ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.319 by root, Wed Nov 18 10:25:22 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
46# else 73# else
47# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
49# endif 76# endif
50# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
52# endif 79# endif
53# endif 80# endif
54 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
55# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
57# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
58# else 93# else
59# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
90# else 125# else
91# define EV_USE_PORT 0 126# define EV_USE_PORT 0
92# endif 127# endif
93# endif 128# endif
94 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
95#endif 154#endif
96 155
97#include <math.h> 156#include <math.h>
98#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
99#include <fcntl.h> 159#include <fcntl.h>
100#include <stddef.h> 160#include <stddef.h>
101 161
102#include <stdio.h> 162#include <stdio.h>
103 163
106#include <sys/types.h> 166#include <sys/types.h>
107#include <time.h> 167#include <time.h>
108 168
109#include <signal.h> 169#include <signal.h>
110 170
171#ifdef EV_H
172# include EV_H
173#else
174# include "ev.h"
175#endif
176
111#ifndef _WIN32 177#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 178# include <sys/time.h>
114# include <sys/wait.h> 179# include <sys/wait.h>
180# include <unistd.h>
115#else 181#else
182# include <io.h>
116# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 184# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
120# endif 187# endif
121#endif 188#endif
122 189
123/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
124 226
125#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
126# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
127#endif 233#endif
128 234
129#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
131#endif 245#endif
132 246
133#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
135#endif 249#endif
141# define EV_USE_POLL 1 255# define EV_USE_POLL 1
142# endif 256# endif
143#endif 257#endif
144 258
145#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
146# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
147#endif 265#endif
148 266
149#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
151#endif 269#endif
152 270
153#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 272# define EV_USE_PORT 0
155#endif 273#endif
156 274
157/**/ 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
279# define EV_USE_INOTIFY 0
280# endif
281#endif
282
283#ifndef EV_PID_HASHSIZE
284# if EV_MINIMAL
285# define EV_PID_HASHSIZE 1
286# else
287# define EV_PID_HASHSIZE 16
288# endif
289#endif
290
291#ifndef EV_INOTIFY_HASHSIZE
292# if EV_MINIMAL
293# define EV_INOTIFY_HASHSIZE 1
294# else
295# define EV_INOTIFY_HASHSIZE 16
296# endif
297#endif
298
299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 348
159#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
162#endif 352#endif
164#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
167#endif 357#endif
168 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
169#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 382# include <winsock.h>
171#endif 383#endif
172 384
385#if EV_USE_EVENTFD
386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
390# endif
391# ifndef EFD_CLOEXEC
392# ifdef O_CLOEXEC
393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
435
173/**/ 436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
443
444/*
445 * This is used to avoid floating point rounding problems.
446 * It is added to ev_rt_now when scheduling periodics
447 * to ensure progress, time-wise, even when rounding
448 * errors are against us.
449 * This value is good at least till the year 4000.
450 * Better solutions welcome.
451 */
452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 453
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
179 456
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 457#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 459# define noinline __attribute__ ((noinline))
189#else 460#else
190# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
191# define inline static 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
192#endif 466#endif
193 467
194#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
196 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
199 485
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
202 488
203typedef struct ev_watcher *W; 489typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
206 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
208 515
209#ifdef _WIN32 516#ifdef _WIN32
210# include "ev_win32.c" 517# include "ev_win32.c"
211#endif 518#endif
212 519
213/*****************************************************************************/ 520/*****************************************************************************/
214 521
215static void (*syserr_cb)(const char *msg); 522static void (*syserr_cb)(const char *msg);
216 523
524void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 525ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 526{
219 syserr_cb = cb; 527 syserr_cb = cb;
220} 528}
221 529
222static void 530static void noinline
223syserr (const char *msg) 531ev_syserr (const char *msg)
224{ 532{
225 if (!msg) 533 if (!msg)
226 msg = "(libev) system error"; 534 msg = "(libev) system error";
227 535
228 if (syserr_cb) 536 if (syserr_cb)
232 perror (msg); 540 perror (msg);
233 abort (); 541 abort ();
234 } 542 }
235} 543}
236 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
237static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 561
562void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 564{
241 alloc = cb; 565 alloc = cb;
242} 566}
243 567
244static void * 568inline_speed void *
245ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
246{ 570{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
248 572
249 if (!ptr && size) 573 if (!ptr && size)
250 { 574 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 576 abort ();
258#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
259#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
260 584
261/*****************************************************************************/ 585/*****************************************************************************/
262 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
263typedef struct 591typedef struct
264{ 592{
265 WL head; 593 WL head;
266 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
267 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
268#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle; 602 SOCKET handle;
270#endif 603#endif
271} ANFD; 604} ANFD;
272 605
606/* stores the pending event set for a given watcher */
273typedef struct 607typedef struct
274{ 608{
275 W w; 609 W w;
276 int events; 610 int events; /* the pending event set for the given watcher */
277} ANPENDING; 611} ANPENDING;
612
613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
615typedef struct
616{
617 WL head;
618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
639#endif
278 640
279#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
280 642
281 struct ev_loop 643 struct ev_loop
282 { 644 {
300 662
301 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
302 664
303#endif 665#endif
304 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
305/*****************************************************************************/ 679/*****************************************************************************/
306 680
681#ifndef EV_HAVE_EV_TIME
307ev_tstamp 682ev_tstamp
308ev_time (void) 683ev_time (void)
309{ 684{
310#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
311 struct timespec ts; 688 struct timespec ts;
312 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
313 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
314#else 691 }
692#endif
693
315 struct timeval tv; 694 struct timeval tv;
316 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif
319} 697}
698#endif
320 699
321inline ev_tstamp 700inline_size ev_tstamp
322get_clock (void) 701get_clock (void)
323{ 702{
324#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
326 { 705 {
339{ 718{
340 return ev_rt_now; 719 return ev_rt_now;
341} 720}
342#endif 721#endif
343 722
344#define array_roundsize(type,n) (((n) | 4) & ~3) 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
758array_nextsize (int elem, int cur, int cnt)
759{
760 int ncur = cur + 1;
761
762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
768 {
769 ncur *= elem;
770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
771 ncur = ncur - sizeof (void *) * 4;
772 ncur /= elem;
773 }
774
775 return ncur;
776}
777
778static noinline void *
779array_realloc (int elem, void *base, int *cur, int cnt)
780{
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
345 787
346#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 789 if (expect_false ((cnt) > (cur))) \
348 { \ 790 { \
349 int newcnt = cur; \ 791 int ocur_ = (cur); \
350 do \ 792 (base) = (type *)array_realloc \
351 { \ 793 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 794 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 795 }
360 796
797#if 0
361#define array_slim(type,stem) \ 798#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 800 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 801 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 804 }
805#endif
368 806
369#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
371 809
372/*****************************************************************************/ 810/*****************************************************************************/
373 811
374static void 812/* dummy callback for pending events */
375anfds_init (ANFD *base, int count) 813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
376{ 815{
377 while (count--)
378 {
379 base->head = 0;
380 base->events = EV_NONE;
381 base->reify = 0;
382
383 ++base;
384 }
385} 816}
386 817
387void 818void noinline
388ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
389{ 820{
390 W w_ = (W)w; 821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
391 823
392 if (expect_false (w_->pending)) 824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
393 { 827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 831 pendings [pri][w_->pending - 1].events = revents;
395 return;
396 } 832 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402} 833}
403 834
404static void 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
405queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
406{ 852{
407 int i; 853 int i;
408 854
409 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
411} 857}
412 858
859/*****************************************************************************/
860
413inline void 861inline_speed void
414fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
415{ 863{
416 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 865 ev_io *w;
418 866
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 868 {
421 int ev = w->events & revents; 869 int ev = w->events & revents;
422 870
423 if (ev) 871 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
425 } 873 }
426} 874}
427 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
428void 887void
429ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 889{
890 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
432} 892}
433 893
434/*****************************************************************************/ 894/* make sure the external fd watch events are in-sync */
435 895/* with the kernel/libev internal state */
436inline void 896inline_size void
437fd_reify (EV_P) 897fd_reify (EV_P)
438{ 898{
439 int i; 899 int i;
440 900
441 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
442 { 902 {
443 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 905 ev_io *w;
446 906
447 int events = 0; 907 unsigned char events = 0;
448 908
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 910 events |= (unsigned char)w->events;
451 911
452#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
453 if (events) 913 if (events)
454 { 914 {
455 unsigned long argp; 915 unsigned long arg;
456 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
458 } 918 }
459#endif 919#endif
460 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
461 anfd->reify = 0; 925 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
465 } 931 }
466 932
467 fdchangecnt = 0; 933 fdchangecnt = 0;
468} 934}
469 935
470static void 936/* something about the given fd changed */
937inline_size void
471fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
472{ 939{
473 if (expect_false (anfds [fd].reify)) 940 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
477 942
943 if (expect_true (!reify))
944 {
478 ++fdchangecnt; 945 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
481} 949}
482 950
483static void 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
484fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
485{ 954{
486 struct ev_io *w; 955 ev_io *w;
487 956
488 while ((w = (struct ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
489 { 958 {
490 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 961 }
493} 962}
494 963
964/* check whether the given fd is atcually valid, for error recovery */
495inline int 965inline_size int
496fd_valid (int fd) 966fd_valid (int fd)
497{ 967{
498#ifdef _WIN32 968#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
500#else 970#else
501 return fcntl (fd, F_GETFD) != -1; 971 return fcntl (fd, F_GETFD) != -1;
502#endif 972#endif
503} 973}
504 974
505/* called on EBADF to verify fds */ 975/* called on EBADF to verify fds */
506static void 976static void noinline
507fd_ebadf (EV_P) 977fd_ebadf (EV_P)
508{ 978{
509 int fd; 979 int fd;
510 980
511 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
512 if (anfds [fd].events) 982 if (anfds [fd].events)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
514 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
515} 985}
516 986
517/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 988static void noinline
519fd_enomem (EV_P) 989fd_enomem (EV_P)
520{ 990{
521 int fd; 991 int fd;
522 992
523 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
524 if (anfds [fd].events) 994 if (anfds [fd].events)
525 { 995 {
526 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
527 return; 997 break;
528 } 998 }
529} 999}
530 1000
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 1002static void noinline
533fd_rearm_all (EV_P) 1003fd_rearm_all (EV_P)
534{ 1004{
535 int fd; 1005 int fd;
536 1006
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 1008 if (anfds [fd].events)
540 { 1009 {
541 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
543 } 1013 }
544} 1014}
545 1015
546/*****************************************************************************/ 1016/*****************************************************************************/
547 1017
548static void 1018/*
549upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
550{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
551 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
552 1023
553 while (k && heap [k >> 1]->at > w->at) 1024/*
554 { 1025 * at the moment we allow libev the luxury of two heaps,
555 heap [k] = heap [k >> 1]; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
556 ((W)heap [k])->active = k + 1; 1027 * which is more cache-efficient.
557 k >>= 1; 1028 * the difference is about 5% with 50000+ watchers.
558 } 1029 */
1030#if EV_USE_4HEAP
559 1031
560 heap [k] = w; 1032#define DHEAP 4
561 ((W)heap [k])->active = k + 1; 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
562 1036
563} 1037/* away from the root */
564 1038inline_speed void
565static void
566downheap (WT *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
567{ 1040{
568 WT w = heap [k]; 1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
569 1043
570 while (k < (N >> 1)) 1044 for (;;)
571 { 1045 {
572 int j = k << 1; 1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
573 1049
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
575 ++j; 1052 {
576 1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
577 if (w->at <= heap [j]->at) 1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
578 break; 1066 break;
579 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
580 heap [k] = heap [j]; 1106 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 1107 ev_active (ANHE_w (heap [k])) = k;
1108
582 k = j; 1109 k = c;
583 } 1110 }
584 1111
585 heap [k] = w; 1112 heap [k] = he;
586 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (he)) = k;
587} 1114}
1115#endif
588 1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
589inline void 1140inline_size void
590adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
591{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
592 upheap (heap, k); 1144 upheap (heap, k);
1145 else
593 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
594} 1159}
595 1160
596/*****************************************************************************/ 1161/*****************************************************************************/
597 1162
1163/* associate signal watchers to a signal signal */
598typedef struct 1164typedef struct
599{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
600 WL head; 1170 WL head;
601 sig_atomic_t volatile gotsig;
602} ANSIG; 1171} ANSIG;
603 1172
604static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
605static int signalmax;
606 1174
607static int sigpipe [2]; 1175/*****************************************************************************/
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 1176
611static void 1177/* used to prepare libev internal fd's */
612signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
613{ 1179inline_speed void
614 while (count--)
615 {
616 base->head = 0;
617 base->gotsig = 0;
618
619 ++base;
620 }
621}
622
623static void
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629
630 signals [signum - 1].gotsig = 1;
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 1180fd_intern (int fd)
676{ 1181{
677#ifdef _WIN32 1182#ifdef _WIN32
678 int arg = 1; 1183 unsigned long arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
680#else 1185#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 1188#endif
684} 1189}
685 1190
1191static void noinline
1192evpipe_init (EV_P)
1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
1213 fd_intern (evpipe [0]);
1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
1217
1218 ev_io_start (EV_A_ &pipe_w);
1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
686static void 1248static void
687siginit (EV_P) 1249pipecb (EV_P_ ev_io *iow, int revents)
688{ 1250{
689 fd_intern (sigpipe [0]); 1251 int i;
690 fd_intern (sigpipe [1]);
691 1252
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 1253#if EV_USE_EVENTFD
693 ev_io_start (EV_A_ &sigev); 1254 if (evfd >= 0)
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
695} 1288}
696 1289
697/*****************************************************************************/ 1290/*****************************************************************************/
698 1291
699static struct ev_child *childs [PID_HASHSIZE]; 1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
1353static WL childs [EV_PID_HASHSIZE];
700 1354
701#ifndef _WIN32 1355#ifndef _WIN32
702 1356
703static struct ev_signal childev; 1357static ev_signal childev;
1358
1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
1365child_reap (EV_P_ int chain, int pid, int status)
1366{
1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1369
1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
1374 {
1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1376 w->rpid = pid;
1377 w->rstatus = status;
1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1379 }
1380 }
1381}
704 1382
705#ifndef WCONTINUED 1383#ifndef WCONTINUED
706# define WCONTINUED 0 1384# define WCONTINUED 0
707#endif 1385#endif
708 1386
1387/* called on sigchld etc., calls waitpid */
709static void 1388static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
726{ 1390{
727 int pid, status; 1391 int pid, status;
728 1392
1393 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1394 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1395 if (!WCONTINUED
1396 || errno != EINVAL
1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1398 return;
1399
731 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
734 1403
735 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
1405 if (EV_PID_HASHSIZE > 1)
736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
737 }
738} 1407}
739 1408
740#endif 1409#endif
741 1410
742/*****************************************************************************/ 1411/*****************************************************************************/
768{ 1437{
769 return EV_VERSION_MINOR; 1438 return EV_VERSION_MINOR;
770} 1439}
771 1440
772/* return true if we are running with elevated privileges and should ignore env variables */ 1441/* return true if we are running with elevated privileges and should ignore env variables */
773static int 1442int inline_size
774enable_secure (void) 1443enable_secure (void)
775{ 1444{
776#ifdef _WIN32 1445#ifdef _WIN32
777 return 0; 1446 return 0;
778#else 1447#else
804 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
805 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
806 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
807#endif 1476#endif
808#ifdef __APPLE__ 1477#ifdef __APPLE__
809 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1481#endif
1482
1483 return flags;
1484}
1485
1486unsigned int
1487ev_embeddable_backends (void)
1488{
1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1490
1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
810 flags &= ~EVBACKEND_POLL; 1493 flags &= ~EVBACKEND_EPOLL;
811#endif
812 1494
813 return flags; 1495 return flags;
814} 1496}
815 1497
816unsigned int 1498unsigned int
817ev_backend (EV_P) 1499ev_backend (EV_P)
818{ 1500{
819 return backend; 1501 return backend;
820} 1502}
821 1503
822static void 1504#if EV_MINIMAL < 2
1505unsigned int
1506ev_loop_count (EV_P)
1507{
1508 return loop_count;
1509}
1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1554static void noinline
823loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
824{ 1556{
825 if (!backend) 1557 if (!backend)
826 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
827#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
828 { 1571 {
829 struct timespec ts; 1572 struct timespec ts;
1573
830 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
831 have_monotonic = 1; 1575 have_monotonic = 1;
832 } 1576 }
833#endif 1577#endif
834 1578
835 ev_rt_now = ev_time (); 1579 /* pid check not overridable via env */
836 mn_now = get_clock (); 1580#ifndef _WIN32
837 now_floor = mn_now; 1581 if (flags & EVFLAG_FORKCHECK)
838 rtmn_diff = ev_rt_now - mn_now; 1582 curpid = getpid ();
1583#endif
839 1584
840 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
841 && !enable_secure () 1586 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
843 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
844 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1611#endif
1612
845 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
846 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
847 1615
848 backend = 0;
849#if EV_USE_PORT 1616#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
851#endif 1618#endif
852#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1620 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
860#endif 1627#endif
861#if EV_USE_SELECT 1628#if EV_USE_SELECT
862 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
863#endif 1630#endif
864 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
865 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
866 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
867 } 1636 }
868} 1637}
869 1638
870static void 1639/* free up a loop structure */
1640static void noinline
871loop_destroy (EV_P) 1641loop_destroy (EV_P)
872{ 1642{
873 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
1666
1667#if EV_USE_INOTIFY
1668 if (fs_fd >= 0)
1669 close (fs_fd);
1670#endif
1671
1672 if (backend_fd >= 0)
1673 close (backend_fd);
874 1674
875#if EV_USE_PORT 1675#if EV_USE_PORT
876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1676 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
877#endif 1677#endif
878#if EV_USE_KQUEUE 1678#if EV_USE_KQUEUE
887#if EV_USE_SELECT 1687#if EV_USE_SELECT
888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1688 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
889#endif 1689#endif
890 1690
891 for (i = NUMPRI; i--; ) 1691 for (i = NUMPRI; i--; )
1692 {
892 array_free (pending, [i]); 1693 array_free (pending, [i]);
1694#if EV_IDLE_ENABLE
1695 array_free (idle, [i]);
1696#endif
1697 }
1698
1699 ev_free (anfds); anfds = 0; anfdmax = 0;
893 1700
894 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
895 array_free (fdchange, EMPTY0); 1703 array_free (fdchange, EMPTY);
896 array_free (timer, EMPTY0); 1704 array_free (timer, EMPTY);
897#if EV_PERIODICS 1705#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 1706 array_free (periodic, EMPTY);
899#endif 1707#endif
1708#if EV_FORK_ENABLE
900 array_free (idle, EMPTY0); 1709 array_free (fork, EMPTY);
1710#endif
901 array_free (prepare, EMPTY0); 1711 array_free (prepare, EMPTY);
902 array_free (check, EMPTY0); 1712 array_free (check, EMPTY);
1713#if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715#endif
903 1716
904 backend = 0; 1717 backend = 0;
905} 1718}
906 1719
907static void 1720#if EV_USE_INOTIFY
1721inline_size void infy_fork (EV_P);
1722#endif
1723
1724inline_size void
908loop_fork (EV_P) 1725loop_fork (EV_P)
909{ 1726{
910#if EV_USE_PORT 1727#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif 1729#endif
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1731 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif 1732#endif
916#if EV_USE_EPOLL 1733#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1734 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
918#endif 1735#endif
1736#if EV_USE_INOTIFY
1737 infy_fork (EV_A);
1738#endif
919 1739
920 if (ev_is_active (&sigev)) 1740 if (ev_is_active (&pipe_w))
921 { 1741 {
922 /* default loop */ 1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745#if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747#endif
923 1748
924 ev_ref (EV_A); 1749 ev_ref (EV_A);
925 ev_io_stop (EV_A_ &sigev); 1750 ev_io_stop (EV_A_ &pipe_w);
926 close (sigpipe [0]);
927 close (sigpipe [1]);
928 1751
929 while (pipe (sigpipe)) 1752#if EV_USE_EVENTFD
930 syserr ("(libev) error creating pipe"); 1753 if (evfd >= 0)
1754 close (evfd);
1755#endif
931 1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
932 siginit (EV_A); 1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
933 } 1766 }
934 1767
935 postfork = 0; 1768 postfork = 0;
936} 1769}
937 1770
938#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1772
939struct ev_loop * 1773struct ev_loop *
940ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
941{ 1775{
942 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
943 1777
944 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
945
946 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
947 1780
948 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
949 return loop; 1782 return EV_A;
950 1783
951 return 0; 1784 return 0;
952} 1785}
953 1786
954void 1787void
959} 1792}
960 1793
961void 1794void
962ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
963{ 1796{
964 postfork = 1; 1797 postfork = 1; /* must be in line with ev_default_fork */
965} 1798}
1799#endif /* multiplicity */
966 1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1899}
967#endif 1900#endif
968 1901
969#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
970struct ev_loop * 1903struct ev_loop *
971ev_default_loop_init (unsigned int flags) 1904ev_default_loop_init (unsigned int flags)
972#else 1905#else
973int 1906int
974ev_default_loop (unsigned int flags) 1907ev_default_loop (unsigned int flags)
975#endif 1908#endif
976{ 1909{
977 if (sigpipe [0] == sigpipe [1])
978 if (pipe (sigpipe))
979 return 0;
980
981 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
982 { 1911 {
983#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
984 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
985#else 1914#else
986 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
987#endif 1916#endif
988 1917
989 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
990 1919
991 if (ev_backend (EV_A)) 1920 if (ev_backend (EV_A))
992 { 1921 {
993 siginit (EV_A);
994
995#ifndef _WIN32 1922#ifndef _WIN32
996 ev_signal_init (&childev, childcb, SIGCHLD); 1923 ev_signal_init (&childev, childcb, SIGCHLD);
997 ev_set_priority (&childev, EV_MAXPRI); 1924 ev_set_priority (&childev, EV_MAXPRI);
998 ev_signal_start (EV_A_ &childev); 1925 ev_signal_start (EV_A_ &childev);
999 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
1008 1935
1009void 1936void
1010ev_default_destroy (void) 1937ev_default_destroy (void)
1011{ 1938{
1012#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1013 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1014#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
1015 1944
1016#ifndef _WIN32 1945#ifndef _WIN32
1017 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
1018 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
1019#endif 1948#endif
1020 1949
1021 ev_ref (EV_A); /* signal watcher */
1022 ev_io_stop (EV_A_ &sigev);
1023
1024 close (sigpipe [0]); sigpipe [0] = 0;
1025 close (sigpipe [1]); sigpipe [1] = 0;
1026
1027 loop_destroy (EV_A); 1950 loop_destroy (EV_A);
1028} 1951}
1029 1952
1030void 1953void
1031ev_default_fork (void) 1954ev_default_fork (void)
1032{ 1955{
1033#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1034 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1035#endif 1958#endif
1036 1959
1037 if (backend) 1960 postfork = 1; /* must be in line with ev_loop_fork */
1038 postfork = 1;
1039} 1961}
1040 1962
1041/*****************************************************************************/ 1963/*****************************************************************************/
1042 1964
1043static int 1965void
1044any_pending (EV_P) 1966ev_invoke (EV_P_ void *w, int revents)
1967{
1968 EV_CB_INVOKE ((W)w, revents);
1969}
1970
1971unsigned int
1972ev_pending_count (EV_P)
1045{ 1973{
1046 int pri; 1974 int pri;
1975 unsigned int count = 0;
1047 1976
1048 for (pri = NUMPRI; pri--; ) 1977 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri]) 1978 count += pendingcnt [pri];
1050 return 1;
1051 1979
1052 return 0; 1980 return count;
1053} 1981}
1054 1982
1055inline void 1983void noinline
1056call_pending (EV_P) 1984ev_invoke_pending (EV_P)
1057{ 1985{
1058 int pri; 1986 int pri;
1059 1987
1060 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1061 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1062 { 1990 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1064 1992
1065 if (expect_true (p->w)) 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1066 { 1994 /* ^ this is no longer true, as pending_w could be here */
1995
1067 p->w->pending = 0; 1996 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1069 } 1998 EV_FREQUENT_CHECK;
1070 } 1999 }
1071} 2000}
1072 2001
2002#if EV_IDLE_ENABLE
2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
1073inline void 2005inline_size void
2006idle_reify (EV_P)
2007{
2008 if (expect_false (idleall))
2009 {
2010 int pri;
2011
2012 for (pri = NUMPRI; pri--; )
2013 {
2014 if (pendingcnt [pri])
2015 break;
2016
2017 if (idlecnt [pri])
2018 {
2019 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2020 break;
2021 }
2022 }
2023 }
2024}
2025#endif
2026
2027/* make timers pending */
2028inline_size void
1074timers_reify (EV_P) 2029timers_reify (EV_P)
1075{ 2030{
2031 EV_FREQUENT_CHECK;
2032
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1077 { 2034 {
1078 struct ev_timer *w = timers [0]; 2035 do
1079
1080 assert (("inactive timer on timer heap detected", ev_is_active (w)));
1081
1082 /* first reschedule or stop timer */
1083 if (w->repeat)
1084 { 2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086 2049
1087 ((WT)w)->at += w->repeat; 2050 ANHE_at_cache (timers [HEAP0]);
1088 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now;
1090
1091 downheap ((WT *)timers, timercnt, 0); 2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
1092 } 2058 }
1093 else 2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1095 2060
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
1097 } 2062 }
1098} 2063}
1099 2064
1100#if EV_PERIODICS 2065#if EV_PERIODIC_ENABLE
2066/* make periodics pending */
1101inline void 2067inline_size void
1102periodics_reify (EV_P) 2068periodics_reify (EV_P)
1103{ 2069{
2070 EV_FREQUENT_CHECK;
2071
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1105 { 2073 {
1106 struct ev_periodic *w = periodics [0]; 2074 int feed_count = 0;
1107 2075
2076 do
2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1109 2081
1110 /* first reschedule or stop timer */ 2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
2116 }
2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2118
2119 feed_reverse_done (EV_A_ EV_PERIODIC);
2120 }
2121}
2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2125static void noinline
2126periodics_reschedule (EV_P)
2127{
2128 int i;
2129
2130 /* adjust periodics after time jump */
2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2132 {
2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2134
1111 if (w->reschedule_cb) 2135 if (w->reschedule_cb)
2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2137 else if (w->interval)
2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159}
2160
2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detetc if there was a timejump, and act accordingly */
2163inline_speed void
2164time_update (EV_P_ ev_tstamp max_block)
2165{
2166#if EV_USE_MONOTONIC
2167 if (expect_true (have_monotonic))
2168 {
2169 int i;
2170 ev_tstamp odiff = rtmn_diff;
2171
2172 mn_now = get_clock ();
2173
2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2175 /* interpolate in the meantime */
2176 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1112 { 2177 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2178 ev_rt_now = rtmn_diff + mn_now;
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 2179 return;
1115 downheap ((WT *)periodics, periodiccnt, 0);
1116 } 2180 }
1117 else if (w->interval)
1118 {
1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1121 downheap ((WT *)periodics, periodiccnt, 0);
1122 }
1123 else
1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1125 2181
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 }
1128}
1129
1130static void
1131periodics_reschedule (EV_P)
1132{
1133 int i;
1134
1135 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i)
1137 {
1138 struct ev_periodic *w = periodics [i];
1139
1140 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1144 }
1145
1146 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i);
1149}
1150#endif
1151
1152inline int
1153time_update_monotonic (EV_P)
1154{
1155 mn_now = get_clock ();
1156
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1158 {
1159 ev_rt_now = rtmn_diff + mn_now;
1160 return 0;
1161 }
1162 else
1163 {
1164 now_floor = mn_now; 2182 now_floor = mn_now;
1165 ev_rt_now = ev_time (); 2183 ev_rt_now = ev_time ();
1166 return 1;
1167 }
1168}
1169 2184
1170inline void 2185 /* loop a few times, before making important decisions.
1171time_update (EV_P) 2186 * on the choice of "4": one iteration isn't enough,
1172{ 2187 * in case we get preempted during the calls to
1173 int i; 2188 * ev_time and get_clock. a second call is almost guaranteed
1174 2189 * to succeed in that case, though. and looping a few more times
1175#if EV_USE_MONOTONIC 2190 * doesn't hurt either as we only do this on time-jumps or
1176 if (expect_true (have_monotonic)) 2191 * in the unlikely event of having been preempted here.
1177 { 2192 */
1178 if (time_update_monotonic (EV_A)) 2193 for (i = 4; --i; )
1179 { 2194 {
1180 ev_tstamp odiff = rtmn_diff;
1181
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1183 {
1184 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1185 2196
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1187 return; /* all is well */ 2198 return; /* all is well */
1188 2199
1189 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 2201 mn_now = get_clock ();
1191 now_floor = mn_now; 2202 now_floor = mn_now;
1192 } 2203 }
1193 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1194# if EV_PERIODICS 2207# if EV_PERIODIC_ENABLE
2208 periodics_reschedule (EV_A);
2209# endif
2210 }
2211 else
2212#endif
2213 {
2214 ev_rt_now = ev_time ();
2215
2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2220#if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1196# endif 2222#endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1199 } 2223 }
1200 }
1201 else
1202#endif
1203 {
1204 ev_rt_now = ev_time ();
1205
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 {
1208#if EV_PERIODICS
1209 periodics_reschedule (EV_A);
1210#endif
1211
1212 /* adjust timers. this is easy, as the offset is the same for all */
1213 for (i = 0; i < timercnt; ++i)
1214 ((WT)timers [i])->at += ev_rt_now - mn_now;
1215 }
1216 2224
1217 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1218 } 2226 }
1219} 2227}
1220 2228
1221void 2229void
1222ev_ref (EV_P)
1223{
1224 ++activecnt;
1225}
1226
1227void
1228ev_unref (EV_P)
1229{
1230 --activecnt;
1231}
1232
1233static int loop_done;
1234
1235void
1236ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1237{ 2231{
1238 double block; 2232#if EV_MINIMAL < 2
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2233 ++loop_depth;
2234#endif
1240 2235
1241 while (activecnt) 2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
2241
2242 do
1242 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
2248#ifndef _WIN32
2249 if (expect_false (curpid)) /* penalise the forking check even more */
2250 if (expect_false (getpid () != curpid))
2251 {
2252 curpid = getpid ();
2253 postfork = 1;
2254 }
2255#endif
2256
2257#if EV_FORK_ENABLE
2258 /* we might have forked, so queue fork handlers */
2259 if (expect_false (postfork))
2260 if (forkcnt)
2261 {
2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2263 EV_INVOKE_PENDING;
2264 }
2265#endif
2266
1243 /* queue check watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1244 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1245 { 2269 {
1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1247 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1248 } 2272 }
2273
2274 if (expect_false (loop_done))
2275 break;
1249 2276
1250 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1251 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1252 loop_fork (EV_A); 2279 loop_fork (EV_A);
1253 2280
1254 /* update fd-related kernel structures */ 2281 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 2282 fd_reify (EV_A);
1256 2283
1257 /* calculate blocking time */ 2284 /* calculate blocking time */
2285 {
2286 ev_tstamp waittime = 0.;
2287 ev_tstamp sleeptime = 0.;
1258 2288
1259 /* we only need this for !monotonic clock or timers, but as we basically 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1260 always have timers, we just calculate it always */
1261#if EV_USE_MONOTONIC
1262 if (expect_true (have_monotonic))
1263 time_update_monotonic (EV_A);
1264 else
1265#endif
1266 { 2290 {
1267 ev_rt_now = ev_time (); 2291 /* remember old timestamp for io_blocktime calculation */
1268 mn_now = ev_rt_now; 2292 ev_tstamp prev_mn_now = mn_now;
1269 }
1270 2293
1271 if (flags & EVLOOP_NONBLOCK || idlecnt) 2294 /* update time to cancel out callback processing overhead */
1272 block = 0.; 2295 time_update (EV_A_ 1e100);
1273 else 2296
1274 {
1275 block = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1276 2298
1277 if (timercnt) 2299 if (timercnt)
1278 { 2300 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1280 if (block > to) block = to; 2302 if (waittime > to) waittime = to;
1281 } 2303 }
1282 2304
1283#if EV_PERIODICS 2305#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 2306 if (periodiccnt)
1285 { 2307 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1287 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1288 } 2310 }
1289#endif 2311#endif
1290 2312
1291 if (expect_false (block < 0.)) block = 0.; 2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
2314 if (expect_false (waittime < timeout_blocktime))
2315 waittime = timeout_blocktime;
2316
2317 /* extra check because io_blocktime is commonly 0 */
2318 if (expect_false (io_blocktime))
2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
2327 ev_sleep (sleeptime);
2328 waittime -= sleeptime;
2329 }
2330 }
1292 } 2331 }
1293 2332
2333#if EV_MINIMAL < 2
2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1294 backend_poll (EV_A_ block); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1295 2339
1296 /* update ev_rt_now, do magic */ 2340 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 2341 time_update (EV_A_ waittime + sleeptime);
2342 }
1298 2343
1299 /* queue pending timers and reschedule them */ 2344 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 2345 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 2346#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 2347 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 2348#endif
1304 2349
2350#if EV_IDLE_ENABLE
1305 /* queue idle watchers unless io or timers are pending */ 2351 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 2352 idle_reify (EV_A);
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2353#endif
1308 2354
1309 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1312 2358
1313 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1314
1315 if (expect_false (loop_done))
1316 break;
1317 } 2360 }
2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
1318 2366
1319 if (loop_done != 2) 2367 if (loop_done == EVUNLOOP_ONE)
1320 loop_done = 0; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1321} 2373}
1322 2374
1323void 2375void
1324ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1325{ 2377{
1326 loop_done = how; 2378 loop_done = how;
1327} 2379}
1328 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1329/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1330 2420
1331inline void 2421inline_size void
1332wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1333{ 2423{
1334 elem->next = *head; 2424 elem->next = *head;
1335 *head = elem; 2425 *head = elem;
1336} 2426}
1337 2427
1338inline void 2428inline_size void
1339wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1340{ 2430{
1341 while (*head) 2431 while (*head)
1342 { 2432 {
1343 if (*head == elem) 2433 if (expect_true (*head == elem))
1344 { 2434 {
1345 *head = elem->next; 2435 *head = elem->next;
1346 return; 2436 break;
1347 } 2437 }
1348 2438
1349 head = &(*head)->next; 2439 head = &(*head)->next;
1350 } 2440 }
1351} 2441}
1352 2442
2443/* internal, faster, version of ev_clear_pending */
1353inline void 2444inline_speed void
1354ev_clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1355{ 2446{
1356 if (w->pending) 2447 if (w->pending)
1357 { 2448 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1359 w->pending = 0; 2450 w->pending = 0;
1360 } 2451 }
1361} 2452}
1362 2453
2454int
2455ev_clear_pending (EV_P_ void *w)
2456{
2457 W w_ = (W)w;
2458 int pending = w_->pending;
2459
2460 if (expect_true (pending))
2461 {
2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
2464 w_->pending = 0;
2465 return p->events;
2466 }
2467 else
2468 return 0;
2469}
2470
1363inline void 2471inline_size void
2472pri_adjust (EV_P_ W w)
2473{
2474 int pri = ev_priority (w);
2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2477 ev_set_priority (w, pri);
2478}
2479
2480inline_speed void
1364ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1365{ 2482{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2483 pri_adjust (EV_A_ w);
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368
1369 w->active = active; 2484 w->active = active;
1370 ev_ref (EV_A); 2485 ev_ref (EV_A);
1371} 2486}
1372 2487
1373inline void 2488inline_size void
1374ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1375{ 2490{
1376 ev_unref (EV_A); 2491 ev_unref (EV_A);
1377 w->active = 0; 2492 w->active = 0;
1378} 2493}
1379 2494
1380/*****************************************************************************/ 2495/*****************************************************************************/
1381 2496
1382void 2497void noinline
1383ev_io_start (EV_P_ struct ev_io *w) 2498ev_io_start (EV_P_ ev_io *w)
1384{ 2499{
1385 int fd = w->fd; 2500 int fd = w->fd;
1386 2501
1387 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1388 return; 2503 return;
1389 2504
1390 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
1391 2509
1392 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
1393 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1394 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
1395 2513
1396 fd_change (EV_A_ fd); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1397} 2515 w->events &= ~EV__IOFDSET;
1398 2516
1399void 2517 EV_FREQUENT_CHECK;
2518}
2519
2520void noinline
1400ev_io_stop (EV_P_ struct ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
1401{ 2522{
1402 ev_clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1404 return; 2525 return;
1405 2526
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1407 2528
2529 EV_FREQUENT_CHECK;
2530
1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
1409 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
1410 2533
1411 fd_change (EV_A_ w->fd); 2534 fd_change (EV_A_ w->fd, 1);
1412}
1413 2535
1414void 2536 EV_FREQUENT_CHECK;
2537}
2538
2539void noinline
1415ev_timer_start (EV_P_ struct ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
1416{ 2541{
1417 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
1418 return; 2543 return;
1419 2544
1420 ((WT)w)->at += mn_now; 2545 ev_at (w) += mn_now;
1421 2546
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
1424 ev_start (EV_A_ (W)w, ++timercnt); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1426 timers [timercnt - 1] = w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
1427 upheap ((WT *)timers, timercnt - 1); 2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
1428 2557
2558 EV_FREQUENT_CHECK;
2559
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1430} 2561}
1431 2562
1432void 2563void noinline
1433ev_timer_stop (EV_P_ struct ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
1434{ 2565{
1435 ev_clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1437 return; 2568 return;
1438 2569
2570 EV_FREQUENT_CHECK;
2571
2572 {
2573 int active = ev_active (w);
2574
1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1440 2576
2577 --timercnt;
2578
1441 if (expect_true (((W)w)->active < timercnt--)) 2579 if (expect_true (active < timercnt + HEAP0))
1442 { 2580 {
1443 timers [((W)w)->active - 1] = timers [timercnt]; 2581 timers [active] = timers [timercnt + HEAP0];
1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2582 adjustheap (timers, timercnt, active);
1445 } 2583 }
2584 }
1446 2585
1447 ((WT)w)->at -= mn_now; 2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
1448 2589
1449 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
1450} 2591}
1451 2592
1452void 2593void noinline
1453ev_timer_again (EV_P_ struct ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
1454{ 2595{
2596 EV_FREQUENT_CHECK;
2597
1455 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1456 { 2599 {
1457 if (w->repeat) 2600 if (w->repeat)
1458 { 2601 {
1459 ((WT)w)->at = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2604 adjustheap (timers, timercnt, ev_active (w));
1461 } 2605 }
1462 else 2606 else
1463 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1464 } 2608 }
1465 else if (w->repeat) 2609 else if (w->repeat)
1466 { 2610 {
1467 w->at = w->repeat; 2611 ev_at (w) = w->repeat;
1468 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1469 } 2613 }
1470}
1471 2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2622}
2623
1472#if EV_PERIODICS 2624#if EV_PERIODIC_ENABLE
1473void 2625void noinline
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1475{ 2627{
1476 if (expect_false (ev_is_active (w))) 2628 if (expect_false (ev_is_active (w)))
1477 return; 2629 return;
1478 2630
1479 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval) 2633 else if (w->interval)
1482 { 2634 {
1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1486 } 2638 }
2639 else
2640 ev_at (w) = w->offset;
1487 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1492 2650
2651 EV_FREQUENT_CHECK;
2652
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1494} 2654}
1495 2655
1496void 2656void noinline
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1498{ 2658{
1499 ev_clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
1501 return; 2661 return;
1502 2662
2663 EV_FREQUENT_CHECK;
2664
2665 {
2666 int active = ev_active (w);
2667
1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1504 2669
2670 --periodiccnt;
2671
1505 if (expect_true (((W)w)->active < periodiccnt--)) 2672 if (expect_true (active < periodiccnt + HEAP0))
1506 { 2673 {
1507 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2675 adjustheap (periodics, periodiccnt, active);
1509 } 2676 }
2677 }
2678
2679 EV_FREQUENT_CHECK;
1510 2680
1511 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1512} 2682}
1513 2683
1514void 2684void noinline
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1516{ 2686{
1517 /* TODO: use adjustheap and recalculation */ 2687 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 2688 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 2689 ev_periodic_start (EV_A_ w);
1520} 2690}
1521#endif 2691#endif
1522 2692
1523void 2693#ifndef SA_RESTART
1524ev_idle_start (EV_P_ struct ev_idle *w) 2694# define SA_RESTART 0
2695#endif
2696
2697void noinline
2698ev_signal_start (EV_P_ ev_signal *w)
1525{ 2699{
1526 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
1527 return; 2701 return;
1528 2702
2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2704
2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
2716 {
2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2718 if (sigfd < 0 && errno == EINVAL)
2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2720
2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
2724
2725 sigemptyset (&sigfd_set);
2726
2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
2743
1529 ev_start (EV_A_ (W)w, ++idlecnt); 2744 ev_start (EV_A_ (W)w, 1);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
1531 idles [idlecnt - 1] = w;
1532}
1533 2746
1534void 2747 if (!((WL)w)->next)
1535ev_idle_stop (EV_P_ struct ev_idle *w) 2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
2751 {
2752# if _WIN32
2753 evpipe_init (EV_A);
2754
2755 signal (w->signum, ev_sighandler);
2756# else
2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
2761 sa.sa_handler = ev_sighandler;
2762 sigfillset (&sa.sa_mask);
2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2769#endif
2770 }
2771
2772 EV_FREQUENT_CHECK;
2773}
2774
2775void noinline
2776ev_signal_stop (EV_P_ ev_signal *w)
1536{ 2777{
1537 ev_clear_pending (EV_A_ (W)w); 2778 clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w))) 2779 if (expect_false (!ev_is_active (w)))
1539 return; 2780 return;
1540 2781
1541 idles [((W)w)->active - 1] = idles [--idlecnt]; 2782 EV_FREQUENT_CHECK;
2783
2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
1542 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
1543}
1544 2786
2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2796 sigdelset (&sigfd_set, w->signum);
2797 signalfd (sigfd, &sigfd_set, 0);
2798 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2799 /*TODO: maybe unblock signal? */
2800 }
2801 else
2802#endif
2803 signal (w->signum, SIG_DFL);
2804 }
2805
2806 EV_FREQUENT_CHECK;
2807}
2808
1545void 2809void
1546ev_prepare_start (EV_P_ struct ev_prepare *w) 2810ev_child_start (EV_P_ ev_child *w)
1547{ 2811{
2812#if EV_MULTIPLICITY
2813 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2814#endif
1548 if (expect_false (ev_is_active (w))) 2815 if (expect_false (ev_is_active (w)))
1549 return; 2816 return;
1550 2817
2818 EV_FREQUENT_CHECK;
2819
1551 ev_start (EV_A_ (W)w, ++preparecnt); 2820 ev_start (EV_A_ (W)w, 1);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2821 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1553 prepares [preparecnt - 1] = w;
1554}
1555 2822
2823 EV_FREQUENT_CHECK;
2824}
2825
1556void 2826void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w) 2827ev_child_stop (EV_P_ ev_child *w)
1558{ 2828{
1559 ev_clear_pending (EV_A_ (W)w); 2829 clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w))) 2830 if (expect_false (!ev_is_active (w)))
1561 return; 2831 return;
1562 2832
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 2833 EV_FREQUENT_CHECK;
2834
2835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1564 ev_stop (EV_A_ (W)w); 2836 ev_stop (EV_A_ (W)w);
1565}
1566 2837
2838 EV_FREQUENT_CHECK;
2839}
2840
2841#if EV_STAT_ENABLE
2842
2843# ifdef _WIN32
2844# undef lstat
2845# define lstat(a,b) _stati64 (a,b)
2846# endif
2847
2848#define DEF_STAT_INTERVAL 5.0074891
2849#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2850#define MIN_STAT_INTERVAL 0.1074891
2851
2852static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2853
2854#if EV_USE_INOTIFY
2855# define EV_INOTIFY_BUFSIZE 8192
2856
2857static void noinline
2858infy_add (EV_P_ ev_stat *w)
2859{
2860 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2861
2862 if (w->wd >= 0)
2863 {
2864 struct statfs sfs;
2865
2866 /* now local changes will be tracked by inotify, but remote changes won't */
2867 /* unless the filesystem is known to be local, we therefore still poll */
2868 /* also do poll on <2.6.25, but with normal frequency */
2869
2870 if (!fs_2625)
2871 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2872 else if (!statfs (w->path, &sfs)
2873 && (sfs.f_type == 0x1373 /* devfs */
2874 || sfs.f_type == 0xEF53 /* ext2/3 */
2875 || sfs.f_type == 0x3153464a /* jfs */
2876 || sfs.f_type == 0x52654973 /* reiser3 */
2877 || sfs.f_type == 0x01021994 /* tempfs */
2878 || sfs.f_type == 0x58465342 /* xfs */))
2879 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2880 else
2881 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2882 }
2883 else
2884 {
2885 /* can't use inotify, continue to stat */
2886 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2887
2888 /* if path is not there, monitor some parent directory for speedup hints */
2889 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2890 /* but an efficiency issue only */
2891 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2892 {
2893 char path [4096];
2894 strcpy (path, w->path);
2895
2896 do
2897 {
2898 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2899 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2900
2901 char *pend = strrchr (path, '/');
2902
2903 if (!pend || pend == path)
2904 break;
2905
2906 *pend = 0;
2907 w->wd = inotify_add_watch (fs_fd, path, mask);
2908 }
2909 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2910 }
2911 }
2912
2913 if (w->wd >= 0)
2914 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2915
2916 /* now re-arm timer, if required */
2917 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2918 ev_timer_again (EV_A_ &w->timer);
2919 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2920}
2921
2922static void noinline
2923infy_del (EV_P_ ev_stat *w)
2924{
2925 int slot;
2926 int wd = w->wd;
2927
2928 if (wd < 0)
2929 return;
2930
2931 w->wd = -2;
2932 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2933 wlist_del (&fs_hash [slot].head, (WL)w);
2934
2935 /* remove this watcher, if others are watching it, they will rearm */
2936 inotify_rm_watch (fs_fd, wd);
2937}
2938
2939static void noinline
2940infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2941{
2942 if (slot < 0)
2943 /* overflow, need to check for all hash slots */
2944 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2945 infy_wd (EV_A_ slot, wd, ev);
2946 else
2947 {
2948 WL w_;
2949
2950 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2951 {
2952 ev_stat *w = (ev_stat *)w_;
2953 w_ = w_->next; /* lets us remove this watcher and all before it */
2954
2955 if (w->wd == wd || wd == -1)
2956 {
2957 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2958 {
2959 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2960 w->wd = -1;
2961 infy_add (EV_A_ w); /* re-add, no matter what */
2962 }
2963
2964 stat_timer_cb (EV_A_ &w->timer, 0);
2965 }
2966 }
2967 }
2968}
2969
2970static void
2971infy_cb (EV_P_ ev_io *w, int revents)
2972{
2973 char buf [EV_INOTIFY_BUFSIZE];
2974 struct inotify_event *ev = (struct inotify_event *)buf;
2975 int ofs;
2976 int len = read (fs_fd, buf, sizeof (buf));
2977
2978 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2979 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2980}
2981
2982inline_size void
2983check_2625 (EV_P)
2984{
2985 /* kernels < 2.6.25 are borked
2986 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2987 */
2988 struct utsname buf;
2989 int major, minor, micro;
2990
2991 if (uname (&buf))
2992 return;
2993
2994 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2995 return;
2996
2997 if (major < 2
2998 || (major == 2 && minor < 6)
2999 || (major == 2 && minor == 6 && micro < 25))
3000 return;
3001
3002 fs_2625 = 1;
3003}
3004
3005inline_size int
3006infy_newfd (void)
3007{
3008#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3009 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3010 if (fd >= 0)
3011 return fd;
3012#endif
3013 return inotify_init ();
3014}
3015
3016inline_size void
3017infy_init (EV_P)
3018{
3019 if (fs_fd != -2)
3020 return;
3021
3022 fs_fd = -1;
3023
3024 check_2625 (EV_A);
3025
3026 fs_fd = infy_newfd ();
3027
3028 if (fs_fd >= 0)
3029 {
3030 fd_intern (fs_fd);
3031 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3032 ev_set_priority (&fs_w, EV_MAXPRI);
3033 ev_io_start (EV_A_ &fs_w);
3034 ev_unref (EV_A);
3035 }
3036}
3037
3038inline_size void
3039infy_fork (EV_P)
3040{
3041 int slot;
3042
3043 if (fs_fd < 0)
3044 return;
3045
3046 ev_ref (EV_A);
3047 ev_io_stop (EV_A_ &fs_w);
3048 close (fs_fd);
3049 fs_fd = infy_newfd ();
3050
3051 if (fs_fd >= 0)
3052 {
3053 fd_intern (fs_fd);
3054 ev_io_set (&fs_w, fs_fd, EV_READ);
3055 ev_io_start (EV_A_ &fs_w);
3056 ev_unref (EV_A);
3057 }
3058
3059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3060 {
3061 WL w_ = fs_hash [slot].head;
3062 fs_hash [slot].head = 0;
3063
3064 while (w_)
3065 {
3066 ev_stat *w = (ev_stat *)w_;
3067 w_ = w_->next; /* lets us add this watcher */
3068
3069 w->wd = -1;
3070
3071 if (fs_fd >= 0)
3072 infy_add (EV_A_ w); /* re-add, no matter what */
3073 else
3074 {
3075 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3076 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3077 ev_timer_again (EV_A_ &w->timer);
3078 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3079 }
3080 }
3081 }
3082}
3083
3084#endif
3085
3086#ifdef _WIN32
3087# define EV_LSTAT(p,b) _stati64 (p, b)
3088#else
3089# define EV_LSTAT(p,b) lstat (p, b)
3090#endif
3091
1567void 3092void
1568ev_check_start (EV_P_ struct ev_check *w) 3093ev_stat_stat (EV_P_ ev_stat *w)
3094{
3095 if (lstat (w->path, &w->attr) < 0)
3096 w->attr.st_nlink = 0;
3097 else if (!w->attr.st_nlink)
3098 w->attr.st_nlink = 1;
3099}
3100
3101static void noinline
3102stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3103{
3104 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3105
3106 /* we copy this here each the time so that */
3107 /* prev has the old value when the callback gets invoked */
3108 w->prev = w->attr;
3109 ev_stat_stat (EV_A_ w);
3110
3111 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3112 if (
3113 w->prev.st_dev != w->attr.st_dev
3114 || w->prev.st_ino != w->attr.st_ino
3115 || w->prev.st_mode != w->attr.st_mode
3116 || w->prev.st_nlink != w->attr.st_nlink
3117 || w->prev.st_uid != w->attr.st_uid
3118 || w->prev.st_gid != w->attr.st_gid
3119 || w->prev.st_rdev != w->attr.st_rdev
3120 || w->prev.st_size != w->attr.st_size
3121 || w->prev.st_atime != w->attr.st_atime
3122 || w->prev.st_mtime != w->attr.st_mtime
3123 || w->prev.st_ctime != w->attr.st_ctime
3124 ) {
3125 #if EV_USE_INOTIFY
3126 if (fs_fd >= 0)
3127 {
3128 infy_del (EV_A_ w);
3129 infy_add (EV_A_ w);
3130 ev_stat_stat (EV_A_ w); /* avoid race... */
3131 }
3132 #endif
3133
3134 ev_feed_event (EV_A_ w, EV_STAT);
3135 }
3136}
3137
3138void
3139ev_stat_start (EV_P_ ev_stat *w)
1569{ 3140{
1570 if (expect_false (ev_is_active (w))) 3141 if (expect_false (ev_is_active (w)))
1571 return; 3142 return;
1572 3143
3144 ev_stat_stat (EV_A_ w);
3145
3146 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3147 w->interval = MIN_STAT_INTERVAL;
3148
3149 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3150 ev_set_priority (&w->timer, ev_priority (w));
3151
3152#if EV_USE_INOTIFY
3153 infy_init (EV_A);
3154
3155 if (fs_fd >= 0)
3156 infy_add (EV_A_ w);
3157 else
3158#endif
3159 {
3160 ev_timer_again (EV_A_ &w->timer);
3161 ev_unref (EV_A);
3162 }
3163
1573 ev_start (EV_A_ (W)w, ++checkcnt); 3164 ev_start (EV_A_ (W)w, 1);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1575 checks [checkcnt - 1] = w;
1576}
1577 3165
3166 EV_FREQUENT_CHECK;
3167}
3168
1578void 3169void
1579ev_check_stop (EV_P_ struct ev_check *w) 3170ev_stat_stop (EV_P_ ev_stat *w)
1580{ 3171{
1581 ev_clear_pending (EV_A_ (W)w); 3172 clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w))) 3173 if (expect_false (!ev_is_active (w)))
1583 return; 3174 return;
1584 3175
1585 checks [((W)w)->active - 1] = checks [--checkcnt]; 3176 EV_FREQUENT_CHECK;
3177
3178#if EV_USE_INOTIFY
3179 infy_del (EV_A_ w);
3180#endif
3181
3182 if (ev_is_active (&w->timer))
3183 {
3184 ev_ref (EV_A);
3185 ev_timer_stop (EV_A_ &w->timer);
3186 }
3187
1586 ev_stop (EV_A_ (W)w); 3188 ev_stop (EV_A_ (W)w);
1587}
1588 3189
1589#ifndef SA_RESTART 3190 EV_FREQUENT_CHECK;
1590# define SA_RESTART 0 3191}
1591#endif 3192#endif
1592 3193
3194#if EV_IDLE_ENABLE
1593void 3195void
1594ev_signal_start (EV_P_ struct ev_signal *w) 3196ev_idle_start (EV_P_ ev_idle *w)
1595{ 3197{
1596#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif
1599 if (expect_false (ev_is_active (w))) 3198 if (expect_false (ev_is_active (w)))
1600 return; 3199 return;
1601 3200
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3201 pri_adjust (EV_A_ (W)w);
1603 3202
3203 EV_FREQUENT_CHECK;
3204
3205 {
3206 int active = ++idlecnt [ABSPRI (w)];
3207
3208 ++idleall;
1604 ev_start (EV_A_ (W)w, 1); 3209 ev_start (EV_A_ (W)w, active);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1607 3210
1608 if (!((WL)w)->next) 3211 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1609 { 3212 idles [ABSPRI (w)][active - 1] = w;
1610#if _WIN32
1611 signal (w->signum, sighandler);
1612#else
1613 struct sigaction sa;
1614 sa.sa_handler = sighandler;
1615 sigfillset (&sa.sa_mask);
1616 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1617 sigaction (w->signum, &sa, 0);
1618#endif
1619 } 3213 }
1620}
1621 3214
3215 EV_FREQUENT_CHECK;
3216}
3217
1622void 3218void
1623ev_signal_stop (EV_P_ struct ev_signal *w) 3219ev_idle_stop (EV_P_ ev_idle *w)
1624{ 3220{
1625 ev_clear_pending (EV_A_ (W)w); 3221 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 3222 if (expect_false (!ev_is_active (w)))
1627 return; 3223 return;
1628 3224
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3225 EV_FREQUENT_CHECK;
3226
3227 {
3228 int active = ev_active (w);
3229
3230 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3231 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3232
1630 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
3234 --idleall;
3235 }
1631 3236
1632 if (!signals [w->signum - 1].head) 3237 EV_FREQUENT_CHECK;
1633 signal (w->signum, SIG_DFL);
1634} 3238}
1635
1636void
1637ev_child_start (EV_P_ struct ev_child *w)
1638{
1639#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 3239#endif
3240
3241void
3242ev_prepare_start (EV_P_ ev_prepare *w)
3243{
1642 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
1643 return; 3245 return;
1644 3246
3247 EV_FREQUENT_CHECK;
3248
1645 ev_start (EV_A_ (W)w, 1); 3249 ev_start (EV_A_ (W)w, ++preparecnt);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3250 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1647} 3251 prepares [preparecnt - 1] = w;
1648 3252
3253 EV_FREQUENT_CHECK;
3254}
3255
1649void 3256void
1650ev_child_stop (EV_P_ struct ev_child *w) 3257ev_prepare_stop (EV_P_ ev_prepare *w)
1651{ 3258{
1652 ev_clear_pending (EV_A_ (W)w); 3259 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 3260 if (expect_false (!ev_is_active (w)))
1654 return; 3261 return;
1655 3262
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3263 EV_FREQUENT_CHECK;
3264
3265 {
3266 int active = ev_active (w);
3267
3268 prepares [active - 1] = prepares [--preparecnt];
3269 ev_active (prepares [active - 1]) = active;
3270 }
3271
1657 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
3273
3274 EV_FREQUENT_CHECK;
1658} 3275}
3276
3277void
3278ev_check_start (EV_P_ ev_check *w)
3279{
3280 if (expect_false (ev_is_active (w)))
3281 return;
3282
3283 EV_FREQUENT_CHECK;
3284
3285 ev_start (EV_A_ (W)w, ++checkcnt);
3286 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3287 checks [checkcnt - 1] = w;
3288
3289 EV_FREQUENT_CHECK;
3290}
3291
3292void
3293ev_check_stop (EV_P_ ev_check *w)
3294{
3295 clear_pending (EV_A_ (W)w);
3296 if (expect_false (!ev_is_active (w)))
3297 return;
3298
3299 EV_FREQUENT_CHECK;
3300
3301 {
3302 int active = ev_active (w);
3303
3304 checks [active - 1] = checks [--checkcnt];
3305 ev_active (checks [active - 1]) = active;
3306 }
3307
3308 ev_stop (EV_A_ (W)w);
3309
3310 EV_FREQUENT_CHECK;
3311}
3312
3313#if EV_EMBED_ENABLE
3314void noinline
3315ev_embed_sweep (EV_P_ ev_embed *w)
3316{
3317 ev_loop (w->other, EVLOOP_NONBLOCK);
3318}
3319
3320static void
3321embed_io_cb (EV_P_ ev_io *io, int revents)
3322{
3323 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3324
3325 if (ev_cb (w))
3326 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3327 else
3328 ev_loop (w->other, EVLOOP_NONBLOCK);
3329}
3330
3331static void
3332embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3333{
3334 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3335
3336 {
3337 EV_P = w->other;
3338
3339 while (fdchangecnt)
3340 {
3341 fd_reify (EV_A);
3342 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3343 }
3344 }
3345}
3346
3347static void
3348embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3349{
3350 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3351
3352 ev_embed_stop (EV_A_ w);
3353
3354 {
3355 EV_P = w->other;
3356
3357 ev_loop_fork (EV_A);
3358 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3359 }
3360
3361 ev_embed_start (EV_A_ w);
3362}
3363
3364#if 0
3365static void
3366embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3367{
3368 ev_idle_stop (EV_A_ idle);
3369}
3370#endif
3371
3372void
3373ev_embed_start (EV_P_ ev_embed *w)
3374{
3375 if (expect_false (ev_is_active (w)))
3376 return;
3377
3378 {
3379 EV_P = w->other;
3380 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3382 }
3383
3384 EV_FREQUENT_CHECK;
3385
3386 ev_set_priority (&w->io, ev_priority (w));
3387 ev_io_start (EV_A_ &w->io);
3388
3389 ev_prepare_init (&w->prepare, embed_prepare_cb);
3390 ev_set_priority (&w->prepare, EV_MINPRI);
3391 ev_prepare_start (EV_A_ &w->prepare);
3392
3393 ev_fork_init (&w->fork, embed_fork_cb);
3394 ev_fork_start (EV_A_ &w->fork);
3395
3396 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3397
3398 ev_start (EV_A_ (W)w, 1);
3399
3400 EV_FREQUENT_CHECK;
3401}
3402
3403void
3404ev_embed_stop (EV_P_ ev_embed *w)
3405{
3406 clear_pending (EV_A_ (W)w);
3407 if (expect_false (!ev_is_active (w)))
3408 return;
3409
3410 EV_FREQUENT_CHECK;
3411
3412 ev_io_stop (EV_A_ &w->io);
3413 ev_prepare_stop (EV_A_ &w->prepare);
3414 ev_fork_stop (EV_A_ &w->fork);
3415
3416 EV_FREQUENT_CHECK;
3417}
3418#endif
3419
3420#if EV_FORK_ENABLE
3421void
3422ev_fork_start (EV_P_ ev_fork *w)
3423{
3424 if (expect_false (ev_is_active (w)))
3425 return;
3426
3427 EV_FREQUENT_CHECK;
3428
3429 ev_start (EV_A_ (W)w, ++forkcnt);
3430 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3431 forks [forkcnt - 1] = w;
3432
3433 EV_FREQUENT_CHECK;
3434}
3435
3436void
3437ev_fork_stop (EV_P_ ev_fork *w)
3438{
3439 clear_pending (EV_A_ (W)w);
3440 if (expect_false (!ev_is_active (w)))
3441 return;
3442
3443 EV_FREQUENT_CHECK;
3444
3445 {
3446 int active = ev_active (w);
3447
3448 forks [active - 1] = forks [--forkcnt];
3449 ev_active (forks [active - 1]) = active;
3450 }
3451
3452 ev_stop (EV_A_ (W)w);
3453
3454 EV_FREQUENT_CHECK;
3455}
3456#endif
3457
3458#if EV_ASYNC_ENABLE
3459void
3460ev_async_start (EV_P_ ev_async *w)
3461{
3462 if (expect_false (ev_is_active (w)))
3463 return;
3464
3465 evpipe_init (EV_A);
3466
3467 EV_FREQUENT_CHECK;
3468
3469 ev_start (EV_A_ (W)w, ++asynccnt);
3470 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3471 asyncs [asynccnt - 1] = w;
3472
3473 EV_FREQUENT_CHECK;
3474}
3475
3476void
3477ev_async_stop (EV_P_ ev_async *w)
3478{
3479 clear_pending (EV_A_ (W)w);
3480 if (expect_false (!ev_is_active (w)))
3481 return;
3482
3483 EV_FREQUENT_CHECK;
3484
3485 {
3486 int active = ev_active (w);
3487
3488 asyncs [active - 1] = asyncs [--asynccnt];
3489 ev_active (asyncs [active - 1]) = active;
3490 }
3491
3492 ev_stop (EV_A_ (W)w);
3493
3494 EV_FREQUENT_CHECK;
3495}
3496
3497void
3498ev_async_send (EV_P_ ev_async *w)
3499{
3500 w->sent = 1;
3501 evpipe_write (EV_A_ &async_pending);
3502}
3503#endif
1659 3504
1660/*****************************************************************************/ 3505/*****************************************************************************/
1661 3506
1662struct ev_once 3507struct ev_once
1663{ 3508{
1664 struct ev_io io; 3509 ev_io io;
1665 struct ev_timer to; 3510 ev_timer to;
1666 void (*cb)(int revents, void *arg); 3511 void (*cb)(int revents, void *arg);
1667 void *arg; 3512 void *arg;
1668}; 3513};
1669 3514
1670static void 3515static void
1671once_cb (EV_P_ struct ev_once *once, int revents) 3516once_cb (EV_P_ struct ev_once *once, int revents)
1672{ 3517{
1673 void (*cb)(int revents, void *arg) = once->cb; 3518 void (*cb)(int revents, void *arg) = once->cb;
1674 void *arg = once->arg; 3519 void *arg = once->arg;
1675 3520
1676 ev_io_stop (EV_A_ &once->io); 3521 ev_io_stop (EV_A_ &once->io);
1677 ev_timer_stop (EV_A_ &once->to); 3522 ev_timer_stop (EV_A_ &once->to);
1678 ev_free (once); 3523 ev_free (once);
1679 3524
1680 cb (revents, arg); 3525 cb (revents, arg);
1681} 3526}
1682 3527
1683static void 3528static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 3529once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 3530{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3531 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3532
3533 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1687} 3534}
1688 3535
1689static void 3536static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 3537once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 3538{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3539 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3540
3541 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1693} 3542}
1694 3543
1695void 3544void
1696ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3545ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1697{ 3546{
1719 ev_timer_set (&once->to, timeout, 0.); 3568 ev_timer_set (&once->to, timeout, 0.);
1720 ev_timer_start (EV_A_ &once->to); 3569 ev_timer_start (EV_A_ &once->to);
1721 } 3570 }
1722} 3571}
1723 3572
3573/*****************************************************************************/
3574
3575#if EV_WALK_ENABLE
3576void
3577ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3578{
3579 int i, j;
3580 ev_watcher_list *wl, *wn;
3581
3582 if (types & (EV_IO | EV_EMBED))
3583 for (i = 0; i < anfdmax; ++i)
3584 for (wl = anfds [i].head; wl; )
3585 {
3586 wn = wl->next;
3587
3588#if EV_EMBED_ENABLE
3589 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3590 {
3591 if (types & EV_EMBED)
3592 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3593 }
3594 else
3595#endif
3596#if EV_USE_INOTIFY
3597 if (ev_cb ((ev_io *)wl) == infy_cb)
3598 ;
3599 else
3600#endif
3601 if ((ev_io *)wl != &pipe_w)
3602 if (types & EV_IO)
3603 cb (EV_A_ EV_IO, wl);
3604
3605 wl = wn;
3606 }
3607
3608 if (types & (EV_TIMER | EV_STAT))
3609 for (i = timercnt + HEAP0; i-- > HEAP0; )
3610#if EV_STAT_ENABLE
3611 /*TODO: timer is not always active*/
3612 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3613 {
3614 if (types & EV_STAT)
3615 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3616 }
3617 else
3618#endif
3619 if (types & EV_TIMER)
3620 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3621
3622#if EV_PERIODIC_ENABLE
3623 if (types & EV_PERIODIC)
3624 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3625 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3626#endif
3627
3628#if EV_IDLE_ENABLE
3629 if (types & EV_IDLE)
3630 for (j = NUMPRI; i--; )
3631 for (i = idlecnt [j]; i--; )
3632 cb (EV_A_ EV_IDLE, idles [j][i]);
3633#endif
3634
3635#if EV_FORK_ENABLE
3636 if (types & EV_FORK)
3637 for (i = forkcnt; i--; )
3638 if (ev_cb (forks [i]) != embed_fork_cb)
3639 cb (EV_A_ EV_FORK, forks [i]);
3640#endif
3641
3642#if EV_ASYNC_ENABLE
3643 if (types & EV_ASYNC)
3644 for (i = asynccnt; i--; )
3645 cb (EV_A_ EV_ASYNC, asyncs [i]);
3646#endif
3647
3648 if (types & EV_PREPARE)
3649 for (i = preparecnt; i--; )
3650#if EV_EMBED_ENABLE
3651 if (ev_cb (prepares [i]) != embed_prepare_cb)
3652#endif
3653 cb (EV_A_ EV_PREPARE, prepares [i]);
3654
3655 if (types & EV_CHECK)
3656 for (i = checkcnt; i--; )
3657 cb (EV_A_ EV_CHECK, checks [i]);
3658
3659 if (types & EV_SIGNAL)
3660 for (i = 0; i < EV_NSIG - 1; ++i)
3661 for (wl = signals [i].head; wl; )
3662 {
3663 wn = wl->next;
3664 cb (EV_A_ EV_SIGNAL, wl);
3665 wl = wn;
3666 }
3667
3668 if (types & EV_CHILD)
3669 for (i = EV_PID_HASHSIZE; i--; )
3670 for (wl = childs [i]; wl; )
3671 {
3672 wn = wl->next;
3673 cb (EV_A_ EV_CHILD, wl);
3674 wl = wn;
3675 }
3676/* EV_STAT 0x00001000 /* stat data changed */
3677/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3678}
3679#endif
3680
3681#if EV_MULTIPLICITY
3682 #include "ev_wrap.h"
3683#endif
3684
1724#ifdef __cplusplus 3685#ifdef __cplusplus
1725} 3686}
1726#endif 3687#endif
1727 3688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines