ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.220 by root, Sun Apr 6 09:53:17 2008 UTC vs.
Revision 1.319 by root, Wed Nov 18 10:25:22 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
154#ifndef _WIN32 177#ifndef _WIN32
155# include <sys/time.h> 178# include <sys/time.h>
156# include <sys/wait.h> 179# include <sys/wait.h>
157# include <unistd.h> 180# include <unistd.h>
158#else 181#else
182# include <io.h>
159# define WIN32_LEAN_AND_MEAN 183# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 184# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 185# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 186# define EV_SELECT_IS_WINSOCKET 1
163# endif 187# endif
164#endif 188#endif
165 189
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 190/* this block tries to deduce configuration from header-defined symbols and defaults */
167 191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
226
168#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
169# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
170#endif 233#endif
171 234
172#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 237#endif
175 238
176#ifndef EV_USE_NANOSLEEP 239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
177# define EV_USE_NANOSLEEP 0 243# define EV_USE_NANOSLEEP 0
244# endif
178#endif 245#endif
179 246
180#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
182#endif 249#endif
235# else 302# else
236# define EV_USE_EVENTFD 0 303# define EV_USE_EVENTFD 0
237# endif 304# endif
238#endif 305#endif
239 306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 348
242#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 366# include <sys/select.h>
260# endif 367# endif
261#endif 368#endif
262 369
263#if EV_USE_INOTIFY 370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
264# include <sys/inotify.h> 373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
265#endif 379#endif
266 380
267#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 382# include <winsock.h>
269#endif 383#endif
270 384
271#if EV_USE_EVENTFD 385#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
390# endif
391# ifndef EFD_CLOEXEC
392# ifdef O_CLOEXEC
393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
273int eventfd (unsigned int initval, int flags); 401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
274#endif 404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
275 435
276/**/ 436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
277 443
278/* 444/*
279 * This is used to avoid floating point rounding problems. 445 * This is used to avoid floating point rounding problems.
280 * It is added to ev_rt_now when scheduling periodics 446 * It is added to ev_rt_now when scheduling periodics
281 * to ensure progress, time-wise, even when rounding 447 * to ensure progress, time-wise, even when rounding
285 */ 451 */
286#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
287 453
288#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
289#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
290/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
291 456
292#if __GNUC__ >= 4 457#if __GNUC__ >= 4
293# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
294# define noinline __attribute__ ((noinline)) 459# define noinline __attribute__ ((noinline))
295#else 460#else
296# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
297# define noinline 462# define noinline
298# if __STDC_VERSION__ < 199901L 463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
299# define inline 464# define inline
300# endif 465# endif
301#endif 466#endif
302 467
303#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
308# define inline_speed static noinline 473# define inline_speed static noinline
309#else 474#else
310# define inline_speed static inline 475# define inline_speed static inline
311#endif 476#endif
312 477
313#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
314#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
315 485
316#define EMPTY /* required for microsofts broken pseudo-c compiler */ 486#define EMPTY /* required for microsofts broken pseudo-c compiler */
317#define EMPTY2(a,b) /* used to suppress some warnings */ 487#define EMPTY2(a,b) /* used to suppress some warnings */
318 488
319typedef ev_watcher *W; 489typedef ev_watcher *W;
320typedef ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
321typedef ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
322 492
323#if EV_USE_MONOTONIC 493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
324/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
325/* giving it a reasonably high chance of working on typical architetcures */ 498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
326static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
327#endif 514#endif
328 515
329#ifdef _WIN32 516#ifdef _WIN32
330# include "ev_win32.c" 517# include "ev_win32.c"
331#endif 518#endif
339{ 526{
340 syserr_cb = cb; 527 syserr_cb = cb;
341} 528}
342 529
343static void noinline 530static void noinline
344syserr (const char *msg) 531ev_syserr (const char *msg)
345{ 532{
346 if (!msg) 533 if (!msg)
347 msg = "(libev) system error"; 534 msg = "(libev) system error";
348 535
349 if (syserr_cb) 536 if (syserr_cb)
353 perror (msg); 540 perror (msg);
354 abort (); 541 abort ();
355 } 542 }
356} 543}
357 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
358static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
359 561
360void 562void
361ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
362{ 564{
363 alloc = cb; 565 alloc = cb;
364} 566}
365 567
366inline_speed void * 568inline_speed void *
367ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
368{ 570{
369 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
370 572
371 if (!ptr && size) 573 if (!ptr && size)
372 { 574 {
373 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
374 abort (); 576 abort ();
380#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
381#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
382 584
383/*****************************************************************************/ 585/*****************************************************************************/
384 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
385typedef struct 591typedef struct
386{ 592{
387 WL head; 593 WL head;
388 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
389 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
390#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
391 SOCKET handle; 602 SOCKET handle;
392#endif 603#endif
393} ANFD; 604} ANFD;
394 605
606/* stores the pending event set for a given watcher */
395typedef struct 607typedef struct
396{ 608{
397 W w; 609 W w;
398 int events; 610 int events; /* the pending event set for the given watcher */
399} ANPENDING; 611} ANPENDING;
400 612
401#if EV_USE_INOTIFY 613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
402typedef struct 615typedef struct
403{ 616{
404 WL head; 617 WL head;
405} ANFS; 618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
406#endif 639#endif
407 640
408#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
409 642
410 struct ev_loop 643 struct ev_loop
429 662
430 static int ev_default_loop_ptr; 663 static int ev_default_loop_ptr;
431 664
432#endif 665#endif
433 666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
678
434/*****************************************************************************/ 679/*****************************************************************************/
435 680
681#ifndef EV_HAVE_EV_TIME
436ev_tstamp 682ev_tstamp
437ev_time (void) 683ev_time (void)
438{ 684{
439#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
440 struct timespec ts; 688 struct timespec ts;
441 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
442 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
443#else 691 }
692#endif
693
444 struct timeval tv; 694 struct timeval tv;
445 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
446 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
447#endif
448} 697}
698#endif
449 699
450ev_tstamp inline_size 700inline_size ev_tstamp
451get_clock (void) 701get_clock (void)
452{ 702{
453#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
454 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
455 { 705 {
488 struct timeval tv; 738 struct timeval tv;
489 739
490 tv.tv_sec = (time_t)delay; 740 tv.tv_sec = (time_t)delay;
491 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
492 742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
493 select (0, 0, 0, 0, &tv); 746 select (0, 0, 0, 0, &tv);
494#endif 747#endif
495 } 748 }
496} 749}
497 750
498/*****************************************************************************/ 751/*****************************************************************************/
499 752
500int inline_size 753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
501array_nextsize (int elem, int cur, int cnt) 758array_nextsize (int elem, int cur, int cnt)
502{ 759{
503 int ncur = cur + 1; 760 int ncur = cur + 1;
504 761
505 do 762 do
506 ncur <<= 1; 763 ncur <<= 1;
507 while (cnt > ncur); 764 while (cnt > ncur);
508 765
509 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
510 if (elem * ncur > 4096) 767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
511 { 768 {
512 ncur *= elem; 769 ncur *= elem;
513 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
514 ncur = ncur - sizeof (void *) * 4; 771 ncur = ncur - sizeof (void *) * 4;
515 ncur /= elem; 772 ncur /= elem;
516 } 773 }
517 774
518 return ncur; 775 return ncur;
522array_realloc (int elem, void *base, int *cur, int cnt) 779array_realloc (int elem, void *base, int *cur, int cnt)
523{ 780{
524 *cur = array_nextsize (elem, *cur, cnt); 781 *cur = array_nextsize (elem, *cur, cnt);
525 return ev_realloc (base, elem * *cur); 782 return ev_realloc (base, elem * *cur);
526} 783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
527 787
528#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
529 if (expect_false ((cnt) > (cur))) \ 789 if (expect_false ((cnt) > (cur))) \
530 { \ 790 { \
531 int ocur_ = (cur); \ 791 int ocur_ = (cur); \
543 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
544 } 804 }
545#endif 805#endif
546 806
547#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
548 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
549 809
550/*****************************************************************************/ 810/*****************************************************************************/
811
812/* dummy callback for pending events */
813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
815{
816}
551 817
552void noinline 818void noinline
553ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
554{ 820{
555 W w_ = (W)w; 821 W w_ = (W)w;
564 pendings [pri][w_->pending - 1].w = w_; 830 pendings [pri][w_->pending - 1].w = w_;
565 pendings [pri][w_->pending - 1].events = revents; 831 pendings [pri][w_->pending - 1].events = revents;
566 } 832 }
567} 833}
568 834
569void inline_speed 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
570queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
571{ 852{
572 int i; 853 int i;
573 854
574 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
575 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
576} 857}
577 858
578/*****************************************************************************/ 859/*****************************************************************************/
579 860
580void inline_size 861inline_speed void
581anfds_init (ANFD *base, int count)
582{
583 while (count--)
584 {
585 base->head = 0;
586 base->events = EV_NONE;
587 base->reify = 0;
588
589 ++base;
590 }
591}
592
593void inline_speed
594fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
595{ 863{
596 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
597 ev_io *w; 865 ev_io *w;
598 866
599 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
603 if (ev) 871 if (ev)
604 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
605 } 873 }
606} 874}
607 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
608void 887void
609ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
610{ 889{
611 if (fd >= 0 && fd < anfdmax) 890 if (fd >= 0 && fd < anfdmax)
612 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
613} 892}
614 893
615void inline_size 894/* make sure the external fd watch events are in-sync */
895/* with the kernel/libev internal state */
896inline_size void
616fd_reify (EV_P) 897fd_reify (EV_P)
617{ 898{
618 int i; 899 int i;
619 900
620 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
629 events |= (unsigned char)w->events; 910 events |= (unsigned char)w->events;
630 911
631#if EV_SELECT_IS_WINSOCKET 912#if EV_SELECT_IS_WINSOCKET
632 if (events) 913 if (events)
633 { 914 {
634 unsigned long argp; 915 unsigned long arg;
635 #ifdef EV_FD_TO_WIN32_HANDLE
636 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
637 #else
638 anfd->handle = _get_osfhandle (fd);
639 #endif
640 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
641 } 918 }
642#endif 919#endif
643 920
644 { 921 {
645 unsigned char o_events = anfd->events; 922 unsigned char o_events = anfd->events;
646 unsigned char o_reify = anfd->reify; 923 unsigned char o_reify = anfd->reify;
647 924
648 anfd->reify = 0; 925 anfd->reify = 0;
649 anfd->events = events; 926 anfd->events = events;
650 927
651 if (o_events != events || o_reify & EV_IOFDSET) 928 if (o_events != events || o_reify & EV__IOFDSET)
652 backend_modify (EV_A_ fd, o_events, events); 929 backend_modify (EV_A_ fd, o_events, events);
653 } 930 }
654 } 931 }
655 932
656 fdchangecnt = 0; 933 fdchangecnt = 0;
657} 934}
658 935
659void inline_size 936/* something about the given fd changed */
937inline_size void
660fd_change (EV_P_ int fd, int flags) 938fd_change (EV_P_ int fd, int flags)
661{ 939{
662 unsigned char reify = anfds [fd].reify; 940 unsigned char reify = anfds [fd].reify;
663 anfds [fd].reify |= flags; 941 anfds [fd].reify |= flags;
664 942
668 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
669 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
670 } 948 }
671} 949}
672 950
673void inline_speed 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
674fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
675{ 954{
676 ev_io *w; 955 ev_io *w;
677 956
678 while ((w = (ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
680 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
681 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
682 } 961 }
683} 962}
684 963
685int inline_size 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
686fd_valid (int fd) 966fd_valid (int fd)
687{ 967{
688#ifdef _WIN32 968#ifdef _WIN32
689 return _get_osfhandle (fd) != -1; 969 return _get_osfhandle (fd) != -1;
690#else 970#else
698{ 978{
699 int fd; 979 int fd;
700 980
701 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
702 if (anfds [fd].events) 982 if (anfds [fd].events)
703 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
704 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
705} 985}
706 986
707/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
708static void noinline 988static void noinline
712 992
713 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
714 if (anfds [fd].events) 994 if (anfds [fd].events)
715 { 995 {
716 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
717 return; 997 break;
718 } 998 }
719} 999}
720 1000
721/* usually called after fork if backend needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
722static void noinline 1002static void noinline
726 1006
727 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
728 if (anfds [fd].events) 1008 if (anfds [fd].events)
729 { 1009 {
730 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
1011 anfds [fd].emask = 0;
731 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
732 } 1013 }
733} 1014}
734 1015
735/*****************************************************************************/ 1016/*****************************************************************************/
736 1017
737void inline_speed 1018/*
738upheap (WT *heap, int k) 1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
739{ 1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
740 WT w = heap [k]; 1021 * the branching factor of the d-tree.
1022 */
741 1023
742 while (k) 1024/*
743 { 1025 * at the moment we allow libev the luxury of two heaps,
744 int p = (k - 1) >> 1; 1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1027 * which is more cache-efficient.
1028 * the difference is about 5% with 50000+ watchers.
1029 */
1030#if EV_USE_4HEAP
745 1031
746 if (heap [p]->at <= w->at) 1032#define DHEAP 4
1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
1036
1037/* away from the root */
1038inline_speed void
1039downheap (ANHE *heap, int N, int k)
1040{
1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
1043
1044 for (;;)
1045 {
1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1049
1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
1052 {
1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
747 break; 1066 break;
748 1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
1106 heap [k] = heap [c];
1107 ev_active (ANHE_w (heap [k])) = k;
1108
1109 k = c;
1110 }
1111
1112 heap [k] = he;
1113 ev_active (ANHE_w (he)) = k;
1114}
1115#endif
1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
749 heap [k] = heap [p]; 1130 heap [k] = heap [p];
750 ((W)heap [k])->active = k + 1; 1131 ev_active (ANHE_w (heap [k])) = k;
751 k = p; 1132 k = p;
752 } 1133 }
753 1134
754 heap [k] = w; 1135 heap [k] = he;
755 ((W)heap [k])->active = k + 1; 1136 ev_active (ANHE_w (he)) = k;
756} 1137}
757 1138
758void inline_speed 1139/* move an element suitably so it is in a correct place */
759downheap (WT *heap, int N, int k) 1140inline_size void
760{
761 WT w = heap [k];
762
763 for (;;)
764 {
765 int c = (k << 1) + 1;
766
767 if (c >= N)
768 break;
769
770 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
771 ? 1 : 0;
772
773 if (w->at <= heap [c]->at)
774 break;
775
776 heap [k] = heap [c];
777 ((W)heap [k])->active = k + 1;
778
779 k = c;
780 }
781
782 heap [k] = w;
783 ((W)heap [k])->active = k + 1;
784}
785
786void inline_size
787adjustheap (WT *heap, int N, int k) 1141adjustheap (ANHE *heap, int N, int k)
788{ 1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
789 upheap (heap, k); 1144 upheap (heap, k);
1145 else
790 downheap (heap, N, k); 1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
791} 1159}
792 1160
793/*****************************************************************************/ 1161/*****************************************************************************/
794 1162
1163/* associate signal watchers to a signal signal */
795typedef struct 1164typedef struct
796{ 1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
797 WL head; 1170 WL head;
798 EV_ATOMIC_T gotsig;
799} ANSIG; 1171} ANSIG;
800 1172
801static ANSIG *signals; 1173static ANSIG signals [EV_NSIG - 1];
802static int signalmax;
803
804static EV_ATOMIC_T gotsig;
805
806void inline_size
807signals_init (ANSIG *base, int count)
808{
809 while (count--)
810 {
811 base->head = 0;
812 base->gotsig = 0;
813
814 ++base;
815 }
816}
817 1174
818/*****************************************************************************/ 1175/*****************************************************************************/
819 1176
820void inline_speed 1177/* used to prepare libev internal fd's */
1178/* this is not fork-safe */
1179inline_speed void
821fd_intern (int fd) 1180fd_intern (int fd)
822{ 1181{
823#ifdef _WIN32 1182#ifdef _WIN32
824 int arg = 1; 1183 unsigned long arg = 1;
825 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
826#else 1185#else
827 fcntl (fd, F_SETFD, FD_CLOEXEC); 1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
828 fcntl (fd, F_SETFL, O_NONBLOCK); 1187 fcntl (fd, F_SETFL, O_NONBLOCK);
829#endif 1188#endif
830} 1189}
831 1190
832static void noinline 1191static void noinline
833evpipe_init (EV_P) 1192evpipe_init (EV_P)
834{ 1193{
835 if (!ev_is_active (&pipeev)) 1194 if (!ev_is_active (&pipe_w))
836 { 1195 {
837#if EV_USE_EVENTFD 1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
838 if ((evfd = eventfd (0, 0)) >= 0) 1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
839 { 1202 {
840 evpipe [0] = -1; 1203 evpipe [0] = -1;
841 fd_intern (evfd); 1204 fd_intern (evfd); /* doing it twice doesn't hurt */
842 ev_io_set (&pipeev, evfd, EV_READ); 1205 ev_io_set (&pipe_w, evfd, EV_READ);
843 } 1206 }
844 else 1207 else
845#endif 1208#endif
846 { 1209 {
847 while (pipe (evpipe)) 1210 while (pipe (evpipe))
848 syserr ("(libev) error creating signal/async pipe"); 1211 ev_syserr ("(libev) error creating signal/async pipe");
849 1212
850 fd_intern (evpipe [0]); 1213 fd_intern (evpipe [0]);
851 fd_intern (evpipe [1]); 1214 fd_intern (evpipe [1]);
852 ev_io_set (&pipeev, evpipe [0], EV_READ); 1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
853 } 1216 }
854 1217
855 ev_io_start (EV_A_ &pipeev); 1218 ev_io_start (EV_A_ &pipe_w);
856 ev_unref (EV_A); /* watcher should not keep loop alive */ 1219 ev_unref (EV_A); /* watcher should not keep loop alive */
857 } 1220 }
858} 1221}
859 1222
860void inline_size 1223inline_size void
861evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
862{ 1225{
863 if (!*flag) 1226 if (!*flag)
864 { 1227 {
865 int old_errno = errno; /* save errno because write might clobber it */ 1228 int old_errno = errno; /* save errno because write might clobber it */
878 1241
879 errno = old_errno; 1242 errno = old_errno;
880 } 1243 }
881} 1244}
882 1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
883static void 1248static void
884pipecb (EV_P_ ev_io *iow, int revents) 1249pipecb (EV_P_ ev_io *iow, int revents)
885{ 1250{
1251 int i;
1252
886#if EV_USE_EVENTFD 1253#if EV_USE_EVENTFD
887 if (evfd >= 0) 1254 if (evfd >= 0)
888 { 1255 {
889 uint64_t counter = 1; 1256 uint64_t counter;
890 read (evfd, &counter, sizeof (uint64_t)); 1257 read (evfd, &counter, sizeof (uint64_t));
891 } 1258 }
892 else 1259 else
893#endif 1260#endif
894 { 1261 {
895 char dummy; 1262 char dummy;
896 read (evpipe [0], &dummy, 1); 1263 read (evpipe [0], &dummy, 1);
897 } 1264 }
898 1265
899 if (gotsig && ev_is_default_loop (EV_A)) 1266 if (sig_pending)
900 { 1267 {
901 int signum; 1268 sig_pending = 0;
902 gotsig = 0;
903 1269
904 for (signum = signalmax; signum--; ) 1270 for (i = EV_NSIG - 1; i--; )
905 if (signals [signum].gotsig) 1271 if (expect_false (signals [i].pending))
906 ev_feed_signal_event (EV_A_ signum + 1); 1272 ev_feed_signal_event (EV_A_ i + 1);
907 } 1273 }
908 1274
909#if EV_ASYNC_ENABLE 1275#if EV_ASYNC_ENABLE
910 if (gotasync) 1276 if (async_pending)
911 { 1277 {
912 int i; 1278 async_pending = 0;
913 gotasync = 0;
914 1279
915 for (i = asynccnt; i--; ) 1280 for (i = asynccnt; i--; )
916 if (asyncs [i]->sent) 1281 if (asyncs [i]->sent)
917 { 1282 {
918 asyncs [i]->sent = 0; 1283 asyncs [i]->sent = 0;
926 1291
927static void 1292static void
928ev_sighandler (int signum) 1293ev_sighandler (int signum)
929{ 1294{
930#if EV_MULTIPLICITY 1295#if EV_MULTIPLICITY
931 struct ev_loop *loop = &default_loop_struct; 1296 EV_P = signals [signum - 1].loop;
932#endif 1297#endif
933 1298
934#if _WIN32 1299#if _WIN32
935 signal (signum, ev_sighandler); 1300 signal (signum, ev_sighandler);
936#endif 1301#endif
937 1302
938 signals [signum - 1].gotsig = 1; 1303 signals [signum - 1].pending = 1;
939 evpipe_write (EV_A_ &gotsig); 1304 evpipe_write (EV_A_ &sig_pending);
940} 1305}
941 1306
942void noinline 1307void noinline
943ev_feed_signal_event (EV_P_ int signum) 1308ev_feed_signal_event (EV_P_ int signum)
944{ 1309{
945 WL w; 1310 WL w;
946 1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
947#if EV_MULTIPLICITY 1317#if EV_MULTIPLICITY
948 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1318 /* it is permissible to try to feed a signal to the wrong loop */
949#endif 1319 /* or, likely more useful, feeding a signal nobody is waiting for */
950 1320
951 --signum; 1321 if (expect_false (signals [signum].loop != EV_A))
952
953 if (signum < 0 || signum >= signalmax)
954 return; 1322 return;
1323#endif
955 1324
956 signals [signum].gotsig = 0; 1325 signals [signum].pending = 0;
957 1326
958 for (w = signals [signum].head; w; w = w->next) 1327 for (w = signals [signum].head; w; w = w->next)
959 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
960} 1329}
961 1330
1331#if EV_USE_SIGNALFD
1332static void
1333sigfdcb (EV_P_ ev_io *iow, int revents)
1334{
1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1336
1337 for (;;)
1338 {
1339 ssize_t res = read (sigfd, si, sizeof (si));
1340
1341 /* not ISO-C, as res might be -1, but works with SuS */
1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1344
1345 if (res < (ssize_t)sizeof (si))
1346 break;
1347 }
1348}
1349#endif
1350
962/*****************************************************************************/ 1351/*****************************************************************************/
963 1352
964static WL childs [EV_PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
965 1354
966#ifndef _WIN32 1355#ifndef _WIN32
969 1358
970#ifndef WIFCONTINUED 1359#ifndef WIFCONTINUED
971# define WIFCONTINUED(status) 0 1360# define WIFCONTINUED(status) 0
972#endif 1361#endif
973 1362
974void inline_speed 1363/* handle a single child status event */
1364inline_speed void
975child_reap (EV_P_ int chain, int pid, int status) 1365child_reap (EV_P_ int chain, int pid, int status)
976{ 1366{
977 ev_child *w; 1367 ev_child *w;
978 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
979 1369
992 1382
993#ifndef WCONTINUED 1383#ifndef WCONTINUED
994# define WCONTINUED 0 1384# define WCONTINUED 0
995#endif 1385#endif
996 1386
1387/* called on sigchld etc., calls waitpid */
997static void 1388static void
998childcb (EV_P_ ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
999{ 1390{
1000 int pid, status; 1391 int pid, status;
1001 1392
1082 /* kqueue is borked on everything but netbsd apparently */ 1473 /* kqueue is borked on everything but netbsd apparently */
1083 /* it usually doesn't work correctly on anything but sockets and pipes */ 1474 /* it usually doesn't work correctly on anything but sockets and pipes */
1084 flags &= ~EVBACKEND_KQUEUE; 1475 flags &= ~EVBACKEND_KQUEUE;
1085#endif 1476#endif
1086#ifdef __APPLE__ 1477#ifdef __APPLE__
1087 // flags &= ~EVBACKEND_KQUEUE; for documentation 1478 /* only select works correctly on that "unix-certified" platform */
1088 flags &= ~EVBACKEND_POLL; 1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1089#endif 1481#endif
1090 1482
1091 return flags; 1483 return flags;
1092} 1484}
1093 1485
1107ev_backend (EV_P) 1499ev_backend (EV_P)
1108{ 1500{
1109 return backend; 1501 return backend;
1110} 1502}
1111 1503
1504#if EV_MINIMAL < 2
1112unsigned int 1505unsigned int
1113ev_loop_count (EV_P) 1506ev_loop_count (EV_P)
1114{ 1507{
1115 return loop_count; 1508 return loop_count;
1116} 1509}
1117 1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1118void 1517void
1119ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1120{ 1519{
1121 io_blocktime = interval; 1520 io_blocktime = interval;
1122} 1521}
1125ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1126{ 1525{
1127 timeout_blocktime = interval; 1526 timeout_blocktime = interval;
1128} 1527}
1129 1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1130static void noinline 1554static void noinline
1131loop_init (EV_P_ unsigned int flags) 1555loop_init (EV_P_ unsigned int flags)
1132{ 1556{
1133 if (!backend) 1557 if (!backend)
1134 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
1135#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
1136 { 1571 {
1137 struct timespec ts; 1572 struct timespec ts;
1573
1138 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1139 have_monotonic = 1; 1575 have_monotonic = 1;
1140 } 1576 }
1141#endif 1577#endif
1578
1579 /* pid check not overridable via env */
1580#ifndef _WIN32
1581 if (flags & EVFLAG_FORKCHECK)
1582 curpid = getpid ();
1583#endif
1584
1585 if (!(flags & EVFLAG_NOENV)
1586 && !enable_secure ()
1587 && getenv ("LIBEV_FLAGS"))
1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1142 1589
1143 ev_rt_now = ev_time (); 1590 ev_rt_now = ev_time ();
1144 mn_now = get_clock (); 1591 mn_now = get_clock ();
1145 now_floor = mn_now; 1592 now_floor = mn_now;
1146 rtmn_diff = ev_rt_now - mn_now; 1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1147 1597
1148 io_blocktime = 0.; 1598 io_blocktime = 0.;
1149 timeout_blocktime = 0.; 1599 timeout_blocktime = 0.;
1150 backend = 0; 1600 backend = 0;
1151 backend_fd = -1; 1601 backend_fd = -1;
1152 gotasync = 0; 1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1153#if EV_USE_INOTIFY 1606#if EV_USE_INOTIFY
1154 fs_fd = -2; 1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1155#endif 1608#endif
1156 1609#if EV_USE_SIGNALFD
1157 /* pid check not overridable via env */ 1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1158#ifndef _WIN32
1159 if (flags & EVFLAG_FORKCHECK)
1160 curpid = getpid ();
1161#endif 1611#endif
1162 1612
1163 if (!(flags & EVFLAG_NOENV)
1164 && !enable_secure ()
1165 && getenv ("LIBEV_FLAGS"))
1166 flags = atoi (getenv ("LIBEV_FLAGS"));
1167
1168 if (!(flags & 0x0000ffffUL)) 1613 if (!(flags & 0x0000ffffU))
1169 flags |= ev_recommended_backends (); 1614 flags |= ev_recommended_backends ();
1170 1615
1171#if EV_USE_PORT 1616#if EV_USE_PORT
1172 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1173#endif 1618#endif
1182#endif 1627#endif
1183#if EV_USE_SELECT 1628#if EV_USE_SELECT
1184 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1185#endif 1630#endif
1186 1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
1187 ev_init (&pipeev, pipecb); 1634 ev_init (&pipe_w, pipecb);
1188 ev_set_priority (&pipeev, EV_MAXPRI); 1635 ev_set_priority (&pipe_w, EV_MAXPRI);
1189 } 1636 }
1190} 1637}
1191 1638
1639/* free up a loop structure */
1192static void noinline 1640static void noinline
1193loop_destroy (EV_P) 1641loop_destroy (EV_P)
1194{ 1642{
1195 int i; 1643 int i;
1196 1644
1197 if (ev_is_active (&pipeev)) 1645 if (ev_is_active (&pipe_w))
1198 { 1646 {
1199 ev_ref (EV_A); /* signal watcher */ 1647 /*ev_ref (EV_A);*/
1200 ev_io_stop (EV_A_ &pipeev); 1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1201 1649
1202#if EV_USE_EVENTFD 1650#if EV_USE_EVENTFD
1203 if (evfd >= 0) 1651 if (evfd >= 0)
1204 close (evfd); 1652 close (evfd);
1205#endif 1653#endif
1206 1654
1207 if (evpipe [0] >= 0) 1655 if (evpipe [0] >= 0)
1208 { 1656 {
1209 close (evpipe [0]); 1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1210 close (evpipe [1]); 1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1211 } 1659 }
1212 } 1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
1213 1666
1214#if EV_USE_INOTIFY 1667#if EV_USE_INOTIFY
1215 if (fs_fd >= 0) 1668 if (fs_fd >= 0)
1216 close (fs_fd); 1669 close (fs_fd);
1217#endif 1670#endif
1241#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1242 array_free (idle, [i]); 1695 array_free (idle, [i]);
1243#endif 1696#endif
1244 } 1697 }
1245 1698
1246 ev_free (anfds); anfdmax = 0; 1699 ev_free (anfds); anfds = 0; anfdmax = 0;
1247 1700
1248 /* have to use the microsoft-never-gets-it-right macro */ 1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
1249 array_free (fdchange, EMPTY); 1703 array_free (fdchange, EMPTY);
1250 array_free (timer, EMPTY); 1704 array_free (timer, EMPTY);
1251#if EV_PERIODIC_ENABLE 1705#if EV_PERIODIC_ENABLE
1252 array_free (periodic, EMPTY); 1706 array_free (periodic, EMPTY);
1253#endif 1707#endif
1261#endif 1715#endif
1262 1716
1263 backend = 0; 1717 backend = 0;
1264} 1718}
1265 1719
1720#if EV_USE_INOTIFY
1266void inline_size infy_fork (EV_P); 1721inline_size void infy_fork (EV_P);
1722#endif
1267 1723
1268void inline_size 1724inline_size void
1269loop_fork (EV_P) 1725loop_fork (EV_P)
1270{ 1726{
1271#if EV_USE_PORT 1727#if EV_USE_PORT
1272 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1273#endif 1729#endif
1279#endif 1735#endif
1280#if EV_USE_INOTIFY 1736#if EV_USE_INOTIFY
1281 infy_fork (EV_A); 1737 infy_fork (EV_A);
1282#endif 1738#endif
1283 1739
1284 if (ev_is_active (&pipeev)) 1740 if (ev_is_active (&pipe_w))
1285 { 1741 {
1286 /* this "locks" the handlers against writing to the pipe */ 1742 /* this "locks" the handlers against writing to the pipe */
1287 /* while we modify the fd vars */ 1743 /* while we modify the fd vars */
1288 gotsig = 1; 1744 sig_pending = 1;
1289#if EV_ASYNC_ENABLE 1745#if EV_ASYNC_ENABLE
1290 gotasync = 1; 1746 async_pending = 1;
1291#endif 1747#endif
1292 1748
1293 ev_ref (EV_A); 1749 ev_ref (EV_A);
1294 ev_io_stop (EV_A_ &pipeev); 1750 ev_io_stop (EV_A_ &pipe_w);
1295 1751
1296#if EV_USE_EVENTFD 1752#if EV_USE_EVENTFD
1297 if (evfd >= 0) 1753 if (evfd >= 0)
1298 close (evfd); 1754 close (evfd);
1299#endif 1755#endif
1300 1756
1301 if (evpipe [0] >= 0) 1757 if (evpipe [0] >= 0)
1302 { 1758 {
1303 close (evpipe [0]); 1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1304 close (evpipe [1]); 1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1305 } 1761 }
1306 1762
1307 evpipe_init (EV_A); 1763 evpipe_init (EV_A);
1308 /* now iterate over everything, in case we missed something */ 1764 /* now iterate over everything, in case we missed something */
1309 pipecb (EV_A_ &pipeev, EV_READ); 1765 pipecb (EV_A_ &pipe_w, EV_READ);
1310 } 1766 }
1311 1767
1312 postfork = 0; 1768 postfork = 0;
1313} 1769}
1314 1770
1315#if EV_MULTIPLICITY 1771#if EV_MULTIPLICITY
1772
1316struct ev_loop * 1773struct ev_loop *
1317ev_loop_new (unsigned int flags) 1774ev_loop_new (unsigned int flags)
1318{ 1775{
1319 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1320 1777
1321 memset (loop, 0, sizeof (struct ev_loop)); 1778 memset (EV_A, 0, sizeof (struct ev_loop));
1322
1323 loop_init (EV_A_ flags); 1779 loop_init (EV_A_ flags);
1324 1780
1325 if (ev_backend (EV_A)) 1781 if (ev_backend (EV_A))
1326 return loop; 1782 return EV_A;
1327 1783
1328 return 0; 1784 return 0;
1329} 1785}
1330 1786
1331void 1787void
1338void 1794void
1339ev_loop_fork (EV_P) 1795ev_loop_fork (EV_P)
1340{ 1796{
1341 postfork = 1; /* must be in line with ev_default_fork */ 1797 postfork = 1; /* must be in line with ev_default_fork */
1342} 1798}
1799#endif /* multiplicity */
1343 1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
1854 {
1855 verify_watcher (EV_A_ (W)w);
1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1858 }
1859
1860 assert (timermax >= timercnt);
1861 verify_heap (EV_A_ timers, timercnt);
1862
1863#if EV_PERIODIC_ENABLE
1864 assert (periodicmax >= periodiccnt);
1865 verify_heap (EV_A_ periodics, periodiccnt);
1866#endif
1867
1868 for (i = NUMPRI; i--; )
1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
1877
1878#if EV_FORK_ENABLE
1879 assert (forkmax >= forkcnt);
1880 array_verify (EV_A_ (W *)forks, forkcnt);
1881#endif
1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1897# endif
1898#endif
1899}
1344#endif 1900#endif
1345 1901
1346#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
1347struct ev_loop * 1903struct ev_loop *
1348ev_default_loop_init (unsigned int flags) 1904ev_default_loop_init (unsigned int flags)
1352#endif 1908#endif
1353{ 1909{
1354 if (!ev_default_loop_ptr) 1910 if (!ev_default_loop_ptr)
1355 { 1911 {
1356#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
1357 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
1358#else 1914#else
1359 ev_default_loop_ptr = 1; 1915 ev_default_loop_ptr = 1;
1360#endif 1916#endif
1361 1917
1362 loop_init (EV_A_ flags); 1918 loop_init (EV_A_ flags);
1379 1935
1380void 1936void
1381ev_default_destroy (void) 1937ev_default_destroy (void)
1382{ 1938{
1383#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
1384 struct ev_loop *loop = ev_default_loop_ptr; 1940 EV_P = ev_default_loop_ptr;
1385#endif 1941#endif
1942
1943 ev_default_loop_ptr = 0;
1386 1944
1387#ifndef _WIN32 1945#ifndef _WIN32
1388 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
1389 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
1390#endif 1948#endif
1394 1952
1395void 1953void
1396ev_default_fork (void) 1954ev_default_fork (void)
1397{ 1955{
1398#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
1399 struct ev_loop *loop = ev_default_loop_ptr; 1957 EV_P = ev_default_loop_ptr;
1400#endif 1958#endif
1401 1959
1402 if (backend)
1403 postfork = 1; /* must be in line with ev_loop_fork */ 1960 postfork = 1; /* must be in line with ev_loop_fork */
1404} 1961}
1405 1962
1406/*****************************************************************************/ 1963/*****************************************************************************/
1407 1964
1408void 1965void
1409ev_invoke (EV_P_ void *w, int revents) 1966ev_invoke (EV_P_ void *w, int revents)
1410{ 1967{
1411 EV_CB_INVOKE ((W)w, revents); 1968 EV_CB_INVOKE ((W)w, revents);
1412} 1969}
1413 1970
1414void inline_speed 1971unsigned int
1415call_pending (EV_P) 1972ev_pending_count (EV_P)
1973{
1974 int pri;
1975 unsigned int count = 0;
1976
1977 for (pri = NUMPRI; pri--; )
1978 count += pendingcnt [pri];
1979
1980 return count;
1981}
1982
1983void noinline
1984ev_invoke_pending (EV_P)
1416{ 1985{
1417 int pri; 1986 int pri;
1418 1987
1419 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
1420 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
1421 { 1990 {
1422 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1423 1992
1424 if (expect_true (p->w))
1425 {
1426 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1994 /* ^ this is no longer true, as pending_w could be here */
1427 1995
1428 p->w->pending = 0; 1996 p->w->pending = 0;
1429 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
1430 } 1998 EV_FREQUENT_CHECK;
1431 } 1999 }
1432} 2000}
1433 2001
1434void inline_size
1435timers_reify (EV_P)
1436{
1437 while (timercnt && ((WT)timers [0])->at <= mn_now)
1438 {
1439 ev_timer *w = (ev_timer *)timers [0];
1440
1441 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1442
1443 /* first reschedule or stop timer */
1444 if (w->repeat)
1445 {
1446 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1447
1448 ((WT)w)->at += w->repeat;
1449 if (((WT)w)->at < mn_now)
1450 ((WT)w)->at = mn_now;
1451
1452 downheap (timers, timercnt, 0);
1453 }
1454 else
1455 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1456
1457 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1458 }
1459}
1460
1461#if EV_PERIODIC_ENABLE
1462void inline_size
1463periodics_reify (EV_P)
1464{
1465 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1466 {
1467 ev_periodic *w = (ev_periodic *)periodics [0];
1468
1469 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1470
1471 /* first reschedule or stop timer */
1472 if (w->reschedule_cb)
1473 {
1474 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1475 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1476 downheap (periodics, periodiccnt, 0);
1477 }
1478 else if (w->interval)
1479 {
1480 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1481 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1482 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else
1486 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1487
1488 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1489 }
1490}
1491
1492static void noinline
1493periodics_reschedule (EV_P)
1494{
1495 int i;
1496
1497 /* adjust periodics after time jump */
1498 for (i = 0; i < periodiccnt; ++i)
1499 {
1500 ev_periodic *w = (ev_periodic *)periodics [i];
1501
1502 if (w->reschedule_cb)
1503 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1504 else if (w->interval)
1505 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1506 }
1507
1508 /* now rebuild the heap */
1509 for (i = periodiccnt >> 1; i--; )
1510 downheap (periodics, periodiccnt, i);
1511}
1512#endif
1513
1514#if EV_IDLE_ENABLE 2002#if EV_IDLE_ENABLE
1515void inline_size 2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
1516idle_reify (EV_P) 2006idle_reify (EV_P)
1517{ 2007{
1518 if (expect_false (idleall)) 2008 if (expect_false (idleall))
1519 { 2009 {
1520 int pri; 2010 int pri;
1532 } 2022 }
1533 } 2023 }
1534} 2024}
1535#endif 2025#endif
1536 2026
1537void inline_speed 2027/* make timers pending */
2028inline_size void
2029timers_reify (EV_P)
2030{
2031 EV_FREQUENT_CHECK;
2032
2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2034 {
2035 do
2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2049
2050 ANHE_at_cache (timers [HEAP0]);
2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
2058 }
2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2060
2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
2062 }
2063}
2064
2065#if EV_PERIODIC_ENABLE
2066/* make periodics pending */
2067inline_size void
2068periodics_reify (EV_P)
2069{
2070 EV_FREQUENT_CHECK;
2071
2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2073 {
2074 int feed_count = 0;
2075
2076 do
2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2081
2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
2116 }
2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2118
2119 feed_reverse_done (EV_A_ EV_PERIODIC);
2120 }
2121}
2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2125static void noinline
2126periodics_reschedule (EV_P)
2127{
2128 int i;
2129
2130 /* adjust periodics after time jump */
2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2132 {
2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2134
2135 if (w->reschedule_cb)
2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2137 else if (w->interval)
2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159}
2160
2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detetc if there was a timejump, and act accordingly */
2163inline_speed void
1538time_update (EV_P_ ev_tstamp max_block) 2164time_update (EV_P_ ev_tstamp max_block)
1539{ 2165{
1540 int i;
1541
1542#if EV_USE_MONOTONIC 2166#if EV_USE_MONOTONIC
1543 if (expect_true (have_monotonic)) 2167 if (expect_true (have_monotonic))
1544 { 2168 {
2169 int i;
1545 ev_tstamp odiff = rtmn_diff; 2170 ev_tstamp odiff = rtmn_diff;
1546 2171
1547 mn_now = get_clock (); 2172 mn_now = get_clock ();
1548 2173
1549 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1567 */ 2192 */
1568 for (i = 4; --i; ) 2193 for (i = 4; --i; )
1569 { 2194 {
1570 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1571 2196
1572 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1573 return; /* all is well */ 2198 return; /* all is well */
1574 2199
1575 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1576 mn_now = get_clock (); 2201 mn_now = get_clock ();
1577 now_floor = mn_now; 2202 now_floor = mn_now;
1578 } 2203 }
1579 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1580# if EV_PERIODIC_ENABLE 2207# if EV_PERIODIC_ENABLE
1581 periodics_reschedule (EV_A); 2208 periodics_reschedule (EV_A);
1582# endif 2209# endif
1583 /* no timer adjustment, as the monotonic clock doesn't jump */
1584 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1585 } 2210 }
1586 else 2211 else
1587#endif 2212#endif
1588 { 2213 {
1589 ev_rt_now = ev_time (); 2214 ev_rt_now = ev_time ();
1590 2215
1591 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1592 { 2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1593#if EV_PERIODIC_ENABLE 2220#if EV_PERIODIC_ENABLE
1594 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1595#endif 2222#endif
1596 /* adjust timers. this is easy, as the offset is the same for all of them */
1597 for (i = 0; i < timercnt; ++i)
1598 ((WT)timers [i])->at += ev_rt_now - mn_now;
1599 } 2223 }
1600 2224
1601 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1602 } 2226 }
1603} 2227}
1604 2228
1605void 2229void
1606ev_ref (EV_P)
1607{
1608 ++activecnt;
1609}
1610
1611void
1612ev_unref (EV_P)
1613{
1614 --activecnt;
1615}
1616
1617static int loop_done;
1618
1619void
1620ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1621{ 2231{
2232#if EV_MINIMAL < 2
2233 ++loop_depth;
2234#endif
2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
1622 loop_done = EVUNLOOP_CANCEL; 2238 loop_done = EVUNLOOP_CANCEL;
1623 2239
1624 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1625 2241
1626 do 2242 do
1627 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
1628#ifndef _WIN32 2248#ifndef _WIN32
1629 if (expect_false (curpid)) /* penalise the forking check even more */ 2249 if (expect_false (curpid)) /* penalise the forking check even more */
1630 if (expect_false (getpid () != curpid)) 2250 if (expect_false (getpid () != curpid))
1631 { 2251 {
1632 curpid = getpid (); 2252 curpid = getpid ();
1638 /* we might have forked, so queue fork handlers */ 2258 /* we might have forked, so queue fork handlers */
1639 if (expect_false (postfork)) 2259 if (expect_false (postfork))
1640 if (forkcnt) 2260 if (forkcnt)
1641 { 2261 {
1642 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1643 call_pending (EV_A); 2263 EV_INVOKE_PENDING;
1644 } 2264 }
1645#endif 2265#endif
1646 2266
1647 /* queue prepare watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1648 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1649 { 2269 {
1650 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1651 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1652 } 2272 }
1653 2273
1654 if (expect_false (!activecnt)) 2274 if (expect_false (loop_done))
1655 break; 2275 break;
1656 2276
1657 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1658 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1659 loop_fork (EV_A); 2279 loop_fork (EV_A);
1666 ev_tstamp waittime = 0.; 2286 ev_tstamp waittime = 0.;
1667 ev_tstamp sleeptime = 0.; 2287 ev_tstamp sleeptime = 0.;
1668 2288
1669 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1670 { 2290 {
2291 /* remember old timestamp for io_blocktime calculation */
2292 ev_tstamp prev_mn_now = mn_now;
2293
1671 /* update time to cancel out callback processing overhead */ 2294 /* update time to cancel out callback processing overhead */
1672 time_update (EV_A_ 1e100); 2295 time_update (EV_A_ 1e100);
1673 2296
1674 waittime = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1675 2298
1676 if (timercnt) 2299 if (timercnt)
1677 { 2300 {
1678 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1679 if (waittime > to) waittime = to; 2302 if (waittime > to) waittime = to;
1680 } 2303 }
1681 2304
1682#if EV_PERIODIC_ENABLE 2305#if EV_PERIODIC_ENABLE
1683 if (periodiccnt) 2306 if (periodiccnt)
1684 { 2307 {
1685 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1686 if (waittime > to) waittime = to; 2309 if (waittime > to) waittime = to;
1687 } 2310 }
1688#endif 2311#endif
1689 2312
2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
1690 if (expect_false (waittime < timeout_blocktime)) 2314 if (expect_false (waittime < timeout_blocktime))
1691 waittime = timeout_blocktime; 2315 waittime = timeout_blocktime;
1692 2316
1693 sleeptime = waittime - backend_fudge; 2317 /* extra check because io_blocktime is commonly 0 */
1694
1695 if (expect_true (sleeptime > io_blocktime)) 2318 if (expect_false (io_blocktime))
1696 sleeptime = io_blocktime;
1697
1698 if (sleeptime)
1699 { 2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
1700 ev_sleep (sleeptime); 2327 ev_sleep (sleeptime);
1701 waittime -= sleeptime; 2328 waittime -= sleeptime;
2329 }
1702 } 2330 }
1703 } 2331 }
1704 2332
2333#if EV_MINIMAL < 2
1705 ++loop_count; 2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1706 backend_poll (EV_A_ waittime); 2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1707 2339
1708 /* update ev_rt_now, do magic */ 2340 /* update ev_rt_now, do magic */
1709 time_update (EV_A_ waittime + sleeptime); 2341 time_update (EV_A_ waittime + sleeptime);
1710 } 2342 }
1711 2343
1722 2354
1723 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1724 if (expect_false (checkcnt)) 2356 if (expect_false (checkcnt))
1725 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1726 2358
1727 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1728 } 2360 }
1729 while (expect_true ( 2361 while (expect_true (
1730 activecnt 2362 activecnt
1731 && !loop_done 2363 && !loop_done
1732 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1733 )); 2365 ));
1734 2366
1735 if (loop_done == EVUNLOOP_ONE) 2367 if (loop_done == EVUNLOOP_ONE)
1736 loop_done = EVUNLOOP_CANCEL; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1737} 2373}
1738 2374
1739void 2375void
1740ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1741{ 2377{
1742 loop_done = how; 2378 loop_done = how;
1743} 2379}
1744 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1745/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1746 2420
1747void inline_size 2421inline_size void
1748wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1749{ 2423{
1750 elem->next = *head; 2424 elem->next = *head;
1751 *head = elem; 2425 *head = elem;
1752} 2426}
1753 2427
1754void inline_size 2428inline_size void
1755wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1756{ 2430{
1757 while (*head) 2431 while (*head)
1758 { 2432 {
1759 if (*head == elem) 2433 if (expect_true (*head == elem))
1760 { 2434 {
1761 *head = elem->next; 2435 *head = elem->next;
1762 return; 2436 break;
1763 } 2437 }
1764 2438
1765 head = &(*head)->next; 2439 head = &(*head)->next;
1766 } 2440 }
1767} 2441}
1768 2442
1769void inline_speed 2443/* internal, faster, version of ev_clear_pending */
2444inline_speed void
1770clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1771{ 2446{
1772 if (w->pending) 2447 if (w->pending)
1773 { 2448 {
1774 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1775 w->pending = 0; 2450 w->pending = 0;
1776 } 2451 }
1777} 2452}
1778 2453
1779int 2454int
1783 int pending = w_->pending; 2458 int pending = w_->pending;
1784 2459
1785 if (expect_true (pending)) 2460 if (expect_true (pending))
1786 { 2461 {
1787 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
1788 w_->pending = 0; 2464 w_->pending = 0;
1789 p->w = 0;
1790 return p->events; 2465 return p->events;
1791 } 2466 }
1792 else 2467 else
1793 return 0; 2468 return 0;
1794} 2469}
1795 2470
1796void inline_size 2471inline_size void
1797pri_adjust (EV_P_ W w) 2472pri_adjust (EV_P_ W w)
1798{ 2473{
1799 int pri = w->priority; 2474 int pri = ev_priority (w);
1800 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1801 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1802 w->priority = pri; 2477 ev_set_priority (w, pri);
1803} 2478}
1804 2479
1805void inline_speed 2480inline_speed void
1806ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1807{ 2482{
1808 pri_adjust (EV_A_ w); 2483 pri_adjust (EV_A_ w);
1809 w->active = active; 2484 w->active = active;
1810 ev_ref (EV_A); 2485 ev_ref (EV_A);
1811} 2486}
1812 2487
1813void inline_size 2488inline_size void
1814ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1815{ 2490{
1816 ev_unref (EV_A); 2491 ev_unref (EV_A);
1817 w->active = 0; 2492 w->active = 0;
1818} 2493}
1825 int fd = w->fd; 2500 int fd = w->fd;
1826 2501
1827 if (expect_false (ev_is_active (w))) 2502 if (expect_false (ev_is_active (w)))
1828 return; 2503 return;
1829 2504
1830 assert (("ev_io_start called with negative fd", fd >= 0)); 2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
1831 2509
1832 ev_start (EV_A_ (W)w, 1); 2510 ev_start (EV_A_ (W)w, 1);
1833 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1834 wlist_add (&anfds[fd].head, (WL)w); 2512 wlist_add (&anfds[fd].head, (WL)w);
1835 2513
1836 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1837 w->events &= ~EV_IOFDSET; 2515 w->events &= ~EV__IOFDSET;
2516
2517 EV_FREQUENT_CHECK;
1838} 2518}
1839 2519
1840void noinline 2520void noinline
1841ev_io_stop (EV_P_ ev_io *w) 2521ev_io_stop (EV_P_ ev_io *w)
1842{ 2522{
1843 clear_pending (EV_A_ (W)w); 2523 clear_pending (EV_A_ (W)w);
1844 if (expect_false (!ev_is_active (w))) 2524 if (expect_false (!ev_is_active (w)))
1845 return; 2525 return;
1846 2526
1847 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2528
2529 EV_FREQUENT_CHECK;
1848 2530
1849 wlist_del (&anfds[w->fd].head, (WL)w); 2531 wlist_del (&anfds[w->fd].head, (WL)w);
1850 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
1851 2533
1852 fd_change (EV_A_ w->fd, 1); 2534 fd_change (EV_A_ w->fd, 1);
2535
2536 EV_FREQUENT_CHECK;
1853} 2537}
1854 2538
1855void noinline 2539void noinline
1856ev_timer_start (EV_P_ ev_timer *w) 2540ev_timer_start (EV_P_ ev_timer *w)
1857{ 2541{
1858 if (expect_false (ev_is_active (w))) 2542 if (expect_false (ev_is_active (w)))
1859 return; 2543 return;
1860 2544
1861 ((WT)w)->at += mn_now; 2545 ev_at (w) += mn_now;
1862 2546
1863 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1864 2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
1865 ev_start (EV_A_ (W)w, ++timercnt); 2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1866 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1867 timers [timercnt - 1] = (WT)w; 2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
1868 upheap (timers, timercnt - 1); 2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
1869 2557
2558 EV_FREQUENT_CHECK;
2559
1870 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1871} 2561}
1872 2562
1873void noinline 2563void noinline
1874ev_timer_stop (EV_P_ ev_timer *w) 2564ev_timer_stop (EV_P_ ev_timer *w)
1875{ 2565{
1876 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
1877 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
1878 return; 2568 return;
1879 2569
1880 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2570 EV_FREQUENT_CHECK;
1881 2571
1882 { 2572 {
1883 int active = ((W)w)->active; 2573 int active = ev_active (w);
1884 2574
2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2576
2577 --timercnt;
2578
1885 if (expect_true (--active < --timercnt)) 2579 if (expect_true (active < timercnt + HEAP0))
1886 { 2580 {
1887 timers [active] = timers [timercnt]; 2581 timers [active] = timers [timercnt + HEAP0];
1888 adjustheap (timers, timercnt, active); 2582 adjustheap (timers, timercnt, active);
1889 } 2583 }
1890 } 2584 }
1891 2585
1892 ((WT)w)->at -= mn_now; 2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
1893 2589
1894 ev_stop (EV_A_ (W)w); 2590 ev_stop (EV_A_ (W)w);
1895} 2591}
1896 2592
1897void noinline 2593void noinline
1898ev_timer_again (EV_P_ ev_timer *w) 2594ev_timer_again (EV_P_ ev_timer *w)
1899{ 2595{
2596 EV_FREQUENT_CHECK;
2597
1900 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1901 { 2599 {
1902 if (w->repeat) 2600 if (w->repeat)
1903 { 2601 {
1904 ((WT)w)->at = mn_now + w->repeat; 2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
1905 adjustheap (timers, timercnt, ((W)w)->active - 1); 2604 adjustheap (timers, timercnt, ev_active (w));
1906 } 2605 }
1907 else 2606 else
1908 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1909 } 2608 }
1910 else if (w->repeat) 2609 else if (w->repeat)
1911 { 2610 {
1912 w->at = w->repeat; 2611 ev_at (w) = w->repeat;
1913 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1914 } 2613 }
2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1915} 2622}
1916 2623
1917#if EV_PERIODIC_ENABLE 2624#if EV_PERIODIC_ENABLE
1918void noinline 2625void noinline
1919ev_periodic_start (EV_P_ ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1920{ 2627{
1921 if (expect_false (ev_is_active (w))) 2628 if (expect_false (ev_is_active (w)))
1922 return; 2629 return;
1923 2630
1924 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1925 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1926 else if (w->interval) 2633 else if (w->interval)
1927 { 2634 {
1928 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1929 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1930 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1931 } 2638 }
1932 else 2639 else
1933 ((WT)w)->at = w->offset; 2640 ev_at (w) = w->offset;
1934 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1935 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1936 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1937 periodics [periodiccnt - 1] = (WT)w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1938 upheap (periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1939 2650
2651 EV_FREQUENT_CHECK;
2652
1940 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1941} 2654}
1942 2655
1943void noinline 2656void noinline
1944ev_periodic_stop (EV_P_ ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1945{ 2658{
1946 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1947 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
1948 return; 2661 return;
1949 2662
1950 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2663 EV_FREQUENT_CHECK;
1951 2664
1952 { 2665 {
1953 int active = ((W)w)->active; 2666 int active = ev_active (w);
1954 2667
2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2669
2670 --periodiccnt;
2671
1955 if (expect_true (--active < --periodiccnt)) 2672 if (expect_true (active < periodiccnt + HEAP0))
1956 { 2673 {
1957 periodics [active] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1958 adjustheap (periodics, periodiccnt, active); 2675 adjustheap (periodics, periodiccnt, active);
1959 } 2676 }
1960 } 2677 }
1961 2678
2679 EV_FREQUENT_CHECK;
2680
1962 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1963} 2682}
1964 2683
1965void noinline 2684void noinline
1966ev_periodic_again (EV_P_ ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1976#endif 2695#endif
1977 2696
1978void noinline 2697void noinline
1979ev_signal_start (EV_P_ ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
1980{ 2699{
1981#if EV_MULTIPLICITY
1982 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1983#endif
1984 if (expect_false (ev_is_active (w))) 2700 if (expect_false (ev_is_active (w)))
1985 return; 2701 return;
1986 2702
1987 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
1988 2704
1989 evpipe_init (EV_A); 2705#if EV_MULTIPLICITY
2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
1990 2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
1991 { 2716 {
1992#ifndef _WIN32 2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
1993 sigset_t full, prev; 2718 if (sigfd < 0 && errno == EINVAL)
1994 sigfillset (&full); 2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
1995 sigprocmask (SIG_SETMASK, &full, &prev);
1996#endif
1997 2720
1998 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
1999 2724
2000#ifndef _WIN32 2725 sigemptyset (&sigfd_set);
2001 sigprocmask (SIG_SETMASK, &prev, 0); 2726
2002#endif 2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2003 } 2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
2004 2743
2005 ev_start (EV_A_ (W)w, 1); 2744 ev_start (EV_A_ (W)w, 1);
2006 wlist_add (&signals [w->signum - 1].head, (WL)w); 2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
2007 2746
2008 if (!((WL)w)->next) 2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
2750# endif
2009 { 2751 {
2010#if _WIN32 2752# if _WIN32
2753 evpipe_init (EV_A);
2754
2011 signal (w->signum, ev_sighandler); 2755 signal (w->signum, ev_sighandler);
2012#else 2756# else
2013 struct sigaction sa; 2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
2014 sa.sa_handler = ev_sighandler; 2761 sa.sa_handler = ev_sighandler;
2015 sigfillset (&sa.sa_mask); 2762 sigfillset (&sa.sa_mask);
2016 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2017 sigaction (w->signum, &sa, 0); 2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2018#endif 2769#endif
2019 } 2770 }
2771
2772 EV_FREQUENT_CHECK;
2020} 2773}
2021 2774
2022void noinline 2775void noinline
2023ev_signal_stop (EV_P_ ev_signal *w) 2776ev_signal_stop (EV_P_ ev_signal *w)
2024{ 2777{
2025 clear_pending (EV_A_ (W)w); 2778 clear_pending (EV_A_ (W)w);
2026 if (expect_false (!ev_is_active (w))) 2779 if (expect_false (!ev_is_active (w)))
2027 return; 2780 return;
2028 2781
2782 EV_FREQUENT_CHECK;
2783
2029 wlist_del (&signals [w->signum - 1].head, (WL)w); 2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
2030 ev_stop (EV_A_ (W)w); 2785 ev_stop (EV_A_ (W)w);
2031 2786
2032 if (!signals [w->signum - 1].head) 2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2796 sigdelset (&sigfd_set, w->signum);
2797 signalfd (sigfd, &sigfd_set, 0);
2798 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2799 /*TODO: maybe unblock signal? */
2800 }
2801 else
2802#endif
2033 signal (w->signum, SIG_DFL); 2803 signal (w->signum, SIG_DFL);
2804 }
2805
2806 EV_FREQUENT_CHECK;
2034} 2807}
2035 2808
2036void 2809void
2037ev_child_start (EV_P_ ev_child *w) 2810ev_child_start (EV_P_ ev_child *w)
2038{ 2811{
2039#if EV_MULTIPLICITY 2812#if EV_MULTIPLICITY
2040 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2813 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2041#endif 2814#endif
2042 if (expect_false (ev_is_active (w))) 2815 if (expect_false (ev_is_active (w)))
2043 return; 2816 return;
2044 2817
2818 EV_FREQUENT_CHECK;
2819
2045 ev_start (EV_A_ (W)w, 1); 2820 ev_start (EV_A_ (W)w, 1);
2046 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2821 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2822
2823 EV_FREQUENT_CHECK;
2047} 2824}
2048 2825
2049void 2826void
2050ev_child_stop (EV_P_ ev_child *w) 2827ev_child_stop (EV_P_ ev_child *w)
2051{ 2828{
2052 clear_pending (EV_A_ (W)w); 2829 clear_pending (EV_A_ (W)w);
2053 if (expect_false (!ev_is_active (w))) 2830 if (expect_false (!ev_is_active (w)))
2054 return; 2831 return;
2055 2832
2833 EV_FREQUENT_CHECK;
2834
2056 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2057 ev_stop (EV_A_ (W)w); 2836 ev_stop (EV_A_ (W)w);
2837
2838 EV_FREQUENT_CHECK;
2058} 2839}
2059 2840
2060#if EV_STAT_ENABLE 2841#if EV_STAT_ENABLE
2061 2842
2062# ifdef _WIN32 2843# ifdef _WIN32
2063# undef lstat 2844# undef lstat
2064# define lstat(a,b) _stati64 (a,b) 2845# define lstat(a,b) _stati64 (a,b)
2065# endif 2846# endif
2066 2847
2067#define DEF_STAT_INTERVAL 5.0074891 2848#define DEF_STAT_INTERVAL 5.0074891
2849#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2068#define MIN_STAT_INTERVAL 0.1074891 2850#define MIN_STAT_INTERVAL 0.1074891
2069 2851
2070static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2852static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2071 2853
2072#if EV_USE_INOTIFY 2854#if EV_USE_INOTIFY
2073# define EV_INOTIFY_BUFSIZE 8192 2855# define EV_INOTIFY_BUFSIZE 8192
2075static void noinline 2857static void noinline
2076infy_add (EV_P_ ev_stat *w) 2858infy_add (EV_P_ ev_stat *w)
2077{ 2859{
2078 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2860 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2079 2861
2080 if (w->wd < 0) 2862 if (w->wd >= 0)
2863 {
2864 struct statfs sfs;
2865
2866 /* now local changes will be tracked by inotify, but remote changes won't */
2867 /* unless the filesystem is known to be local, we therefore still poll */
2868 /* also do poll on <2.6.25, but with normal frequency */
2869
2870 if (!fs_2625)
2871 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2872 else if (!statfs (w->path, &sfs)
2873 && (sfs.f_type == 0x1373 /* devfs */
2874 || sfs.f_type == 0xEF53 /* ext2/3 */
2875 || sfs.f_type == 0x3153464a /* jfs */
2876 || sfs.f_type == 0x52654973 /* reiser3 */
2877 || sfs.f_type == 0x01021994 /* tempfs */
2878 || sfs.f_type == 0x58465342 /* xfs */))
2879 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2880 else
2881 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2081 { 2882 }
2082 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2883 else
2884 {
2885 /* can't use inotify, continue to stat */
2886 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2083 2887
2084 /* monitor some parent directory for speedup hints */ 2888 /* if path is not there, monitor some parent directory for speedup hints */
2889 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2890 /* but an efficiency issue only */
2085 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2891 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2086 { 2892 {
2087 char path [4096]; 2893 char path [4096];
2088 strcpy (path, w->path); 2894 strcpy (path, w->path);
2089 2895
2092 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2898 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2093 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2899 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2094 2900
2095 char *pend = strrchr (path, '/'); 2901 char *pend = strrchr (path, '/');
2096 2902
2097 if (!pend) 2903 if (!pend || pend == path)
2098 break; /* whoops, no '/', complain to your admin */ 2904 break;
2099 2905
2100 *pend = 0; 2906 *pend = 0;
2101 w->wd = inotify_add_watch (fs_fd, path, mask); 2907 w->wd = inotify_add_watch (fs_fd, path, mask);
2102 } 2908 }
2103 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2909 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2104 } 2910 }
2105 } 2911 }
2106 else
2107 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2108 2912
2109 if (w->wd >= 0) 2913 if (w->wd >= 0)
2110 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2914 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2915
2916 /* now re-arm timer, if required */
2917 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2918 ev_timer_again (EV_A_ &w->timer);
2919 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2111} 2920}
2112 2921
2113static void noinline 2922static void noinline
2114infy_del (EV_P_ ev_stat *w) 2923infy_del (EV_P_ ev_stat *w)
2115{ 2924{
2129 2938
2130static void noinline 2939static void noinline
2131infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2940infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2132{ 2941{
2133 if (slot < 0) 2942 if (slot < 0)
2134 /* overflow, need to check for all hahs slots */ 2943 /* overflow, need to check for all hash slots */
2135 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2944 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2136 infy_wd (EV_A_ slot, wd, ev); 2945 infy_wd (EV_A_ slot, wd, ev);
2137 else 2946 else
2138 { 2947 {
2139 WL w_; 2948 WL w_;
2145 2954
2146 if (w->wd == wd || wd == -1) 2955 if (w->wd == wd || wd == -1)
2147 { 2956 {
2148 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2957 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2149 { 2958 {
2959 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2150 w->wd = -1; 2960 w->wd = -1;
2151 infy_add (EV_A_ w); /* re-add, no matter what */ 2961 infy_add (EV_A_ w); /* re-add, no matter what */
2152 } 2962 }
2153 2963
2154 stat_timer_cb (EV_A_ &w->timer, 0); 2964 stat_timer_cb (EV_A_ &w->timer, 0);
2167 2977
2168 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2978 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2169 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2979 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2170} 2980}
2171 2981
2172void inline_size 2982inline_size void
2983check_2625 (EV_P)
2984{
2985 /* kernels < 2.6.25 are borked
2986 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2987 */
2988 struct utsname buf;
2989 int major, minor, micro;
2990
2991 if (uname (&buf))
2992 return;
2993
2994 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2995 return;
2996
2997 if (major < 2
2998 || (major == 2 && minor < 6)
2999 || (major == 2 && minor == 6 && micro < 25))
3000 return;
3001
3002 fs_2625 = 1;
3003}
3004
3005inline_size int
3006infy_newfd (void)
3007{
3008#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3009 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3010 if (fd >= 0)
3011 return fd;
3012#endif
3013 return inotify_init ();
3014}
3015
3016inline_size void
2173infy_init (EV_P) 3017infy_init (EV_P)
2174{ 3018{
2175 if (fs_fd != -2) 3019 if (fs_fd != -2)
2176 return; 3020 return;
2177 3021
3022 fs_fd = -1;
3023
3024 check_2625 (EV_A);
3025
2178 fs_fd = inotify_init (); 3026 fs_fd = infy_newfd ();
2179 3027
2180 if (fs_fd >= 0) 3028 if (fs_fd >= 0)
2181 { 3029 {
3030 fd_intern (fs_fd);
2182 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3031 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2183 ev_set_priority (&fs_w, EV_MAXPRI); 3032 ev_set_priority (&fs_w, EV_MAXPRI);
2184 ev_io_start (EV_A_ &fs_w); 3033 ev_io_start (EV_A_ &fs_w);
3034 ev_unref (EV_A);
2185 } 3035 }
2186} 3036}
2187 3037
2188void inline_size 3038inline_size void
2189infy_fork (EV_P) 3039infy_fork (EV_P)
2190{ 3040{
2191 int slot; 3041 int slot;
2192 3042
2193 if (fs_fd < 0) 3043 if (fs_fd < 0)
2194 return; 3044 return;
2195 3045
3046 ev_ref (EV_A);
3047 ev_io_stop (EV_A_ &fs_w);
2196 close (fs_fd); 3048 close (fs_fd);
2197 fs_fd = inotify_init (); 3049 fs_fd = infy_newfd ();
3050
3051 if (fs_fd >= 0)
3052 {
3053 fd_intern (fs_fd);
3054 ev_io_set (&fs_w, fs_fd, EV_READ);
3055 ev_io_start (EV_A_ &fs_w);
3056 ev_unref (EV_A);
3057 }
2198 3058
2199 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2200 { 3060 {
2201 WL w_ = fs_hash [slot].head; 3061 WL w_ = fs_hash [slot].head;
2202 fs_hash [slot].head = 0; 3062 fs_hash [slot].head = 0;
2209 w->wd = -1; 3069 w->wd = -1;
2210 3070
2211 if (fs_fd >= 0) 3071 if (fs_fd >= 0)
2212 infy_add (EV_A_ w); /* re-add, no matter what */ 3072 infy_add (EV_A_ w); /* re-add, no matter what */
2213 else 3073 else
3074 {
3075 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3076 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2214 ev_timer_start (EV_A_ &w->timer); 3077 ev_timer_again (EV_A_ &w->timer);
3078 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3079 }
2215 } 3080 }
2216
2217 } 3081 }
2218} 3082}
2219 3083
3084#endif
3085
3086#ifdef _WIN32
3087# define EV_LSTAT(p,b) _stati64 (p, b)
3088#else
3089# define EV_LSTAT(p,b) lstat (p, b)
2220#endif 3090#endif
2221 3091
2222void 3092void
2223ev_stat_stat (EV_P_ ev_stat *w) 3093ev_stat_stat (EV_P_ ev_stat *w)
2224{ 3094{
2251 || w->prev.st_atime != w->attr.st_atime 3121 || w->prev.st_atime != w->attr.st_atime
2252 || w->prev.st_mtime != w->attr.st_mtime 3122 || w->prev.st_mtime != w->attr.st_mtime
2253 || w->prev.st_ctime != w->attr.st_ctime 3123 || w->prev.st_ctime != w->attr.st_ctime
2254 ) { 3124 ) {
2255 #if EV_USE_INOTIFY 3125 #if EV_USE_INOTIFY
3126 if (fs_fd >= 0)
3127 {
2256 infy_del (EV_A_ w); 3128 infy_del (EV_A_ w);
2257 infy_add (EV_A_ w); 3129 infy_add (EV_A_ w);
2258 ev_stat_stat (EV_A_ w); /* avoid race... */ 3130 ev_stat_stat (EV_A_ w); /* avoid race... */
3131 }
2259 #endif 3132 #endif
2260 3133
2261 ev_feed_event (EV_A_ w, EV_STAT); 3134 ev_feed_event (EV_A_ w, EV_STAT);
2262 } 3135 }
2263} 3136}
2266ev_stat_start (EV_P_ ev_stat *w) 3139ev_stat_start (EV_P_ ev_stat *w)
2267{ 3140{
2268 if (expect_false (ev_is_active (w))) 3141 if (expect_false (ev_is_active (w)))
2269 return; 3142 return;
2270 3143
2271 /* since we use memcmp, we need to clear any padding data etc. */
2272 memset (&w->prev, 0, sizeof (ev_statdata));
2273 memset (&w->attr, 0, sizeof (ev_statdata));
2274
2275 ev_stat_stat (EV_A_ w); 3144 ev_stat_stat (EV_A_ w);
2276 3145
3146 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2277 if (w->interval < MIN_STAT_INTERVAL) 3147 w->interval = MIN_STAT_INTERVAL;
2278 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2279 3148
2280 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3149 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2281 ev_set_priority (&w->timer, ev_priority (w)); 3150 ev_set_priority (&w->timer, ev_priority (w));
2282 3151
2283#if EV_USE_INOTIFY 3152#if EV_USE_INOTIFY
2284 infy_init (EV_A); 3153 infy_init (EV_A);
2285 3154
2286 if (fs_fd >= 0) 3155 if (fs_fd >= 0)
2287 infy_add (EV_A_ w); 3156 infy_add (EV_A_ w);
2288 else 3157 else
2289#endif 3158#endif
3159 {
2290 ev_timer_start (EV_A_ &w->timer); 3160 ev_timer_again (EV_A_ &w->timer);
3161 ev_unref (EV_A);
3162 }
2291 3163
2292 ev_start (EV_A_ (W)w, 1); 3164 ev_start (EV_A_ (W)w, 1);
3165
3166 EV_FREQUENT_CHECK;
2293} 3167}
2294 3168
2295void 3169void
2296ev_stat_stop (EV_P_ ev_stat *w) 3170ev_stat_stop (EV_P_ ev_stat *w)
2297{ 3171{
2298 clear_pending (EV_A_ (W)w); 3172 clear_pending (EV_A_ (W)w);
2299 if (expect_false (!ev_is_active (w))) 3173 if (expect_false (!ev_is_active (w)))
2300 return; 3174 return;
2301 3175
3176 EV_FREQUENT_CHECK;
3177
2302#if EV_USE_INOTIFY 3178#if EV_USE_INOTIFY
2303 infy_del (EV_A_ w); 3179 infy_del (EV_A_ w);
2304#endif 3180#endif
3181
3182 if (ev_is_active (&w->timer))
3183 {
3184 ev_ref (EV_A);
2305 ev_timer_stop (EV_A_ &w->timer); 3185 ev_timer_stop (EV_A_ &w->timer);
3186 }
2306 3187
2307 ev_stop (EV_A_ (W)w); 3188 ev_stop (EV_A_ (W)w);
3189
3190 EV_FREQUENT_CHECK;
2308} 3191}
2309#endif 3192#endif
2310 3193
2311#if EV_IDLE_ENABLE 3194#if EV_IDLE_ENABLE
2312void 3195void
2314{ 3197{
2315 if (expect_false (ev_is_active (w))) 3198 if (expect_false (ev_is_active (w)))
2316 return; 3199 return;
2317 3200
2318 pri_adjust (EV_A_ (W)w); 3201 pri_adjust (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
2319 3204
2320 { 3205 {
2321 int active = ++idlecnt [ABSPRI (w)]; 3206 int active = ++idlecnt [ABSPRI (w)];
2322 3207
2323 ++idleall; 3208 ++idleall;
2324 ev_start (EV_A_ (W)w, active); 3209 ev_start (EV_A_ (W)w, active);
2325 3210
2326 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3211 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2327 idles [ABSPRI (w)][active - 1] = w; 3212 idles [ABSPRI (w)][active - 1] = w;
2328 } 3213 }
3214
3215 EV_FREQUENT_CHECK;
2329} 3216}
2330 3217
2331void 3218void
2332ev_idle_stop (EV_P_ ev_idle *w) 3219ev_idle_stop (EV_P_ ev_idle *w)
2333{ 3220{
2334 clear_pending (EV_A_ (W)w); 3221 clear_pending (EV_A_ (W)w);
2335 if (expect_false (!ev_is_active (w))) 3222 if (expect_false (!ev_is_active (w)))
2336 return; 3223 return;
2337 3224
3225 EV_FREQUENT_CHECK;
3226
2338 { 3227 {
2339 int active = ((W)w)->active; 3228 int active = ev_active (w);
2340 3229
2341 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3230 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2342 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3231 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2343 3232
2344 ev_stop (EV_A_ (W)w); 3233 ev_stop (EV_A_ (W)w);
2345 --idleall; 3234 --idleall;
2346 } 3235 }
3236
3237 EV_FREQUENT_CHECK;
2347} 3238}
2348#endif 3239#endif
2349 3240
2350void 3241void
2351ev_prepare_start (EV_P_ ev_prepare *w) 3242ev_prepare_start (EV_P_ ev_prepare *w)
2352{ 3243{
2353 if (expect_false (ev_is_active (w))) 3244 if (expect_false (ev_is_active (w)))
2354 return; 3245 return;
3246
3247 EV_FREQUENT_CHECK;
2355 3248
2356 ev_start (EV_A_ (W)w, ++preparecnt); 3249 ev_start (EV_A_ (W)w, ++preparecnt);
2357 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3250 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2358 prepares [preparecnt - 1] = w; 3251 prepares [preparecnt - 1] = w;
3252
3253 EV_FREQUENT_CHECK;
2359} 3254}
2360 3255
2361void 3256void
2362ev_prepare_stop (EV_P_ ev_prepare *w) 3257ev_prepare_stop (EV_P_ ev_prepare *w)
2363{ 3258{
2364 clear_pending (EV_A_ (W)w); 3259 clear_pending (EV_A_ (W)w);
2365 if (expect_false (!ev_is_active (w))) 3260 if (expect_false (!ev_is_active (w)))
2366 return; 3261 return;
2367 3262
3263 EV_FREQUENT_CHECK;
3264
2368 { 3265 {
2369 int active = ((W)w)->active; 3266 int active = ev_active (w);
3267
2370 prepares [active - 1] = prepares [--preparecnt]; 3268 prepares [active - 1] = prepares [--preparecnt];
2371 ((W)prepares [active - 1])->active = active; 3269 ev_active (prepares [active - 1]) = active;
2372 } 3270 }
2373 3271
2374 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
3273
3274 EV_FREQUENT_CHECK;
2375} 3275}
2376 3276
2377void 3277void
2378ev_check_start (EV_P_ ev_check *w) 3278ev_check_start (EV_P_ ev_check *w)
2379{ 3279{
2380 if (expect_false (ev_is_active (w))) 3280 if (expect_false (ev_is_active (w)))
2381 return; 3281 return;
3282
3283 EV_FREQUENT_CHECK;
2382 3284
2383 ev_start (EV_A_ (W)w, ++checkcnt); 3285 ev_start (EV_A_ (W)w, ++checkcnt);
2384 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3286 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2385 checks [checkcnt - 1] = w; 3287 checks [checkcnt - 1] = w;
3288
3289 EV_FREQUENT_CHECK;
2386} 3290}
2387 3291
2388void 3292void
2389ev_check_stop (EV_P_ ev_check *w) 3293ev_check_stop (EV_P_ ev_check *w)
2390{ 3294{
2391 clear_pending (EV_A_ (W)w); 3295 clear_pending (EV_A_ (W)w);
2392 if (expect_false (!ev_is_active (w))) 3296 if (expect_false (!ev_is_active (w)))
2393 return; 3297 return;
2394 3298
3299 EV_FREQUENT_CHECK;
3300
2395 { 3301 {
2396 int active = ((W)w)->active; 3302 int active = ev_active (w);
3303
2397 checks [active - 1] = checks [--checkcnt]; 3304 checks [active - 1] = checks [--checkcnt];
2398 ((W)checks [active - 1])->active = active; 3305 ev_active (checks [active - 1]) = active;
2399 } 3306 }
2400 3307
2401 ev_stop (EV_A_ (W)w); 3308 ev_stop (EV_A_ (W)w);
3309
3310 EV_FREQUENT_CHECK;
2402} 3311}
2403 3312
2404#if EV_EMBED_ENABLE 3313#if EV_EMBED_ENABLE
2405void noinline 3314void noinline
2406ev_embed_sweep (EV_P_ ev_embed *w) 3315ev_embed_sweep (EV_P_ ev_embed *w)
2423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3332embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2424{ 3333{
2425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3334 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2426 3335
2427 { 3336 {
2428 struct ev_loop *loop = w->other; 3337 EV_P = w->other;
2429 3338
2430 while (fdchangecnt) 3339 while (fdchangecnt)
2431 { 3340 {
2432 fd_reify (EV_A); 3341 fd_reify (EV_A);
2433 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3342 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2434 } 3343 }
2435 } 3344 }
2436} 3345}
2437 3346
3347static void
3348embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3349{
3350 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3351
3352 ev_embed_stop (EV_A_ w);
3353
3354 {
3355 EV_P = w->other;
3356
3357 ev_loop_fork (EV_A);
3358 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3359 }
3360
3361 ev_embed_start (EV_A_ w);
3362}
3363
2438#if 0 3364#if 0
2439static void 3365static void
2440embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3366embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2441{ 3367{
2442 ev_idle_stop (EV_A_ idle); 3368 ev_idle_stop (EV_A_ idle);
2448{ 3374{
2449 if (expect_false (ev_is_active (w))) 3375 if (expect_false (ev_is_active (w)))
2450 return; 3376 return;
2451 3377
2452 { 3378 {
2453 struct ev_loop *loop = w->other; 3379 EV_P = w->other;
2454 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3380 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2455 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3381 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2456 } 3382 }
3383
3384 EV_FREQUENT_CHECK;
2457 3385
2458 ev_set_priority (&w->io, ev_priority (w)); 3386 ev_set_priority (&w->io, ev_priority (w));
2459 ev_io_start (EV_A_ &w->io); 3387 ev_io_start (EV_A_ &w->io);
2460 3388
2461 ev_prepare_init (&w->prepare, embed_prepare_cb); 3389 ev_prepare_init (&w->prepare, embed_prepare_cb);
2462 ev_set_priority (&w->prepare, EV_MINPRI); 3390 ev_set_priority (&w->prepare, EV_MINPRI);
2463 ev_prepare_start (EV_A_ &w->prepare); 3391 ev_prepare_start (EV_A_ &w->prepare);
2464 3392
3393 ev_fork_init (&w->fork, embed_fork_cb);
3394 ev_fork_start (EV_A_ &w->fork);
3395
2465 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3396 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2466 3397
2467 ev_start (EV_A_ (W)w, 1); 3398 ev_start (EV_A_ (W)w, 1);
3399
3400 EV_FREQUENT_CHECK;
2468} 3401}
2469 3402
2470void 3403void
2471ev_embed_stop (EV_P_ ev_embed *w) 3404ev_embed_stop (EV_P_ ev_embed *w)
2472{ 3405{
2473 clear_pending (EV_A_ (W)w); 3406 clear_pending (EV_A_ (W)w);
2474 if (expect_false (!ev_is_active (w))) 3407 if (expect_false (!ev_is_active (w)))
2475 return; 3408 return;
2476 3409
3410 EV_FREQUENT_CHECK;
3411
2477 ev_io_stop (EV_A_ &w->io); 3412 ev_io_stop (EV_A_ &w->io);
2478 ev_prepare_stop (EV_A_ &w->prepare); 3413 ev_prepare_stop (EV_A_ &w->prepare);
3414 ev_fork_stop (EV_A_ &w->fork);
2479 3415
2480 ev_stop (EV_A_ (W)w); 3416 EV_FREQUENT_CHECK;
2481} 3417}
2482#endif 3418#endif
2483 3419
2484#if EV_FORK_ENABLE 3420#if EV_FORK_ENABLE
2485void 3421void
2486ev_fork_start (EV_P_ ev_fork *w) 3422ev_fork_start (EV_P_ ev_fork *w)
2487{ 3423{
2488 if (expect_false (ev_is_active (w))) 3424 if (expect_false (ev_is_active (w)))
2489 return; 3425 return;
3426
3427 EV_FREQUENT_CHECK;
2490 3428
2491 ev_start (EV_A_ (W)w, ++forkcnt); 3429 ev_start (EV_A_ (W)w, ++forkcnt);
2492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3430 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2493 forks [forkcnt - 1] = w; 3431 forks [forkcnt - 1] = w;
3432
3433 EV_FREQUENT_CHECK;
2494} 3434}
2495 3435
2496void 3436void
2497ev_fork_stop (EV_P_ ev_fork *w) 3437ev_fork_stop (EV_P_ ev_fork *w)
2498{ 3438{
2499 clear_pending (EV_A_ (W)w); 3439 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3440 if (expect_false (!ev_is_active (w)))
2501 return; 3441 return;
2502 3442
3443 EV_FREQUENT_CHECK;
3444
2503 { 3445 {
2504 int active = ((W)w)->active; 3446 int active = ev_active (w);
3447
2505 forks [active - 1] = forks [--forkcnt]; 3448 forks [active - 1] = forks [--forkcnt];
2506 ((W)forks [active - 1])->active = active; 3449 ev_active (forks [active - 1]) = active;
2507 } 3450 }
2508 3451
2509 ev_stop (EV_A_ (W)w); 3452 ev_stop (EV_A_ (W)w);
3453
3454 EV_FREQUENT_CHECK;
2510} 3455}
2511#endif 3456#endif
2512 3457
2513#if EV_ASYNC_ENABLE 3458#if EV_ASYNC_ENABLE
2514void 3459void
2516{ 3461{
2517 if (expect_false (ev_is_active (w))) 3462 if (expect_false (ev_is_active (w)))
2518 return; 3463 return;
2519 3464
2520 evpipe_init (EV_A); 3465 evpipe_init (EV_A);
3466
3467 EV_FREQUENT_CHECK;
2521 3468
2522 ev_start (EV_A_ (W)w, ++asynccnt); 3469 ev_start (EV_A_ (W)w, ++asynccnt);
2523 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3470 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2524 asyncs [asynccnt - 1] = w; 3471 asyncs [asynccnt - 1] = w;
3472
3473 EV_FREQUENT_CHECK;
2525} 3474}
2526 3475
2527void 3476void
2528ev_async_stop (EV_P_ ev_async *w) 3477ev_async_stop (EV_P_ ev_async *w)
2529{ 3478{
2530 clear_pending (EV_A_ (W)w); 3479 clear_pending (EV_A_ (W)w);
2531 if (expect_false (!ev_is_active (w))) 3480 if (expect_false (!ev_is_active (w)))
2532 return; 3481 return;
2533 3482
3483 EV_FREQUENT_CHECK;
3484
2534 { 3485 {
2535 int active = ((W)w)->active; 3486 int active = ev_active (w);
3487
2536 asyncs [active - 1] = asyncs [--asynccnt]; 3488 asyncs [active - 1] = asyncs [--asynccnt];
2537 ((W)asyncs [active - 1])->active = active; 3489 ev_active (asyncs [active - 1]) = active;
2538 } 3490 }
2539 3491
2540 ev_stop (EV_A_ (W)w); 3492 ev_stop (EV_A_ (W)w);
3493
3494 EV_FREQUENT_CHECK;
2541} 3495}
2542 3496
2543void 3497void
2544ev_async_send (EV_P_ ev_async *w) 3498ev_async_send (EV_P_ ev_async *w)
2545{ 3499{
2546 w->sent = 1; 3500 w->sent = 1;
2547 evpipe_write (EV_A_ &gotasync); 3501 evpipe_write (EV_A_ &async_pending);
2548} 3502}
2549#endif 3503#endif
2550 3504
2551/*****************************************************************************/ 3505/*****************************************************************************/
2552 3506
2562once_cb (EV_P_ struct ev_once *once, int revents) 3516once_cb (EV_P_ struct ev_once *once, int revents)
2563{ 3517{
2564 void (*cb)(int revents, void *arg) = once->cb; 3518 void (*cb)(int revents, void *arg) = once->cb;
2565 void *arg = once->arg; 3519 void *arg = once->arg;
2566 3520
2567 ev_io_stop (EV_A_ &once->io); 3521 ev_io_stop (EV_A_ &once->io);
2568 ev_timer_stop (EV_A_ &once->to); 3522 ev_timer_stop (EV_A_ &once->to);
2569 ev_free (once); 3523 ev_free (once);
2570 3524
2571 cb (revents, arg); 3525 cb (revents, arg);
2572} 3526}
2573 3527
2574static void 3528static void
2575once_cb_io (EV_P_ ev_io *w, int revents) 3529once_cb_io (EV_P_ ev_io *w, int revents)
2576{ 3530{
2577 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3531 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3532
3533 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2578} 3534}
2579 3535
2580static void 3536static void
2581once_cb_to (EV_P_ ev_timer *w, int revents) 3537once_cb_to (EV_P_ ev_timer *w, int revents)
2582{ 3538{
2583 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3539 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3540
3541 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2584} 3542}
2585 3543
2586void 3544void
2587ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3545ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2588{ 3546{
2610 ev_timer_set (&once->to, timeout, 0.); 3568 ev_timer_set (&once->to, timeout, 0.);
2611 ev_timer_start (EV_A_ &once->to); 3569 ev_timer_start (EV_A_ &once->to);
2612 } 3570 }
2613} 3571}
2614 3572
3573/*****************************************************************************/
3574
3575#if EV_WALK_ENABLE
3576void
3577ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3578{
3579 int i, j;
3580 ev_watcher_list *wl, *wn;
3581
3582 if (types & (EV_IO | EV_EMBED))
3583 for (i = 0; i < anfdmax; ++i)
3584 for (wl = anfds [i].head; wl; )
3585 {
3586 wn = wl->next;
3587
3588#if EV_EMBED_ENABLE
3589 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3590 {
3591 if (types & EV_EMBED)
3592 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3593 }
3594 else
3595#endif
3596#if EV_USE_INOTIFY
3597 if (ev_cb ((ev_io *)wl) == infy_cb)
3598 ;
3599 else
3600#endif
3601 if ((ev_io *)wl != &pipe_w)
3602 if (types & EV_IO)
3603 cb (EV_A_ EV_IO, wl);
3604
3605 wl = wn;
3606 }
3607
3608 if (types & (EV_TIMER | EV_STAT))
3609 for (i = timercnt + HEAP0; i-- > HEAP0; )
3610#if EV_STAT_ENABLE
3611 /*TODO: timer is not always active*/
3612 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3613 {
3614 if (types & EV_STAT)
3615 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3616 }
3617 else
3618#endif
3619 if (types & EV_TIMER)
3620 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3621
3622#if EV_PERIODIC_ENABLE
3623 if (types & EV_PERIODIC)
3624 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3625 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3626#endif
3627
3628#if EV_IDLE_ENABLE
3629 if (types & EV_IDLE)
3630 for (j = NUMPRI; i--; )
3631 for (i = idlecnt [j]; i--; )
3632 cb (EV_A_ EV_IDLE, idles [j][i]);
3633#endif
3634
3635#if EV_FORK_ENABLE
3636 if (types & EV_FORK)
3637 for (i = forkcnt; i--; )
3638 if (ev_cb (forks [i]) != embed_fork_cb)
3639 cb (EV_A_ EV_FORK, forks [i]);
3640#endif
3641
3642#if EV_ASYNC_ENABLE
3643 if (types & EV_ASYNC)
3644 for (i = asynccnt; i--; )
3645 cb (EV_A_ EV_ASYNC, asyncs [i]);
3646#endif
3647
3648 if (types & EV_PREPARE)
3649 for (i = preparecnt; i--; )
3650#if EV_EMBED_ENABLE
3651 if (ev_cb (prepares [i]) != embed_prepare_cb)
3652#endif
3653 cb (EV_A_ EV_PREPARE, prepares [i]);
3654
3655 if (types & EV_CHECK)
3656 for (i = checkcnt; i--; )
3657 cb (EV_A_ EV_CHECK, checks [i]);
3658
3659 if (types & EV_SIGNAL)
3660 for (i = 0; i < EV_NSIG - 1; ++i)
3661 for (wl = signals [i].head; wl; )
3662 {
3663 wn = wl->next;
3664 cb (EV_A_ EV_SIGNAL, wl);
3665 wl = wn;
3666 }
3667
3668 if (types & EV_CHILD)
3669 for (i = EV_PID_HASHSIZE; i--; )
3670 for (wl = childs [i]; wl; )
3671 {
3672 wn = wl->next;
3673 cb (EV_A_ EV_CHILD, wl);
3674 wl = wn;
3675 }
3676/* EV_STAT 0x00001000 /* stat data changed */
3677/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3678}
3679#endif
3680
2615#if EV_MULTIPLICITY 3681#if EV_MULTIPLICITY
2616 #include "ev_wrap.h" 3682 #include "ev_wrap.h"
2617#endif 3683#endif
2618 3684
2619#ifdef __cplusplus 3685#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines