 ev_prepare_init (&w->prepare, embed_prepare_cb); 3388 ev_prepare_init (&w->prepare, embed_prepare_cb);
2633 ev_set_priority (&w->prepare, EV_MINPRI); 3389 ev_set_priority (&w->prepare, EV_MINPRI);
2634 ev_prepare_start (EV_A_ &w->prepare); 3390 ev_prepare_start (EV_A_ &w->prepare);
2635 3391
3392 ev_fork_init (&w->fork, embed_fork_cb);
3393 ev_fork_start (EV_A_ &w->fork);
3394
2636 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3395 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2637 3396
2638 ev_start (EV_A_ (W)w, 1); 3397 ev_start (EV_A_ (W)w, 1);
3398
3399 EV_FREQUENT_CHECK;
2639} 3400}
2640 3401
2641void 3402void
2642ev_embed_stop (EV_P_ ev_embed *w) 3403ev_embed_stop (EV_P_ ev_embed *w)
2643{ 3404{
2644 clear_pending (EV_A_ (W)w); 3405 clear_pending (EV_A_ (W)w);
2645 if (expect_false (!ev_is_active (w))) 3406 if (expect_false (!ev_is_active (w)))
2646 return; 3407 return;
2647 3408
3409 EV_FREQUENT_CHECK;
3410
2648 ev_io_stop (EV_A_ &w->io); 3411 ev_io_stop (EV_A_ &w->io);
2649 ev_prepare_stop (EV_A_ &w->prepare); 3412 ev_prepare_stop (EV_A_ &w->prepare);
3413 ev_fork_stop (EV_A_ &w->fork);
2650 3414
2651 ev_stop (EV_A_ (W)w); 3415 EV_FREQUENT_CHECK;
2652} 3416}
2653#endif 3417#endif
2654 3418
2655#if EV_FORK_ENABLE 3419#if EV_FORK_ENABLE
2656void 3420void
2657ev_fork_start (EV_P_ ev_fork *w) 3421ev_fork_start (EV_P_ ev_fork *w)
2658{ 3422{
2659 if (expect_false (ev_is_active (w))) 3423 if (expect_false (ev_is_active (w)))
2660 return; 3424 return;
3425
3426 EV_FREQUENT_CHECK;
2661 3427
2662 ev_start (EV_A_ (W)w, ++forkcnt); 3428 ev_start (EV_A_ (W)w, ++forkcnt);
2663 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3429 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2664 forks [forkcnt - 1] = w; 3430 forks [forkcnt - 1] = w;
3431
3432 EV_FREQUENT_CHECK;
2665} 3433}
2666 3434
2667void 3435void
2668ev_fork_stop (EV_P_ ev_fork *w) 3436ev_fork_stop (EV_P_ ev_fork *w)
2669{ 3437{
2670 clear_pending (EV_A_ (W)w); 3438 clear_pending (EV_A_ (W)w);
2671 if (expect_false (!ev_is_active (w))) 3439 if (expect_false (!ev_is_active (w)))
2672 return; 3440 return;
2673 3441
3442 EV_FREQUENT_CHECK;
3443
2674 { 3444 {
2675 int active = ev_active (w); 3445 int active = ev_active (w);
2676 3446
2677 forks [active - 1] = forks [--forkcnt]; 3447 forks [active - 1] = forks [--forkcnt];
2678 ev_active (forks [active - 1]) = active; 3448 ev_active (forks [active - 1]) = active;
2679 } 3449 }
2680 3450
2681 ev_stop (EV_A_ (W)w); 3451 ev_stop (EV_A_ (W)w);
3452
3453 EV_FREQUENT_CHECK;
2682} 3454}
2683#endif 3455#endif
2684 3456
2685#if EV_ASYNC_ENABLE 3457#if EV_ASYNC_ENABLE
2686void 3458void
2688{ 3460{
2689 if (expect_false (ev_is_active (w))) 3461 if (expect_false (ev_is_active (w)))
2690 return; 3462 return;
2691 3463
2692 evpipe_init (EV_A); 3464 evpipe_init (EV_A);
3465
3466 EV_FREQUENT_CHECK;
2693 3467
2694 ev_start (EV_A_ (W)w, ++asynccnt); 3468 ev_start (EV_A_ (W)w, ++asynccnt);
2695 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3469 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2696 asyncs [asynccnt - 1] = w; 3470 asyncs [asynccnt - 1] = w;
3471
3472 EV_FREQUENT_CHECK;
2697} 3473}
2698 3474
2699void 3475void
2700ev_async_stop (EV_P_ ev_async *w) 3476ev_async_stop (EV_P_ ev_async *w)
2701{ 3477{
2702 clear_pending (EV_A_ (W)w); 3478 clear_pending (EV_A_ (W)w);
2703 if (expect_false (!ev_is_active (w))) 3479 if (expect_false (!ev_is_active (w)))
2704 return; 3480 return;
2705 3481
3482 EV_FREQUENT_CHECK;
3483
2706 { 3484 {
2707 int active = ev_active (w); 3485 int active = ev_active (w);
2708 3486
2709 asyncs [active - 1] = asyncs [--asynccnt]; 3487 asyncs [active - 1] = asyncs [--asynccnt];
2710 ev_active (asyncs [active - 1]) = active; 3488 ev_active (asyncs [active - 1]) = active;
2711 } 3489 }
2712 3490
2713 ev_stop (EV_A_ (W)w); 3491 ev_stop (EV_A_ (W)w);
3492
3493 EV_FREQUENT_CHECK;
2714} 3494}
2715 3495
2716void 3496void
2717ev_async_send (EV_P_ ev_async *w) 3497ev_async_send (EV_P_ ev_async *w)
2718{ 3498{
2719 w->sent = 1; 3499 w->sent = 1;
2720 evpipe_write (EV_A_ &gotasync); 3500 evpipe_write (EV_A_ &async_pending);
2721} 3501}
2722#endif 3502#endif
2723 3503
2724/*****************************************************************************/ 3504/*****************************************************************************/
2725 3505
2735once_cb (EV_P_ struct ev_once *once, int revents) 3515once_cb (EV_P_ struct ev_once *once, int revents)
2736{ 3516{
2737 void (*cb)(int revents, void *arg) = once->cb; 3517 void (*cb)(int revents, void *arg) = once->cb;
2738 void *arg = once->arg; 3518 void *arg = once->arg;
2739 3519
2740 ev_io_stop (EV_A_ &once->io); 3520 ev_io_stop (EV_A_ &once->io);
2741 ev_timer_stop (EV_A_ &once->to); 3521 ev_timer_stop (EV_A_ &once->to);
2742 ev_free (once); 3522 ev_free (once);
2743 3523
2744 cb (revents, arg); 3524 cb (revents, arg);
2745} 3525}
2746 3526
2747static void 3527static void
2748once_cb_io (EV_P_ ev_io *w, int revents) 3528once_cb_io (EV_P_ ev_io *w, int revents)
2749{ 3529{
2750 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3530 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3531
3532 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2751} 3533}
2752 3534
2753static void 3535static void
2754once_cb_to (EV_P_ ev_timer *w, int revents) 3536once_cb_to (EV_P_ ev_timer *w, int revents)
2755{ 3537{
2756 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3538 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3539
3540 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2757} 3541}
2758 3542
2759void 3543void
2760ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3544ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2761{ 3545{
2783 ev_timer_set (&once->to, timeout, 0.); 3567 ev_timer_set (&once->to, timeout, 0.);
2784 ev_timer_start (EV_A_ &once->to); 3568 ev_timer_start (EV_A_ &once->to);
2785 } 3569 }
2786} 3570}
2787 3571
3572/*****************************************************************************/
3573
3574#if EV_WALK_ENABLE
3575void
3576ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3577{
3578 int i, j;
3579 ev_watcher_list *wl, *wn;
3580
3581 if (types & (EV_IO | EV_EMBED))
3582 for (i = 0; i < anfdmax; ++i)
3583 for (wl = anfds [i].head; wl; )
3584 {
3585 wn = wl->next;
3586
3587#if EV_EMBED_ENABLE
3588 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3589 {
3590 if (types & EV_EMBED)
3591 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3592 }
3593 else
3594#endif
3595#if EV_USE_INOTIFY
3596 if (ev_cb ((ev_io *)wl) == infy_cb)
3597 ;
3598 else
3599#endif
3600 if ((ev_io *)wl != &pipe_w)
3601 if (types & EV_IO)
3602 cb (EV_A_ EV_IO, wl);
3603
3604 wl = wn;
3605 }
3606
3607 if (types & (EV_TIMER | EV_STAT))
3608 for (i = timercnt + HEAP0; i-- > HEAP0; )
3609#if EV_STAT_ENABLE
3610 /*TODO: timer is not always active*/
3611 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3612 {
3613 if (types & EV_STAT)
3614 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3615 }
3616 else
3617#endif
3618 if (types & EV_TIMER)
3619 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3620
3621#if EV_PERIODIC_ENABLE
3622 if (types & EV_PERIODIC)
3623 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3624 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3625#endif
3626
3627#if EV_IDLE_ENABLE
3628 if (types & EV_IDLE)
3629 for (j = NUMPRI; i--; )
3630 for (i = idlecnt [j]; i--; )
3631 cb (EV_A_ EV_IDLE, idles [j][i]);
3632#endif
3633
3634#if EV_FORK_ENABLE
3635 if (types & EV_FORK)
3636 for (i = forkcnt; i--; )
3637 if (ev_cb (forks [i]) != embed_fork_cb)
3638 cb (EV_A_ EV_FORK, forks [i]);
3639#endif
3640
3641#if EV_ASYNC_ENABLE
3642 if (types & EV_ASYNC)
3643 for (i = asynccnt; i--; )
3644 cb (EV_A_ EV_ASYNC, asyncs [i]);
3645#endif
3646
3647 if (types & EV_PREPARE)
3648 for (i = preparecnt; i--; )
3649#if EV_EMBED_ENABLE
3650 if (ev_cb (prepares [i]) != embed_prepare_cb)
3651#endif
3652 cb (EV_A_ EV_PREPARE, prepares [i]);
3653
3654 if (types & EV_CHECK)
3655 for (i = checkcnt; i--; )
3656 cb (EV_A_ EV_CHECK, checks [i]);
3657
3658 if (types & EV_SIGNAL)
3659 for (i = 0; i < EV_NSIG - 1; ++i)
3660 for (wl = signals [i].head; wl; )
3661 {
3662 wn = wl->next;
3663 cb (EV_A_ EV_SIGNAL, wl);
3664 wl = wn;
3665 }
3666
3667 if (types & EV_CHILD)
3668 for (i = EV_PID_HASHSIZE; i--; )
3669 for (wl = childs [i]; wl; )
3670 {
3671 wn = wl->next;
3672 cb (EV_A_ EV_CHILD, wl);
3673 wl = wn;
3674 }
3675/* EV_STAT 0x00001000 /* stat data changed */
3676/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3677}
3678#endif
3679
2788#if EV_MULTIPLICITY 3680#if EV_MULTIPLICITY
2789 #include "ev_wrap.h" 3681 #include "ev_wrap.h"
2790#endif 3682#endif
2791 3683
2792#ifdef __cplusplus 3684#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines