ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.43 by root, Fri Nov 2 20:21:33 2007 UTC vs.
Revision 1.318 by root, Tue Nov 17 00:22:28 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
96# endif
97
98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
104# endif
105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
33#endif 154#endif
34 155
35#include <math.h> 156#include <math.h>
36#include <stdlib.h> 157#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 158#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 159#include <stddef.h>
41 160
42#include <stdio.h> 161#include <stdio.h>
43 162
44#include <assert.h> 163#include <assert.h>
45#include <errno.h> 164#include <errno.h>
46#include <sys/types.h> 165#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 166#include <time.h>
50 167
51/**/ 168#include <signal.h>
169
170#ifdef EV_H
171# include EV_H
172#else
173# include "ev.h"
174#endif
175
176#ifndef _WIN32
177# include <sys/time.h>
178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
186# endif
187#endif
188
189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
52 225
53#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
54# define EV_USE_MONOTONIC 1 228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
232#endif
233
234#ifndef EV_USE_REALTIME
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
55#endif 244#endif
56 245
57#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
59#endif 248#endif
60 249
61#ifndef EV_USE_POLL 250#ifndef EV_USE_POLL
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 251# ifdef _WIN32
252# define EV_USE_POLL 0
253# else
254# define EV_USE_POLL 1
255# endif
63#endif 256#endif
64 257
65#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
66# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
67#endif 263# endif
264#endif
68 265
266#ifndef EV_USE_KQUEUE
267# define EV_USE_KQUEUE 0
268#endif
269
69#ifndef EV_USE_REALTIME 270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
70# define EV_USE_REALTIME 1 276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
71#endif 279# endif
280#endif
72 281
73/**/ 282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
74 347
75#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
76# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
78#endif 351#endif
80#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
81# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
82# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
83#endif 356#endif
84 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
434
85/**/ 435/**/
86 436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
442
443/*
444 * This is used to avoid floating point rounding problems.
445 * It is added to ev_rt_now when scheduling periodics
446 * to ensure progress, time-wise, even when rounding
447 * errors are against us.
448 * This value is good at least till the year 4000.
449 * Better solutions welcome.
450 */
451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
452
87#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
88#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
89#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
90/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
91 455
92#include "ev.h"
93
94#if __GNUC__ >= 3 456#if __GNUC__ >= 4
95# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
96# define inline inline 458# define noinline __attribute__ ((noinline))
97#else 459#else
98# define expect(expr,value) (expr) 460# define expect(expr,value) (expr)
99# define inline static 461# define noinline
462# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
463# define inline
464# endif
100#endif 465#endif
101 466
102#define expect_false(expr) expect ((expr) != 0, 0) 467#define expect_false(expr) expect ((expr) != 0, 0)
103#define expect_true(expr) expect ((expr) != 0, 1) 468#define expect_true(expr) expect ((expr) != 0, 1)
469#define inline_size static inline
104 470
471#if EV_MINIMAL
472# define inline_speed static noinline
473#else
474# define inline_speed static inline
475#endif
476
105#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
106#define ABSPRI(w) ((w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
107 484
485#define EMPTY /* required for microsofts broken pseudo-c compiler */
486#define EMPTY2(a,b) /* used to suppress some warnings */
487
108typedef struct ev_watcher *W; 488typedef ev_watcher *W;
109typedef struct ev_watcher_list *WL; 489typedef ev_watcher_list *WL;
110typedef struct ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
111 491
112static ev_tstamp now_floor, now, diff; /* monotonic clock */ 492#define ev_active(w) ((W)(w))->active
113ev_tstamp ev_now; 493#define ev_at(w) ((WT)(w))->at
114int ev_method;
115 494
116static int have_monotonic; /* runtime */ 495#if EV_USE_REALTIME
496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
117 500
118static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 501#if EV_USE_MONOTONIC
119static void (*method_modify)(int fd, int oev, int nev); 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
120static void (*method_poll)(ev_tstamp timeout); 503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
513#endif
514
515#ifdef _WIN32
516# include "ev_win32.c"
517#endif
121 518
122/*****************************************************************************/ 519/*****************************************************************************/
123 520
521static void (*syserr_cb)(const char *msg);
522
523void
524ev_set_syserr_cb (void (*cb)(const char *msg))
525{
526 syserr_cb = cb;
527}
528
529static void noinline
530ev_syserr (const char *msg)
531{
532 if (!msg)
533 msg = "(libev) system error";
534
535 if (syserr_cb)
536 syserr_cb (msg);
537 else
538 {
539 perror (msg);
540 abort ();
541 }
542}
543
544static void *
545ev_realloc_emul (void *ptr, long size)
546{
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557}
558
559static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
560
561void
562ev_set_allocator (void *(*cb)(void *ptr, long size))
563{
564 alloc = cb;
565}
566
567inline_speed void *
568ev_realloc (void *ptr, long size)
569{
570 ptr = alloc (ptr, size);
571
572 if (!ptr && size)
573 {
574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
575 abort ();
576 }
577
578 return ptr;
579}
580
581#define ev_malloc(size) ev_realloc (0, (size))
582#define ev_free(ptr) ev_realloc ((ptr), 0)
583
584/*****************************************************************************/
585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
590typedef struct
591{
592 WL head;
593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
600#if EV_SELECT_IS_WINSOCKET
601 SOCKET handle;
602#endif
603} ANFD;
604
605/* stores the pending event set for a given watcher */
606typedef struct
607{
608 W w;
609 int events; /* the pending event set for the given watcher */
610} ANPENDING;
611
612#if EV_USE_INOTIFY
613/* hash table entry per inotify-id */
614typedef struct
615{
616 WL head;
617} ANFS;
618#endif
619
620/* Heap Entry */
621#if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631#else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
638#endif
639
640#if EV_MULTIPLICITY
641
642 struct ev_loop
643 {
644 ev_tstamp ev_rt_now;
645 #define ev_rt_now ((loop)->ev_rt_now)
646 #define VAR(name,decl) decl;
647 #include "ev_vars.h"
648 #undef VAR
649 };
650 #include "ev_wrap.h"
651
652 static struct ev_loop default_loop_struct;
653 struct ev_loop *ev_default_loop_ptr;
654
655#else
656
657 ev_tstamp ev_rt_now;
658 #define VAR(name,decl) static decl;
659 #include "ev_vars.h"
660 #undef VAR
661
662 static int ev_default_loop_ptr;
663
664#endif
665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
678/*****************************************************************************/
679
680#ifndef EV_HAVE_EV_TIME
124ev_tstamp 681ev_tstamp
125ev_time (void) 682ev_time (void)
126{ 683{
127#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
128 struct timespec ts; 687 struct timespec ts;
129 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
130 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
131#else 690 }
691#endif
692
132 struct timeval tv; 693 struct timeval tv;
133 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
134 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
135#endif
136} 696}
697#endif
137 698
138static ev_tstamp 699inline_size ev_tstamp
139get_clock (void) 700get_clock (void)
140{ 701{
141#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
142 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
143 { 704 {
148#endif 709#endif
149 710
150 return ev_time (); 711 return ev_time ();
151} 712}
152 713
153#define array_roundsize(base,n) ((n) | 4 & ~3) 714#if EV_MULTIPLICITY
715ev_tstamp
716ev_now (EV_P)
717{
718 return ev_rt_now;
719}
720#endif
154 721
155#define array_needsize(base,cur,cnt,init) \ 722void
156 if (expect_false ((cnt) > cur)) \ 723ev_sleep (ev_tstamp delay)
157 { \ 724{
158 int newcnt = cur; \ 725 if (delay > 0.)
159 do \
160 { \
161 newcnt = array_roundsize (base, newcnt << 1); \
162 } \
163 while ((cnt) > newcnt); \
164 \
165 base = realloc (base, sizeof (*base) * (newcnt)); \
166 init (base + cur, newcnt - cur); \
167 cur = newcnt; \
168 } 726 {
727#if EV_USE_NANOSLEEP
728 struct timespec ts;
729
730 ts.tv_sec = (time_t)delay;
731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
732
733 nanosleep (&ts, 0);
734#elif defined(_WIN32)
735 Sleep ((unsigned long)(delay * 1e3));
736#else
737 struct timeval tv;
738
739 tv.tv_sec = (time_t)delay;
740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
745 select (0, 0, 0, 0, &tv);
746#endif
747 }
748}
169 749
170/*****************************************************************************/ 750/*****************************************************************************/
171 751
172typedef struct 752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
173{
174 struct ev_io *head;
175 unsigned char events;
176 unsigned char reify;
177} ANFD;
178 753
179static ANFD *anfds; 754/* find a suitable new size for the given array, */
180static int anfdmax; 755/* hopefully by rounding to a ncie-to-malloc size */
181 756inline_size int
182static void 757array_nextsize (int elem, int cur, int cnt)
183anfds_init (ANFD *base, int count)
184{ 758{
185 while (count--) 759 int ncur = cur + 1;
186 {
187 base->head = 0;
188 base->events = EV_NONE;
189 base->reify = 0;
190 760
191 ++base; 761 do
762 ncur <<= 1;
763 while (cnt > ncur);
764
765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
192 } 767 {
193} 768 ncur *= elem;
194 769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
195typedef struct 770 ncur = ncur - sizeof (void *) * 4;
196{ 771 ncur /= elem;
197 W w;
198 int events;
199} ANPENDING;
200
201static ANPENDING *pendings [NUMPRI];
202static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
203
204static void
205event (W w, int events)
206{
207 if (w->pending)
208 { 772 }
773
774 return ncur;
775}
776
777static noinline void *
778array_realloc (int elem, void *base, int *cur, int cnt)
779{
780 *cur = array_nextsize (elem, *cur, cnt);
781 return ev_realloc (base, elem * *cur);
782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
786
787#define array_needsize(type,base,cur,cnt,init) \
788 if (expect_false ((cnt) > (cur))) \
789 { \
790 int ocur_ = (cur); \
791 (base) = (type *)array_realloc \
792 (sizeof (type), (base), &(cur), (cnt)); \
793 init ((base) + (ocur_), (cur) - ocur_); \
794 }
795
796#if 0
797#define array_slim(type,stem) \
798 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
799 { \
800 stem ## max = array_roundsize (stem ## cnt >> 1); \
801 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
803 }
804#endif
805
806#define array_free(stem, idx) \
807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
808
809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
816
817void noinline
818ev_feed_event (EV_P_ void *w, int revents)
819{
820 W w_ = (W)w;
821 int pri = ABSPRI (w_);
822
823 if (expect_false (w_->pending))
824 pendings [pri][w_->pending - 1].events |= revents;
825 else
826 {
827 w_->pending = ++pendingcnt [pri];
828 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
829 pendings [pri][w_->pending - 1].w = w_;
209 pendings [ABSPRI (w)][w->pending - 1].events |= events; 830 pendings [pri][w_->pending - 1].events = revents;
210 return;
211 } 831 }
212
213 w->pending = ++pendingcnt [ABSPRI (w)];
214 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
215 pendings [ABSPRI (w)][w->pending - 1].w = w;
216 pendings [ABSPRI (w)][w->pending - 1].events = events;
217} 832}
218 833
219static void 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
220queue_events (W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
221{ 851{
222 int i; 852 int i;
223 853
224 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
225 event (events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
226} 856}
227 857
228static void 858/*****************************************************************************/
859
860inline_speed void
229fd_event (int fd, int events) 861fd_event_nc (EV_P_ int fd, int revents)
230{ 862{
231 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
232 struct ev_io *w; 864 ev_io *w;
233 865
234 for (w = anfd->head; w; w = w->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
235 { 867 {
236 int ev = w->events & events; 868 int ev = w->events & revents;
237 869
238 if (ev) 870 if (ev)
239 event ((W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
240 } 872 }
241} 873}
242 874
243/*****************************************************************************/ 875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
244 881
245static int *fdchanges; 882 if (expect_true (!anfd->reify))
246static int fdchangemax, fdchangecnt; 883 fd_event_nc (EV_A_ fd, revents);
884}
247 885
248static void 886void
249fd_reify (void) 887ev_feed_fd_event (EV_P_ int fd, int revents)
888{
889 if (fd >= 0 && fd < anfdmax)
890 fd_event_nc (EV_A_ fd, revents);
891}
892
893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
896fd_reify (EV_P)
250{ 897{
251 int i; 898 int i;
252 899
253 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
254 { 901 {
255 int fd = fdchanges [i]; 902 int fd = fdchanges [i];
256 ANFD *anfd = anfds + fd; 903 ANFD *anfd = anfds + fd;
257 struct ev_io *w; 904 ev_io *w;
258 905
259 int events = 0; 906 unsigned char events = 0;
260 907
261 for (w = anfd->head; w; w = w->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
262 events |= w->events; 909 events |= (unsigned char)w->events;
263 910
264 anfd->reify = 0; 911#if EV_SELECT_IS_WINSOCKET
265 912 if (events)
266 if (anfd->events != events)
267 { 913 {
268 method_modify (fd, anfd->events, events); 914 unsigned long arg;
269 anfd->events = events; 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
270 } 917 }
918#endif
919
920 {
921 unsigned char o_events = anfd->events;
922 unsigned char o_reify = anfd->reify;
923
924 anfd->reify = 0;
925 anfd->events = events;
926
927 if (o_events != events || o_reify & EV__IOFDSET)
928 backend_modify (EV_A_ fd, o_events, events);
929 }
271 } 930 }
272 931
273 fdchangecnt = 0; 932 fdchangecnt = 0;
274} 933}
275 934
276static void 935/* something about the given fd changed */
277fd_change (int fd) 936inline_size void
937fd_change (EV_P_ int fd, int flags)
278{ 938{
279 if (anfds [fd].reify || fdchangecnt < 0) 939 unsigned char reify = anfds [fd].reify;
280 return;
281
282 anfds [fd].reify = 1; 940 anfds [fd].reify |= flags;
283 941
942 if (expect_true (!reify))
943 {
284 ++fdchangecnt; 944 ++fdchangecnt;
285 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
286 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
947 }
287} 948}
288 949
289static void 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
290fd_kill (int fd) 952fd_kill (EV_P_ int fd)
291{ 953{
292 struct ev_io *w; 954 ev_io *w;
293 955
294 printf ("killing fd %d\n", fd);//D
295 while ((w = anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
296 { 957 {
297 ev_io_stop (w); 958 ev_io_stop (EV_A_ w);
298 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
299 } 960 }
961}
962
963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
965fd_valid (int fd)
966{
967#ifdef _WIN32
968 return _get_osfhandle (fd) != -1;
969#else
970 return fcntl (fd, F_GETFD) != -1;
971#endif
300} 972}
301 973
302/* called on EBADF to verify fds */ 974/* called on EBADF to verify fds */
303static void 975static void noinline
304fd_ebadf (void) 976fd_ebadf (EV_P)
305{ 977{
306 int fd; 978 int fd;
307 979
308 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
309 if (anfds [fd].events) 981 if (anfds [fd].events)
310 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
311 fd_kill (fd); 983 fd_kill (EV_A_ fd);
312} 984}
313 985
314/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
315static void 987static void noinline
316fd_enomem (void) 988fd_enomem (EV_P)
317{ 989{
318 int fd = anfdmax; 990 int fd;
319 991
320 while (fd--) 992 for (fd = anfdmax; fd--; )
321 if (anfds [fd].events) 993 if (anfds [fd].events)
322 { 994 {
323 close (fd);
324 fd_kill (fd); 995 fd_kill (EV_A_ fd);
325 return; 996 break;
326 } 997 }
327} 998}
328 999
1000/* usually called after fork if backend needs to re-arm all fds from scratch */
1001static void noinline
1002fd_rearm_all (EV_P)
1003{
1004 int fd;
1005
1006 for (fd = 0; fd < anfdmax; ++fd)
1007 if (anfds [fd].events)
1008 {
1009 anfds [fd].events = 0;
1010 anfds [fd].emask = 0;
1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
1012 }
1013}
1014
329/*****************************************************************************/ 1015/*****************************************************************************/
330 1016
331static struct ev_timer **timers; 1017/*
332static int timermax, timercnt; 1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1020 * the branching factor of the d-tree.
1021 */
333 1022
334static struct ev_periodic **periodics; 1023/*
335static int periodicmax, periodiccnt; 1024 * at the moment we allow libev the luxury of two heaps,
1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1026 * which is more cache-efficient.
1027 * the difference is about 5% with 50000+ watchers.
1028 */
1029#if EV_USE_4HEAP
336 1030
1031#define DHEAP 4
1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034#define UPHEAP_DONE(p,k) ((p) == (k))
1035
1036/* away from the root */
1037inline_speed void
1038downheap (ANHE *heap, int N, int k)
1039{
1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
1042
1043 for (;;)
1044 {
1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1048
1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
1051 {
1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
1065 break;
1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078}
1079
1080#else /* 4HEAP */
1081
1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
1105 heap [k] = heap [c];
1106 ev_active (ANHE_w (heap [k])) = k;
1107
1108 k = c;
1109 }
1110
1111 heap [k] = he;
1112 ev_active (ANHE_w (he)) = k;
1113}
1114#endif
1115
1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
1129 heap [k] = heap [p];
1130 ev_active (ANHE_w (heap [k])) = k;
1131 k = p;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138/* move an element suitably so it is in a correct place */
1139inline_size void
1140adjustheap (ANHE *heap, int N, int k)
1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1143 upheap (heap, k);
1144 else
1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
1158}
1159
1160/*****************************************************************************/
1161
1162/* associate signal watchers to a signal signal */
1163typedef struct
1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
1169 WL head;
1170} ANSIG;
1171
1172static ANSIG signals [EV_NSIG - 1];
1173
1174/*****************************************************************************/
1175
1176/* used to prepare libev internal fd's */
1177/* this is not fork-safe */
1178inline_speed void
1179fd_intern (int fd)
1180{
1181#ifdef _WIN32
1182 unsigned long arg = 1;
1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1184#else
1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
1186 fcntl (fd, F_SETFL, O_NONBLOCK);
1187#endif
1188}
1189
1190static void noinline
1191evpipe_init (EV_P)
1192{
1193 if (!ev_is_active (&pipe_w))
1194 {
1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207#endif
1208 {
1209 while (pipe (evpipe))
1210 ev_syserr ("(libev) error creating signal/async pipe");
1211
1212 fd_intern (evpipe [0]);
1213 fd_intern (evpipe [1]);
1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
1216
1217 ev_io_start (EV_A_ &pipe_w);
1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 }
1220}
1221
1222inline_size void
1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224{
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
1228
1229 *flag = 1;
1230
1231#if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238#endif
1239 write (evpipe [1], &old_errno, 1);
1240
1241 errno = old_errno;
1242 }
1243}
1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
337static void 1247static void
338upheap (WT *timers, int k) 1248pipecb (EV_P_ ev_io *iow, int revents)
339{ 1249{
340 WT w = timers [k]; 1250 int i;
341 1251
342 while (k && timers [k >> 1]->at > w->at) 1252#if EV_USE_EVENTFD
343 { 1253 if (evfd >= 0)
344 timers [k] = timers [k >> 1];
345 timers [k]->active = k + 1;
346 k >>= 1;
347 } 1254 {
1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 {
1261 char dummy;
1262 read (evpipe [0], &dummy, 1);
1263 }
348 1264
349 timers [k] = w; 1265 if (sig_pending)
350 timers [k]->active = k + 1; 1266 {
1267 sig_pending = 0;
351 1268
1269 for (i = EV_NSIG - 1; i--; )
1270 if (expect_false (signals [i].pending))
1271 ev_feed_signal_event (EV_A_ i + 1);
1272 }
1273
1274#if EV_ASYNC_ENABLE
1275 if (async_pending)
1276 {
1277 async_pending = 0;
1278
1279 for (i = asynccnt; i--; )
1280 if (asyncs [i]->sent)
1281 {
1282 asyncs [i]->sent = 0;
1283 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284 }
1285 }
1286#endif
352} 1287}
1288
1289/*****************************************************************************/
353 1290
354static void 1291static void
355downheap (WT *timers, int N, int k) 1292ev_sighandler (int signum)
356{ 1293{
357 WT w = timers [k]; 1294#if EV_MULTIPLICITY
1295 EV_P = signals [signum - 1].loop;
1296#endif
358 1297
359 while (k < (N >> 1)) 1298#if _WIN32
360 { 1299 signal (signum, ev_sighandler);
361 int j = k << 1; 1300#endif
362 1301
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 1302 signals [signum - 1].pending = 1;
364 ++j; 1303 evpipe_write (EV_A_ &sig_pending);
1304}
365 1305
366 if (w->at <= timers [j]->at) 1306void noinline
1307ev_feed_signal_event (EV_P_ int signum)
1308{
1309 WL w;
1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1316#if EV_MULTIPLICITY
1317 /* it is permissible to try to feed a signal to the wrong loop */
1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1319
1320 if (expect_false (signals [signum].loop != EV_A))
1321 return;
1322#endif
1323
1324 signals [signum].pending = 0;
1325
1326 for (w = signals [signum].head; w; w = w->next)
1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328}
1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
367 break; 1345 break;
368
369 timers [k] = timers [j];
370 timers [k]->active = k + 1;
371 k = j;
372 } 1346 }
373
374 timers [k] = w;
375 timers [k]->active = k + 1;
376} 1347}
1348#endif
377 1349
378/*****************************************************************************/ 1350/*****************************************************************************/
379 1351
380typedef struct 1352static WL childs [EV_PID_HASHSIZE];
381{
382 struct ev_signal *head;
383 sig_atomic_t volatile gotsig;
384} ANSIG;
385 1353
386static ANSIG *signals; 1354#ifndef _WIN32
387static int signalmax;
388 1355
389static int sigpipe [2];
390static sig_atomic_t volatile gotsig;
391static struct ev_io sigev;
392
393static void
394signals_init (ANSIG *base, int count)
395{
396 while (count--)
397 {
398 base->head = 0;
399 base->gotsig = 0;
400
401 ++base;
402 }
403}
404
405static void
406sighandler (int signum)
407{
408 signals [signum - 1].gotsig = 1;
409
410 if (!gotsig)
411 {
412 gotsig = 1;
413 write (sigpipe [1], &signum, 1);
414 }
415}
416
417static void
418sigcb (struct ev_io *iow, int revents)
419{
420 struct ev_signal *w;
421 int signum;
422
423 read (sigpipe [0], &revents, 1);
424 gotsig = 0;
425
426 for (signum = signalmax; signum--; )
427 if (signals [signum].gotsig)
428 {
429 signals [signum].gotsig = 0;
430
431 for (w = signals [signum].head; w; w = w->next)
432 event ((W)w, EV_SIGNAL);
433 }
434}
435
436static void
437siginit (void)
438{
439 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
440 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
441
442 /* rather than sort out wether we really need nb, set it */
443 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
444 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
445
446 ev_io_set (&sigev, sigpipe [0], EV_READ);
447 ev_io_start (&sigev);
448}
449
450/*****************************************************************************/
451
452static struct ev_idle **idles;
453static int idlemax, idlecnt;
454
455static struct ev_prepare **prepares;
456static int preparemax, preparecnt;
457
458static struct ev_check **checks;
459static int checkmax, checkcnt;
460
461/*****************************************************************************/
462
463static struct ev_child *childs [PID_HASHSIZE];
464static struct ev_signal childev; 1356static ev_signal childev;
1357
1358#ifndef WIFCONTINUED
1359# define WIFCONTINUED(status) 0
1360#endif
1361
1362/* handle a single child status event */
1363inline_speed void
1364child_reap (EV_P_ int chain, int pid, int status)
1365{
1366 ev_child *w;
1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1368
1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 {
1371 if ((w->pid == pid || !w->pid)
1372 && (!traced || (w->flags & 1)))
1373 {
1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1375 w->rpid = pid;
1376 w->rstatus = status;
1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1378 }
1379 }
1380}
465 1381
466#ifndef WCONTINUED 1382#ifndef WCONTINUED
467# define WCONTINUED 0 1383# define WCONTINUED 0
468#endif 1384#endif
469 1385
1386/* called on sigchld etc., calls waitpid */
470static void 1387static void
471childcb (struct ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
472{ 1389{
473 struct ev_child *w;
474 int pid, status; 1390 int pid, status;
475 1391
1392 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
476 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1393 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
477 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1394 if (!WCONTINUED
478 if (w->pid == pid || !w->pid) 1395 || errno != EINVAL
479 { 1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
480 w->status = status; 1397 return;
481 event ((W)w, EV_CHILD); 1398
482 } 1399 /* make sure we are called again until all children have been reaped */
1400 /* we need to do it this way so that the callback gets called before we continue */
1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1402
1403 child_reap (EV_A_ pid, pid, status);
1404 if (EV_PID_HASHSIZE > 1)
1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
483} 1406}
1407
1408#endif
484 1409
485/*****************************************************************************/ 1410/*****************************************************************************/
486 1411
1412#if EV_USE_PORT
1413# include "ev_port.c"
1414#endif
1415#if EV_USE_KQUEUE
1416# include "ev_kqueue.c"
1417#endif
487#if EV_USE_EPOLL 1418#if EV_USE_EPOLL
488# include "ev_epoll.c" 1419# include "ev_epoll.c"
489#endif 1420#endif
490#if EV_USE_POLL 1421#if EV_USE_POLL
491# include "ev_poll.c" 1422# include "ev_poll.c"
504ev_version_minor (void) 1435ev_version_minor (void)
505{ 1436{
506 return EV_VERSION_MINOR; 1437 return EV_VERSION_MINOR;
507} 1438}
508 1439
509/* return true if we are running with elevated privileges and ignore env variables */ 1440/* return true if we are running with elevated privileges and should ignore env variables */
510static int 1441int inline_size
511enable_secure () 1442enable_secure (void)
512{ 1443{
1444#ifdef _WIN32
1445 return 0;
1446#else
513 return getuid () != geteuid () 1447 return getuid () != geteuid ()
514 || getgid () != getegid (); 1448 || getgid () != getegid ();
1449#endif
515} 1450}
516 1451
517int ev_init (int methods) 1452unsigned int
1453ev_supported_backends (void)
518{ 1454{
519 if (!ev_method) 1455 unsigned int flags = 0;
1456
1457 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1458 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1459 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1460 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1461 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1462
1463 return flags;
1464}
1465
1466unsigned int
1467ev_recommended_backends (void)
1468{
1469 unsigned int flags = ev_supported_backends ();
1470
1471#ifndef __NetBSD__
1472 /* kqueue is borked on everything but netbsd apparently */
1473 /* it usually doesn't work correctly on anything but sockets and pipes */
1474 flags &= ~EVBACKEND_KQUEUE;
1475#endif
1476#ifdef __APPLE__
1477 /* only select works correctly on that "unix-certified" platform */
1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1480#endif
1481
1482 return flags;
1483}
1484
1485unsigned int
1486ev_embeddable_backends (void)
1487{
1488 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1489
1490 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1491 /* please fix it and tell me how to detect the fix */
1492 flags &= ~EVBACKEND_EPOLL;
1493
1494 return flags;
1495}
1496
1497unsigned int
1498ev_backend (EV_P)
1499{
1500 return backend;
1501}
1502
1503#if EV_MINIMAL < 2
1504unsigned int
1505ev_loop_count (EV_P)
1506{
1507 return loop_count;
1508}
1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1516void
1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1518{
1519 io_blocktime = interval;
1520}
1521
1522void
1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1524{
1525 timeout_blocktime = interval;
1526}
1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
1553static void noinline
1554loop_init (EV_P_ unsigned int flags)
1555{
1556 if (!backend)
520 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
521#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
1570 {
1571 struct timespec ts;
1572
1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1574 have_monotonic = 1;
1575 }
1576#endif
1577
1578 /* pid check not overridable via env */
1579#ifndef _WIN32
1580 if (flags & EVFLAG_FORKCHECK)
1581 curpid = getpid ();
1582#endif
1583
1584 if (!(flags & EVFLAG_NOENV)
1585 && !enable_secure ()
1586 && getenv ("LIBEV_FLAGS"))
1587 flags = atoi (getenv ("LIBEV_FLAGS"));
1588
1589 ev_rt_now = ev_time ();
1590 mn_now = get_clock ();
1591 now_floor = mn_now;
1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1596
1597 io_blocktime = 0.;
1598 timeout_blocktime = 0.;
1599 backend = 0;
1600 backend_fd = -1;
1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1605#if EV_USE_INOTIFY
1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607#endif
1608#if EV_USE_SIGNALFD
1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610#endif
1611
1612 if (!(flags & 0x0000ffffU))
1613 flags |= ev_recommended_backends ();
1614
1615#if EV_USE_PORT
1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1617#endif
1618#if EV_USE_KQUEUE
1619 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1620#endif
1621#if EV_USE_EPOLL
1622 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1623#endif
1624#if EV_USE_POLL
1625 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1626#endif
1627#if EV_USE_SELECT
1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1629#endif
1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
1633 ev_init (&pipe_w, pipecb);
1634 ev_set_priority (&pipe_w, EV_MAXPRI);
1635 }
1636}
1637
1638/* free up a loop structure */
1639static void noinline
1640loop_destroy (EV_P)
1641{
1642 int i;
1643
1644 if (ev_is_active (&pipe_w))
1645 {
1646 /*ev_ref (EV_A);*/
1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1648
1649#if EV_USE_EVENTFD
1650 if (evfd >= 0)
1651 close (evfd);
1652#endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 close (sigfd);
1664#endif
1665
1666#if EV_USE_INOTIFY
1667 if (fs_fd >= 0)
1668 close (fs_fd);
1669#endif
1670
1671 if (backend_fd >= 0)
1672 close (backend_fd);
1673
1674#if EV_USE_PORT
1675 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1676#endif
1677#if EV_USE_KQUEUE
1678 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1679#endif
1680#if EV_USE_EPOLL
1681 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1682#endif
1683#if EV_USE_POLL
1684 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1685#endif
1686#if EV_USE_SELECT
1687 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1688#endif
1689
1690 for (i = NUMPRI; i--; )
1691 {
1692 array_free (pending, [i]);
1693#if EV_IDLE_ENABLE
1694 array_free (idle, [i]);
1695#endif
1696 }
1697
1698 ev_free (anfds); anfds = 0; anfdmax = 0;
1699
1700 /* have to use the microsoft-never-gets-it-right macro */
1701 array_free (rfeed, EMPTY);
1702 array_free (fdchange, EMPTY);
1703 array_free (timer, EMPTY);
1704#if EV_PERIODIC_ENABLE
1705 array_free (periodic, EMPTY);
1706#endif
1707#if EV_FORK_ENABLE
1708 array_free (fork, EMPTY);
1709#endif
1710 array_free (prepare, EMPTY);
1711 array_free (check, EMPTY);
1712#if EV_ASYNC_ENABLE
1713 array_free (async, EMPTY);
1714#endif
1715
1716 backend = 0;
1717}
1718
1719#if EV_USE_INOTIFY
1720inline_size void infy_fork (EV_P);
1721#endif
1722
1723inline_size void
1724loop_fork (EV_P)
1725{
1726#if EV_USE_PORT
1727 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1728#endif
1729#if EV_USE_KQUEUE
1730 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1731#endif
1732#if EV_USE_EPOLL
1733 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1734#endif
1735#if EV_USE_INOTIFY
1736 infy_fork (EV_A);
1737#endif
1738
1739 if (ev_is_active (&pipe_w))
1740 {
1741 /* this "locks" the handlers against writing to the pipe */
1742 /* while we modify the fd vars */
1743 sig_pending = 1;
1744#if EV_ASYNC_ENABLE
1745 async_pending = 1;
1746#endif
1747
1748 ev_ref (EV_A);
1749 ev_io_stop (EV_A_ &pipe_w);
1750
1751#if EV_USE_EVENTFD
1752 if (evfd >= 0)
1753 close (evfd);
1754#endif
1755
1756 if (evpipe [0] >= 0)
1757 {
1758 EV_WIN32_CLOSE_FD (evpipe [0]);
1759 EV_WIN32_CLOSE_FD (evpipe [1]);
1760 }
1761
1762 evpipe_init (EV_A);
1763 /* now iterate over everything, in case we missed something */
1764 pipecb (EV_A_ &pipe_w, EV_READ);
1765 }
1766
1767 postfork = 0;
1768}
1769
1770#if EV_MULTIPLICITY
1771
1772struct ev_loop *
1773ev_loop_new (unsigned int flags)
1774{
1775 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1776
1777 memset (EV_A, 0, sizeof (struct ev_loop));
1778 loop_init (EV_A_ flags);
1779
1780 if (ev_backend (EV_A))
1781 return EV_A;
1782
1783 return 0;
1784}
1785
1786void
1787ev_loop_destroy (EV_P)
1788{
1789 loop_destroy (EV_A);
1790 ev_free (loop);
1791}
1792
1793void
1794ev_loop_fork (EV_P)
1795{
1796 postfork = 1; /* must be in line with ev_default_fork */
1797}
1798#endif /* multiplicity */
1799
1800#if EV_VERIFY
1801static void noinline
1802verify_watcher (EV_P_ W w)
1803{
1804 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1805
1806 if (w->pending)
1807 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1808}
1809
1810static void noinline
1811verify_heap (EV_P_ ANHE *heap, int N)
1812{
1813 int i;
1814
1815 for (i = HEAP0; i < N + HEAP0; ++i)
1816 {
1817 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1818 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1819 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1820
1821 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1822 }
1823}
1824
1825static void noinline
1826array_verify (EV_P_ W *ws, int cnt)
1827{
1828 while (cnt--)
1829 {
1830 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1831 verify_watcher (EV_A_ ws [cnt]);
1832 }
1833}
1834#endif
1835
1836#if EV_MINIMAL < 2
1837void
1838ev_loop_verify (EV_P)
1839{
1840#if EV_VERIFY
1841 int i;
1842 WL w;
1843
1844 assert (activecnt >= -1);
1845
1846 assert (fdchangemax >= fdchangecnt);
1847 for (i = 0; i < fdchangecnt; ++i)
1848 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1849
1850 assert (anfdmax >= 0);
1851 for (i = 0; i < anfdmax; ++i)
1852 for (w = anfds [i].head; w; w = w->next)
522 { 1853 {
523 struct timespec ts; 1854 verify_watcher (EV_A_ (W)w);
524 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1855 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
525 have_monotonic = 1; 1856 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
526 } 1857 }
1858
1859 assert (timermax >= timercnt);
1860 verify_heap (EV_A_ timers, timercnt);
1861
1862#if EV_PERIODIC_ENABLE
1863 assert (periodicmax >= periodiccnt);
1864 verify_heap (EV_A_ periodics, periodiccnt);
1865#endif
1866
1867 for (i = NUMPRI; i--; )
1868 {
1869 assert (pendingmax [i] >= pendingcnt [i]);
1870#if EV_IDLE_ENABLE
1871 assert (idleall >= 0);
1872 assert (idlemax [i] >= idlecnt [i]);
1873 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1874#endif
1875 }
1876
1877#if EV_FORK_ENABLE
1878 assert (forkmax >= forkcnt);
1879 array_verify (EV_A_ (W *)forks, forkcnt);
1880#endif
1881
1882#if EV_ASYNC_ENABLE
1883 assert (asyncmax >= asynccnt);
1884 array_verify (EV_A_ (W *)asyncs, asynccnt);
1885#endif
1886
1887 assert (preparemax >= preparecnt);
1888 array_verify (EV_A_ (W *)prepares, preparecnt);
1889
1890 assert (checkmax >= checkcnt);
1891 array_verify (EV_A_ (W *)checks, checkcnt);
1892
1893# if 0
1894 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1895 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
527#endif 1896# endif
528
529 ev_now = ev_time ();
530 now = get_clock ();
531 now_floor = now;
532 diff = ev_now - now;
533
534 if (pipe (sigpipe))
535 return 0;
536
537 if (methods == EVMETHOD_AUTO)
538 if (!enable_secure () && getenv ("LIBEV_METHODS"))
539 methods = atoi (getenv ("LIBEV_METHODS"));
540 else
541 methods = EVMETHOD_ANY;
542
543 ev_method = 0;
544#if EV_USE_EPOLL
545 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods);
546#endif 1897#endif
547#if EV_USE_POLL 1898}
548 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods);
549#endif 1899#endif
550#if EV_USE_SELECT
551 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods);
552#endif
553 1900
554 if (ev_method) 1901#if EV_MULTIPLICITY
1902struct ev_loop *
1903ev_default_loop_init (unsigned int flags)
1904#else
1905int
1906ev_default_loop (unsigned int flags)
1907#endif
1908{
1909 if (!ev_default_loop_ptr)
1910 {
1911#if EV_MULTIPLICITY
1912 EV_P = ev_default_loop_ptr = &default_loop_struct;
1913#else
1914 ev_default_loop_ptr = 1;
1915#endif
1916
1917 loop_init (EV_A_ flags);
1918
1919 if (ev_backend (EV_A))
555 { 1920 {
556 ev_watcher_init (&sigev, sigcb); 1921#ifndef _WIN32
557 siginit ();
558
559 ev_signal_init (&childev, childcb, SIGCHLD); 1922 ev_signal_init (&childev, childcb, SIGCHLD);
1923 ev_set_priority (&childev, EV_MAXPRI);
560 ev_signal_start (&childev); 1924 ev_signal_start (EV_A_ &childev);
1925 ev_unref (EV_A); /* child watcher should not keep loop alive */
1926#endif
561 } 1927 }
1928 else
1929 ev_default_loop_ptr = 0;
562 } 1930 }
563 1931
564 return ev_method; 1932 return ev_default_loop_ptr;
1933}
1934
1935void
1936ev_default_destroy (void)
1937{
1938#if EV_MULTIPLICITY
1939 EV_P = ev_default_loop_ptr;
1940#endif
1941
1942 ev_default_loop_ptr = 0;
1943
1944#ifndef _WIN32
1945 ev_ref (EV_A); /* child watcher */
1946 ev_signal_stop (EV_A_ &childev);
1947#endif
1948
1949 loop_destroy (EV_A);
1950}
1951
1952void
1953ev_default_fork (void)
1954{
1955#if EV_MULTIPLICITY
1956 EV_P = ev_default_loop_ptr;
1957#endif
1958
1959 postfork = 1; /* must be in line with ev_loop_fork */
565} 1960}
566 1961
567/*****************************************************************************/ 1962/*****************************************************************************/
568 1963
569void 1964void
570ev_fork_prepare (void) 1965ev_invoke (EV_P_ void *w, int revents)
571{ 1966{
572 /* nop */ 1967 EV_CB_INVOKE ((W)w, revents);
573} 1968}
574 1969
575void 1970unsigned int
576ev_fork_parent (void) 1971ev_pending_count (EV_P)
577{ 1972{
578 /* nop */ 1973 int pri;
579} 1974 unsigned int count = 0;
580 1975
581void 1976 for (pri = NUMPRI; pri--; )
582ev_fork_child (void) 1977 count += pendingcnt [pri];
583{
584#if EV_USE_EPOLL
585 if (ev_method == EVMETHOD_EPOLL)
586 epoll_postfork_child ();
587#endif
588 1978
589 ev_io_stop (&sigev); 1979 return count;
590 close (sigpipe [0]);
591 close (sigpipe [1]);
592 pipe (sigpipe);
593 siginit ();
594} 1980}
595 1981
596/*****************************************************************************/ 1982void noinline
597 1983ev_invoke_pending (EV_P)
598static void
599call_pending (void)
600{ 1984{
601 int pri; 1985 int pri;
602 1986
603 for (pri = NUMPRI; pri--; ) 1987 for (pri = NUMPRI; pri--; )
604 while (pendingcnt [pri]) 1988 while (pendingcnt [pri])
605 { 1989 {
606 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1990 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
607 1991
608 if (p->w) 1992 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1993 /* ^ this is no longer true, as pending_w could be here */
1994
1995 p->w->pending = 0;
1996 EV_CB_INVOKE (p->w, p->events);
1997 EV_FREQUENT_CHECK;
1998 }
1999}
2000
2001#if EV_IDLE_ENABLE
2002/* make idle watchers pending. this handles the "call-idle */
2003/* only when higher priorities are idle" logic */
2004inline_size void
2005idle_reify (EV_P)
2006{
2007 if (expect_false (idleall))
2008 {
2009 int pri;
2010
2011 for (pri = NUMPRI; pri--; )
2012 {
2013 if (pendingcnt [pri])
2014 break;
2015
2016 if (idlecnt [pri])
2017 {
2018 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2019 break;
2020 }
2021 }
2022 }
2023}
2024#endif
2025
2026/* make timers pending */
2027inline_size void
2028timers_reify (EV_P)
2029{
2030 EV_FREQUENT_CHECK;
2031
2032 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2033 {
2034 do
2035 {
2036 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2037
2038 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2039
2040 /* first reschedule or stop timer */
2041 if (w->repeat)
2042 {
2043 ev_at (w) += w->repeat;
2044 if (ev_at (w) < mn_now)
2045 ev_at (w) = mn_now;
2046
2047 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2048
2049 ANHE_at_cache (timers [HEAP0]);
2050 downheap (timers, timercnt, HEAP0);
2051 }
2052 else
2053 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2054
2055 EV_FREQUENT_CHECK;
2056 feed_reverse (EV_A_ (W)w);
2057 }
2058 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2059
2060 feed_reverse_done (EV_A_ EV_TIMEOUT);
2061 }
2062}
2063
2064#if EV_PERIODIC_ENABLE
2065/* make periodics pending */
2066inline_size void
2067periodics_reify (EV_P)
2068{
2069 EV_FREQUENT_CHECK;
2070
2071 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2072 {
2073 int feed_count = 0;
2074
2075 do
2076 {
2077 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->reschedule_cb)
2083 {
2084 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2085
2086 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else if (w->interval)
2092 {
2093 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2094 /* if next trigger time is not sufficiently in the future, put it there */
2095 /* this might happen because of floating point inexactness */
2096 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2097 {
2098 ev_at (w) += w->interval;
2099
2100 /* if interval is unreasonably low we might still have a time in the past */
2101 /* so correct this. this will make the periodic very inexact, but the user */
2102 /* has effectively asked to get triggered more often than possible */
2103 if (ev_at (w) < ev_rt_now)
2104 ev_at (w) = ev_rt_now;
2105 }
2106
2107 ANHE_at_cache (periodics [HEAP0]);
2108 downheap (periodics, periodiccnt, HEAP0);
2109 }
2110 else
2111 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2112
2113 EV_FREQUENT_CHECK;
2114 feed_reverse (EV_A_ (W)w);
2115 }
2116 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2117
2118 feed_reverse_done (EV_A_ EV_PERIODIC);
2119 }
2120}
2121
2122/* simply recalculate all periodics */
2123/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2124static void noinline
2125periodics_reschedule (EV_P)
2126{
2127 int i;
2128
2129 /* adjust periodics after time jump */
2130 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2131 {
2132 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2133
2134 if (w->reschedule_cb)
2135 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2136 else if (w->interval)
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138
2139 ANHE_at_cache (periodics [i]);
2140 }
2141
2142 reheap (periodics, periodiccnt);
2143}
2144#endif
2145
2146/* adjust all timers by a given offset */
2147static void noinline
2148timers_reschedule (EV_P_ ev_tstamp adjust)
2149{
2150 int i;
2151
2152 for (i = 0; i < timercnt; ++i)
2153 {
2154 ANHE *he = timers + i + HEAP0;
2155 ANHE_w (*he)->at += adjust;
2156 ANHE_at_cache (*he);
2157 }
2158}
2159
2160/* fetch new monotonic and realtime times from the kernel */
2161/* also detetc if there was a timejump, and act accordingly */
2162inline_speed void
2163time_update (EV_P_ ev_tstamp max_block)
2164{
2165#if EV_USE_MONOTONIC
2166 if (expect_true (have_monotonic))
2167 {
2168 int i;
2169 ev_tstamp odiff = rtmn_diff;
2170
2171 mn_now = get_clock ();
2172
2173 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2174 /* interpolate in the meantime */
2175 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
2176 {
2177 ev_rt_now = rtmn_diff + mn_now;
2178 return;
2179 }
2180
2181 now_floor = mn_now;
2182 ev_rt_now = ev_time ();
2183
2184 /* loop a few times, before making important decisions.
2185 * on the choice of "4": one iteration isn't enough,
2186 * in case we get preempted during the calls to
2187 * ev_time and get_clock. a second call is almost guaranteed
2188 * to succeed in that case, though. and looping a few more times
2189 * doesn't hurt either as we only do this on time-jumps or
2190 * in the unlikely event of having been preempted here.
2191 */
2192 for (i = 4; --i; )
2193 {
2194 rtmn_diff = ev_rt_now - mn_now;
2195
2196 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
2197 return; /* all is well */
2198
2199 ev_rt_now = ev_time ();
2200 mn_now = get_clock ();
2201 now_floor = mn_now;
2202 }
2203
2204 /* no timer adjustment, as the monotonic clock doesn't jump */
2205 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2206# if EV_PERIODIC_ENABLE
2207 periodics_reschedule (EV_A);
2208# endif
2209 }
2210 else
2211#endif
2212 {
2213 ev_rt_now = ev_time ();
2214
2215 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2216 {
2217 /* adjust timers. this is easy, as the offset is the same for all of them */
2218 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2219#if EV_PERIODIC_ENABLE
2220 periodics_reschedule (EV_A);
2221#endif
2222 }
2223
2224 mn_now = ev_rt_now;
2225 }
2226}
2227
2228void
2229ev_loop (EV_P_ int flags)
2230{
2231#if EV_MINIMAL < 2
2232 ++loop_depth;
2233#endif
2234
2235 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2236
2237 loop_done = EVUNLOOP_CANCEL;
2238
2239 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2240
2241 do
2242 {
2243#if EV_VERIFY >= 2
2244 ev_loop_verify (EV_A);
2245#endif
2246
2247#ifndef _WIN32
2248 if (expect_false (curpid)) /* penalise the forking check even more */
2249 if (expect_false (getpid () != curpid))
609 { 2250 {
610 p->w->pending = 0; 2251 curpid = getpid ();
611 p->w->cb (p->w, p->events); 2252 postfork = 1;
612 } 2253 }
2254#endif
2255
2256#if EV_FORK_ENABLE
2257 /* we might have forked, so queue fork handlers */
2258 if (expect_false (postfork))
2259 if (forkcnt)
2260 {
2261 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2262 EV_INVOKE_PENDING;
2263 }
2264#endif
2265
2266 /* queue prepare watchers (and execute them) */
2267 if (expect_false (preparecnt))
2268 {
2269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
2270 EV_INVOKE_PENDING;
2271 }
2272
2273 if (expect_false (loop_done))
2274 break;
2275
2276 /* we might have forked, so reify kernel state if necessary */
2277 if (expect_false (postfork))
2278 loop_fork (EV_A);
2279
2280 /* update fd-related kernel structures */
2281 fd_reify (EV_A);
2282
2283 /* calculate blocking time */
2284 {
2285 ev_tstamp waittime = 0.;
2286 ev_tstamp sleeptime = 0.;
2287
2288 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
2289 {
2290 /* remember old timestamp for io_blocktime calculation */
2291 ev_tstamp prev_mn_now = mn_now;
2292
2293 /* update time to cancel out callback processing overhead */
2294 time_update (EV_A_ 1e100);
2295
2296 waittime = MAX_BLOCKTIME;
2297
2298 if (timercnt)
2299 {
2300 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
2301 if (waittime > to) waittime = to;
2302 }
2303
2304#if EV_PERIODIC_ENABLE
2305 if (periodiccnt)
2306 {
2307 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
2308 if (waittime > to) waittime = to;
2309 }
2310#endif
2311
2312 /* don't let timeouts decrease the waittime below timeout_blocktime */
2313 if (expect_false (waittime < timeout_blocktime))
2314 waittime = timeout_blocktime;
2315
2316 /* extra check because io_blocktime is commonly 0 */
2317 if (expect_false (io_blocktime))
2318 {
2319 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2320
2321 if (sleeptime > waittime - backend_fudge)
2322 sleeptime = waittime - backend_fudge;
2323
2324 if (expect_true (sleeptime > 0.))
2325 {
2326 ev_sleep (sleeptime);
2327 waittime -= sleeptime;
2328 }
2329 }
2330 }
2331
2332#if EV_MINIMAL < 2
2333 ++loop_count;
2334#endif
2335 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2336 backend_poll (EV_A_ waittime);
2337 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2338
2339 /* update ev_rt_now, do magic */
2340 time_update (EV_A_ waittime + sleeptime);
613 } 2341 }
614}
615 2342
616static void 2343 /* queue pending timers and reschedule them */
617timers_reify (void) 2344 timers_reify (EV_A); /* relative timers called last */
2345#if EV_PERIODIC_ENABLE
2346 periodics_reify (EV_A); /* absolute timers called first */
2347#endif
2348
2349#if EV_IDLE_ENABLE
2350 /* queue idle watchers unless other events are pending */
2351 idle_reify (EV_A);
2352#endif
2353
2354 /* queue check watchers, to be executed first */
2355 if (expect_false (checkcnt))
2356 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2357
2358 EV_INVOKE_PENDING;
2359 }
2360 while (expect_true (
2361 activecnt
2362 && !loop_done
2363 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2364 ));
2365
2366 if (loop_done == EVUNLOOP_ONE)
2367 loop_done = EVUNLOOP_CANCEL;
2368
2369#if EV_MINIMAL < 2
2370 --loop_depth;
2371#endif
2372}
2373
2374void
2375ev_unloop (EV_P_ int how)
618{ 2376{
619 while (timercnt && timers [0]->at <= now) 2377 loop_done = how;
2378}
2379
2380void
2381ev_ref (EV_P)
2382{
2383 ++activecnt;
2384}
2385
2386void
2387ev_unref (EV_P)
2388{
2389 --activecnt;
2390}
2391
2392void
2393ev_now_update (EV_P)
2394{
2395 time_update (EV_A_ 1e100);
2396}
2397
2398void
2399ev_suspend (EV_P)
2400{
2401 ev_now_update (EV_A);
2402}
2403
2404void
2405ev_resume (EV_P)
2406{
2407 ev_tstamp mn_prev = mn_now;
2408
2409 ev_now_update (EV_A);
2410 timers_reschedule (EV_A_ mn_now - mn_prev);
2411#if EV_PERIODIC_ENABLE
2412 /* TODO: really do this? */
2413 periodics_reschedule (EV_A);
2414#endif
2415}
2416
2417/*****************************************************************************/
2418/* singly-linked list management, used when the expected list length is short */
2419
2420inline_size void
2421wlist_add (WL *head, WL elem)
2422{
2423 elem->next = *head;
2424 *head = elem;
2425}
2426
2427inline_size void
2428wlist_del (WL *head, WL elem)
2429{
2430 while (*head)
2431 {
2432 if (expect_true (*head == elem))
2433 {
2434 *head = elem->next;
2435 break;
2436 }
2437
2438 head = &(*head)->next;
2439 }
2440}
2441
2442/* internal, faster, version of ev_clear_pending */
2443inline_speed void
2444clear_pending (EV_P_ W w)
2445{
2446 if (w->pending)
2447 {
2448 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
2449 w->pending = 0;
2450 }
2451}
2452
2453int
2454ev_clear_pending (EV_P_ void *w)
2455{
2456 W w_ = (W)w;
2457 int pending = w_->pending;
2458
2459 if (expect_true (pending))
2460 {
2461 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2462 p->w = (W)&pending_w;
2463 w_->pending = 0;
2464 return p->events;
2465 }
2466 else
2467 return 0;
2468}
2469
2470inline_size void
2471pri_adjust (EV_P_ W w)
2472{
2473 int pri = ev_priority (w);
2474 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2475 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2476 ev_set_priority (w, pri);
2477}
2478
2479inline_speed void
2480ev_start (EV_P_ W w, int active)
2481{
2482 pri_adjust (EV_A_ w);
2483 w->active = active;
2484 ev_ref (EV_A);
2485}
2486
2487inline_size void
2488ev_stop (EV_P_ W w)
2489{
2490 ev_unref (EV_A);
2491 w->active = 0;
2492}
2493
2494/*****************************************************************************/
2495
2496void noinline
2497ev_io_start (EV_P_ ev_io *w)
2498{
2499 int fd = w->fd;
2500
2501 if (expect_false (ev_is_active (w)))
2502 return;
2503
2504 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2505 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2506
2507 EV_FREQUENT_CHECK;
2508
2509 ev_start (EV_A_ (W)w, 1);
2510 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2511 wlist_add (&anfds[fd].head, (WL)w);
2512
2513 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2514 w->events &= ~EV__IOFDSET;
2515
2516 EV_FREQUENT_CHECK;
2517}
2518
2519void noinline
2520ev_io_stop (EV_P_ ev_io *w)
2521{
2522 clear_pending (EV_A_ (W)w);
2523 if (expect_false (!ev_is_active (w)))
2524 return;
2525
2526 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2527
2528 EV_FREQUENT_CHECK;
2529
2530 wlist_del (&anfds[w->fd].head, (WL)w);
2531 ev_stop (EV_A_ (W)w);
2532
2533 fd_change (EV_A_ w->fd, 1);
2534
2535 EV_FREQUENT_CHECK;
2536}
2537
2538void noinline
2539ev_timer_start (EV_P_ ev_timer *w)
2540{
2541 if (expect_false (ev_is_active (w)))
2542 return;
2543
2544 ev_at (w) += mn_now;
2545
2546 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2547
2548 EV_FREQUENT_CHECK;
2549
2550 ++timercnt;
2551 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2552 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2553 ANHE_w (timers [ev_active (w)]) = (WT)w;
2554 ANHE_at_cache (timers [ev_active (w)]);
2555 upheap (timers, ev_active (w));
2556
2557 EV_FREQUENT_CHECK;
2558
2559 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2560}
2561
2562void noinline
2563ev_timer_stop (EV_P_ ev_timer *w)
2564{
2565 clear_pending (EV_A_ (W)w);
2566 if (expect_false (!ev_is_active (w)))
2567 return;
2568
2569 EV_FREQUENT_CHECK;
2570
2571 {
2572 int active = ev_active (w);
2573
2574 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2575
2576 --timercnt;
2577
2578 if (expect_true (active < timercnt + HEAP0))
620 { 2579 {
621 struct ev_timer *w = timers [0]; 2580 timers [active] = timers [timercnt + HEAP0];
2581 adjustheap (timers, timercnt, active);
2582 }
2583 }
622 2584
623 /* first reschedule or stop timer */ 2585 EV_FREQUENT_CHECK;
2586
2587 ev_at (w) -= mn_now;
2588
2589 ev_stop (EV_A_ (W)w);
2590}
2591
2592void noinline
2593ev_timer_again (EV_P_ ev_timer *w)
2594{
2595 EV_FREQUENT_CHECK;
2596
2597 if (ev_is_active (w))
2598 {
624 if (w->repeat) 2599 if (w->repeat)
625 { 2600 {
626 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
627 w->at = now + w->repeat; 2601 ev_at (w) = mn_now + w->repeat;
628 downheap ((WT *)timers, timercnt, 0); 2602 ANHE_at_cache (timers [ev_active (w)]);
2603 adjustheap (timers, timercnt, ev_active (w));
629 } 2604 }
630 else 2605 else
631 ev_timer_stop (w); /* nonrepeating: stop timer */ 2606 ev_timer_stop (EV_A_ w);
632
633 event ((W)w, EV_TIMEOUT);
634 }
635}
636
637static void
638periodics_reify (void)
639{
640 while (periodiccnt && periodics [0]->at <= ev_now)
641 { 2607 }
642 struct ev_periodic *w = periodics [0]; 2608 else if (w->repeat)
2609 {
2610 ev_at (w) = w->repeat;
2611 ev_timer_start (EV_A_ w);
2612 }
643 2613
644 /* first reschedule or stop timer */ 2614 EV_FREQUENT_CHECK;
2615}
2616
2617ev_tstamp
2618ev_timer_remaining (EV_P_ ev_timer *w)
2619{
2620 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2621}
2622
2623#if EV_PERIODIC_ENABLE
2624void noinline
2625ev_periodic_start (EV_P_ ev_periodic *w)
2626{
2627 if (expect_false (ev_is_active (w)))
2628 return;
2629
2630 if (w->reschedule_cb)
2631 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
645 if (w->interval) 2632 else if (w->interval)
2633 {
2634 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
2635 /* this formula differs from the one in periodic_reify because we do not always round up */
2636 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2637 }
2638 else
2639 ev_at (w) = w->offset;
2640
2641 EV_FREQUENT_CHECK;
2642
2643 ++periodiccnt;
2644 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
2645 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
2646 ANHE_w (periodics [ev_active (w)]) = (WT)w;
2647 ANHE_at_cache (periodics [ev_active (w)]);
2648 upheap (periodics, ev_active (w));
2649
2650 EV_FREQUENT_CHECK;
2651
2652 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
2653}
2654
2655void noinline
2656ev_periodic_stop (EV_P_ ev_periodic *w)
2657{
2658 clear_pending (EV_A_ (W)w);
2659 if (expect_false (!ev_is_active (w)))
2660 return;
2661
2662 EV_FREQUENT_CHECK;
2663
2664 {
2665 int active = ev_active (w);
2666
2667 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2668
2669 --periodiccnt;
2670
2671 if (expect_true (active < periodiccnt + HEAP0))
2672 {
2673 periodics [active] = periodics [periodiccnt + HEAP0];
2674 adjustheap (periodics, periodiccnt, active);
2675 }
2676 }
2677
2678 EV_FREQUENT_CHECK;
2679
2680 ev_stop (EV_A_ (W)w);
2681}
2682
2683void noinline
2684ev_periodic_again (EV_P_ ev_periodic *w)
2685{
2686 /* TODO: use adjustheap and recalculation */
2687 ev_periodic_stop (EV_A_ w);
2688 ev_periodic_start (EV_A_ w);
2689}
2690#endif
2691
2692#ifndef SA_RESTART
2693# define SA_RESTART 0
2694#endif
2695
2696void noinline
2697ev_signal_start (EV_P_ ev_signal *w)
2698{
2699 if (expect_false (ev_is_active (w)))
2700 return;
2701
2702 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2703
2704#if EV_MULTIPLICITY
2705 assert (("libev: a signal must not be attached to two different loops",
2706 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2707
2708 signals [w->signum - 1].loop = EV_A;
2709#endif
2710
2711 EV_FREQUENT_CHECK;
2712
2713#if EV_USE_SIGNALFD
2714 if (sigfd == -2)
2715 {
2716 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2717 if (sigfd < 0 && errno == EINVAL)
2718 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2719
2720 if (sigfd >= 0)
646 { 2721 {
647 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 2722 fd_intern (sigfd); /* doing it twice will not hurt */
648 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 2723
649 downheap ((WT *)periodics, periodiccnt, 0); 2724 sigemptyset (&sigfd_set);
2725
2726 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2727 ev_set_priority (&sigfd_w, EV_MAXPRI);
2728 ev_io_start (EV_A_ &sigfd_w);
2729 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2730 }
2731 }
2732
2733 if (sigfd >= 0)
2734 {
2735 /* TODO: check .head */
2736 sigaddset (&sigfd_set, w->signum);
2737 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2738
2739 signalfd (sigfd, &sigfd_set, 0);
2740 }
2741#endif
2742
2743 ev_start (EV_A_ (W)w, 1);
2744 wlist_add (&signals [w->signum - 1].head, (WL)w);
2745
2746 if (!((WL)w)->next)
2747# if EV_USE_SIGNALFD
2748 if (sigfd < 0) /*TODO*/
2749# endif
2750 {
2751# if _WIN32
2752 evpipe_init (EV_A);
2753
2754 signal (w->signum, ev_sighandler);
2755# else
2756 struct sigaction sa;
2757
2758 evpipe_init (EV_A);
2759
2760 sa.sa_handler = ev_sighandler;
2761 sigfillset (&sa.sa_mask);
2762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2763 sigaction (w->signum, &sa, 0);
2764
2765 sigemptyset (&sa.sa_mask);
2766 sigaddset (&sa.sa_mask, w->signum);
2767 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2768#endif
2769 }
2770
2771 EV_FREQUENT_CHECK;
2772}
2773
2774void noinline
2775ev_signal_stop (EV_P_ ev_signal *w)
2776{
2777 clear_pending (EV_A_ (W)w);
2778 if (expect_false (!ev_is_active (w)))
2779 return;
2780
2781 EV_FREQUENT_CHECK;
2782
2783 wlist_del (&signals [w->signum - 1].head, (WL)w);
2784 ev_stop (EV_A_ (W)w);
2785
2786 if (!signals [w->signum - 1].head)
2787 {
2788#if EV_MULTIPLICITY
2789 signals [w->signum - 1].loop = 0; /* unattach from signal */
2790#endif
2791#if EV_USE_SIGNALFD
2792 if (sigfd >= 0)
2793 {
2794 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2795 sigdelset (&sigfd_set, w->signum);
2796 signalfd (sigfd, &sigfd_set, 0);
2797 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2798 /*TODO: maybe unblock signal? */
650 } 2799 }
651 else 2800 else
652 ev_periodic_stop (w); /* nonrepeating: stop timer */ 2801#endif
653 2802 signal (w->signum, SIG_DFL);
654 event ((W)w, EV_PERIODIC);
655 }
656}
657
658static void
659periodics_reschedule (ev_tstamp diff)
660{
661 int i;
662
663 /* adjust periodics after time jump */
664 for (i = 0; i < periodiccnt; ++i)
665 { 2803 }
666 struct ev_periodic *w = periodics [i];
667 2804
668 if (w->interval) 2805 EV_FREQUENT_CHECK;
2806}
2807
2808void
2809ev_child_start (EV_P_ ev_child *w)
2810{
2811#if EV_MULTIPLICITY
2812 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2813#endif
2814 if (expect_false (ev_is_active (w)))
2815 return;
2816
2817 EV_FREQUENT_CHECK;
2818
2819 ev_start (EV_A_ (W)w, 1);
2820 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2821
2822 EV_FREQUENT_CHECK;
2823}
2824
2825void
2826ev_child_stop (EV_P_ ev_child *w)
2827{
2828 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w)))
2830 return;
2831
2832 EV_FREQUENT_CHECK;
2833
2834 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2838}
2839
2840#if EV_STAT_ENABLE
2841
2842# ifdef _WIN32
2843# undef lstat
2844# define lstat(a,b) _stati64 (a,b)
2845# endif
2846
2847#define DEF_STAT_INTERVAL 5.0074891
2848#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2849#define MIN_STAT_INTERVAL 0.1074891
2850
2851static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2852
2853#if EV_USE_INOTIFY
2854# define EV_INOTIFY_BUFSIZE 8192
2855
2856static void noinline
2857infy_add (EV_P_ ev_stat *w)
2858{
2859 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2860
2861 if (w->wd >= 0)
2862 {
2863 struct statfs sfs;
2864
2865 /* now local changes will be tracked by inotify, but remote changes won't */
2866 /* unless the filesystem is known to be local, we therefore still poll */
2867 /* also do poll on <2.6.25, but with normal frequency */
2868
2869 if (!fs_2625)
2870 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2871 else if (!statfs (w->path, &sfs)
2872 && (sfs.f_type == 0x1373 /* devfs */
2873 || sfs.f_type == 0xEF53 /* ext2/3 */
2874 || sfs.f_type == 0x3153464a /* jfs */
2875 || sfs.f_type == 0x52654973 /* reiser3 */
2876 || sfs.f_type == 0x01021994 /* tempfs */
2877 || sfs.f_type == 0x58465342 /* xfs */))
2878 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2879 else
2880 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2881 }
2882 else
2883 {
2884 /* can't use inotify, continue to stat */
2885 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2886
2887 /* if path is not there, monitor some parent directory for speedup hints */
2888 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2889 /* but an efficiency issue only */
2890 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
669 { 2891 {
670 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 2892 char path [4096];
2893 strcpy (path, w->path);
671 2894
672 if (fabs (diff) >= 1e-4) 2895 do
673 { 2896 {
674 ev_periodic_stop (w); 2897 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
675 ev_periodic_start (w); 2898 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
676 2899
677 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 2900 char *pend = strrchr (path, '/');
2901
2902 if (!pend || pend == path)
2903 break;
2904
2905 *pend = 0;
2906 w->wd = inotify_add_watch (fs_fd, path, mask);
2907 }
2908 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2909 }
2910 }
2911
2912 if (w->wd >= 0)
2913 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2914
2915 /* now re-arm timer, if required */
2916 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2917 ev_timer_again (EV_A_ &w->timer);
2918 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2919}
2920
2921static void noinline
2922infy_del (EV_P_ ev_stat *w)
2923{
2924 int slot;
2925 int wd = w->wd;
2926
2927 if (wd < 0)
2928 return;
2929
2930 w->wd = -2;
2931 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2932 wlist_del (&fs_hash [slot].head, (WL)w);
2933
2934 /* remove this watcher, if others are watching it, they will rearm */
2935 inotify_rm_watch (fs_fd, wd);
2936}
2937
2938static void noinline
2939infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2940{
2941 if (slot < 0)
2942 /* overflow, need to check for all hash slots */
2943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2944 infy_wd (EV_A_ slot, wd, ev);
2945 else
2946 {
2947 WL w_;
2948
2949 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2950 {
2951 ev_stat *w = (ev_stat *)w_;
2952 w_ = w_->next; /* lets us remove this watcher and all before it */
2953
2954 if (w->wd == wd || wd == -1)
2955 {
2956 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2957 {
2958 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2959 w->wd = -1;
2960 infy_add (EV_A_ w); /* re-add, no matter what */
2961 }
2962
2963 stat_timer_cb (EV_A_ &w->timer, 0);
678 } 2964 }
679 } 2965 }
680 } 2966 }
681} 2967}
682 2968
683static int 2969static void
684time_update_monotonic (void) 2970infy_cb (EV_P_ ev_io *w, int revents)
685{ 2971{
686 now = get_clock (); 2972 char buf [EV_INOTIFY_BUFSIZE];
2973 struct inotify_event *ev = (struct inotify_event *)buf;
2974 int ofs;
2975 int len = read (fs_fd, buf, sizeof (buf));
687 2976
688 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 2977 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
689 { 2978 infy_wd (EV_A_ ev->wd, ev->wd, ev);
690 ev_now = now + diff; 2979}
2980
2981inline_size void
2982check_2625 (EV_P)
2983{
2984 /* kernels < 2.6.25 are borked
2985 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2986 */
2987 struct utsname buf;
2988 int major, minor, micro;
2989
2990 if (uname (&buf))
691 return 0; 2991 return;
2992
2993 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2994 return;
2995
2996 if (major < 2
2997 || (major == 2 && minor < 6)
2998 || (major == 2 && minor == 6 && micro < 25))
2999 return;
3000
3001 fs_2625 = 1;
3002}
3003
3004inline_size int
3005infy_newfd (void)
3006{
3007#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3008 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3009 if (fd >= 0)
3010 return fd;
3011#endif
3012 return inotify_init ();
3013}
3014
3015inline_size void
3016infy_init (EV_P)
3017{
3018 if (fs_fd != -2)
3019 return;
3020
3021 fs_fd = -1;
3022
3023 check_2625 (EV_A);
3024
3025 fs_fd = infy_newfd ();
3026
3027 if (fs_fd >= 0)
692 } 3028 {
3029 fd_intern (fs_fd);
3030 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3031 ev_set_priority (&fs_w, EV_MAXPRI);
3032 ev_io_start (EV_A_ &fs_w);
3033 ev_unref (EV_A);
3034 }
3035}
3036
3037inline_size void
3038infy_fork (EV_P)
3039{
3040 int slot;
3041
3042 if (fs_fd < 0)
3043 return;
3044
3045 ev_ref (EV_A);
3046 ev_io_stop (EV_A_ &fs_w);
3047 close (fs_fd);
3048 fs_fd = infy_newfd ();
3049
3050 if (fs_fd >= 0)
3051 {
3052 fd_intern (fs_fd);
3053 ev_io_set (&fs_w, fs_fd, EV_READ);
3054 ev_io_start (EV_A_ &fs_w);
3055 ev_unref (EV_A);
3056 }
3057
3058 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3059 {
3060 WL w_ = fs_hash [slot].head;
3061 fs_hash [slot].head = 0;
3062
3063 while (w_)
3064 {
3065 ev_stat *w = (ev_stat *)w_;
3066 w_ = w_->next; /* lets us add this watcher */
3067
3068 w->wd = -1;
3069
3070 if (fs_fd >= 0)
3071 infy_add (EV_A_ w); /* re-add, no matter what */
3072 else
3073 {
3074 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3075 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3076 ev_timer_again (EV_A_ &w->timer);
3077 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3078 }
3079 }
3080 }
3081}
3082
3083#endif
3084
3085#ifdef _WIN32
3086# define EV_LSTAT(p,b) _stati64 (p, b)
3087#else
3088# define EV_LSTAT(p,b) lstat (p, b)
3089#endif
3090
3091void
3092ev_stat_stat (EV_P_ ev_stat *w)
3093{
3094 if (lstat (w->path, &w->attr) < 0)
3095 w->attr.st_nlink = 0;
3096 else if (!w->attr.st_nlink)
3097 w->attr.st_nlink = 1;
3098}
3099
3100static void noinline
3101stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3102{
3103 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3104
3105 /* we copy this here each the time so that */
3106 /* prev has the old value when the callback gets invoked */
3107 w->prev = w->attr;
3108 ev_stat_stat (EV_A_ w);
3109
3110 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3111 if (
3112 w->prev.st_dev != w->attr.st_dev
3113 || w->prev.st_ino != w->attr.st_ino
3114 || w->prev.st_mode != w->attr.st_mode
3115 || w->prev.st_nlink != w->attr.st_nlink
3116 || w->prev.st_uid != w->attr.st_uid
3117 || w->prev.st_gid != w->attr.st_gid
3118 || w->prev.st_rdev != w->attr.st_rdev
3119 || w->prev.st_size != w->attr.st_size
3120 || w->prev.st_atime != w->attr.st_atime
3121 || w->prev.st_mtime != w->attr.st_mtime
3122 || w->prev.st_ctime != w->attr.st_ctime
3123 ) {
3124 #if EV_USE_INOTIFY
3125 if (fs_fd >= 0)
3126 {
3127 infy_del (EV_A_ w);
3128 infy_add (EV_A_ w);
3129 ev_stat_stat (EV_A_ w); /* avoid race... */
3130 }
3131 #endif
3132
3133 ev_feed_event (EV_A_ w, EV_STAT);
3134 }
3135}
3136
3137void
3138ev_stat_start (EV_P_ ev_stat *w)
3139{
3140 if (expect_false (ev_is_active (w)))
3141 return;
3142
3143 ev_stat_stat (EV_A_ w);
3144
3145 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3146 w->interval = MIN_STAT_INTERVAL;
3147
3148 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3149 ev_set_priority (&w->timer, ev_priority (w));
3150
3151#if EV_USE_INOTIFY
3152 infy_init (EV_A);
3153
3154 if (fs_fd >= 0)
3155 infy_add (EV_A_ w);
693 else 3156 else
3157#endif
3158 {
3159 ev_timer_again (EV_A_ &w->timer);
3160 ev_unref (EV_A);
694 { 3161 }
695 now_floor = now; 3162
696 ev_now = ev_time (); 3163 ev_start (EV_A_ (W)w, 1);
3164
3165 EV_FREQUENT_CHECK;
3166}
3167
3168void
3169ev_stat_stop (EV_P_ ev_stat *w)
3170{
3171 clear_pending (EV_A_ (W)w);
3172 if (expect_false (!ev_is_active (w)))
697 return 1; 3173 return;
3174
3175 EV_FREQUENT_CHECK;
3176
3177#if EV_USE_INOTIFY
3178 infy_del (EV_A_ w);
3179#endif
3180
3181 if (ev_is_active (&w->timer))
698 } 3182 {
3183 ev_ref (EV_A);
3184 ev_timer_stop (EV_A_ &w->timer);
3185 }
3186
3187 ev_stop (EV_A_ (W)w);
3188
3189 EV_FREQUENT_CHECK;
3190}
3191#endif
3192
3193#if EV_IDLE_ENABLE
3194void
3195ev_idle_start (EV_P_ ev_idle *w)
3196{
3197 if (expect_false (ev_is_active (w)))
3198 return;
3199
3200 pri_adjust (EV_A_ (W)w);
3201
3202 EV_FREQUENT_CHECK;
3203
3204 {
3205 int active = ++idlecnt [ABSPRI (w)];
3206
3207 ++idleall;
3208 ev_start (EV_A_ (W)w, active);
3209
3210 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3211 idles [ABSPRI (w)][active - 1] = w;
3212 }
3213
3214 EV_FREQUENT_CHECK;
3215}
3216
3217void
3218ev_idle_stop (EV_P_ ev_idle *w)
3219{
3220 clear_pending (EV_A_ (W)w);
3221 if (expect_false (!ev_is_active (w)))
3222 return;
3223
3224 EV_FREQUENT_CHECK;
3225
3226 {
3227 int active = ev_active (w);
3228
3229 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3230 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3231
3232 ev_stop (EV_A_ (W)w);
3233 --idleall;
3234 }
3235
3236 EV_FREQUENT_CHECK;
3237}
3238#endif
3239
3240void
3241ev_prepare_start (EV_P_ ev_prepare *w)
3242{
3243 if (expect_false (ev_is_active (w)))
3244 return;
3245
3246 EV_FREQUENT_CHECK;
3247
3248 ev_start (EV_A_ (W)w, ++preparecnt);
3249 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3250 prepares [preparecnt - 1] = w;
3251
3252 EV_FREQUENT_CHECK;
3253}
3254
3255void
3256ev_prepare_stop (EV_P_ ev_prepare *w)
3257{
3258 clear_pending (EV_A_ (W)w);
3259 if (expect_false (!ev_is_active (w)))
3260 return;
3261
3262 EV_FREQUENT_CHECK;
3263
3264 {
3265 int active = ev_active (w);
3266
3267 prepares [active - 1] = prepares [--preparecnt];
3268 ev_active (prepares [active - 1]) = active;
3269 }
3270
3271 ev_stop (EV_A_ (W)w);
3272
3273 EV_FREQUENT_CHECK;
3274}
3275
3276void
3277ev_check_start (EV_P_ ev_check *w)
3278{
3279 if (expect_false (ev_is_active (w)))
3280 return;
3281
3282 EV_FREQUENT_CHECK;
3283
3284 ev_start (EV_A_ (W)w, ++checkcnt);
3285 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3286 checks [checkcnt - 1] = w;
3287
3288 EV_FREQUENT_CHECK;
3289}
3290
3291void
3292ev_check_stop (EV_P_ ev_check *w)
3293{
3294 clear_pending (EV_A_ (W)w);
3295 if (expect_false (!ev_is_active (w)))
3296 return;
3297
3298 EV_FREQUENT_CHECK;
3299
3300 {
3301 int active = ev_active (w);
3302
3303 checks [active - 1] = checks [--checkcnt];
3304 ev_active (checks [active - 1]) = active;
3305 }
3306
3307 ev_stop (EV_A_ (W)w);
3308
3309 EV_FREQUENT_CHECK;
3310}
3311
3312#if EV_EMBED_ENABLE
3313void noinline
3314ev_embed_sweep (EV_P_ ev_embed *w)
3315{
3316 ev_loop (w->other, EVLOOP_NONBLOCK);
699} 3317}
700 3318
701static void 3319static void
702time_update (void) 3320embed_io_cb (EV_P_ ev_io *io, int revents)
703{ 3321{
704 int i; 3322 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
705 3323
706#if EV_USE_MONOTONIC 3324 if (ev_cb (w))
707 if (expect_true (have_monotonic)) 3325 ev_feed_event (EV_A_ (W)w, EV_EMBED);
708 {
709 if (time_update_monotonic ())
710 {
711 ev_tstamp odiff = diff;
712
713 for (i = 4; --i; ) /* loop a few times, before making important decisions */
714 {
715 diff = ev_now - now;
716
717 if (fabs (odiff - diff) < MIN_TIMEJUMP)
718 return; /* all is well */
719
720 ev_now = ev_time ();
721 now = get_clock ();
722 now_floor = now;
723 }
724
725 periodics_reschedule (diff - odiff);
726 /* no timer adjustment, as the monotonic clock doesn't jump */
727 }
728 }
729 else 3326 else
730#endif 3327 ev_loop (w->other, EVLOOP_NONBLOCK);
3328}
3329
3330static void
3331embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3332{
3333 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3334
731 { 3335 {
732 ev_now = ev_time (); 3336 EV_P = w->other;
733 3337
734 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3338 while (fdchangecnt)
735 { 3339 {
736 periodics_reschedule (ev_now - now); 3340 fd_reify (EV_A);
737 3341 ev_loop (EV_A_ EVLOOP_NONBLOCK);
738 /* adjust timers. this is easy, as the offset is the same for all */
739 for (i = 0; i < timercnt; ++i)
740 timers [i]->at += diff;
741 } 3342 }
742
743 now = ev_now;
744 } 3343 }
745} 3344}
746 3345
747int ev_loop_done; 3346static void
748 3347embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
749void ev_loop (int flags)
750{ 3348{
751 double block; 3349 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
752 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
753 3350
754 do 3351 ev_embed_stop (EV_A_ w);
3352
755 { 3353 {
756 /* queue check watchers (and execute them) */ 3354 EV_P = w->other;
757 if (expect_false (preparecnt))
758 {
759 queue_events ((W *)prepares, preparecnt, EV_PREPARE);
760 call_pending ();
761 }
762 3355
763 /* update fd-related kernel structures */ 3356 ev_loop_fork (EV_A);
764 fd_reify (); 3357 ev_loop (EV_A_ EVLOOP_NONBLOCK);
765
766 /* calculate blocking time */
767
768 /* we only need this for !monotonic clockor timers, but as we basically
769 always have timers, we just calculate it always */
770#if EV_USE_MONOTONIC
771 if (expect_true (have_monotonic))
772 time_update_monotonic ();
773 else
774#endif
775 {
776 ev_now = ev_time ();
777 now = ev_now;
778 }
779
780 if (flags & EVLOOP_NONBLOCK || idlecnt)
781 block = 0.;
782 else
783 {
784 block = MAX_BLOCKTIME;
785
786 if (timercnt)
787 {
788 ev_tstamp to = timers [0]->at - now + method_fudge;
789 if (block > to) block = to;
790 }
791
792 if (periodiccnt)
793 {
794 ev_tstamp to = periodics [0]->at - ev_now + method_fudge;
795 if (block > to) block = to;
796 }
797
798 if (block < 0.) block = 0.;
799 }
800
801 method_poll (block);
802
803 /* update ev_now, do magic */
804 time_update ();
805
806 /* queue pending timers and reschedule them */
807 timers_reify (); /* relative timers called last */
808 periodics_reify (); /* absolute timers called first */
809
810 /* queue idle watchers unless io or timers are pending */
811 if (!pendingcnt)
812 queue_events ((W *)idles, idlecnt, EV_IDLE);
813
814 /* queue check watchers, to be executed first */
815 if (checkcnt)
816 queue_events ((W *)checks, checkcnt, EV_CHECK);
817
818 call_pending ();
819 } 3358 }
820 while (!ev_loop_done);
821 3359
822 if (ev_loop_done != 2) 3360 ev_embed_start (EV_A_ w);
823 ev_loop_done = 0;
824} 3361}
3362
3363#if 0
3364static void
3365embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3366{
3367 ev_idle_stop (EV_A_ idle);
3368}
3369#endif
3370
3371void
3372ev_embed_start (EV_P_ ev_embed *w)
3373{
3374 if (expect_false (ev_is_active (w)))
3375 return;
3376
3377 {
3378 EV_P = w->other;
3379 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3380 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3381 }
3382
3383 EV_FREQUENT_CHECK;
3384
3385 ev_set_priority (&w->io, ev_priority (w));
3386 ev_io_start (EV_A_ &w->io);
3387
3388 ev_prepare_init (&w->prepare, embed_prepare_cb);
3389 ev_set_priority (&w->prepare, EV_MINPRI);
3390 ev_prepare_start (EV_A_ &w->prepare);
3391
3392 ev_fork_init (&w->fork, embed_fork_cb);
3393 ev_fork_start (EV_A_ &w->fork);
3394
3395 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3396
3397 ev_start (EV_A_ (W)w, 1);
3398
3399 EV_FREQUENT_CHECK;
3400}
3401
3402void
3403ev_embed_stop (EV_P_ ev_embed *w)
3404{
3405 clear_pending (EV_A_ (W)w);
3406 if (expect_false (!ev_is_active (w)))
3407 return;
3408
3409 EV_FREQUENT_CHECK;
3410
3411 ev_io_stop (EV_A_ &w->io);
3412 ev_prepare_stop (EV_A_ &w->prepare);
3413 ev_fork_stop (EV_A_ &w->fork);
3414
3415 EV_FREQUENT_CHECK;
3416}
3417#endif
3418
3419#if EV_FORK_ENABLE
3420void
3421ev_fork_start (EV_P_ ev_fork *w)
3422{
3423 if (expect_false (ev_is_active (w)))
3424 return;
3425
3426 EV_FREQUENT_CHECK;
3427
3428 ev_start (EV_A_ (W)w, ++forkcnt);
3429 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3430 forks [forkcnt - 1] = w;
3431
3432 EV_FREQUENT_CHECK;
3433}
3434
3435void
3436ev_fork_stop (EV_P_ ev_fork *w)
3437{
3438 clear_pending (EV_A_ (W)w);
3439 if (expect_false (!ev_is_active (w)))
3440 return;
3441
3442 EV_FREQUENT_CHECK;
3443
3444 {
3445 int active = ev_active (w);
3446
3447 forks [active - 1] = forks [--forkcnt];
3448 ev_active (forks [active - 1]) = active;
3449 }
3450
3451 ev_stop (EV_A_ (W)w);
3452
3453 EV_FREQUENT_CHECK;
3454}
3455#endif
3456
3457#if EV_ASYNC_ENABLE
3458void
3459ev_async_start (EV_P_ ev_async *w)
3460{
3461 if (expect_false (ev_is_active (w)))
3462 return;
3463
3464 evpipe_init (EV_A);
3465
3466 EV_FREQUENT_CHECK;
3467
3468 ev_start (EV_A_ (W)w, ++asynccnt);
3469 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3470 asyncs [asynccnt - 1] = w;
3471
3472 EV_FREQUENT_CHECK;
3473}
3474
3475void
3476ev_async_stop (EV_P_ ev_async *w)
3477{
3478 clear_pending (EV_A_ (W)w);
3479 if (expect_false (!ev_is_active (w)))
3480 return;
3481
3482 EV_FREQUENT_CHECK;
3483
3484 {
3485 int active = ev_active (w);
3486
3487 asyncs [active - 1] = asyncs [--asynccnt];
3488 ev_active (asyncs [active - 1]) = active;
3489 }
3490
3491 ev_stop (EV_A_ (W)w);
3492
3493 EV_FREQUENT_CHECK;
3494}
3495
3496void
3497ev_async_send (EV_P_ ev_async *w)
3498{
3499 w->sent = 1;
3500 evpipe_write (EV_A_ &async_pending);
3501}
3502#endif
825 3503
826/*****************************************************************************/ 3504/*****************************************************************************/
827 3505
828static void
829wlist_add (WL *head, WL elem)
830{
831 elem->next = *head;
832 *head = elem;
833}
834
835static void
836wlist_del (WL *head, WL elem)
837{
838 while (*head)
839 {
840 if (*head == elem)
841 {
842 *head = elem->next;
843 return;
844 }
845
846 head = &(*head)->next;
847 }
848}
849
850static void
851ev_clear_pending (W w)
852{
853 if (w->pending)
854 {
855 pendings [ABSPRI (w)][w->pending - 1].w = 0;
856 w->pending = 0;
857 }
858}
859
860static void
861ev_start (W w, int active)
862{
863 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
864 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
865
866 w->active = active;
867}
868
869static void
870ev_stop (W w)
871{
872 w->active = 0;
873}
874
875/*****************************************************************************/
876
877void
878ev_io_start (struct ev_io *w)
879{
880 int fd = w->fd;
881
882 if (ev_is_active (w))
883 return;
884
885 assert (("ev_io_start called with negative fd", fd >= 0));
886
887 ev_start ((W)w, 1);
888 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
889 wlist_add ((WL *)&anfds[fd].head, (WL)w);
890
891 fd_change (fd);
892}
893
894void
895ev_io_stop (struct ev_io *w)
896{
897 ev_clear_pending ((W)w);
898 if (!ev_is_active (w))
899 return;
900
901 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
902 ev_stop ((W)w);
903
904 fd_change (w->fd);
905}
906
907void
908ev_timer_start (struct ev_timer *w)
909{
910 if (ev_is_active (w))
911 return;
912
913 w->at += now;
914
915 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
916
917 ev_start ((W)w, ++timercnt);
918 array_needsize (timers, timermax, timercnt, );
919 timers [timercnt - 1] = w;
920 upheap ((WT *)timers, timercnt - 1);
921}
922
923void
924ev_timer_stop (struct ev_timer *w)
925{
926 ev_clear_pending ((W)w);
927 if (!ev_is_active (w))
928 return;
929
930 if (w->active < timercnt--)
931 {
932 timers [w->active - 1] = timers [timercnt];
933 downheap ((WT *)timers, timercnt, w->active - 1);
934 }
935
936 w->at = w->repeat;
937
938 ev_stop ((W)w);
939}
940
941void
942ev_timer_again (struct ev_timer *w)
943{
944 if (ev_is_active (w))
945 {
946 if (w->repeat)
947 {
948 w->at = now + w->repeat;
949 downheap ((WT *)timers, timercnt, w->active - 1);
950 }
951 else
952 ev_timer_stop (w);
953 }
954 else if (w->repeat)
955 ev_timer_start (w);
956}
957
958void
959ev_periodic_start (struct ev_periodic *w)
960{
961 if (ev_is_active (w))
962 return;
963
964 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
965
966 /* this formula differs from the one in periodic_reify because we do not always round up */
967 if (w->interval)
968 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval;
969
970 ev_start ((W)w, ++periodiccnt);
971 array_needsize (periodics, periodicmax, periodiccnt, );
972 periodics [periodiccnt - 1] = w;
973 upheap ((WT *)periodics, periodiccnt - 1);
974}
975
976void
977ev_periodic_stop (struct ev_periodic *w)
978{
979 ev_clear_pending ((W)w);
980 if (!ev_is_active (w))
981 return;
982
983 if (w->active < periodiccnt--)
984 {
985 periodics [w->active - 1] = periodics [periodiccnt];
986 downheap ((WT *)periodics, periodiccnt, w->active - 1);
987 }
988
989 ev_stop ((W)w);
990}
991
992void
993ev_signal_start (struct ev_signal *w)
994{
995 if (ev_is_active (w))
996 return;
997
998 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
999
1000 ev_start ((W)w, 1);
1001 array_needsize (signals, signalmax, w->signum, signals_init);
1002 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1003
1004 if (!w->next)
1005 {
1006 struct sigaction sa;
1007 sa.sa_handler = sighandler;
1008 sigfillset (&sa.sa_mask);
1009 sa.sa_flags = 0;
1010 sigaction (w->signum, &sa, 0);
1011 }
1012}
1013
1014void
1015ev_signal_stop (struct ev_signal *w)
1016{
1017 ev_clear_pending ((W)w);
1018 if (!ev_is_active (w))
1019 return;
1020
1021 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1022 ev_stop ((W)w);
1023
1024 if (!signals [w->signum - 1].head)
1025 signal (w->signum, SIG_DFL);
1026}
1027
1028void
1029ev_idle_start (struct ev_idle *w)
1030{
1031 if (ev_is_active (w))
1032 return;
1033
1034 ev_start ((W)w, ++idlecnt);
1035 array_needsize (idles, idlemax, idlecnt, );
1036 idles [idlecnt - 1] = w;
1037}
1038
1039void
1040ev_idle_stop (struct ev_idle *w)
1041{
1042 ev_clear_pending ((W)w);
1043 if (ev_is_active (w))
1044 return;
1045
1046 idles [w->active - 1] = idles [--idlecnt];
1047 ev_stop ((W)w);
1048}
1049
1050void
1051ev_prepare_start (struct ev_prepare *w)
1052{
1053 if (ev_is_active (w))
1054 return;
1055
1056 ev_start ((W)w, ++preparecnt);
1057 array_needsize (prepares, preparemax, preparecnt, );
1058 prepares [preparecnt - 1] = w;
1059}
1060
1061void
1062ev_prepare_stop (struct ev_prepare *w)
1063{
1064 ev_clear_pending ((W)w);
1065 if (ev_is_active (w))
1066 return;
1067
1068 prepares [w->active - 1] = prepares [--preparecnt];
1069 ev_stop ((W)w);
1070}
1071
1072void
1073ev_check_start (struct ev_check *w)
1074{
1075 if (ev_is_active (w))
1076 return;
1077
1078 ev_start ((W)w, ++checkcnt);
1079 array_needsize (checks, checkmax, checkcnt, );
1080 checks [checkcnt - 1] = w;
1081}
1082
1083void
1084ev_check_stop (struct ev_check *w)
1085{
1086 ev_clear_pending ((W)w);
1087 if (ev_is_active (w))
1088 return;
1089
1090 checks [w->active - 1] = checks [--checkcnt];
1091 ev_stop ((W)w);
1092}
1093
1094void
1095ev_child_start (struct ev_child *w)
1096{
1097 if (ev_is_active (w))
1098 return;
1099
1100 ev_start ((W)w, 1);
1101 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1102}
1103
1104void
1105ev_child_stop (struct ev_child *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112 ev_stop ((W)w);
1113}
1114
1115/*****************************************************************************/
1116
1117struct ev_once 3506struct ev_once
1118{ 3507{
1119 struct ev_io io; 3508 ev_io io;
1120 struct ev_timer to; 3509 ev_timer to;
1121 void (*cb)(int revents, void *arg); 3510 void (*cb)(int revents, void *arg);
1122 void *arg; 3511 void *arg;
1123}; 3512};
1124 3513
1125static void 3514static void
1126once_cb (struct ev_once *once, int revents) 3515once_cb (EV_P_ struct ev_once *once, int revents)
1127{ 3516{
1128 void (*cb)(int revents, void *arg) = once->cb; 3517 void (*cb)(int revents, void *arg) = once->cb;
1129 void *arg = once->arg; 3518 void *arg = once->arg;
1130 3519
1131 ev_io_stop (&once->io); 3520 ev_io_stop (EV_A_ &once->io);
1132 ev_timer_stop (&once->to); 3521 ev_timer_stop (EV_A_ &once->to);
1133 free (once); 3522 ev_free (once);
1134 3523
1135 cb (revents, arg); 3524 cb (revents, arg);
1136} 3525}
1137 3526
1138static void 3527static void
1139once_cb_io (struct ev_io *w, int revents) 3528once_cb_io (EV_P_ ev_io *w, int revents)
1140{ 3529{
1141 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3530 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3531
3532 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1142} 3533}
1143 3534
1144static void 3535static void
1145once_cb_to (struct ev_timer *w, int revents) 3536once_cb_to (EV_P_ ev_timer *w, int revents)
1146{ 3537{
1147 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3538 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
1148}
1149 3539
3540 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
3541}
3542
1150void 3543void
1151ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3544ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1152{ 3545{
1153 struct ev_once *once = malloc (sizeof (struct ev_once)); 3546 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1154 3547
1155 if (!once) 3548 if (expect_false (!once))
3549 {
1156 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3550 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1157 else 3551 return;
1158 { 3552 }
3553
1159 once->cb = cb; 3554 once->cb = cb;
1160 once->arg = arg; 3555 once->arg = arg;
1161 3556
1162 ev_watcher_init (&once->io, once_cb_io); 3557 ev_init (&once->io, once_cb_io);
1163 if (fd >= 0) 3558 if (fd >= 0)
3559 {
3560 ev_io_set (&once->io, fd, events);
3561 ev_io_start (EV_A_ &once->io);
3562 }
3563
3564 ev_init (&once->to, once_cb_to);
3565 if (timeout >= 0.)
3566 {
3567 ev_timer_set (&once->to, timeout, 0.);
3568 ev_timer_start (EV_A_ &once->to);
3569 }
3570}
3571
3572/*****************************************************************************/
3573
3574#if EV_WALK_ENABLE
3575void
3576ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3577{
3578 int i, j;
3579 ev_watcher_list *wl, *wn;
3580
3581 if (types & (EV_IO | EV_EMBED))
3582 for (i = 0; i < anfdmax; ++i)
3583 for (wl = anfds [i].head; wl; )
1164 { 3584 {
1165 ev_io_set (&once->io, fd, events); 3585 wn = wl->next;
1166 ev_io_start (&once->io); 3586
3587#if EV_EMBED_ENABLE
3588 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3589 {
3590 if (types & EV_EMBED)
3591 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3592 }
3593 else
3594#endif
3595#if EV_USE_INOTIFY
3596 if (ev_cb ((ev_io *)wl) == infy_cb)
3597 ;
3598 else
3599#endif
3600 if ((ev_io *)wl != &pipe_w)
3601 if (types & EV_IO)
3602 cb (EV_A_ EV_IO, wl);
3603
3604 wl = wn;
1167 } 3605 }
1168 3606
1169 ev_watcher_init (&once->to, once_cb_to); 3607 if (types & (EV_TIMER | EV_STAT))
1170 if (timeout >= 0.) 3608 for (i = timercnt + HEAP0; i-- > HEAP0; )
3609#if EV_STAT_ENABLE
3610 /*TODO: timer is not always active*/
3611 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1171 { 3612 {
1172 ev_timer_set (&once->to, timeout, 0.); 3613 if (types & EV_STAT)
1173 ev_timer_start (&once->to); 3614 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1174 } 3615 }
1175 } 3616 else
1176} 3617#endif
3618 if (types & EV_TIMER)
3619 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1177 3620
1178/*****************************************************************************/ 3621#if EV_PERIODIC_ENABLE
3622 if (types & EV_PERIODIC)
3623 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3624 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3625#endif
1179 3626
1180#if 0 3627#if EV_IDLE_ENABLE
3628 if (types & EV_IDLE)
3629 for (j = NUMPRI; i--; )
3630 for (i = idlecnt [j]; i--; )
3631 cb (EV_A_ EV_IDLE, idles [j][i]);
3632#endif
1181 3633
1182struct ev_io wio; 3634#if EV_FORK_ENABLE
3635 if (types & EV_FORK)
3636 for (i = forkcnt; i--; )
3637 if (ev_cb (forks [i]) != embed_fork_cb)
3638 cb (EV_A_ EV_FORK, forks [i]);
3639#endif
1183 3640
1184static void 3641#if EV_ASYNC_ENABLE
1185sin_cb (struct ev_io *w, int revents) 3642 if (types & EV_ASYNC)
1186{ 3643 for (i = asynccnt; i--; )
1187 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents); 3644 cb (EV_A_ EV_ASYNC, asyncs [i]);
1188} 3645#endif
1189 3646
1190static void 3647 if (types & EV_PREPARE)
1191ocb (struct ev_timer *w, int revents) 3648 for (i = preparecnt; i--; )
1192{ 3649#if EV_EMBED_ENABLE
1193 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 3650 if (ev_cb (prepares [i]) != embed_prepare_cb)
1194 ev_timer_stop (w); 3651#endif
1195 ev_timer_start (w); 3652 cb (EV_A_ EV_PREPARE, prepares [i]);
1196}
1197 3653
1198static void 3654 if (types & EV_CHECK)
1199scb (struct ev_signal *w, int revents) 3655 for (i = checkcnt; i--; )
1200{ 3656 cb (EV_A_ EV_CHECK, checks [i]);
1201 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1202 ev_io_stop (&wio);
1203 ev_io_start (&wio);
1204}
1205 3657
1206static void 3658 if (types & EV_SIGNAL)
1207gcb (struct ev_signal *w, int revents)
1208{
1209 fprintf (stderr, "generic %x\n", revents);
1210
1211}
1212
1213int main (void)
1214{
1215 ev_init (0);
1216
1217 ev_io_init (&wio, sin_cb, 0, EV_READ);
1218 ev_io_start (&wio);
1219
1220 struct ev_timer t[10000];
1221
1222#if 0
1223 int i;
1224 for (i = 0; i < 10000; ++i) 3659 for (i = 0; i < EV_NSIG - 1; ++i)
1225 { 3660 for (wl = signals [i].head; wl; )
1226 struct ev_timer *w = t + i; 3661 {
1227 ev_watcher_init (w, ocb, i); 3662 wn = wl->next;
1228 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533); 3663 cb (EV_A_ EV_SIGNAL, wl);
1229 ev_timer_start (w); 3664 wl = wn;
1230 if (drand48 () < 0.5) 3665 }
1231 ev_timer_stop (w);
1232 }
1233#endif
1234 3666
1235 struct ev_timer t1; 3667 if (types & EV_CHILD)
1236 ev_timer_init (&t1, ocb, 5, 10); 3668 for (i = EV_PID_HASHSIZE; i--; )
1237 ev_timer_start (&t1); 3669 for (wl = childs [i]; wl; )
1238 3670 {
1239 struct ev_signal sig; 3671 wn = wl->next;
1240 ev_signal_init (&sig, scb, SIGQUIT); 3672 cb (EV_A_ EV_CHILD, wl);
1241 ev_signal_start (&sig); 3673 wl = wn;
1242 3674 }
1243 struct ev_check cw; 3675/* EV_STAT 0x00001000 /* stat data changed */
1244 ev_check_init (&cw, gcb); 3676/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1245 ev_check_start (&cw);
1246
1247 struct ev_idle iw;
1248 ev_idle_init (&iw, gcb);
1249 ev_idle_start (&iw);
1250
1251 ev_loop (0);
1252
1253 return 0;
1254} 3677}
1255
1256#endif 3678#endif
1257 3679
3680#if EV_MULTIPLICITY
3681 #include "ev_wrap.h"
3682#endif
1258 3683
3684#ifdef __cplusplus
3685}
3686#endif
1259 3687
1260

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines