ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.319 by root, Wed Nov 18 10:25:22 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
129#ifndef _WIN32 177#ifndef _WIN32
130# include <sys/time.h> 178# include <sys/time.h>
131# include <sys/wait.h> 179# include <sys/wait.h>
132# include <unistd.h> 180# include <unistd.h>
133#else 181#else
182# include <io.h>
134# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 184# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
138# endif 187# endif
139#endif 188#endif
140 189
141/**/ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
142 226
143#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
144# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
145#endif 233#endif
146 234
147#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
149#endif 245#endif
150 246
151#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
153#endif 249#endif
159# define EV_USE_POLL 1 255# define EV_USE_POLL 1
160# endif 256# endif
161#endif 257#endif
162 258
163#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
164# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
165#endif 265#endif
166 266
167#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
169#endif 269#endif
171#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 272# define EV_USE_PORT 0
173#endif 273#endif
174 274
175#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
176# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
177#endif 281#endif
178 282
179#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 284# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
190# else 294# else
191# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
192# endif 296# endif
193#endif 297#endif
194 298
195/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 348
197#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
200#endif 352#endif
202#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
205#endif 357#endif
206 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
207#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 382# include <winsock.h>
209#endif 383#endif
210 384
211#if !EV_STAT_ENABLE 385#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
213#endif 390# endif
214 391# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 392# ifdef O_CLOEXEC
216# include <sys/inotify.h> 393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
217#endif 397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
218 435
219/**/ 436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
443
444/*
445 * This is used to avoid floating point rounding problems.
446 * It is added to ev_rt_now when scheduling periodics
447 * to ensure progress, time-wise, even when rounding
448 * errors are against us.
449 * This value is good at least till the year 4000.
450 * Better solutions welcome.
451 */
452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 453
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 456
225#if __GNUC__ >= 3 457#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 460#else
236# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
240#endif 466#endif
241 467
242#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
244 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
247 485
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
250 488
251typedef ev_watcher *W; 489typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
254 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
256 515
257#ifdef _WIN32 516#ifdef _WIN32
258# include "ev_win32.c" 517# include "ev_win32.c"
259#endif 518#endif
260 519
267{ 526{
268 syserr_cb = cb; 527 syserr_cb = cb;
269} 528}
270 529
271static void noinline 530static void noinline
272syserr (const char *msg) 531ev_syserr (const char *msg)
273{ 532{
274 if (!msg) 533 if (!msg)
275 msg = "(libev) system error"; 534 msg = "(libev) system error";
276 535
277 if (syserr_cb) 536 if (syserr_cb)
281 perror (msg); 540 perror (msg);
282 abort (); 541 abort ();
283 } 542 }
284} 543}
285 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
286static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 561
288void 562void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 564{
291 alloc = cb; 565 alloc = cb;
292} 566}
293 567
294inline_speed void * 568inline_speed void *
295ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
296{ 570{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
298 572
299 if (!ptr && size) 573 if (!ptr && size)
300 { 574 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 576 abort ();
308#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
310 584
311/*****************************************************************************/ 585/*****************************************************************************/
312 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
313typedef struct 591typedef struct
314{ 592{
315 WL head; 593 WL head;
316 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
318#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 602 SOCKET handle;
320#endif 603#endif
321} ANFD; 604} ANFD;
322 605
606/* stores the pending event set for a given watcher */
323typedef struct 607typedef struct
324{ 608{
325 W w; 609 W w;
326 int events; 610 int events; /* the pending event set for the given watcher */
327} ANPENDING; 611} ANPENDING;
328 612
329#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
330typedef struct 615typedef struct
331{ 616{
332 WL head; 617 WL head;
333} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
334#endif 639#endif
335 640
336#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
337 642
338 struct ev_loop 643 struct ev_loop
357 662
358 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
359 664
360#endif 665#endif
361 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
362/*****************************************************************************/ 679/*****************************************************************************/
363 680
681#ifndef EV_HAVE_EV_TIME
364ev_tstamp 682ev_tstamp
365ev_time (void) 683ev_time (void)
366{ 684{
367#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
368 struct timespec ts; 688 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 691 }
692#endif
693
372 struct timeval tv; 694 struct timeval tv;
373 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 697}
698#endif
377 699
378ev_tstamp inline_size 700inline_size ev_tstamp
379get_clock (void) 701get_clock (void)
380{ 702{
381#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
383 { 705 {
396{ 718{
397 return ev_rt_now; 719 return ev_rt_now;
398} 720}
399#endif 721#endif
400 722
401int inline_size 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
402array_nextsize (int elem, int cur, int cnt) 758array_nextsize (int elem, int cur, int cnt)
403{ 759{
404 int ncur = cur + 1; 760 int ncur = cur + 1;
405 761
406 do 762 do
407 ncur <<= 1; 763 ncur <<= 1;
408 while (cnt > ncur); 764 while (cnt > ncur);
409 765
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 768 {
413 ncur *= elem; 769 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 771 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 772 ncur /= elem;
417 } 773 }
418 774
419 return ncur; 775 return ncur;
420} 776}
421 777
422inline_speed void * 778static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 779array_realloc (int elem, void *base, int *cur, int cnt)
424{ 780{
425 *cur = array_nextsize (elem, *cur, cnt); 781 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 782 return ev_realloc (base, elem * *cur);
427} 783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 787
429#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 789 if (expect_false ((cnt) > (cur))) \
431 { \ 790 { \
432 int ocur_ = (cur); \ 791 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 804 }
446#endif 805#endif
447 806
448#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 809
451/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
452 817
453void noinline 818void noinline
454ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
455{ 820{
456 W w_ = (W)w; 821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
457 823
458 if (expect_false (w_->pending)) 824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
459 { 827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 831 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 832 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 833}
469 834
470void inline_size 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 852{
473 int i; 853 int i;
474 854
475 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
477} 857}
478 858
479/*****************************************************************************/ 859/*****************************************************************************/
480 860
481void inline_size 861inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
496{ 863{
497 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
498 ev_io *w; 865 ev_io *w;
499 866
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 871 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
506 } 873 }
507} 874}
508 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
509void 887void
510ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 889{
512 if (fd >= 0 && fd < anfdmax) 890 if (fd >= 0 && fd < anfdmax)
513 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
514} 892}
515 893
516void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
517fd_reify (EV_P) 897fd_reify (EV_P)
518{ 898{
519 int i; 899 int i;
520 900
521 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
522 { 902 {
523 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
525 ev_io *w; 905 ev_io *w;
526 906
527 int events = 0; 907 unsigned char events = 0;
528 908
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 910 events |= (unsigned char)w->events;
531 911
532#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
533 if (events) 913 if (events)
534 { 914 {
535 unsigned long argp; 915 unsigned long arg;
536 anfd->handle = _get_osfhandle (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
538 } 918 }
539#endif 919#endif
540 920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
541 anfd->reify = 0; 925 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
545 } 931 }
546 932
547 fdchangecnt = 0; 933 fdchangecnt = 0;
548} 934}
549 935
550void inline_size 936/* something about the given fd changed */
937inline_size void
551fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
552{ 939{
553 if (expect_false (anfds [fd].reify)) 940 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
557 942
943 if (expect_true (!reify))
944 {
558 ++fdchangecnt; 945 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
561} 949}
562 950
563void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
564fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
565{ 954{
566 ev_io *w; 955 ev_io *w;
567 956
568 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
570 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
571 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
572 } 961 }
573} 962}
574 963
575int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
576fd_valid (int fd) 966fd_valid (int fd)
577{ 967{
578#ifdef _WIN32 968#ifdef _WIN32
579 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
580#else 970#else
588{ 978{
589 int fd; 979 int fd;
590 980
591 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 982 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
595} 985}
596 986
597/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 988static void noinline
602 992
603 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
604 if (anfds [fd].events) 994 if (anfds [fd].events)
605 { 995 {
606 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
607 return; 997 break;
608 } 998 }
609} 999}
610 1000
611/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
612static void noinline 1002static void noinline
616 1006
617 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 1008 if (anfds [fd].events)
619 { 1009 {
620 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
622 } 1013 }
623} 1014}
624 1015
625/*****************************************************************************/ 1016/*****************************************************************************/
626 1017
627void inline_speed 1018/*
628upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
629{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
630 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
631 1023
632 while (k && heap [k >> 1]->at > w->at) 1024/*
633 { 1025 * at the moment we allow libev the luxury of two heaps,
634 heap [k] = heap [k >> 1]; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
635 ((W)heap [k])->active = k + 1; 1027 * which is more cache-efficient.
636 k >>= 1; 1028 * the difference is about 5% with 50000+ watchers.
637 } 1029 */
1030#if EV_USE_4HEAP
638 1031
639 heap [k] = w; 1032#define DHEAP 4
640 ((W)heap [k])->active = k + 1; 1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
641 1036
642} 1037/* away from the root */
643 1038inline_speed void
644void inline_speed
645downheap (WT *heap, int N, int k) 1039downheap (ANHE *heap, int N, int k)
646{ 1040{
647 WT w = heap [k]; 1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
648 1043
649 while (k < (N >> 1)) 1044 for (;;)
650 { 1045 {
651 int j = k << 1; 1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
652 1049
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
654 ++j; 1052 {
655 1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
656 if (w->at <= heap [j]->at) 1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
657 break; 1066 break;
658 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
659 heap [k] = heap [j]; 1106 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 1107 ev_active (ANHE_w (heap [k])) = k;
1108
661 k = j; 1109 k = c;
662 } 1110 }
663 1111
664 heap [k] = w; 1112 heap [k] = he;
665 ((W)heap [k])->active = k + 1; 1113 ev_active (ANHE_w (he)) = k;
666} 1114}
1115#endif
667 1116
668void inline_size 1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
1140inline_size void
669adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
670{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
671 upheap (heap, k); 1144 upheap (heap, k);
1145 else
672 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
673} 1159}
674 1160
675/*****************************************************************************/ 1161/*****************************************************************************/
676 1162
1163/* associate signal watchers to a signal signal */
677typedef struct 1164typedef struct
678{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
679 WL head; 1170 WL head;
680 sig_atomic_t volatile gotsig;
681} ANSIG; 1171} ANSIG;
682 1172
683static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
684static int signalmax;
685 1174
686static int sigpipe [2]; 1175/*****************************************************************************/
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 1176
690void inline_size 1177/* used to prepare libev internal fd's */
691signals_init (ANSIG *base, int count) 1178/* this is not fork-safe */
692{ 1179inline_speed void
693 while (count--)
694 {
695 base->head = 0;
696 base->gotsig = 0;
697
698 ++base;
699 }
700}
701
702static void
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size
754fd_intern (int fd) 1180fd_intern (int fd)
755{ 1181{
756#ifdef _WIN32 1182#ifdef _WIN32
757 int arg = 1; 1183 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
759#else 1185#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 1188#endif
763} 1189}
764 1190
765static void noinline 1191static void noinline
766siginit (EV_P) 1192evpipe_init (EV_P)
767{ 1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
768 fd_intern (sigpipe [0]); 1213 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
770 1217
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 1218 ev_io_start (EV_A_ &pipe_w);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
1248static void
1249pipecb (EV_P_ ev_io *iow, int revents)
1250{
1251 int i;
1252
1253#if EV_USE_EVENTFD
1254 if (evfd >= 0)
1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
1265
1266 if (sig_pending)
1267 {
1268 sig_pending = 0;
1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
774} 1288}
775 1289
776/*****************************************************************************/ 1290/*****************************************************************************/
777 1291
1292static void
1293ev_sighandler (int signum)
1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
1299#if _WIN32
1300 signal (signum, ev_sighandler);
1301#endif
1302
1303 signals [signum - 1].pending = 1;
1304 evpipe_write (EV_A_ &sig_pending);
1305}
1306
1307void noinline
1308ev_feed_signal_event (EV_P_ int signum)
1309{
1310 WL w;
1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
1317#if EV_MULTIPLICITY
1318 /* it is permissible to try to feed a signal to the wrong loop */
1319 /* or, likely more useful, feeding a signal nobody is waiting for */
1320
1321 if (expect_false (signals [signum].loop != EV_A))
1322 return;
1323#endif
1324
1325 signals [signum].pending = 0;
1326
1327 for (w = signals [signum].head; w; w = w->next)
1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1329}
1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
1351/*****************************************************************************/
1352
778static ev_child *childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
779 1354
780#ifndef _WIN32 1355#ifndef _WIN32
781 1356
782static ev_signal childev; 1357static ev_signal childev;
783 1358
784void inline_speed 1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
786{ 1366{
787 ev_child *w; 1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1369
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
790 if (w->pid == pid || !w->pid) 1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
791 { 1374 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1376 w->rpid = pid;
794 w->rstatus = status; 1377 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1379 }
1380 }
797} 1381}
798 1382
799#ifndef WCONTINUED 1383#ifndef WCONTINUED
800# define WCONTINUED 0 1384# define WCONTINUED 0
801#endif 1385#endif
802 1386
1387/* called on sigchld etc., calls waitpid */
803static void 1388static void
804childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
805{ 1390{
806 int pid, status; 1391 int pid, status;
807 1392
810 if (!WCONTINUED 1395 if (!WCONTINUED
811 || errno != EINVAL 1396 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1398 return;
814 1399
815 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1401 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1403
819 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1405 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1407}
823 1408
824#endif 1409#endif
825 1410
826/*****************************************************************************/ 1411/*****************************************************************************/
888 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
889 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
890 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
891#endif 1476#endif
892#ifdef __APPLE__ 1477#ifdef __APPLE__
893 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
894 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
895#endif 1481#endif
896 1482
897 return flags; 1483 return flags;
898} 1484}
899 1485
900unsigned int 1486unsigned int
901ev_embeddable_backends (void) 1487ev_embeddable_backends (void)
902{ 1488{
903 return EVBACKEND_EPOLL 1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1490
905 | EVBACKEND_PORT; 1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
906} 1496}
907 1497
908unsigned int 1498unsigned int
909ev_backend (EV_P) 1499ev_backend (EV_P)
910{ 1500{
911 return backend; 1501 return backend;
912} 1502}
913 1503
1504#if EV_MINIMAL < 2
914unsigned int 1505unsigned int
915ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
916{ 1507{
917 return loop_count; 1508 return loop_count;
918} 1509}
919 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
920static void noinline 1554static void noinline
921loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
922{ 1556{
923 if (!backend) 1557 if (!backend)
924 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
925#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
926 { 1571 {
927 struct timespec ts; 1572 struct timespec ts;
1573
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1575 have_monotonic = 1;
930 } 1576 }
931#endif 1577#endif
932
933 ev_rt_now = ev_time ();
934 mn_now = get_clock ();
935 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now;
937 1578
938 /* pid check not overridable via env */ 1579 /* pid check not overridable via env */
939#ifndef _WIN32 1580#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1581 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1582 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1585 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1586 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1587 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1588 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1611#endif
1612
949 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1615
958#if EV_USE_PORT 1616#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1618#endif
961#if EV_USE_KQUEUE 1619#if EV_USE_KQUEUE
969#endif 1627#endif
970#if EV_USE_SELECT 1628#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1630#endif
973 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
974 ev_init (&sigev, sigcb); 1634 ev_init (&pipe_w, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
976 } 1636 }
977} 1637}
978 1638
1639/* free up a loop structure */
979static void noinline 1640static void noinline
980loop_destroy (EV_P) 1641loop_destroy (EV_P)
981{ 1642{
982 int i; 1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
983 1666
984#if EV_USE_INOTIFY 1667#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1668 if (fs_fd >= 0)
986 close (fs_fd); 1669 close (fs_fd);
987#endif 1670#endif
1011#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1695 array_free (idle, [i]);
1013#endif 1696#endif
1014 } 1697 }
1015 1698
1699 ev_free (anfds); anfds = 0; anfdmax = 0;
1700
1016 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
1017 array_free (fdchange, EMPTY); 1703 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1704 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1705#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1706 array_free (periodic, EMPTY);
1021#endif 1707#endif
1708#if EV_FORK_ENABLE
1709 array_free (fork, EMPTY);
1710#endif
1022 array_free (prepare, EMPTY); 1711 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1712 array_free (check, EMPTY);
1713#if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715#endif
1024 1716
1025 backend = 0; 1717 backend = 0;
1026} 1718}
1027 1719
1720#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1721inline_size void infy_fork (EV_P);
1722#endif
1029 1723
1030void inline_size 1724inline_size void
1031loop_fork (EV_P) 1725loop_fork (EV_P)
1032{ 1726{
1033#if EV_USE_PORT 1727#if EV_USE_PORT
1034 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1035#endif 1729#endif
1041#endif 1735#endif
1042#if EV_USE_INOTIFY 1736#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1737 infy_fork (EV_A);
1044#endif 1738#endif
1045 1739
1046 if (ev_is_active (&sigev)) 1740 if (ev_is_active (&pipe_w))
1047 { 1741 {
1048 /* default loop */ 1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745#if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747#endif
1049 1748
1050 ev_ref (EV_A); 1749 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1750 ev_io_stop (EV_A_ &pipe_w);
1052 close (sigpipe [0]);
1053 close (sigpipe [1]);
1054 1751
1055 while (pipe (sigpipe)) 1752#if EV_USE_EVENTFD
1056 syserr ("(libev) error creating pipe"); 1753 if (evfd >= 0)
1754 close (evfd);
1755#endif
1057 1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
1058 siginit (EV_A); 1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
1059 } 1766 }
1060 1767
1061 postfork = 0; 1768 postfork = 0;
1062} 1769}
1063 1770
1064#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1772
1065struct ev_loop * 1773struct ev_loop *
1066ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
1067{ 1775{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 1777
1070 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
1071
1072 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
1073 1780
1074 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
1075 return loop; 1782 return EV_A;
1076 1783
1077 return 0; 1784 return 0;
1078} 1785}
1079 1786
1080void 1787void
1085} 1792}
1086 1793
1087void 1794void
1088ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
1089{ 1796{
1090 postfork = 1; 1797 postfork = 1; /* must be in line with ev_default_fork */
1091} 1798}
1799#endif /* multiplicity */
1092 1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1899}
1093#endif 1900#endif
1094 1901
1095#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
1096struct ev_loop * 1903struct ev_loop *
1097ev_default_loop_init (unsigned int flags) 1904ev_default_loop_init (unsigned int flags)
1098#else 1905#else
1099int 1906int
1100ev_default_loop (unsigned int flags) 1907ev_default_loop (unsigned int flags)
1101#endif 1908#endif
1102{ 1909{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
1108 { 1911 {
1109#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1111#else 1914#else
1112 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
1113#endif 1916#endif
1114 1917
1115 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
1116 1919
1117 if (ev_backend (EV_A)) 1920 if (ev_backend (EV_A))
1118 { 1921 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1922#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1923 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1924 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1925 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
1134 1935
1135void 1936void
1136ev_default_destroy (void) 1937ev_default_destroy (void)
1137{ 1938{
1138#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1139 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1140#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
1141 1944
1142#ifndef _WIN32 1945#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
1145#endif 1948#endif
1146 1949
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1950 loop_destroy (EV_A);
1154} 1951}
1155 1952
1156void 1953void
1157ev_default_fork (void) 1954ev_default_fork (void)
1158{ 1955{
1159#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1161#endif 1958#endif
1162 1959
1163 if (backend) 1960 postfork = 1; /* must be in line with ev_loop_fork */
1164 postfork = 1;
1165} 1961}
1166 1962
1167/*****************************************************************************/ 1963/*****************************************************************************/
1168 1964
1169void 1965void
1170ev_invoke (EV_P_ void *w, int revents) 1966ev_invoke (EV_P_ void *w, int revents)
1171{ 1967{
1172 EV_CB_INVOKE ((W)w, revents); 1968 EV_CB_INVOKE ((W)w, revents);
1173} 1969}
1174 1970
1175void inline_speed 1971unsigned int
1176call_pending (EV_P) 1972ev_pending_count (EV_P)
1973{
1974 int pri;
1975 unsigned int count = 0;
1976
1977 for (pri = NUMPRI; pri--; )
1978 count += pendingcnt [pri];
1979
1980 return count;
1981}
1982
1983void noinline
1984ev_invoke_pending (EV_P)
1177{ 1985{
1178 int pri; 1986 int pri;
1179 1987
1180 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1181 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1182 { 1990 {
1183 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1184 1992
1185 if (expect_true (p->w))
1186 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1188 1995
1189 p->w->pending = 0; 1996 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1191 } 1998 EV_FREQUENT_CHECK;
1192 } 1999 }
1193} 2000}
1194 2001
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273
1274#if EV_IDLE_ENABLE 2002#if EV_IDLE_ENABLE
1275void inline_size 2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
1276idle_reify (EV_P) 2006idle_reify (EV_P)
1277{ 2007{
1278 if (expect_false (idleall)) 2008 if (expect_false (idleall))
1279 { 2009 {
1280 int pri; 2010 int pri;
1292 } 2022 }
1293 } 2023 }
1294} 2024}
1295#endif 2025#endif
1296 2026
1297int inline_size 2027/* make timers pending */
1298time_update_monotonic (EV_P) 2028inline_size void
2029timers_reify (EV_P)
1299{ 2030{
2031 EV_FREQUENT_CHECK;
2032
2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2034 {
2035 do
2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2049
2050 ANHE_at_cache (timers [HEAP0]);
2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
2058 }
2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2060
2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
2062 }
2063}
2064
2065#if EV_PERIODIC_ENABLE
2066/* make periodics pending */
2067inline_size void
2068periodics_reify (EV_P)
2069{
2070 EV_FREQUENT_CHECK;
2071
2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2073 {
2074 int feed_count = 0;
2075
2076 do
2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
2116 }
2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2118
2119 feed_reverse_done (EV_A_ EV_PERIODIC);
2120 }
2121}
2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2125static void noinline
2126periodics_reschedule (EV_P)
2127{
2128 int i;
2129
2130 /* adjust periodics after time jump */
2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2132 {
2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2134
2135 if (w->reschedule_cb)
2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2137 else if (w->interval)
2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159}
2160
2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detetc if there was a timejump, and act accordingly */
2163inline_speed void
2164time_update (EV_P_ ev_tstamp max_block)
2165{
2166#if EV_USE_MONOTONIC
2167 if (expect_true (have_monotonic))
2168 {
2169 int i;
2170 ev_tstamp odiff = rtmn_diff;
2171
1300 mn_now = get_clock (); 2172 mn_now = get_clock ();
1301 2173
2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2175 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2176 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 2177 {
1304 ev_rt_now = rtmn_diff + mn_now; 2178 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 2179 return;
1306 } 2180 }
1307 else 2181
1308 {
1309 now_floor = mn_now; 2182 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 2183 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 2184
1315void inline_size 2185 /* loop a few times, before making important decisions.
1316time_update (EV_P) 2186 * on the choice of "4": one iteration isn't enough,
1317{ 2187 * in case we get preempted during the calls to
1318 int i; 2188 * ev_time and get_clock. a second call is almost guaranteed
1319 2189 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 2190 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 2191 * in the unlikely event of having been preempted here.
1322 { 2192 */
1323 if (time_update_monotonic (EV_A)) 2193 for (i = 4; --i; )
1324 { 2194 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1338 2196
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 2198 return; /* all is well */
1341 2199
1342 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 2201 mn_now = get_clock ();
1344 now_floor = mn_now; 2202 now_floor = mn_now;
1345 } 2203 }
1346 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1347# if EV_PERIODIC_ENABLE 2207# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 2208 periodics_reschedule (EV_A);
1349# endif 2209# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 2210 }
1354 else 2211 else
1355#endif 2212#endif
1356 { 2213 {
1357 ev_rt_now = ev_time (); 2214 ev_rt_now = ev_time ();
1358 2215
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1361#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1363#endif 2222#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 2223 }
1369 2224
1370 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1371 } 2226 }
1372} 2227}
1373 2228
1374void 2229void
1375ev_ref (EV_P)
1376{
1377 ++activecnt;
1378}
1379
1380void
1381ev_unref (EV_P)
1382{
1383 --activecnt;
1384}
1385
1386static int loop_done;
1387
1388void
1389ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1390{ 2231{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2232#if EV_MINIMAL < 2
1392 ? EVUNLOOP_ONE 2233 ++loop_depth;
1393 : EVUNLOOP_CANCEL; 2234#endif
1394 2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1396 2241
1397 do 2242 do
1398 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
1399#ifndef _WIN32 2248#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 2249 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 2250 if (expect_false (getpid () != curpid))
1402 { 2251 {
1403 curpid = getpid (); 2252 curpid = getpid ();
1409 /* we might have forked, so queue fork handlers */ 2258 /* we might have forked, so queue fork handlers */
1410 if (expect_false (postfork)) 2259 if (expect_false (postfork))
1411 if (forkcnt) 2260 if (forkcnt)
1412 { 2261 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 2263 EV_INVOKE_PENDING;
1415 } 2264 }
1416#endif 2265#endif
1417 2266
1418 /* queue check watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1420 { 2269 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1423 } 2272 }
1424 2273
1425 if (expect_false (!activecnt)) 2274 if (expect_false (loop_done))
1426 break; 2275 break;
1427 2276
1428 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1429 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1430 loop_fork (EV_A); 2279 loop_fork (EV_A);
1432 /* update fd-related kernel structures */ 2281 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 2282 fd_reify (EV_A);
1434 2283
1435 /* calculate blocking time */ 2284 /* calculate blocking time */
1436 { 2285 {
1437 ev_tstamp block; 2286 ev_tstamp waittime = 0.;
2287 ev_tstamp sleeptime = 0.;
1438 2288
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
1443 /* update time to cancel out callback processing overhead */ 2294 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 2295 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 2296
1454 block = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1455 2298
1456 if (timercnt) 2299 if (timercnt)
1457 { 2300 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1459 if (block > to) block = to; 2302 if (waittime > to) waittime = to;
1460 } 2303 }
1461 2304
1462#if EV_PERIODIC_ENABLE 2305#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 2306 if (periodiccnt)
1464 { 2307 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1467 } 2310 }
1468#endif 2311#endif
1469 2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
2314 if (expect_false (waittime < timeout_blocktime))
2315 waittime = timeout_blocktime;
2316
2317 /* extra check because io_blocktime is commonly 0 */
1470 if (expect_false (block < 0.)) block = 0.; 2318 if (expect_false (io_blocktime))
2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
2327 ev_sleep (sleeptime);
2328 waittime -= sleeptime;
2329 }
2330 }
1471 } 2331 }
1472 2332
2333#if EV_MINIMAL < 2
1473 ++loop_count; 2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1474 backend_poll (EV_A_ block); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2339
2340 /* update ev_rt_now, do magic */
2341 time_update (EV_A_ waittime + sleeptime);
1475 } 2342 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 2343
1480 /* queue pending timers and reschedule them */ 2344 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 2345 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 2346#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 2347 periodics_reify (EV_A); /* absolute timers called first */
1490 2354
1491 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 2358
1495 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1496
1497 } 2360 }
1498 while (expect_true (activecnt && !loop_done)); 2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
1499 2366
1500 if (loop_done == EVUNLOOP_ONE) 2367 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1502} 2373}
1503 2374
1504void 2375void
1505ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1506{ 2377{
1507 loop_done = how; 2378 loop_done = how;
1508} 2379}
1509 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1510/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1511 2420
1512void inline_size 2421inline_size void
1513wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1514{ 2423{
1515 elem->next = *head; 2424 elem->next = *head;
1516 *head = elem; 2425 *head = elem;
1517} 2426}
1518 2427
1519void inline_size 2428inline_size void
1520wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1521{ 2430{
1522 while (*head) 2431 while (*head)
1523 { 2432 {
1524 if (*head == elem) 2433 if (expect_true (*head == elem))
1525 { 2434 {
1526 *head = elem->next; 2435 *head = elem->next;
1527 return; 2436 break;
1528 } 2437 }
1529 2438
1530 head = &(*head)->next; 2439 head = &(*head)->next;
1531 } 2440 }
1532} 2441}
1533 2442
1534void inline_speed 2443/* internal, faster, version of ev_clear_pending */
2444inline_speed void
1535clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1536{ 2446{
1537 if (w->pending) 2447 if (w->pending)
1538 { 2448 {
1539 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1540 w->pending = 0; 2450 w->pending = 0;
1541 } 2451 }
1542} 2452}
1543 2453
1544int 2454int
1545ev_clear_pending (EV_P_ void *w) 2455ev_clear_pending (EV_P_ void *w)
1546{ 2456{
1547 W w_ = (W)w; 2457 W w_ = (W)w;
1548 int pending = w_->pending; 2458 int pending = w_->pending;
1549 2459
1550 if (!pending) 2460 if (expect_true (pending))
2461 {
2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
2464 w_->pending = 0;
2465 return p->events;
2466 }
2467 else
1551 return 0; 2468 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 2469}
1559 2470
1560void inline_size 2471inline_size void
1561pri_adjust (EV_P_ W w) 2472pri_adjust (EV_P_ W w)
1562{ 2473{
1563 int pri = w->priority; 2474 int pri = ev_priority (w);
1564 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1565 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1566 w->priority = pri; 2477 ev_set_priority (w, pri);
1567} 2478}
1568 2479
1569void inline_speed 2480inline_speed void
1570ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1571{ 2482{
1572 pri_adjust (EV_A_ w); 2483 pri_adjust (EV_A_ w);
1573 w->active = active; 2484 w->active = active;
1574 ev_ref (EV_A); 2485 ev_ref (EV_A);
1575} 2486}
1576 2487
1577void inline_size 2488inline_size void
1578ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1579{ 2490{
1580 ev_unref (EV_A); 2491 ev_unref (EV_A);
1581 w->active = 0; 2492 w->active = 0;
1582} 2493}
1583 2494
1584/*****************************************************************************/ 2495/*****************************************************************************/
1585 2496
1586void 2497void noinline
1587ev_io_start (EV_P_ ev_io *w) 2498ev_io_start (EV_P_ ev_io *w)
1588{ 2499{
1589 int fd = w->fd; 2500 int fd = w->fd;
1590 2501
1591 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1592 return; 2503 return;
1593 2504
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
1595 2509
1596 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
1599 2513
1600 fd_change (EV_A_ fd); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1601} 2515 w->events &= ~EV__IOFDSET;
1602 2516
1603void 2517 EV_FREQUENT_CHECK;
2518}
2519
2520void noinline
1604ev_io_stop (EV_P_ ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
1605{ 2522{
1606 clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1608 return; 2525 return;
1609 2526
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 2528
2529 EV_FREQUENT_CHECK;
2530
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
1614 2533
1615 fd_change (EV_A_ w->fd); 2534 fd_change (EV_A_ w->fd, 1);
1616}
1617 2535
1618void 2536 EV_FREQUENT_CHECK;
2537}
2538
2539void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
1620{ 2541{
1621 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
1622 return; 2543 return;
1623 2544
1624 ((WT)w)->at += mn_now; 2545 ev_at (w) += mn_now;
1625 2546
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
1632 2557
2558 EV_FREQUENT_CHECK;
2559
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 2561}
1635 2562
1636void 2563void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
1638{ 2565{
1639 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1641 return; 2568 return;
1642 2569
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2570 EV_FREQUENT_CHECK;
1644 2571
1645 { 2572 {
1646 int active = ((W)w)->active; 2573 int active = ev_active (w);
1647 2574
2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2576
2577 --timercnt;
2578
1648 if (expect_true (--active < --timercnt)) 2579 if (expect_true (active < timercnt + HEAP0))
1649 { 2580 {
1650 timers [active] = timers [timercnt]; 2581 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 2582 adjustheap (timers, timercnt, active);
1652 } 2583 }
1653 } 2584 }
1654 2585
1655 ((WT)w)->at -= mn_now; 2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
1656 2589
1657 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
1658} 2591}
1659 2592
1660void 2593void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
1662{ 2595{
2596 EV_FREQUENT_CHECK;
2597
1663 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1664 { 2599 {
1665 if (w->repeat) 2600 if (w->repeat)
1666 { 2601 {
1667 ((WT)w)->at = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2604 adjustheap (timers, timercnt, ev_active (w));
1669 } 2605 }
1670 else 2606 else
1671 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1672 } 2608 }
1673 else if (w->repeat) 2609 else if (w->repeat)
1674 { 2610 {
1675 w->at = w->repeat; 2611 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1677 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1678} 2622}
1679 2623
1680#if EV_PERIODIC_ENABLE 2624#if EV_PERIODIC_ENABLE
1681void 2625void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 2627{
1684 if (expect_false (ev_is_active (w))) 2628 if (expect_false (ev_is_active (w)))
1685 return; 2629 return;
1686 2630
1687 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2633 else if (w->interval)
1690 { 2634 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 2638 }
2639 else
2640 ev_at (w) = w->offset;
1695 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1700 2650
2651 EV_FREQUENT_CHECK;
2652
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 2654}
1703 2655
1704void 2656void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 2658{
1707 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
1709 return; 2661 return;
1710 2662
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2663 EV_FREQUENT_CHECK;
1712 2664
1713 { 2665 {
1714 int active = ((W)w)->active; 2666 int active = ev_active (w);
1715 2667
2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2669
2670 --periodiccnt;
2671
1716 if (expect_true (--active < --periodiccnt)) 2672 if (expect_true (active < periodiccnt + HEAP0))
1717 { 2673 {
1718 periodics [active] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 2675 adjustheap (periodics, periodiccnt, active);
1720 } 2676 }
1721 } 2677 }
1722 2678
2679 EV_FREQUENT_CHECK;
2680
1723 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1724} 2682}
1725 2683
1726void 2684void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 2686{
1729 /* TODO: use adjustheap and recalculation */ 2687 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 2688 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 2689 ev_periodic_start (EV_A_ w);
1734 2692
1735#ifndef SA_RESTART 2693#ifndef SA_RESTART
1736# define SA_RESTART 0 2694# define SA_RESTART 0
1737#endif 2695#endif
1738 2696
1739void 2697void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
1741{ 2699{
1742#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif
1745 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
1746 return; 2701 return;
1747 2702
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2704
2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
2716 {
2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2718 if (sigfd < 0 && errno == EINVAL)
2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2720
2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
2724
2725 sigemptyset (&sigfd_set);
2726
2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
1749 2743
1750 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2746
1754 if (!((WL)w)->next) 2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
1755 { 2751 {
1756#if _WIN32 2752# if _WIN32
2753 evpipe_init (EV_A);
2754
1757 signal (w->signum, sighandler); 2755 signal (w->signum, ev_sighandler);
1758#else 2756# else
1759 struct sigaction sa; 2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
1760 sa.sa_handler = sighandler; 2761 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2762 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1764#endif 2769#endif
1765 } 2770 }
1766}
1767 2771
1768void 2772 EV_FREQUENT_CHECK;
2773}
2774
2775void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2776ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2777{
1771 clear_pending (EV_A_ (W)w); 2778 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2779 if (expect_false (!ev_is_active (w)))
1773 return; 2780 return;
1774 2781
2782 EV_FREQUENT_CHECK;
2783
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
1777 2786
1778 if (!signals [w->signum - 1].head) 2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2796 sigdelset (&sigfd_set, w->signum);
2797 signalfd (sigfd, &sigfd_set, 0);
2798 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2799 /*TODO: maybe unblock signal? */
2800 }
2801 else
2802#endif
1779 signal (w->signum, SIG_DFL); 2803 signal (w->signum, SIG_DFL);
2804 }
2805
2806 EV_FREQUENT_CHECK;
1780} 2807}
1781 2808
1782void 2809void
1783ev_child_start (EV_P_ ev_child *w) 2810ev_child_start (EV_P_ ev_child *w)
1784{ 2811{
1785#if EV_MULTIPLICITY 2812#if EV_MULTIPLICITY
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2813 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 2814#endif
1788 if (expect_false (ev_is_active (w))) 2815 if (expect_false (ev_is_active (w)))
1789 return; 2816 return;
1790 2817
2818 EV_FREQUENT_CHECK;
2819
1791 ev_start (EV_A_ (W)w, 1); 2820 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2821 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2822
2823 EV_FREQUENT_CHECK;
1793} 2824}
1794 2825
1795void 2826void
1796ev_child_stop (EV_P_ ev_child *w) 2827ev_child_stop (EV_P_ ev_child *w)
1797{ 2828{
1798 clear_pending (EV_A_ (W)w); 2829 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2830 if (expect_false (!ev_is_active (w)))
1800 return; 2831 return;
1801 2832
2833 EV_FREQUENT_CHECK;
2834
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2836 ev_stop (EV_A_ (W)w);
2837
2838 EV_FREQUENT_CHECK;
1804} 2839}
1805 2840
1806#if EV_STAT_ENABLE 2841#if EV_STAT_ENABLE
1807 2842
1808# ifdef _WIN32 2843# ifdef _WIN32
1809# undef lstat 2844# undef lstat
1810# define lstat(a,b) _stati64 (a,b) 2845# define lstat(a,b) _stati64 (a,b)
1811# endif 2846# endif
1812 2847
1813#define DEF_STAT_INTERVAL 5.0074891 2848#define DEF_STAT_INTERVAL 5.0074891
2849#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1814#define MIN_STAT_INTERVAL 0.1074891 2850#define MIN_STAT_INTERVAL 0.1074891
1815 2851
1816static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2852static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1817 2853
1818#if EV_USE_INOTIFY 2854#if EV_USE_INOTIFY
1819# define EV_INOTIFY_BUFSIZE 8192 2855# define EV_INOTIFY_BUFSIZE 8192
1821static void noinline 2857static void noinline
1822infy_add (EV_P_ ev_stat *w) 2858infy_add (EV_P_ ev_stat *w)
1823{ 2859{
1824 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2860 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1825 2861
1826 if (w->wd < 0) 2862 if (w->wd >= 0)
2863 {
2864 struct statfs sfs;
2865
2866 /* now local changes will be tracked by inotify, but remote changes won't */
2867 /* unless the filesystem is known to be local, we therefore still poll */
2868 /* also do poll on <2.6.25, but with normal frequency */
2869
2870 if (!fs_2625)
2871 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2872 else if (!statfs (w->path, &sfs)
2873 && (sfs.f_type == 0x1373 /* devfs */
2874 || sfs.f_type == 0xEF53 /* ext2/3 */
2875 || sfs.f_type == 0x3153464a /* jfs */
2876 || sfs.f_type == 0x52654973 /* reiser3 */
2877 || sfs.f_type == 0x01021994 /* tempfs */
2878 || sfs.f_type == 0x58465342 /* xfs */))
2879 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2880 else
2881 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1827 { 2882 }
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2883 else
2884 {
2885 /* can't use inotify, continue to stat */
2886 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1829 2887
1830 /* monitor some parent directory for speedup hints */ 2888 /* if path is not there, monitor some parent directory for speedup hints */
2889 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2890 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2891 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 2892 {
1833 char path [4096]; 2893 char path [4096];
1834 strcpy (path, w->path); 2894 strcpy (path, w->path);
1835 2895
1838 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2898 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1839 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2899 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1840 2900
1841 char *pend = strrchr (path, '/'); 2901 char *pend = strrchr (path, '/');
1842 2902
1843 if (!pend) 2903 if (!pend || pend == path)
1844 break; /* whoops, no '/', complain to your admin */ 2904 break;
1845 2905
1846 *pend = 0; 2906 *pend = 0;
1847 w->wd = inotify_add_watch (fs_fd, path, mask); 2907 w->wd = inotify_add_watch (fs_fd, path, mask);
1848 } 2908 }
1849 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2909 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1850 } 2910 }
1851 } 2911 }
1852 else
1853 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1854 2912
1855 if (w->wd >= 0) 2913 if (w->wd >= 0)
1856 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2914 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2915
2916 /* now re-arm timer, if required */
2917 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2918 ev_timer_again (EV_A_ &w->timer);
2919 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1857} 2920}
1858 2921
1859static void noinline 2922static void noinline
1860infy_del (EV_P_ ev_stat *w) 2923infy_del (EV_P_ ev_stat *w)
1861{ 2924{
1875 2938
1876static void noinline 2939static void noinline
1877infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2940infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1878{ 2941{
1879 if (slot < 0) 2942 if (slot < 0)
1880 /* overflow, need to check for all hahs slots */ 2943 /* overflow, need to check for all hash slots */
1881 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2944 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1882 infy_wd (EV_A_ slot, wd, ev); 2945 infy_wd (EV_A_ slot, wd, ev);
1883 else 2946 else
1884 { 2947 {
1885 WL w_; 2948 WL w_;
1891 2954
1892 if (w->wd == wd || wd == -1) 2955 if (w->wd == wd || wd == -1)
1893 { 2956 {
1894 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2957 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1895 { 2958 {
2959 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1896 w->wd = -1; 2960 w->wd = -1;
1897 infy_add (EV_A_ w); /* re-add, no matter what */ 2961 infy_add (EV_A_ w); /* re-add, no matter what */
1898 } 2962 }
1899 2963
1900 stat_timer_cb (EV_A_ &w->timer, 0); 2964 stat_timer_cb (EV_A_ &w->timer, 0);
1913 2977
1914 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2978 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1915 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2979 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1916} 2980}
1917 2981
1918void inline_size 2982inline_size void
2983check_2625 (EV_P)
2984{
2985 /* kernels < 2.6.25 are borked
2986 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2987 */
2988 struct utsname buf;
2989 int major, minor, micro;
2990
2991 if (uname (&buf))
2992 return;
2993
2994 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2995 return;
2996
2997 if (major < 2
2998 || (major == 2 && minor < 6)
2999 || (major == 2 && minor == 6 && micro < 25))
3000 return;
3001
3002 fs_2625 = 1;
3003}
3004
3005inline_size int
3006infy_newfd (void)
3007{
3008#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3009 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3010 if (fd >= 0)
3011 return fd;
3012#endif
3013 return inotify_init ();
3014}
3015
3016inline_size void
1919infy_init (EV_P) 3017infy_init (EV_P)
1920{ 3018{
1921 if (fs_fd != -2) 3019 if (fs_fd != -2)
1922 return; 3020 return;
1923 3021
3022 fs_fd = -1;
3023
3024 check_2625 (EV_A);
3025
1924 fs_fd = inotify_init (); 3026 fs_fd = infy_newfd ();
1925 3027
1926 if (fs_fd >= 0) 3028 if (fs_fd >= 0)
1927 { 3029 {
3030 fd_intern (fs_fd);
1928 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3031 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1929 ev_set_priority (&fs_w, EV_MAXPRI); 3032 ev_set_priority (&fs_w, EV_MAXPRI);
1930 ev_io_start (EV_A_ &fs_w); 3033 ev_io_start (EV_A_ &fs_w);
3034 ev_unref (EV_A);
1931 } 3035 }
1932} 3036}
1933 3037
1934void inline_size 3038inline_size void
1935infy_fork (EV_P) 3039infy_fork (EV_P)
1936{ 3040{
1937 int slot; 3041 int slot;
1938 3042
1939 if (fs_fd < 0) 3043 if (fs_fd < 0)
1940 return; 3044 return;
1941 3045
3046 ev_ref (EV_A);
3047 ev_io_stop (EV_A_ &fs_w);
1942 close (fs_fd); 3048 close (fs_fd);
1943 fs_fd = inotify_init (); 3049 fs_fd = infy_newfd ();
3050
3051 if (fs_fd >= 0)
3052 {
3053 fd_intern (fs_fd);
3054 ev_io_set (&fs_w, fs_fd, EV_READ);
3055 ev_io_start (EV_A_ &fs_w);
3056 ev_unref (EV_A);
3057 }
1944 3058
1945 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1946 { 3060 {
1947 WL w_ = fs_hash [slot].head; 3061 WL w_ = fs_hash [slot].head;
1948 fs_hash [slot].head = 0; 3062 fs_hash [slot].head = 0;
1955 w->wd = -1; 3069 w->wd = -1;
1956 3070
1957 if (fs_fd >= 0) 3071 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); /* re-add, no matter what */ 3072 infy_add (EV_A_ w); /* re-add, no matter what */
1959 else 3073 else
3074 {
3075 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3076 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1960 ev_timer_start (EV_A_ &w->timer); 3077 ev_timer_again (EV_A_ &w->timer);
3078 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3079 }
1961 } 3080 }
1962
1963 } 3081 }
1964} 3082}
1965 3083
3084#endif
3085
3086#ifdef _WIN32
3087# define EV_LSTAT(p,b) _stati64 (p, b)
3088#else
3089# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 3090#endif
1967 3091
1968void 3092void
1969ev_stat_stat (EV_P_ ev_stat *w) 3093ev_stat_stat (EV_P_ ev_stat *w)
1970{ 3094{
1997 || w->prev.st_atime != w->attr.st_atime 3121 || w->prev.st_atime != w->attr.st_atime
1998 || w->prev.st_mtime != w->attr.st_mtime 3122 || w->prev.st_mtime != w->attr.st_mtime
1999 || w->prev.st_ctime != w->attr.st_ctime 3123 || w->prev.st_ctime != w->attr.st_ctime
2000 ) { 3124 ) {
2001 #if EV_USE_INOTIFY 3125 #if EV_USE_INOTIFY
3126 if (fs_fd >= 0)
3127 {
2002 infy_del (EV_A_ w); 3128 infy_del (EV_A_ w);
2003 infy_add (EV_A_ w); 3129 infy_add (EV_A_ w);
2004 ev_stat_stat (EV_A_ w); /* avoid race... */ 3130 ev_stat_stat (EV_A_ w); /* avoid race... */
3131 }
2005 #endif 3132 #endif
2006 3133
2007 ev_feed_event (EV_A_ w, EV_STAT); 3134 ev_feed_event (EV_A_ w, EV_STAT);
2008 } 3135 }
2009} 3136}
2012ev_stat_start (EV_P_ ev_stat *w) 3139ev_stat_start (EV_P_ ev_stat *w)
2013{ 3140{
2014 if (expect_false (ev_is_active (w))) 3141 if (expect_false (ev_is_active (w)))
2015 return; 3142 return;
2016 3143
2017 /* since we use memcmp, we need to clear any padding data etc. */
2018 memset (&w->prev, 0, sizeof (ev_statdata));
2019 memset (&w->attr, 0, sizeof (ev_statdata));
2020
2021 ev_stat_stat (EV_A_ w); 3144 ev_stat_stat (EV_A_ w);
2022 3145
3146 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2023 if (w->interval < MIN_STAT_INTERVAL) 3147 w->interval = MIN_STAT_INTERVAL;
2024 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2025 3148
2026 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3149 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2027 ev_set_priority (&w->timer, ev_priority (w)); 3150 ev_set_priority (&w->timer, ev_priority (w));
2028 3151
2029#if EV_USE_INOTIFY 3152#if EV_USE_INOTIFY
2030 infy_init (EV_A); 3153 infy_init (EV_A);
2031 3154
2032 if (fs_fd >= 0) 3155 if (fs_fd >= 0)
2033 infy_add (EV_A_ w); 3156 infy_add (EV_A_ w);
2034 else 3157 else
2035#endif 3158#endif
3159 {
2036 ev_timer_start (EV_A_ &w->timer); 3160 ev_timer_again (EV_A_ &w->timer);
3161 ev_unref (EV_A);
3162 }
2037 3163
2038 ev_start (EV_A_ (W)w, 1); 3164 ev_start (EV_A_ (W)w, 1);
3165
3166 EV_FREQUENT_CHECK;
2039} 3167}
2040 3168
2041void 3169void
2042ev_stat_stop (EV_P_ ev_stat *w) 3170ev_stat_stop (EV_P_ ev_stat *w)
2043{ 3171{
2044 clear_pending (EV_A_ (W)w); 3172 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 3173 if (expect_false (!ev_is_active (w)))
2046 return; 3174 return;
2047 3175
3176 EV_FREQUENT_CHECK;
3177
2048#if EV_USE_INOTIFY 3178#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 3179 infy_del (EV_A_ w);
2050#endif 3180#endif
3181
3182 if (ev_is_active (&w->timer))
3183 {
3184 ev_ref (EV_A);
2051 ev_timer_stop (EV_A_ &w->timer); 3185 ev_timer_stop (EV_A_ &w->timer);
3186 }
2052 3187
2053 ev_stop (EV_A_ (W)w); 3188 ev_stop (EV_A_ (W)w);
3189
3190 EV_FREQUENT_CHECK;
2054} 3191}
2055#endif 3192#endif
2056 3193
2057#if EV_IDLE_ENABLE 3194#if EV_IDLE_ENABLE
2058void 3195void
2060{ 3197{
2061 if (expect_false (ev_is_active (w))) 3198 if (expect_false (ev_is_active (w)))
2062 return; 3199 return;
2063 3200
2064 pri_adjust (EV_A_ (W)w); 3201 pri_adjust (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
2065 3204
2066 { 3205 {
2067 int active = ++idlecnt [ABSPRI (w)]; 3206 int active = ++idlecnt [ABSPRI (w)];
2068 3207
2069 ++idleall; 3208 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 3209 ev_start (EV_A_ (W)w, active);
2071 3210
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3211 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 3212 idles [ABSPRI (w)][active - 1] = w;
2074 } 3213 }
3214
3215 EV_FREQUENT_CHECK;
2075} 3216}
2076 3217
2077void 3218void
2078ev_idle_stop (EV_P_ ev_idle *w) 3219ev_idle_stop (EV_P_ ev_idle *w)
2079{ 3220{
2080 clear_pending (EV_A_ (W)w); 3221 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 3222 if (expect_false (!ev_is_active (w)))
2082 return; 3223 return;
2083 3224
3225 EV_FREQUENT_CHECK;
3226
2084 { 3227 {
2085 int active = ((W)w)->active; 3228 int active = ev_active (w);
2086 3229
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3230 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3231 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 3232
2090 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
2091 --idleall; 3234 --idleall;
2092 } 3235 }
3236
3237 EV_FREQUENT_CHECK;
2093} 3238}
2094#endif 3239#endif
2095 3240
2096void 3241void
2097ev_prepare_start (EV_P_ ev_prepare *w) 3242ev_prepare_start (EV_P_ ev_prepare *w)
2098{ 3243{
2099 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
2100 return; 3245 return;
3246
3247 EV_FREQUENT_CHECK;
2101 3248
2102 ev_start (EV_A_ (W)w, ++preparecnt); 3249 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3250 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 3251 prepares [preparecnt - 1] = w;
3252
3253 EV_FREQUENT_CHECK;
2105} 3254}
2106 3255
2107void 3256void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 3257ev_prepare_stop (EV_P_ ev_prepare *w)
2109{ 3258{
2110 clear_pending (EV_A_ (W)w); 3259 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 3260 if (expect_false (!ev_is_active (w)))
2112 return; 3261 return;
2113 3262
3263 EV_FREQUENT_CHECK;
3264
2114 { 3265 {
2115 int active = ((W)w)->active; 3266 int active = ev_active (w);
3267
2116 prepares [active - 1] = prepares [--preparecnt]; 3268 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 3269 ev_active (prepares [active - 1]) = active;
2118 } 3270 }
2119 3271
2120 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
3273
3274 EV_FREQUENT_CHECK;
2121} 3275}
2122 3276
2123void 3277void
2124ev_check_start (EV_P_ ev_check *w) 3278ev_check_start (EV_P_ ev_check *w)
2125{ 3279{
2126 if (expect_false (ev_is_active (w))) 3280 if (expect_false (ev_is_active (w)))
2127 return; 3281 return;
3282
3283 EV_FREQUENT_CHECK;
2128 3284
2129 ev_start (EV_A_ (W)w, ++checkcnt); 3285 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3286 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 3287 checks [checkcnt - 1] = w;
3288
3289 EV_FREQUENT_CHECK;
2132} 3290}
2133 3291
2134void 3292void
2135ev_check_stop (EV_P_ ev_check *w) 3293ev_check_stop (EV_P_ ev_check *w)
2136{ 3294{
2137 clear_pending (EV_A_ (W)w); 3295 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 3296 if (expect_false (!ev_is_active (w)))
2139 return; 3297 return;
2140 3298
3299 EV_FREQUENT_CHECK;
3300
2141 { 3301 {
2142 int active = ((W)w)->active; 3302 int active = ev_active (w);
3303
2143 checks [active - 1] = checks [--checkcnt]; 3304 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 3305 ev_active (checks [active - 1]) = active;
2145 } 3306 }
2146 3307
2147 ev_stop (EV_A_ (W)w); 3308 ev_stop (EV_A_ (W)w);
3309
3310 EV_FREQUENT_CHECK;
2148} 3311}
2149 3312
2150#if EV_EMBED_ENABLE 3313#if EV_EMBED_ENABLE
2151void noinline 3314void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 3315ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 3316{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 3317 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 3318}
2156 3319
2157static void 3320static void
2158embed_cb (EV_P_ ev_io *io, int revents) 3321embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 3322{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3323 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 3324
2162 if (ev_cb (w)) 3325 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3326 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 3327 else
2165 ev_embed_sweep (loop, w); 3328 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 3329}
3330
3331static void
3332embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3333{
3334 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3335
3336 {
3337 EV_P = w->other;
3338
3339 while (fdchangecnt)
3340 {
3341 fd_reify (EV_A);
3342 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3343 }
3344 }
3345}
3346
3347static void
3348embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3349{
3350 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3351
3352 ev_embed_stop (EV_A_ w);
3353
3354 {
3355 EV_P = w->other;
3356
3357 ev_loop_fork (EV_A);
3358 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3359 }
3360
3361 ev_embed_start (EV_A_ w);
3362}
3363
3364#if 0
3365static void
3366embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3367{
3368 ev_idle_stop (EV_A_ idle);
3369}
3370#endif
2167 3371
2168void 3372void
2169ev_embed_start (EV_P_ ev_embed *w) 3373ev_embed_start (EV_P_ ev_embed *w)
2170{ 3374{
2171 if (expect_false (ev_is_active (w))) 3375 if (expect_false (ev_is_active (w)))
2172 return; 3376 return;
2173 3377
2174 { 3378 {
2175 struct ev_loop *loop = w->loop; 3379 EV_P = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3380 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 3382 }
3383
3384 EV_FREQUENT_CHECK;
2179 3385
2180 ev_set_priority (&w->io, ev_priority (w)); 3386 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 3387 ev_io_start (EV_A_ &w->io);
2182 3388
3389 ev_prepare_init (&w->prepare, embed_prepare_cb);
3390 ev_set_priority (&w->prepare, EV_MINPRI);
3391 ev_prepare_start (EV_A_ &w->prepare);
3392
3393 ev_fork_init (&w->fork, embed_fork_cb);
3394 ev_fork_start (EV_A_ &w->fork);
3395
3396 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3397
2183 ev_start (EV_A_ (W)w, 1); 3398 ev_start (EV_A_ (W)w, 1);
3399
3400 EV_FREQUENT_CHECK;
2184} 3401}
2185 3402
2186void 3403void
2187ev_embed_stop (EV_P_ ev_embed *w) 3404ev_embed_stop (EV_P_ ev_embed *w)
2188{ 3405{
2189 clear_pending (EV_A_ (W)w); 3406 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 3407 if (expect_false (!ev_is_active (w)))
2191 return; 3408 return;
2192 3409
3410 EV_FREQUENT_CHECK;
3411
2193 ev_io_stop (EV_A_ &w->io); 3412 ev_io_stop (EV_A_ &w->io);
3413 ev_prepare_stop (EV_A_ &w->prepare);
3414 ev_fork_stop (EV_A_ &w->fork);
2194 3415
2195 ev_stop (EV_A_ (W)w); 3416 EV_FREQUENT_CHECK;
2196} 3417}
2197#endif 3418#endif
2198 3419
2199#if EV_FORK_ENABLE 3420#if EV_FORK_ENABLE
2200void 3421void
2201ev_fork_start (EV_P_ ev_fork *w) 3422ev_fork_start (EV_P_ ev_fork *w)
2202{ 3423{
2203 if (expect_false (ev_is_active (w))) 3424 if (expect_false (ev_is_active (w)))
2204 return; 3425 return;
3426
3427 EV_FREQUENT_CHECK;
2205 3428
2206 ev_start (EV_A_ (W)w, ++forkcnt); 3429 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3430 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 3431 forks [forkcnt - 1] = w;
3432
3433 EV_FREQUENT_CHECK;
2209} 3434}
2210 3435
2211void 3436void
2212ev_fork_stop (EV_P_ ev_fork *w) 3437ev_fork_stop (EV_P_ ev_fork *w)
2213{ 3438{
2214 clear_pending (EV_A_ (W)w); 3439 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3440 if (expect_false (!ev_is_active (w)))
2216 return; 3441 return;
2217 3442
3443 EV_FREQUENT_CHECK;
3444
2218 { 3445 {
2219 int active = ((W)w)->active; 3446 int active = ev_active (w);
3447
2220 forks [active - 1] = forks [--forkcnt]; 3448 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 3449 ev_active (forks [active - 1]) = active;
2222 } 3450 }
2223 3451
2224 ev_stop (EV_A_ (W)w); 3452 ev_stop (EV_A_ (W)w);
3453
3454 EV_FREQUENT_CHECK;
3455}
3456#endif
3457
3458#if EV_ASYNC_ENABLE
3459void
3460ev_async_start (EV_P_ ev_async *w)
3461{
3462 if (expect_false (ev_is_active (w)))
3463 return;
3464
3465 evpipe_init (EV_A);
3466
3467 EV_FREQUENT_CHECK;
3468
3469 ev_start (EV_A_ (W)w, ++asynccnt);
3470 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3471 asyncs [asynccnt - 1] = w;
3472
3473 EV_FREQUENT_CHECK;
3474}
3475
3476void
3477ev_async_stop (EV_P_ ev_async *w)
3478{
3479 clear_pending (EV_A_ (W)w);
3480 if (expect_false (!ev_is_active (w)))
3481 return;
3482
3483 EV_FREQUENT_CHECK;
3484
3485 {
3486 int active = ev_active (w);
3487
3488 asyncs [active - 1] = asyncs [--asynccnt];
3489 ev_active (asyncs [active - 1]) = active;
3490 }
3491
3492 ev_stop (EV_A_ (W)w);
3493
3494 EV_FREQUENT_CHECK;
3495}
3496
3497void
3498ev_async_send (EV_P_ ev_async *w)
3499{
3500 w->sent = 1;
3501 evpipe_write (EV_A_ &async_pending);
2225} 3502}
2226#endif 3503#endif
2227 3504
2228/*****************************************************************************/ 3505/*****************************************************************************/
2229 3506
2239once_cb (EV_P_ struct ev_once *once, int revents) 3516once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 3517{
2241 void (*cb)(int revents, void *arg) = once->cb; 3518 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 3519 void *arg = once->arg;
2243 3520
2244 ev_io_stop (EV_A_ &once->io); 3521 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 3522 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 3523 ev_free (once);
2247 3524
2248 cb (revents, arg); 3525 cb (revents, arg);
2249} 3526}
2250 3527
2251static void 3528static void
2252once_cb_io (EV_P_ ev_io *w, int revents) 3529once_cb_io (EV_P_ ev_io *w, int revents)
2253{ 3530{
2254 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3531 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3532
3533 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2255} 3534}
2256 3535
2257static void 3536static void
2258once_cb_to (EV_P_ ev_timer *w, int revents) 3537once_cb_to (EV_P_ ev_timer *w, int revents)
2259{ 3538{
2260 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3539 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3540
3541 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2261} 3542}
2262 3543
2263void 3544void
2264ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3545ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2265{ 3546{
2287 ev_timer_set (&once->to, timeout, 0.); 3568 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 3569 ev_timer_start (EV_A_ &once->to);
2289 } 3570 }
2290} 3571}
2291 3572
3573/*****************************************************************************/
3574
3575#if EV_WALK_ENABLE
3576void
3577ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3578{
3579 int i, j;
3580 ev_watcher_list *wl, *wn;
3581
3582 if (types & (EV_IO | EV_EMBED))
3583 for (i = 0; i < anfdmax; ++i)
3584 for (wl = anfds [i].head; wl; )
3585 {
3586 wn = wl->next;
3587
3588#if EV_EMBED_ENABLE
3589 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3590 {
3591 if (types & EV_EMBED)
3592 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3593 }
3594 else
3595#endif
3596#if EV_USE_INOTIFY
3597 if (ev_cb ((ev_io *)wl) == infy_cb)
3598 ;
3599 else
3600#endif
3601 if ((ev_io *)wl != &pipe_w)
3602 if (types & EV_IO)
3603 cb (EV_A_ EV_IO, wl);
3604
3605 wl = wn;
3606 }
3607
3608 if (types & (EV_TIMER | EV_STAT))
3609 for (i = timercnt + HEAP0; i-- > HEAP0; )
3610#if EV_STAT_ENABLE
3611 /*TODO: timer is not always active*/
3612 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3613 {
3614 if (types & EV_STAT)
3615 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3616 }
3617 else
3618#endif
3619 if (types & EV_TIMER)
3620 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3621
3622#if EV_PERIODIC_ENABLE
3623 if (types & EV_PERIODIC)
3624 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3625 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3626#endif
3627
3628#if EV_IDLE_ENABLE
3629 if (types & EV_IDLE)
3630 for (j = NUMPRI; i--; )
3631 for (i = idlecnt [j]; i--; )
3632 cb (EV_A_ EV_IDLE, idles [j][i]);
3633#endif
3634
3635#if EV_FORK_ENABLE
3636 if (types & EV_FORK)
3637 for (i = forkcnt; i--; )
3638 if (ev_cb (forks [i]) != embed_fork_cb)
3639 cb (EV_A_ EV_FORK, forks [i]);
3640#endif
3641
3642#if EV_ASYNC_ENABLE
3643 if (types & EV_ASYNC)
3644 for (i = asynccnt; i--; )
3645 cb (EV_A_ EV_ASYNC, asyncs [i]);
3646#endif
3647
3648 if (types & EV_PREPARE)
3649 for (i = preparecnt; i--; )
3650#if EV_EMBED_ENABLE
3651 if (ev_cb (prepares [i]) != embed_prepare_cb)
3652#endif
3653 cb (EV_A_ EV_PREPARE, prepares [i]);
3654
3655 if (types & EV_CHECK)
3656 for (i = checkcnt; i--; )
3657 cb (EV_A_ EV_CHECK, checks [i]);
3658
3659 if (types & EV_SIGNAL)
3660 for (i = 0; i < EV_NSIG - 1; ++i)
3661 for (wl = signals [i].head; wl; )
3662 {
3663 wn = wl->next;
3664 cb (EV_A_ EV_SIGNAL, wl);
3665 wl = wn;
3666 }
3667
3668 if (types & EV_CHILD)
3669 for (i = EV_PID_HASHSIZE; i--; )
3670 for (wl = childs [i]; wl; )
3671 {
3672 wn = wl->next;
3673 cb (EV_A_ EV_CHILD, wl);
3674 wl = wn;
3675 }
3676/* EV_STAT 0x00001000 /* stat data changed */
3677/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3678}
3679#endif
3680
3681#if EV_MULTIPLICITY
3682 #include "ev_wrap.h"
3683#endif
3684
2292#ifdef __cplusplus 3685#ifdef __cplusplus
2293} 3686}
2294#endif 3687#endif
2295 3688

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines