ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.32 by root, Thu Nov 1 09:21:51 2007 UTC vs.
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
29#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
30# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
31#endif 55#endif
32 56
33#include <math.h> 57#include <math.h>
34#include <stdlib.h> 58#include <stdlib.h>
35#include <unistd.h> 59#include <unistd.h>
40#include <stdio.h> 64#include <stdio.h>
41 65
42#include <assert.h> 66#include <assert.h>
43#include <errno.h> 67#include <errno.h>
44#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
45#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
46#include <sys/time.h> 72#include <sys/time.h>
47#include <time.h> 73#include <time.h>
48 74
75/**/
76
49#ifndef EV_USE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
50# ifdef CLOCK_MONOTONIC
51# define EV_USE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
52# endif
53#endif 79#endif
54 80
55#ifndef EV_USE_SELECT 81#ifndef EV_USE_SELECT
56# define EV_USE_SELECT 1 82# define EV_USE_SELECT 1
57#endif 83#endif
58 84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
59#ifndef EV_USE_EPOLL 89#ifndef EV_USE_EPOLL
60# define EV_USE_EPOLL 0 90# define EV_USE_EPOLL 0
61#endif 91#endif
62 92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
63#ifndef CLOCK_REALTIME 116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 118# define EV_USE_REALTIME 0
65#endif 119#endif
66#ifndef EV_USE_REALTIME 120
67# define EV_USE_REALTIME 1 /* posix requirement, but might be slower */ 121/**/
68#endif
69 122
70#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
71#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detetc time jumps) */ 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
72#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
73#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
74 127
75#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
76 143
77typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
78typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
79typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
80 147
81static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
82ev_tstamp ev_now;
83int ev_method;
84
85static int have_monotonic; /* runtime */
86
87static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
88static void (*method_modify)(int fd, int oev, int nev);
89static void (*method_poll)(ev_tstamp timeout);
90 149
91/*****************************************************************************/ 150/*****************************************************************************/
92 151
93ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
94ev_time (void) 186ev_time (void)
95{ 187{
96#if EV_USE_REALTIME 188#if EV_USE_REALTIME
97 struct timespec ts; 189 struct timespec ts;
98 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
102 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
103 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
104#endif 196#endif
105} 197}
106 198
107static ev_tstamp 199inline ev_tstamp
108get_clock (void) 200get_clock (void)
109{ 201{
110#if EV_USE_MONOTONIC 202#if EV_USE_MONOTONIC
111 if (have_monotonic) 203 if (expect_true (have_monotonic))
112 { 204 {
113 struct timespec ts; 205 struct timespec ts;
114 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
115 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
116 } 208 }
117#endif 209#endif
118 210
119 return ev_time (); 211 return ev_time ();
120} 212}
121 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
122#define array_roundsize(base,n) ((n) | 4 & ~3) 220#define array_roundsize(base,n) ((n) | 4 & ~3)
123 221
124#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
125 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
126 { \ 224 { \
127 int newcnt = cur; \ 225 int newcnt = cur; \
128 do \ 226 do \
129 { \ 227 { \
130 newcnt = array_roundsize (base, newcnt << 1); \ 228 newcnt = array_roundsize (base, newcnt << 1); \
134 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
135 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
136 cur = newcnt; \ 234 cur = newcnt; \
137 } 235 }
138 236
237#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239
139/*****************************************************************************/ 240/*****************************************************************************/
140
141typedef struct
142{
143 struct ev_io *head;
144 int events;
145} ANFD;
146
147static ANFD *anfds;
148static int anfdmax;
149 241
150static void 242static void
151anfds_init (ANFD *base, int count) 243anfds_init (ANFD *base, int count)
152{ 244{
153 while (count--) 245 while (count--)
154 { 246 {
155 base->head = 0; 247 base->head = 0;
156 base->events = EV_NONE; 248 base->events = EV_NONE;
249 base->reify = 0;
250
157 ++base; 251 ++base;
158 } 252 }
159} 253}
160 254
161typedef struct
162{
163 W w;
164 int events;
165} ANPENDING;
166
167static ANPENDING *pendings;
168static int pendingmax, pendingcnt;
169
170static void 255static void
171event (W w, int events) 256event (EV_P_ W w, int events)
172{ 257{
173 if (w->pending) 258 if (w->pending)
174 { 259 {
175 pendings [w->pending - 1].events |= events; 260 pendings [ABSPRI (w)][w->pending - 1].events |= events;
176 return; 261 return;
177 } 262 }
178 263
179 w->pending = ++pendingcnt; 264 w->pending = ++pendingcnt [ABSPRI (w)];
180 array_needsize (pendings, pendingmax, pendingcnt, ); 265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
181 pendings [pendingcnt - 1].w = w; 266 pendings [ABSPRI (w)][w->pending - 1].w = w;
182 pendings [pendingcnt - 1].events = events; 267 pendings [ABSPRI (w)][w->pending - 1].events = events;
183} 268}
184 269
185static void 270static void
186queue_events (W *events, int eventcnt, int type) 271queue_events (EV_P_ W *events, int eventcnt, int type)
187{ 272{
188 int i; 273 int i;
189 274
190 for (i = 0; i < eventcnt; ++i) 275 for (i = 0; i < eventcnt; ++i)
191 event (events [i], type); 276 event (EV_A_ events [i], type);
192} 277}
193 278
194static void 279static void
195fd_event (int fd, int events) 280fd_event (EV_P_ int fd, int events)
196{ 281{
197 ANFD *anfd = anfds + fd; 282 ANFD *anfd = anfds + fd;
198 struct ev_io *w; 283 struct ev_io *w;
199 284
200 for (w = anfd->head; w; w = w->next) 285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
201 { 286 {
202 int ev = w->events & events; 287 int ev = w->events & events;
203 288
204 if (ev) 289 if (ev)
205 event ((W)w, ev); 290 event (EV_A_ (W)w, ev);
206 } 291 }
207} 292}
208 293
209/*****************************************************************************/ 294/*****************************************************************************/
210 295
211static int *fdchanges;
212static int fdchangemax, fdchangecnt;
213
214static void 296static void
215fd_reify (void) 297fd_reify (EV_P)
216{ 298{
217 int i; 299 int i;
218 300
219 for (i = 0; i < fdchangecnt; ++i) 301 for (i = 0; i < fdchangecnt; ++i)
220 { 302 {
222 ANFD *anfd = anfds + fd; 304 ANFD *anfd = anfds + fd;
223 struct ev_io *w; 305 struct ev_io *w;
224 306
225 int events = 0; 307 int events = 0;
226 308
227 for (w = anfd->head; w; w = w->next) 309 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
228 events |= w->events; 310 events |= w->events;
229 311
230 anfd->events &= ~EV_REIFY; 312 anfd->reify = 0;
231 313
232 if (anfd->events != events)
233 {
234 method_modify (fd, anfd->events, events); 314 method_modify (EV_A_ fd, anfd->events, events);
235 anfd->events = events; 315 anfd->events = events;
236 }
237 } 316 }
238 317
239 fdchangecnt = 0; 318 fdchangecnt = 0;
240} 319}
241 320
242static void 321static void
243fd_change (int fd) 322fd_change (EV_P_ int fd)
244{ 323{
245 if (anfds [fd].events & EV_REIFY || fdchangecnt < 0) 324 if (anfds [fd].reify || fdchangecnt < 0)
246 return; 325 return;
247 326
248 anfds [fd].events |= EV_REIFY; 327 anfds [fd].reify = 1;
249 328
250 ++fdchangecnt; 329 ++fdchangecnt;
251 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
252 fdchanges [fdchangecnt - 1] = fd; 331 fdchanges [fdchangecnt - 1] = fd;
253} 332}
254 333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
255/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
256static void 347static void
257fd_recheck (void) 348fd_ebadf (EV_P)
258{ 349{
259 int fd; 350 int fd;
260 351
261 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
262 if (anfds [fd].events) 353 if (anfds [fd].events)
263 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
264 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
265 { 366 {
266 ev_io_stop (anfds [fd].head); 367 close (fd);
267 event ((W)anfds [fd].head, EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT); 368 fd_kill (EV_A_ fd);
369 return;
268 } 370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
269} 386}
270 387
271/*****************************************************************************/ 388/*****************************************************************************/
272 389
273static struct ev_timer **timers;
274static int timermax, timercnt;
275
276static struct ev_periodic **periodics;
277static int periodicmax, periodiccnt;
278
279static void 390static void
280upheap (WT *timers, int k) 391upheap (WT *heap, int k)
281{ 392{
282 WT w = timers [k]; 393 WT w = heap [k];
283 394
284 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
285 { 396 {
286 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
287 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
288 k >>= 1; 399 k >>= 1;
289 } 400 }
290 401
291 timers [k] = w; 402 heap [k] = w;
292 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
293 404
294} 405}
295 406
296static void 407static void
297downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
298{ 409{
299 WT w = timers [k]; 410 WT w = heap [k];
300 411
301 while (k < (N >> 1)) 412 while (k < (N >> 1))
302 { 413 {
303 int j = k << 1; 414 int j = k << 1;
304 415
305 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
306 ++j; 417 ++j;
307 418
308 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
309 break; 420 break;
310 421
311 timers [k] = timers [j]; 422 heap [k] = heap [j];
312 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
313 k = j; 424 k = j;
314 } 425 }
315 426
316 timers [k] = w; 427 heap [k] = w;
317 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
318} 429}
319 430
320/*****************************************************************************/ 431/*****************************************************************************/
321 432
322typedef struct 433typedef struct
323{ 434{
324 struct ev_signal *head; 435 struct ev_watcher_list *head;
325 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
326} ANSIG; 437} ANSIG;
327 438
328static ANSIG *signals; 439static ANSIG *signals;
329static int signalmax; 440static int signalmax;
330 441
331static int sigpipe [2]; 442static int sigpipe [2];
332static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
333static struct ev_io sigev; 444static struct ev_io sigev;
334 445
335static void 446static void
336signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
337{ 448{
338 while (count--) 449 while (count--)
339 { 450 {
340 base->head = 0; 451 base->head = 0;
341 base->gotsig = 0; 452 base->gotsig = 0;
453
342 ++base; 454 ++base;
343 } 455 }
344} 456}
345 457
346static void 458static void
348{ 460{
349 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
350 462
351 if (!gotsig) 463 if (!gotsig)
352 { 464 {
465 int old_errno = errno;
353 gotsig = 1; 466 gotsig = 1;
354 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
355 } 469 }
356} 470}
357 471
358static void 472static void
359sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
360{ 474{
361 struct ev_signal *w; 475 struct ev_watcher_list *w;
362 int sig; 476 int signum;
363 477
478 read (sigpipe [0], &revents, 1);
364 gotsig = 0; 479 gotsig = 0;
365 read (sigpipe [0], &revents, 1);
366 480
367 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
368 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
369 { 483 {
370 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
371 485
372 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
373 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
374 } 488 }
375} 489}
376 490
377static void 491static void
378siginit (void) 492siginit (EV_P)
379{ 493{
494#ifndef WIN32
380 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
381 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
382 497
383 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
384 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
385 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
386 502
387 ev_io_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
388 ev_io_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
389} 506}
390 507
391/*****************************************************************************/ 508/*****************************************************************************/
392 509
393static struct ev_idle **idles; 510#ifndef WIN32
394static int idlemax, idlecnt;
395
396static struct ev_prepare **prepares;
397static int preparemax, preparecnt;
398
399static struct ev_check **checks;
400static int checkmax, checkcnt;
401
402/*****************************************************************************/
403 511
404static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
405static struct ev_signal childev; 513static struct ev_signal childev;
406 514
407#ifndef WCONTINUED 515#ifndef WCONTINUED
408# define WCONTINUED 0 516# define WCONTINUED 0
409#endif 517#endif
410 518
411static void 519static void
412childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
413{ 521{
414 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
415 int pid, status; 537 int pid, status;
416 538
417 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
418 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
419 if (w->pid == pid || w->pid == -1) 541 /* make sure we are called again until all childs have been reaped */
420 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
421 w->status = status; 543
422 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
423 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
424} 547}
548
549#endif
425 550
426/*****************************************************************************/ 551/*****************************************************************************/
427 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
428#if EV_USE_EPOLL 556#if EV_USE_EPOLL
429# include "ev_epoll.c" 557# include "ev_epoll.c"
430#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
431#if EV_USE_SELECT 562#if EV_USE_SELECT
432# include "ev_select.c" 563# include "ev_select.c"
433#endif 564#endif
434 565
435int 566int
442ev_version_minor (void) 573ev_version_minor (void)
443{ 574{
444 return EV_VERSION_MINOR; 575 return EV_VERSION_MINOR;
445} 576}
446 577
447int ev_init (int flags) 578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
448{ 581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
449 if (!ev_method) 599 if (!method)
450 { 600 {
451#if EV_USE_MONOTONIC 601#if EV_USE_MONOTONIC
452 { 602 {
453 struct timespec ts; 603 struct timespec ts;
454 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
455 have_monotonic = 1; 605 have_monotonic = 1;
456 } 606 }
457#endif 607#endif
458 608
459 ev_now = ev_time (); 609 rt_now = ev_time ();
460 now = get_clock (); 610 mn_now = get_clock ();
611 now_floor = mn_now;
461 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
462 613
463 if (pipe (sigpipe)) 614 if (methods == EVMETHOD_AUTO)
464 return 0; 615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
465 616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
466 ev_method = EVMETHOD_NONE; 618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
467#if EV_USE_EPOLL 627#if EV_USE_EPOLL
468 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
469#endif 632#endif
470#if EV_USE_SELECT 633#if EV_USE_SELECT
471 if (ev_method == EVMETHOD_NONE) select_init (flags); 634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
472#endif 635#endif
636 }
637}
473 638
639void
640loop_destroy (EV_P)
641{
642 int i;
643
644#if EV_USE_WIN32
645 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
646#endif
647#if EV_USE_KQUEUE
648 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
649#endif
650#if EV_USE_EPOLL
651 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
652#endif
653#if EV_USE_POLL
654 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
655#endif
656#if EV_USE_SELECT
657 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
658#endif
659
660 for (i = NUMPRI; i--; )
661 array_free (pending, [i]);
662
663 array_free (fdchange, );
664 array_free (timer, );
665 array_free (periodic, );
666 array_free (idle, );
667 array_free (prepare, );
668 array_free (check, );
669
670 method = 0;
671 /*TODO*/
672}
673
674void
675loop_fork (EV_P)
676{
677 /*TODO*/
678#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif
681#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif
684}
685
686#if EV_MULTIPLICITY
687struct ev_loop *
688ev_loop_new (int methods)
689{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
691
692 loop_init (EV_A_ methods);
693
694 if (ev_method (EV_A))
695 return loop;
696
697 return 0;
698}
699
700void
701ev_loop_destroy (EV_P)
702{
703 loop_destroy (EV_A);
704 free (loop);
705}
706
707void
708ev_loop_fork (EV_P)
709{
710 loop_fork (EV_A);
711}
712
713#endif
714
715#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop *
720#else
721static int default_loop;
722
723int
724#endif
725ev_default_loop (int methods)
726{
727 if (sigpipe [0] == sigpipe [1])
728 if (pipe (sigpipe))
729 return 0;
730
731 if (!default_loop)
732 {
733#if EV_MULTIPLICITY
734 struct ev_loop *loop = default_loop = &default_loop_struct;
735#else
736 default_loop = 1;
737#endif
738
739 loop_init (EV_A_ methods);
740
474 if (ev_method) 741 if (ev_method (EV_A))
475 { 742 {
476 ev_watcher_init (&sigev, sigcb); 743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
477 siginit (); 745 siginit (EV_A);
478 746
747#ifndef WIN32
479 ev_signal_init (&childev, childcb, SIGCHLD); 748 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI);
480 ev_signal_start (&childev); 750 ev_signal_start (EV_A_ &childev);
751 ev_unref (EV_A); /* child watcher should not keep loop alive */
752#endif
481 } 753 }
754 else
755 default_loop = 0;
482 } 756 }
483 757
484 return ev_method; 758 return default_loop;
485} 759}
486 760
487/*****************************************************************************/
488
489void 761void
490ev_prefork (void) 762ev_default_destroy (void)
491{ 763{
492 /* nop */ 764#if EV_MULTIPLICITY
493} 765 struct ev_loop *loop = default_loop;
494
495void
496ev_postfork_parent (void)
497{
498 /* nop */
499}
500
501void
502ev_postfork_child (void)
503{
504#if EV_USE_EPOLL
505 if (ev_method == EVMETHOD_EPOLL)
506 epoll_postfork_child ();
507#endif 766#endif
508 767
768 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev);
770
771 ev_ref (EV_A); /* signal watcher */
509 ev_io_stop (&sigev); 772 ev_io_stop (EV_A_ &sigev);
773
774 close (sigpipe [0]); sigpipe [0] = 0;
775 close (sigpipe [1]); sigpipe [1] = 0;
776
777 loop_destroy (EV_A);
778}
779
780void
781ev_default_fork (void)
782{
783#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop;
785#endif
786
787 loop_fork (EV_A);
788
789 ev_io_stop (EV_A_ &sigev);
510 close (sigpipe [0]); 790 close (sigpipe [0]);
511 close (sigpipe [1]); 791 close (sigpipe [1]);
512 pipe (sigpipe); 792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
513 siginit (); 795 siginit (EV_A);
514} 796}
515 797
516/*****************************************************************************/ 798/*****************************************************************************/
517 799
518static void 800static void
519call_pending (void) 801call_pending (EV_P)
520{ 802{
803 int pri;
804
805 for (pri = NUMPRI; pri--; )
521 while (pendingcnt) 806 while (pendingcnt [pri])
522 { 807 {
523 ANPENDING *p = pendings + --pendingcnt; 808 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
524 809
525 if (p->w) 810 if (p->w)
526 { 811 {
527 p->w->pending = 0; 812 p->w->pending = 0;
528 p->w->cb (p->w, p->events); 813 p->w->cb (EV_A_ p->w, p->events);
529 } 814 }
530 } 815 }
531} 816}
532 817
533static void 818static void
534timers_reify (void) 819timers_reify (EV_P)
535{ 820{
536 while (timercnt && timers [0]->at <= now) 821 while (timercnt && ((WT)timers [0])->at <= mn_now)
537 { 822 {
538 struct ev_timer *w = timers [0]; 823 struct ev_timer *w = timers [0];
824
825 assert (("inactive timer on timer heap detected", ev_is_active (w)));
539 826
540 /* first reschedule or stop timer */ 827 /* first reschedule or stop timer */
541 if (w->repeat) 828 if (w->repeat)
542 { 829 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
543 w->at = now + w->repeat; 831 ((WT)w)->at = mn_now + w->repeat;
544 assert (("timer timeout in the past, negative repeat?", w->at > now));
545 downheap ((WT *)timers, timercnt, 0); 832 downheap ((WT *)timers, timercnt, 0);
546 } 833 }
547 else 834 else
548 ev_timer_stop (w); /* nonrepeating: stop timer */ 835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
549 836
550 event ((W)w, EV_TIMEOUT); 837 event (EV_A_ (W)w, EV_TIMEOUT);
551 } 838 }
552} 839}
553 840
554static void 841static void
555periodics_reify (void) 842periodics_reify (EV_P)
556{ 843{
557 while (periodiccnt && periodics [0]->at <= ev_now) 844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
558 { 845 {
559 struct ev_periodic *w = periodics [0]; 846 struct ev_periodic *w = periodics [0];
847
848 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
560 849
561 /* first reschedule or stop timer */ 850 /* first reschedule or stop timer */
562 if (w->interval) 851 if (w->interval)
563 { 852 {
564 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
565 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
566 downheap ((WT *)periodics, periodiccnt, 0); 855 downheap ((WT *)periodics, periodiccnt, 0);
567 } 856 }
568 else 857 else
569 ev_periodic_stop (w); /* nonrepeating: stop timer */ 858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
570 859
571 event ((W)w, EV_TIMEOUT); 860 event (EV_A_ (W)w, EV_PERIODIC);
572 } 861 }
573} 862}
574 863
575static void 864static void
576periodics_reschedule (ev_tstamp diff) 865periodics_reschedule (EV_P)
577{ 866{
578 int i; 867 int i;
579 868
580 /* adjust periodics after time jump */ 869 /* adjust periodics after time jump */
581 for (i = 0; i < periodiccnt; ++i) 870 for (i = 0; i < periodiccnt; ++i)
582 { 871 {
583 struct ev_periodic *w = periodics [i]; 872 struct ev_periodic *w = periodics [i];
584 873
585 if (w->interval) 874 if (w->interval)
586 { 875 {
587 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
588 877
589 if (fabs (diff) >= 1e-4) 878 if (fabs (diff) >= 1e-4)
590 { 879 {
591 ev_periodic_stop (w); 880 ev_periodic_stop (EV_A_ w);
592 ev_periodic_start (w); 881 ev_periodic_start (EV_A_ w);
593 882
594 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
595 } 884 }
596 } 885 }
597 } 886 }
598} 887}
599 888
889inline int
890time_update_monotonic (EV_P)
891{
892 mn_now = get_clock ();
893
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
895 {
896 rt_now = rtmn_diff + mn_now;
897 return 0;
898 }
899 else
900 {
901 now_floor = mn_now;
902 rt_now = ev_time ();
903 return 1;
904 }
905}
906
600static void 907static void
601time_update (void) 908time_update (EV_P)
602{ 909{
603 int i; 910 int i;
604 911
605 ev_now = ev_time (); 912#if EV_USE_MONOTONIC
606
607 if (have_monotonic) 913 if (expect_true (have_monotonic))
608 { 914 {
609 ev_tstamp odiff = diff; 915 if (time_update_monotonic (EV_A))
610
611 for (i = 4; --i; ) /* loop a few times, before making important decisions */
612 { 916 {
613 now = get_clock (); 917 ev_tstamp odiff = rtmn_diff;
918
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */
920 {
614 diff = ev_now - now; 921 rtmn_diff = rt_now - mn_now;
615 922
616 if (fabs (odiff - diff) < MIN_TIMEJUMP) 923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
617 return; /* all is well */ 924 return; /* all is well */
618 925
619 ev_now = ev_time (); 926 rt_now = ev_time ();
927 mn_now = get_clock ();
928 now_floor = mn_now;
929 }
930
931 periodics_reschedule (EV_A);
932 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
620 } 934 }
621
622 periodics_reschedule (diff - odiff);
623 /* no timer adjustment, as the monotonic clock doesn't jump */
624 } 935 }
625 else 936 else
937#endif
626 { 938 {
627 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 939 rt_now = ev_time ();
940
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
628 { 942 {
629 periodics_reschedule (ev_now - now); 943 periodics_reschedule (EV_A);
630 944
631 /* adjust timers. this is easy, as the offset is the same for all */ 945 /* adjust timers. this is easy, as the offset is the same for all */
632 for (i = 0; i < timercnt; ++i) 946 for (i = 0; i < timercnt; ++i)
633 timers [i]->at += diff; 947 ((WT)timers [i])->at += rt_now - mn_now;
634 } 948 }
635 949
636 now = ev_now; 950 mn_now = rt_now;
637 } 951 }
638} 952}
639 953
640int ev_loop_done; 954void
955ev_ref (EV_P)
956{
957 ++activecnt;
958}
641 959
960void
961ev_unref (EV_P)
962{
963 --activecnt;
964}
965
966static int loop_done;
967
968void
642void ev_loop (int flags) 969ev_loop (EV_P_ int flags)
643{ 970{
644 double block; 971 double block;
645 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 972 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
646 973
647 do 974 do
648 { 975 {
649 /* queue check watchers (and execute them) */ 976 /* queue check watchers (and execute them) */
650 if (preparecnt) 977 if (expect_false (preparecnt))
651 { 978 {
652 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
653 call_pending (); 980 call_pending (EV_A);
654 } 981 }
655 982
656 /* update fd-related kernel structures */ 983 /* update fd-related kernel structures */
657 fd_reify (); 984 fd_reify (EV_A);
658 985
659 /* calculate blocking time */ 986 /* calculate blocking time */
660 987
661 /* we only need this for !monotonic clockor timers, but as we basically 988 /* we only need this for !monotonic clockor timers, but as we basically
662 always have timers, we just calculate it always */ 989 always have timers, we just calculate it always */
990#if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A);
993 else
994#endif
995 {
663 ev_now = ev_time (); 996 rt_now = ev_time ();
997 mn_now = rt_now;
998 }
664 999
665 if (flags & EVLOOP_NONBLOCK || idlecnt) 1000 if (flags & EVLOOP_NONBLOCK || idlecnt)
666 block = 0.; 1001 block = 0.;
667 else 1002 else
668 { 1003 {
669 block = MAX_BLOCKTIME; 1004 block = MAX_BLOCKTIME;
670 1005
671 if (timercnt) 1006 if (timercnt)
672 { 1007 {
673 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
674 if (block > to) block = to; 1009 if (block > to) block = to;
675 } 1010 }
676 1011
677 if (periodiccnt) 1012 if (periodiccnt)
678 { 1013 {
679 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
680 if (block > to) block = to; 1015 if (block > to) block = to;
681 } 1016 }
682 1017
683 if (block < 0.) block = 0.; 1018 if (block < 0.) block = 0.;
684 } 1019 }
685 1020
686 method_poll (block); 1021 method_poll (EV_A_ block);
687 1022
688 /* update ev_now, do magic */ 1023 /* update rt_now, do magic */
689 time_update (); 1024 time_update (EV_A);
690 1025
691 /* queue pending timers and reschedule them */ 1026 /* queue pending timers and reschedule them */
692 timers_reify (); /* relative timers called last */ 1027 timers_reify (EV_A); /* relative timers called last */
693 periodics_reify (); /* absolute timers called first */ 1028 periodics_reify (EV_A); /* absolute timers called first */
694 1029
695 /* queue idle watchers unless io or timers are pending */ 1030 /* queue idle watchers unless io or timers are pending */
696 if (!pendingcnt) 1031 if (!pendingcnt)
697 queue_events ((W *)idles, idlecnt, EV_IDLE); 1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
698 1033
699 /* queue check watchers, to be executed first */ 1034 /* queue check watchers, to be executed first */
700 if (checkcnt) 1035 if (checkcnt)
701 queue_events ((W *)checks, checkcnt, EV_CHECK); 1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
702 1037
703 call_pending (); 1038 call_pending (EV_A);
704 } 1039 }
705 while (!ev_loop_done); 1040 while (activecnt && !loop_done);
706 1041
707 if (ev_loop_done != 2) 1042 if (loop_done != 2)
708 ev_loop_done = 0; 1043 loop_done = 0;
1044}
1045
1046void
1047ev_unloop (EV_P_ int how)
1048{
1049 loop_done = how;
709} 1050}
710 1051
711/*****************************************************************************/ 1052/*****************************************************************************/
712 1053
713static void 1054inline void
714wlist_add (WL *head, WL elem) 1055wlist_add (WL *head, WL elem)
715{ 1056{
716 elem->next = *head; 1057 elem->next = *head;
717 *head = elem; 1058 *head = elem;
718} 1059}
719 1060
720static void 1061inline void
721wlist_del (WL *head, WL elem) 1062wlist_del (WL *head, WL elem)
722{ 1063{
723 while (*head) 1064 while (*head)
724 { 1065 {
725 if (*head == elem) 1066 if (*head == elem)
730 1071
731 head = &(*head)->next; 1072 head = &(*head)->next;
732 } 1073 }
733} 1074}
734 1075
735static void 1076inline void
736ev_clear (W w) 1077ev_clear_pending (EV_P_ W w)
737{ 1078{
738 if (w->pending) 1079 if (w->pending)
739 { 1080 {
740 pendings [w->pending - 1].w = 0; 1081 pendings [ABSPRI (w)][w->pending - 1].w = 0;
741 w->pending = 0; 1082 w->pending = 0;
742 } 1083 }
743} 1084}
744 1085
745static void 1086inline void
746ev_start (W w, int active) 1087ev_start (EV_P_ W w, int active)
747{ 1088{
1089 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1090 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1091
748 w->active = active; 1092 w->active = active;
1093 ev_ref (EV_A);
749} 1094}
750 1095
751static void 1096inline void
752ev_stop (W w) 1097ev_stop (EV_P_ W w)
753{ 1098{
1099 ev_unref (EV_A);
754 w->active = 0; 1100 w->active = 0;
755} 1101}
756 1102
757/*****************************************************************************/ 1103/*****************************************************************************/
758 1104
759void 1105void
760ev_io_start (struct ev_io *w) 1106ev_io_start (EV_P_ struct ev_io *w)
761{ 1107{
1108 int fd = w->fd;
1109
762 if (ev_is_active (w)) 1110 if (ev_is_active (w))
763 return; 1111 return;
764 1112
765 int fd = w->fd; 1113 assert (("ev_io_start called with negative fd", fd >= 0));
766 1114
767 ev_start ((W)w, 1); 1115 ev_start (EV_A_ (W)w, 1);
768 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
769 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1117 wlist_add ((WL *)&anfds[fd].head, (WL)w);
770 1118
771 fd_change (fd); 1119 fd_change (EV_A_ fd);
772} 1120}
773 1121
774void 1122void
775ev_io_stop (struct ev_io *w) 1123ev_io_stop (EV_P_ struct ev_io *w)
776{ 1124{
777 ev_clear ((W)w); 1125 ev_clear_pending (EV_A_ (W)w);
778 if (!ev_is_active (w)) 1126 if (!ev_is_active (w))
779 return; 1127 return;
780 1128
781 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
782 ev_stop ((W)w); 1130 ev_stop (EV_A_ (W)w);
783 1131
784 fd_change (w->fd); 1132 fd_change (EV_A_ w->fd);
785} 1133}
786 1134
787void 1135void
788ev_timer_start (struct ev_timer *w) 1136ev_timer_start (EV_P_ struct ev_timer *w)
789{ 1137{
790 if (ev_is_active (w)) 1138 if (ev_is_active (w))
791 return; 1139 return;
792 1140
793 w->at += now; 1141 ((WT)w)->at += mn_now;
794 1142
795 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
796 1144
797 ev_start ((W)w, ++timercnt); 1145 ev_start (EV_A_ (W)w, ++timercnt);
798 array_needsize (timers, timermax, timercnt, ); 1146 array_needsize (timers, timermax, timercnt, );
799 timers [timercnt - 1] = w; 1147 timers [timercnt - 1] = w;
800 upheap ((WT *)timers, timercnt - 1); 1148 upheap ((WT *)timers, timercnt - 1);
801}
802 1149
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151}
1152
803void 1153void
804ev_timer_stop (struct ev_timer *w) 1154ev_timer_stop (EV_P_ struct ev_timer *w)
805{ 1155{
806 ev_clear ((W)w); 1156 ev_clear_pending (EV_A_ (W)w);
807 if (!ev_is_active (w)) 1157 if (!ev_is_active (w))
808 return; 1158 return;
809 1159
1160 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1161
810 if (w->active < timercnt--) 1162 if (((W)w)->active < timercnt--)
811 { 1163 {
812 timers [w->active - 1] = timers [timercnt]; 1164 timers [((W)w)->active - 1] = timers [timercnt];
813 downheap ((WT *)timers, timercnt, w->active - 1); 1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
814 } 1166 }
815 1167
816 w->at = w->repeat; 1168 ((WT)w)->at = w->repeat;
817 1169
818 ev_stop ((W)w); 1170 ev_stop (EV_A_ (W)w);
819} 1171}
820 1172
821void 1173void
822ev_timer_again (struct ev_timer *w) 1174ev_timer_again (EV_P_ struct ev_timer *w)
823{ 1175{
824 if (ev_is_active (w)) 1176 if (ev_is_active (w))
825 { 1177 {
826 if (w->repeat) 1178 if (w->repeat)
827 { 1179 {
828 w->at = now + w->repeat; 1180 ((WT)w)->at = mn_now + w->repeat;
829 downheap ((WT *)timers, timercnt, w->active - 1); 1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
830 } 1182 }
831 else 1183 else
832 ev_timer_stop (w); 1184 ev_timer_stop (EV_A_ w);
833 } 1185 }
834 else if (w->repeat) 1186 else if (w->repeat)
835 ev_timer_start (w); 1187 ev_timer_start (EV_A_ w);
836} 1188}
837 1189
838void 1190void
839ev_periodic_start (struct ev_periodic *w) 1191ev_periodic_start (EV_P_ struct ev_periodic *w)
840{ 1192{
841 if (ev_is_active (w)) 1193 if (ev_is_active (w))
842 return; 1194 return;
843 1195
844 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
845 1197
846 /* this formula differs from the one in periodic_reify because we do not always round up */ 1198 /* this formula differs from the one in periodic_reify because we do not always round up */
847 if (w->interval) 1199 if (w->interval)
848 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
849 1201
850 ev_start ((W)w, ++periodiccnt); 1202 ev_start (EV_A_ (W)w, ++periodiccnt);
851 array_needsize (periodics, periodicmax, periodiccnt, ); 1203 array_needsize (periodics, periodicmax, periodiccnt, );
852 periodics [periodiccnt - 1] = w; 1204 periodics [periodiccnt - 1] = w;
853 upheap ((WT *)periodics, periodiccnt - 1); 1205 upheap ((WT *)periodics, periodiccnt - 1);
854}
855 1206
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208}
1209
856void 1210void
857ev_periodic_stop (struct ev_periodic *w) 1211ev_periodic_stop (EV_P_ struct ev_periodic *w)
858{ 1212{
859 ev_clear ((W)w); 1213 ev_clear_pending (EV_A_ (W)w);
860 if (!ev_is_active (w)) 1214 if (!ev_is_active (w))
861 return; 1215 return;
862 1216
1217 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1218
863 if (w->active < periodiccnt--) 1219 if (((W)w)->active < periodiccnt--)
864 { 1220 {
865 periodics [w->active - 1] = periodics [periodiccnt]; 1221 periodics [((W)w)->active - 1] = periodics [periodiccnt];
866 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1222 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
867 } 1223 }
868 1224
869 ev_stop ((W)w); 1225 ev_stop (EV_A_ (W)w);
870} 1226}
871 1227
872void 1228void
873ev_signal_start (struct ev_signal *w) 1229ev_idle_start (EV_P_ struct ev_idle *w)
874{ 1230{
875 if (ev_is_active (w)) 1231 if (ev_is_active (w))
876 return; 1232 return;
877 1233
1234 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, );
1236 idles [idlecnt - 1] = w;
1237}
1238
1239void
1240ev_idle_stop (EV_P_ struct ev_idle *w)
1241{
1242 ev_clear_pending (EV_A_ (W)w);
1243 if (ev_is_active (w))
1244 return;
1245
1246 idles [((W)w)->active - 1] = idles [--idlecnt];
1247 ev_stop (EV_A_ (W)w);
1248}
1249
1250void
1251ev_prepare_start (EV_P_ struct ev_prepare *w)
1252{
1253 if (ev_is_active (w))
1254 return;
1255
1256 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, );
1258 prepares [preparecnt - 1] = w;
1259}
1260
1261void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w)
1263{
1264 ev_clear_pending (EV_A_ (W)w);
1265 if (ev_is_active (w))
1266 return;
1267
1268 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1269 ev_stop (EV_A_ (W)w);
1270}
1271
1272void
1273ev_check_start (EV_P_ struct ev_check *w)
1274{
1275 if (ev_is_active (w))
1276 return;
1277
1278 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, );
1280 checks [checkcnt - 1] = w;
1281}
1282
1283void
1284ev_check_stop (EV_P_ struct ev_check *w)
1285{
1286 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w))
1288 return;
1289
1290 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w);
1292}
1293
1294#ifndef SA_RESTART
1295# define SA_RESTART 0
1296#endif
1297
1298void
1299ev_signal_start (EV_P_ struct ev_signal *w)
1300{
1301#if EV_MULTIPLICITY
1302 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1303#endif
1304 if (ev_is_active (w))
1305 return;
1306
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1308
878 ev_start ((W)w, 1); 1309 ev_start (EV_A_ (W)w, 1);
879 array_needsize (signals, signalmax, w->signum, signals_init); 1310 array_needsize (signals, signalmax, w->signum, signals_init);
880 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
881 1312
882 if (!w->next) 1313 if (!((WL)w)->next)
883 { 1314 {
884 struct sigaction sa; 1315 struct sigaction sa;
885 sa.sa_handler = sighandler; 1316 sa.sa_handler = sighandler;
886 sigfillset (&sa.sa_mask); 1317 sigfillset (&sa.sa_mask);
887 sa.sa_flags = 0; 1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
888 sigaction (w->signum, &sa, 0); 1319 sigaction (w->signum, &sa, 0);
889 } 1320 }
890} 1321}
891 1322
892void 1323void
893ev_signal_stop (struct ev_signal *w) 1324ev_signal_stop (EV_P_ struct ev_signal *w)
894{ 1325{
895 ev_clear ((W)w); 1326 ev_clear_pending (EV_A_ (W)w);
896 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
897 return; 1328 return;
898 1329
899 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1330 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
900 ev_stop ((W)w); 1331 ev_stop (EV_A_ (W)w);
901 1332
902 if (!signals [w->signum - 1].head) 1333 if (!signals [w->signum - 1].head)
903 signal (w->signum, SIG_DFL); 1334 signal (w->signum, SIG_DFL);
904} 1335}
905 1336
906void 1337void
907ev_idle_start (struct ev_idle *w) 1338ev_child_start (EV_P_ struct ev_child *w)
908{ 1339{
1340#if EV_MULTIPLICITY
1341 assert (("child watchers are only supported in the default loop", loop == default_loop));
1342#endif
909 if (ev_is_active (w)) 1343 if (ev_is_active (w))
910 return; 1344 return;
911 1345
912 ev_start ((W)w, ++idlecnt); 1346 ev_start (EV_A_ (W)w, 1);
913 array_needsize (idles, idlemax, idlecnt, ); 1347 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
914 idles [idlecnt - 1] = w;
915} 1348}
916 1349
917void 1350void
918ev_idle_stop (struct ev_idle *w) 1351ev_child_stop (EV_P_ struct ev_child *w)
919{ 1352{
920 ev_clear ((W)w); 1353 ev_clear_pending (EV_A_ (W)w);
921 if (ev_is_active (w)) 1354 if (ev_is_active (w))
922 return; 1355 return;
923 1356
924 idles [w->active - 1] = idles [--idlecnt];
925 ev_stop ((W)w);
926}
927
928void
929ev_prepare_start (struct ev_prepare *w)
930{
931 if (ev_is_active (w))
932 return;
933
934 ev_start ((W)w, ++preparecnt);
935 array_needsize (prepares, preparemax, preparecnt, );
936 prepares [preparecnt - 1] = w;
937}
938
939void
940ev_prepare_stop (struct ev_prepare *w)
941{
942 ev_clear ((W)w);
943 if (ev_is_active (w))
944 return;
945
946 prepares [w->active - 1] = prepares [--preparecnt];
947 ev_stop ((W)w);
948}
949
950void
951ev_check_start (struct ev_check *w)
952{
953 if (ev_is_active (w))
954 return;
955
956 ev_start ((W)w, ++checkcnt);
957 array_needsize (checks, checkmax, checkcnt, );
958 checks [checkcnt - 1] = w;
959}
960
961void
962ev_check_stop (struct ev_check *w)
963{
964 ev_clear ((W)w);
965 if (ev_is_active (w))
966 return;
967
968 checks [w->active - 1] = checks [--checkcnt];
969 ev_stop ((W)w);
970}
971
972void
973ev_child_start (struct ev_child *w)
974{
975 if (ev_is_active (w))
976 return;
977
978 ev_start ((W)w, 1);
979 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
980}
981
982void
983ev_child_stop (struct ev_child *w)
984{
985 ev_clear ((W)w);
986 if (ev_is_active (w))
987 return;
988
989 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
990 ev_stop ((W)w); 1358 ev_stop (EV_A_ (W)w);
991} 1359}
992 1360
993/*****************************************************************************/ 1361/*****************************************************************************/
994 1362
995struct ev_once 1363struct ev_once
999 void (*cb)(int revents, void *arg); 1367 void (*cb)(int revents, void *arg);
1000 void *arg; 1368 void *arg;
1001}; 1369};
1002 1370
1003static void 1371static void
1004once_cb (struct ev_once *once, int revents) 1372once_cb (EV_P_ struct ev_once *once, int revents)
1005{ 1373{
1006 void (*cb)(int revents, void *arg) = once->cb; 1374 void (*cb)(int revents, void *arg) = once->cb;
1007 void *arg = once->arg; 1375 void *arg = once->arg;
1008 1376
1009 ev_io_stop (&once->io); 1377 ev_io_stop (EV_A_ &once->io);
1010 ev_timer_stop (&once->to); 1378 ev_timer_stop (EV_A_ &once->to);
1011 free (once); 1379 free (once);
1012 1380
1013 cb (revents, arg); 1381 cb (revents, arg);
1014} 1382}
1015 1383
1016static void 1384static void
1017once_cb_io (struct ev_io *w, int revents) 1385once_cb_io (EV_P_ struct ev_io *w, int revents)
1018{ 1386{
1019 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1387 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1020} 1388}
1021 1389
1022static void 1390static void
1023once_cb_to (struct ev_timer *w, int revents) 1391once_cb_to (EV_P_ struct ev_timer *w, int revents)
1024{ 1392{
1025 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1393 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1026} 1394}
1027 1395
1028void 1396void
1029ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1030{ 1398{
1031 struct ev_once *once = malloc (sizeof (struct ev_once)); 1399 struct ev_once *once = malloc (sizeof (struct ev_once));
1032 1400
1033 if (!once) 1401 if (!once)
1034 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1039 1407
1040 ev_watcher_init (&once->io, once_cb_io); 1408 ev_watcher_init (&once->io, once_cb_io);
1041 if (fd >= 0) 1409 if (fd >= 0)
1042 { 1410 {
1043 ev_io_set (&once->io, fd, events); 1411 ev_io_set (&once->io, fd, events);
1044 ev_io_start (&once->io); 1412 ev_io_start (EV_A_ &once->io);
1045 } 1413 }
1046 1414
1047 ev_watcher_init (&once->to, once_cb_to); 1415 ev_watcher_init (&once->to, once_cb_to);
1048 if (timeout >= 0.) 1416 if (timeout >= 0.)
1049 { 1417 {
1050 ev_timer_set (&once->to, timeout, 0.); 1418 ev_timer_set (&once->to, timeout, 0.);
1051 ev_timer_start (&once->to); 1419 ev_timer_start (EV_A_ &once->to);
1052 } 1420 }
1053 } 1421 }
1054} 1422}
1055 1423
1056/*****************************************************************************/
1057
1058#if 0
1059
1060struct ev_io wio;
1061
1062static void
1063sin_cb (struct ev_io *w, int revents)
1064{
1065 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1066}
1067
1068static void
1069ocb (struct ev_timer *w, int revents)
1070{
1071 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1072 ev_timer_stop (w);
1073 ev_timer_start (w);
1074}
1075
1076static void
1077scb (struct ev_signal *w, int revents)
1078{
1079 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1080 ev_io_stop (&wio);
1081 ev_io_start (&wio);
1082}
1083
1084static void
1085gcb (struct ev_signal *w, int revents)
1086{
1087 fprintf (stderr, "generic %x\n", revents);
1088
1089}
1090
1091int main (void)
1092{
1093 ev_init (0);
1094
1095 ev_io_init (&wio, sin_cb, 0, EV_READ);
1096 ev_io_start (&wio);
1097
1098 struct ev_timer t[10000];
1099
1100#if 0
1101 int i;
1102 for (i = 0; i < 10000; ++i)
1103 {
1104 struct ev_timer *w = t + i;
1105 ev_watcher_init (w, ocb, i);
1106 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1107 ev_timer_start (w);
1108 if (drand48 () < 0.5)
1109 ev_timer_stop (w);
1110 }
1111#endif
1112
1113 struct ev_timer t1;
1114 ev_timer_init (&t1, ocb, 5, 10);
1115 ev_timer_start (&t1);
1116
1117 struct ev_signal sig;
1118 ev_signal_init (&sig, scb, SIGQUIT);
1119 ev_signal_start (&sig);
1120
1121 struct ev_check cw;
1122 ev_check_init (&cw, gcb);
1123 ev_check_start (&cw);
1124
1125 struct ev_idle iw;
1126 ev_idle_init (&iw, gcb);
1127 ev_idle_start (&iw);
1128
1129 ev_loop (0);
1130
1131 return 0;
1132}
1133
1134#endif
1135
1136
1137
1138

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines